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Abstract
Let E,(T') be the error term in the mean square formula of the Riemann Zeta-function in
the critical strip 1/2 < o < 1. It is an analogue of the error term E(T) for the case o = 1/2.
The research of E(T') has a long history but the investigation of E,(T') is quite new. In
particular there is only a few information known about E,(T) for 3/4 < o < 1. As one way
of exploration, we approach this problem by looking at its mean value flT Ey(u) du. In this
paper, we give it an Atkinson-type series expansion and explore its properties as a function

of T. From this, we can obtain Q-results of E,(T") and its mean square for 3/4 < o < 1.
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1. INTRODUCTION
Let ((s) be the Riemann Zeta-function, and let

T
E(T):/O \C(1/2+it)]2dt—T(log%+27—1)

denote the error term in the mean-square formula for {(s) (on the critical line). The behaviour
of E(T) is interesting and many papers are devoted to study this function. However, the
conjecture about its order of magnitude, E(T) < TV/4*¢, remains open. Analogously, it is

defined for 1/2 < o < 1,

(2-20), 9 9

E,(T) = /OT IC(o +it)[* dt — <§(20)T+ (2w)20*1gzﬁT - ") .

The behaviour of E,(T) is very interesting too, and in fact, more delicate analysis is required
to explore its properties such as the Atkinson-type series expansion and mean square formula,
see ([14]-[17]). Excellent surveys are given in [10] and [15].

In the critical strip 1/2 < ¢ < 1, our knowledge of E,;(T) is not ‘uniform’, for example,
the mean square formula and Qi-results are available for 1/2 < ¢ < 3/4 but not for the
other part. In fact, not much is known for the case 3/4 < o < 1, except perhaps some upper

bound estimates and
T
/ E,()2dt < T 3/4<o<1). (1.1)
1

To furnish this part, we look at the mean value flT Ey(u)du. The mean values of E(T)
and E,(T) (1/2 < o0 < 3/4) are respectively studied in [2] and [6], each of which gives an
asymptotic expansion. Correspondingly, we can represent it in this case 3/4 < o < 1 by an
asymptotic formula with a good error term. The proof of the asymptotic formula relies on
the argument of [2] and uses the tools available in [2] and [16]. But there is a difficulty which
we need to get around. In [2], Hafner and Ivié used a result of Jutila [8] on transformation
of Dirichlet Polynomials, which depends on the formula
b o0 b
Thcnsad(n) () = [ Qo 4210 o+ 32 dw) [ ayatne)da

where « is a combination of Bessel functions. It is not available in our case but this can be
avoided by using the idea in [16].

In addition, we shall regard the mean value as a function of T and study its behaviour;

more precisely, we consider

T
Gy (T) = /1 E,(t)dt + 27¢(20 — 1)T.
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Unlike the case 1/2 < o < 3/4, G5(T) is now more fluctuating. Nevertheless we can still ex-
plore many interesting properties, including some power moments, {21-results, gaps between
sign-changes and limiting distribution functions. The second and third power moments are
obtained by the methods used in [16] and [20]. The underlying principle in proving the -
results are the same as other authors but the technical treatment is different (for example,
compare our Section 6 with [2, Section 5]). To discuss the width of gaps between sign-changes,
we need the method in [4], though the case 1/2 < o < 3/4 can be handled by the argument
n [11]. We can determine the exact order of magnitude of the gaps (see Theorems 5 and 6).
This is because the series representation of G, (t) has a fast rate of convergence. We apply
the results in [1] and [3] to deal with the problem about limiting distribution function. Such
an investigation is actually not done in the case 1/2 < o < 3/4, perhaps because it is less
interesting in the sense that the exact order of magnitude of G,(t) (1/2 < o < 3/4) is known;
therefore, the limiting distribution is ‘compactly supported’. Here, we say that a limiting
distribution is compactly supported if it equals 0 or 1 outside a compact set. (Note that a
distribution function is non-decreasing.) However, in our case it never vanishes (i.e. never
equal to 0 or 1), and we shall investigate the rate of decay. Our approach here can give a
more precise result than that of [1].

