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ABSTRACT. In this paper, we prove that all positive integers up to N but at most O(N17/18+8)
exceptions, can be expressed by the sum of a cube and three cubes of primes.
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1. INTRODUCTION

We consider the expression of positive integers n as the sum of a cube and three cubes of
primes, that is
n=m’+pj +pj + pi, (1.1)
where m is a positive integer and p; are primes. In 1949, Roth [6] proved that almost all
positive integers n can be written as (1.1). Precisely, let E(N) denote the number of positive
integers up N which cannot be written as (1.1), then Roth’s theorem actually states that
E(N)< N log~* N for arbitrary A > 0. This result can be viewed as an approximation to the
conjecture that all sufficiently large integers satisfying some necessary congruence conditions
are the sum of four cubes of primes. As is well known that the quality of the approximation
is indicated in the upper bound of E(N). Recently, Roth’s theorem has been improved by
Ren [3] to E(N) < N'9/170 and by Ren and Tsang [4] to E(N) < N1271/12%6+e = These
improvements were obtained via new approaches to enlarge major arcs in the circle method
used. For this, see for example [3], [4], [1]. In this paper, based on the major arcs estimate

in [4], we use some new ideas to handle the minor arcs and prove the following.

Theorem 1. For E(N) defined above, we have
E(N) << N17/18+€'

Notation. As usual, A(n) stands for the von Mangoldt function. In our statement, N is
a large positive integer, and L = log N. The symbol r ~ R means R < r < 2R. The letters ¢

and A denote positive constants, which are arbitrarily small and arbitrarily large respectively.

2. PROOF OF THEOREM 1

Following [4], we introduce notations
U=(N/9)'Y3 and VvV =US. (2.1)
In order to apply the circle method, for large positive integer N and positive real number
0, we let

PO =U° and Q@) =NPl=03". (2.2)
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As usual, we define the major arcs 9(6) to be the union of all intervals [a/q—1/(¢Q(0)),a/q+
1/(qQ(0))], where a, g are coprime integers and 1 < a < ¢ < P(f). Let the minor arcs m(6)
be the complement of M(#) in the unit interval 1(0) = [1/Q(0),1+ 1/Q(0)].

We define

T(a) = Z e(m?a),

m~U
and for W >0
S(a, W) = > A(m)e(m’a).
m~W
Let
R(n) = > A(m1)A(ma)A(ms).
n:m%-}—m-&-mi
mq1,my~Umog,mg~V
Then

= 8] 2 (8] a)el —noa o = . .
R(n) = /I S0 @ VIT(@)e(—na)d /m(9)+ /m ) (2.3)

Here for the major arcs estimate, we quote Theorem 2 in [4] and record it in the following

lemma.

Lemma 2.1. Let 0 < 25/72. For all integers n with N/2 <n < N, we have

/ S, U)S (e, V)T ()e(—na)da = &(n)J(n) + O(V2U L),
m(o)

where &(n) is the singular series in this problem which satisfies
(loglogn) ® < 6(n) < logn
for a certain positive constant cy, and J(n) is a multiple integral which satisfies

ViUt < Jn) < VUL

In this paper, we will concentrate on the minor arcs estimates. Our main result is the

following,.

Lemma 2.2. We have

/ |S(O‘vU)|2\S(a,V)|4|T(a)|2da<< 5/2+ey2.
m(25/72—¢)

We will prove this lemma in §3.

Proof of Theorem 1. We start from (2.3), where the major arcs estimate is taken care

of by Lemma 2.1. As regards the minor arcs, by Bessel’s inequality and Lemma 2.2, we have

>

N/2<n<N

2
/ S(a, U)S*(a, V)T (a)e(—na)da
m(25/72—¢)

< / 1S (e, U)21S (o, V)Y T ()| Pder < UP/?HeV2, (2.4)
m(25/72—¢)
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By a standard argument we derive that for all N/2 < n < N but at most O(U9/2+35V_2)

exceptions,
/ S(a,U)S?(a, V)T (a)e(—na)da < VU172,
m(25/72—¢)

This together with Lemma 2.1 proves that for these n, there holds
R(n) = &(n)J(n) + O(VEUIL™),
and hence n can be written as (1.1). Let F(NN) be the number of the exceptional n above,
then we have
F(N) < U9/2+38v—2 — N17/18+£.
The assertion of Theorem 1 now follows from E(N) =~ F(N/ 27). 0

3. PROOOF OF LEMMA 2.2

To prove Lemma 2.2, we need the following lemmas. Lemma 3.1 is obtained by letting
k = 3 in Theorem 1 of [5]; Lemma 3.2 is due to Vaughan [7]; and Lemma 3.3 is Lemma 2.4
in [2].

Lemma 3.1. Suppose a = a/q+ \ where a, ¢ > 1, (a,q) =1 and A € R. Then we have

W —-1/2
S(OéaW)<<q5(10gCW) {W1/2q1/2 1+|)\|W3_|_W4/5+q}’

V14 | AW3
where ¢ is an absolute positive constant.

Lemma 3.2. Let Zy denote the number of solutions of the equation m3 + n3 + n3 =
m3 +n3 + nj subject to mj ~ U and nj ~V. Then Zy < Ultey?,

Lemma 3.3. For k > 3, let wi(q) be the multiplicative function defined by

wnl ku+v) . kp~%~1/2, when «>0 and v=1,
kAP T pvh when >0 and 2<wv<k.
Suppose that n and & are real numbers satisfying n > 0, &€ > 2n+2 and £ > kn+ 1. Then

whenever X > 2, one has

> qwile) <

{ 1, when & > kn+1,
1<g<X

log X, when &¢=kn+1,
where the implied constant depends at most on k, n and &.