Finally, we want to remark that our work leads to
T
/ E,(t)dt = —2n((20 — )T + O(VTlogT)  (3/4 <o < 1).
1

This suggests that we should further split E,(¢) into two parts: E,(t) = —27((20—1)+EX(t).

2. STATEMENT OF RESULTS
Throughout the paper, we assume 3/4 < o < 1 and use ¢, ¢ and ¢’ to denote some
constants which may differ at each occurrence. The implied constants in <- or O-symbols

and the unspecified positive constants ¢; (i = 1,2,...) may depend on o.

Let 0q(n) = 34, d* and arsinh = = log(z + Va2 + 1). We define

I o1-24(Nn
(LX) = fz(t>54 Z(—1)"L()eg(t,n)smf(t,n)

o “ ni/i—c
t\Y2e o1-20(n) t 2.
o(t, X) = 2(27r> Z o (log27m> sing(t,n),
n<B(t,VX)



where

ea(t,n) (1 )1/4 (W arsmh\r )

f(t,n) = 2t arsmh\/;_F(gﬂnt_i_ﬂz 2)1/2 ™

47
t i
t = tlog— —t+ —
glt:n) = tlog——t+ 7, / / 2
t X t X\? t X\'? VX
Bt vX) = —+——-—VX|—+— = — 4+ — - .
(t, ) 27r+2 (27r+4) <<27T+4> 2

Theorem 1 Let T > 1 and N <T. We have
/IT E,(t)dt = —27¢(20 — 1)T 4+ X1 (T, N) — S5(T, N) + O(log? T').
Remark: Bounding X1 (T, N) and X5(7, N) trivially, we infer with (1.1) a result for E,(t).
Corollary We have flT E,(t)dt = —27¢(20 — 1)T + O(vT min((c — 3/4)~%,1og T)).
Define G, (t) = [} Ey(u) du + 21¢(20 — 1)t. Then G, (t) < t'/2, and it is not hard to get
/T . Gy (t) dt = o(T'+0/4=2))y, (2.1)
Results of higher power moments are proved in the next theorem.
Theorem 2 LetT > 1. We have
(1) J7" Go(t) dt = B(o) J" (t/(2m))/% dt + O(T*%),
(2) J7' Go(t) dt = —C(o) [7" (t/(2m))'*/4=57 dt + O(T13=80)/3),
(3) for any real k € [0, Ag) and any odd integer 0 < 1 < Ay where Ag = (o — 3/4)~!
/ G (D) dt ~ ag(0)THG/A0) g / Gy (t)! dt ~ By(o)T B/

where ax(c) > 0 and Gi(o) are some constants, B(o) and C(o) are defined by

Bo) = 3 oran(n)?n® 2 = ((7/2 - 20)C(3/2 + 20)¢(5/2)%C(5) ",

3 w(s)? & 01-2,(50%) 0124 (sb?) 01205 (s(a + b)?)
Clo) = 72521/4 30 Z al/220 yi/2-20 (g b)7/220

It is expected that G,(t) is oscillatory in nature and its order of magnitude of G,(t) is
about t7/4=7. Although (2.1) tells us that there is plenty of cancellation between the positive
and negative parts, Theorem 2 (2) shows the negative part should be more dominating. This
phenomenon also appears in the case 1/2 < o < 3/4. Now, we look at its distribution of

values from the probabilistic viewpoint.