Proof of Lemma 2.2. Let a € m(25/72 —¢). Then by Dirichlet’s lemma on rational
approximations, there exist coprime integers a, ¢ and real number \ satisfying
1<q<24U%, A <1/(249U%) (3.1)
such that o = a/q+ \. If U < ¢ < 24U?, we apply Weyl’s inequality to get

T ()| < U3/, (3.2)
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If 1 < ¢ < U, we combine conclusions of Lemmas 6.1 and 6.2 in [8] and (2.1)-(2.3) in [2] to

obtain

W(Q)U 1/24¢
T RN A

where w(q) = w3(q) is as defined in Lemma 3.3 and satisfies

—-1/2 1/3

¢ F<w(g) < q
Let 0 < b < 1. Then for ¢, A satisfying either U® < ¢ < U, or
1<q<U® and w(q)UY373 < |\ < 1/(24¢U?),
one has
IT(a)| < U3,
Let ©(b) be the set of all @« = a/q+ A € m(25/72 — €) with ¢, A satisfying
L<q<U' N <w(@Uu

Then one concludes from (3.2)-(3.5) that

max _[T(a)| < maX{Ul—b/s, U3/4+E}'
m(25/72—¢)\D(b)

Therefore, on choosing b = 3/4, we obtain
/ 1S(a, U210, V)T (@) P
m(25/72—¢)
< / 1S(a, U)PIS(a, V)T () Pda
D(3/4)

1
LU / 1S(a, U)2IS (e, V) |*dar.
0
Here by Lemma 3.2, the last term is
< U3/2+EZO < U5/2+€V2.

So it remains to prove
/ ’S(O‘7U)’2|S(057V)‘4|T(04)|2da < U5/2+EV2.
D(3/4)

For a = a/q+ X € ©(3/4), there holds either
UB/ITe < g < U |\ Sw(q)UYA3

or

1<q¢< U25/7275’ 1/(qU191/72+5) < ‘)\’ < w(q)U1/473'
4
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By (3.3) where the right hand side is dominated by w(q)U (1 + |[A|U3)~!, one has
[ ISt 0)PIs(@ V) iT(e) Pl
D(3/4)

2 4
B Zw / 1S(a/q+ X, U)| |S(a/2q+A,V)I
qU 9L/ 72+e) |\ |<w(q)U1/4-3 (1+ ’)"Ug)

1<q<U25/72 e a=1

dX

S(a/q+N\U)|?S(a/q+ N\ V)
+U? § : § W (q / | ’ ’ d\
)\|< )U1/4 3

2
U25/72— s<q<U3/4a 1 (]- + ‘)\’U?’)
= My + M>, say. (37)

To estimate M; and Ma, we observe that for [A\| < w(q)U/473, there holds [A\[V?3 < 1.

Hence by Lemma 3.1 we have
S(a/g+ A\ V) < Va{vl/qu/Q + VR4 Vq_1/2}. (3.8)
For ¢ < U?/72=¢  this gives
1S(a/q+ )\ V)[* < VE{V16/5 + V4q—2}.

By Lemma 3.1, we also have

1S(a/q+ X, U)?
1+ U3

8/5 2 -1
< U* {Uq+ v Ua }

RN SN [ICE
For |\ > 1/(qU'/72~¢), this gives

S(a/q+ A, U)P?

[ENNEE qu*T.

Therefore

_ ! dA
M, < U2Hi7/36+e Z q2w2(q){V16/5+V4q 2}/ I
1§q§U25/7275 0

< [l/36+e Z wz(q) {q2V16/5 n V4} '
1§q§U25/72—€

By Lemma 3.3, for any X >Y > 1,

Yo W< D g <L (3.10)

Y<q<X Y<q<X

So we get
M, < UL/36+e {V16/5U25/36 i V4} < U2+ep2, (3.11)

We now turn to Ms. Again by (3.8) and (3.9), we have

1S(a/q+ A\ V)? < V‘E{Vq + V854 V2q_1},
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and

1S(a/q+ A U)?
1+ [\UB

< UE{Uq + U85 + U2q1}.
Thus

My, < U*e > wQ(q){Vq+V8/5+V2q_1}{Uq+U8/5 +U2q_1}
U25/72—e <q<U3/4

q
« / S [S(afg + A, V) A, (3.12)
N <w(qUut/a=3 =

We have

> 1S(a/g+ A V)

= Z A(mq)A Ze (a/q + A)(mi —m3))

mi~V a=1

< qLQﬁ{m‘i’ = mg (mod q), m; ~V, (my,q) = 1}

Putting this into (3.12) and then applying the second inequality in (3.10), we get

My < UZSHeV? - max q_l/z{vq + V84 v2q_1}{Uq TUS UQq_l}'

U25/72—¢ <q<U3/4

Since U = V5/6, we have for ¢ > U?%/72~¢,
{Vq + V54 V2q_1}{Uq + US54 U2q—1}

LUV + UV g+ USPVES 4 UPV8/57 1

Hence

My, < U—3/4+5V2{U1+9/8v+U8/5+3/8v+U8/5—25/144V8/5+U2—75/144V8/5}

< U53/24+6V2.

This together with (3.7) and (3.11) proves (3.6), and hence finishes the proof of Lemma 2.2.
(]
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