Theorem 3 The limiting distribution Dy (u) of t°~%/*G,(t) exists, and is equal to the dis-
tribution of the random series n =Y o2 1 an(t,) where
2 oo

anl—%(m”Q) .
Z(—l) Wsm(?mﬂf—w/@

onlt) = VRS

and t, are independent random variables uniformly distributed on [0,1]. Define tail(Dy(u))

=1— Dy(u) for u>0 and Dy(u) for u < 0. Then

exp(—c1 exp(|ul)) exp(—cgexp(|ul))  ifo=3/4,
< tail(Dy(u)) < (2.2)
exp(—co|u|*/ (47=3)) exp(—ca|u[@03))  if3/4 <o < 1.
Remark: Dy (u) is non-symmetric and should skew towards the negative side because of
Theorem 2 (2). Again it is also true for 1/2 < ¢ < 3/4. But in the case 1/2 < ¢ < 3/4, the
set {u € R:0 < Dy(u) < 1} is compact and it differs from our case.

To investigate the oscillatory nature, we consider the extreme values of G,(t) and the

frequency of occurrence of large values. These are revealed in the following three results.

Theorem 4 As T — oo, we have
Gya(T) = Q4 (VTlogloglogT) and Gya(T) = Q_(VTloglog T);

if 3/4 < o <1, then

(loglog T)7—3/4

(1) = Qu (T4
Go(T) +( exp(cs (log log log T)7/4—7

) and Gy (T) = Q_ (T4~ (log T)7~3/4).

Theorem 5 For every sufficiently large T, there exist t1, to € [T,T + 06\/T] such that

Gy(t1) > C7t‘;’/4_a and Gy(t2) < —C7tg/4_g. In particular, G,(t) has (at least) one sign

change in every interval [T, T + csﬁ].

Theorem 6 Let § > 0 be a fixred small number. Then for all sufficiently large T > Ty(6),
there are two sets St and S~ of disjoint intervals in [T, 2T] such that

1. any interval in S* s of length 095\/T,
2. cardinality of ST > ¢196*1=9)\/T,

3. if I € 8%, then £Gy(t) > (c11 — 6°/2720)t5/4=7 for allt € I (so no sign-changes on I ).



3. SERIES REPRESENTATION

This section is to prove Theorem 1 and we need two lemmas.

Lemma 3.1 Let o, B, 7y, a, b, k, T be real numbers such that o, 3, v are positive and
bounded, « #1,0<a<1/2, a <T/(87k), b>T, k>1,T >1,

t 1\ /2 _ k
U(t) = <27rk + 4> , V(1) = 2arsinhy | e

Li(t) = (kivm) V(@)UY (U@)_;)“’ (U(t)+;)_ﬂ

X exp <itV(t) + 2mikU(t) — wik + T) ,

and

2T b 1 _|_ y -
J(T) = / / y 1 +y)P (log ) exp(itlog(1l + 1/y) + 2wiky) dydt.
T a Yy

Then uniformly for o — 1| > €, 1 <k <T + 1, we have
J(T) = Ly(2T) — Lp(T) + O(a~®) + O(Tk™ "7~ B) 4 O(T /) 0+ 1B/ 2p=1/4}=5/4y,

In the case —k in place of k, the result holds without Ly(2T) — Li(T) for the corresponding

integral.
This is [2, Lemma 3].
Lemma 3.2 Let

A1 os(t) = Z%gtgl—%(n) - (C(Qa)t + Mt%% 1

2 20 24(20_10

where the sum Y, <, counts half of the last term only when t is an integer. Define Al 95(€) =

fof Aq1_2x(t)dt — (20 —2)/12. Assuming 3/4 < o < 1, we have for & > 1,

AHo(g) = &40 i Ul,gg(n)n"_7/4 cos(4m\/n€ + m/4)
n=1

+ 0253/4—0 i 01_20<n)n0_9/4 COS(47F\/E _ 71_/4) + 0(61/4_0)

n=1
where the two infinite series on the right-hand side are uniformly convergent on any finite
closed subinterval in (0,00), and the values of the constants are C; = —1/(2v/272), Coy =
(5 — 40)(7 — 40)/(64v273). In addition, we have for 3/4 <o < 1,

Ai_ge(v) <0177, / A1_95(v)? dv < zloga,
1

51720(6) < " logé, / A172U(v)2 dv < 37/2-20
1

where 0 < r = —(402 — 7o +2)/(40 — 1) < 1/2.



This comes from [16, Lemma 1] and the result in [19].

Proof of Theorem 1. From [14, (3.4)] and [17, (3.1)], we have
t
/ ¢ (0 + iu)[* du
—t

] o+t
= 2(20)t+20(20 ~ )P(20 ~ )ITD 220 i [T (025 — ) du+ Omin1, 1))
-0 o—it
(Note that the value of ¢3 in [17, (3.1)] is zero.) Hence, we have
o+it
Ey(t) = —i/ g(u, 20 —u) du + O(min(1,t727)).
o—it

Define

h(u,§) = 2/ U(1 4+ )% cos(2nly) dy (3.1)

Assume AT < X < T and X is not an integer where 0 < A < 1is a constant. Then, following
[16, p.364-365], we define

o+it

Gilt) = X orna(n) [ hlusm)du,
n<X o—it
o-+it
Galt) = Aican(X) [l X)du,
Gs(t) = / H.Zt / " (C(20) + (2 — 20062 h(u, €) dt du, (3:2)
~a—zt X it 8h
Gi(t) = AI—QJ(X)/U ) 8£(u , X) du,

" 0o _ o+it §2h
Gy (t) = /X A1-25(§ /U_it Tl (u,&) du dg.

Then, we have

2T 2T 2T 2T
E,(ydt = —i [ Cu)ydi+i [ Go(tydi—i [ Gu(t)dt
T T T T
2T 2T
i [y de—i / Qi () dt + O(1) (3.3)
T T

1) Evaluation of [2" Gy(t)dt. We take v = 1, a = 3 = ¢ in Lemma 3.1, we have from

(3.1),
/2T /:Ht h(u,n) dudt

P / - / (1 + 1)) (log(1 + 1/y))~ sin(tlog((1 + y) /1)) cos(2rny) dy dt

2T
= 2itm [ [0+ ) (os(1 + 1/9) 7 expli(tlos((1 + 9)/y) + 2mny)
+ exp(i(tlog((1 + y)/y) — 2mny))} dy dt
= 2 Im (L, (2T) — L, (T)) + O(T3/4=7no=9/4)



Noting that L, (t) = (iv/2)~ (t/(21))%/47(=1)"n" ey (t, n) exp(i(f (L, n) + 7/2)), we get,
with (3.2),

2T
Gi(t)dt
T
(N 01-20(n) . Y 4
= V2 (27r> Z (—1)"W62(t,n) sin f(t,n)|  +O(T**=7)  (3.4)
n<X T

2) Evaluation of 7" Ga(t)dt. The treatment is similar to G;. From (3.2) and Lemma 3.1,
28T b, XY dudt = 2i Tm(Lx (2T) — Lx(T)) + O(T3/4=7X7=9/4) " Since Ly(t) <
8/ Xo=T/4 « T=1/2 for t = T or 2T, we have

2T
Go(t) dt < Aq_op(X)T? < TV?77, (3.5)
T

3) Evaluation of f%T Gs(t)dt. Using [14, (4.6)], we have
Gs(t)
= 2 (G20 +02 — 20) X1 [Ty (1) log(1 4+ 1)
x sin(27 Xy) sin(tlog(1 4+ 1/y)) dy

+ (1 —=20)771¢(2 - 20) X 7% /oo y 1+ y) ¥ sin(2n X y)
0

o+it 1 u
x/ (u+1—20)" (*y
Yy

du dy.

o—1it
Direct computation shows that for y > 0,

o+t
/ (u+1—20)" (14 1/y)" du

—it

1 20—1 o+t oco—1t
= or 2( ;y) (/ +/ ) (1+1/y)"(u+1—20)"" du.
oo+t

Then, we have

2T
/ G (t) dt
T
= 2i(1—20)((2—20)TX21 — 2inY(¢(20) + ¢(2 — 20) X291,
+ 7711 = 20)¢(2 - 20) X' %13 (3.6)
where
L = / Ty sin(2nXy) dy
0

2T 00
o= [ [Ty ) log(l+ 1/9) " sin@nXy) sin(t log(L+ 1/y)) dy dr.

2T
W [

o+it oco—it
X (/ +/ ) L+ 1/y)%(u+1—20)"  dudydt.

oo+t

y (1 +y)' 7 sin(2r Xy)

5



Then, I} = 22972720 X2°-1 /(I'(20) sin(wo)) which is the main contribution. Interchanging

the integrals, we have

o= = [Ty )7 g1+ 1/3) 7 sin(2nXy) cos(tlog(1 + /)i d

We split the integral into two parts [+ fcoo for some large constant ¢ > 0. Express-
ing the product sin(---)cos(---) as a combination of exp(i(tlog(l + 1/y) + 27 Xy)), since
(d/dy)(tlog(l +1/y) £ 27 Xy) = £27X —t/(y(1 +y)) > X for y > ¢ (recall t =T or 2T,
the integral [°is < X —1 by the first derivative test. Applying the mean value theorem for

integrals, we have

C
[«
0

Integration by parts yields that the last integral f / equals

/!

/C (14 ) sin(2r Xy) cos(tlog(1 + 1/y)) dy

/

t! <y 7 sin(27 Xy) sin(tlog(1 + 1/y))| / Oy~ Ysin(2r Xy)| +y 7 X) dy)

< 1 (3.7)

Hence I, < 1. For I3, the extra integration over t is in fact not necessary to yield our bound.
Thus, we write I3 = fT2T(1'31 + I32) dt, separated according to the integrals over w. I3; and

130 are treated in the same way, so we work out I3; only. Using integration by parts over u,

B = [Ty g log(1 4 1/y) ! sin(2rXy) expitlog(L+ 1/y)

x{ (1+1/y) a__oo+/ (1+1/y)" (+1—d§a+it)2}dy'

a+1l—20+it
Then we consider [5°y ! (1+y)' 727 (log(1+1/y)) ! sin(2r X y) exp(it log(1+1/y))(14+1/y)* dy
Again, we split it into [§ + [*°. Then [ < XL If @ < —2, then [5 < 1 trivially; other-

wise, we have (see (3.7))

/<<

Therefore, I31 < T~! and so I3 < 1. Putting these estimates into (3.6), we get

2T _ ao20-1_20 (1 —20)¢(2 — 20)
/T Go()dt = i2”7 e e ST 4 O(1)

= —2mi¢(20 — )T + O(1). (3-8)

< 1

/ y 171+ y) " sin(27 X y) exp(itlog(1 4+ 1/y)) dy

4) Evaluation of fq%T G} (t)dt. From [16, Section 4], we obtain

2T N
Git)dt = 4iA_9e(X)((20 — 1)1 + I — oI5 — Iy)
T



where by Lemma 3.1, (recall Lx(t) < T~'/? < X~1/2 for t = T or 2T

I, = X2~ 2/2T /OO cos(2my) sln(tlog(1+X/y)) dy dt
(X +y)log(l+ X/y)
. /2T /oo cos 27er sin(tlog(1+ 1/y) 5 v « x-3/2
+y)7 log(1 + 1/y)
I, = X?%- 1/2T /OO s 27Ty ) cos(tlog(1 + X/y)) dy dt
(X + )7+ log(1 + X /y)

 cos 27er cos(tlog(1+1/y)) ~1/2
dydt| < X
/ / 7(1+y)7ttlog(l +1/y)

1
T<T1 <T2 <2T

< X7°T

and similarly I3, Iy < X~%/2. With Lemma 3.2,
2T

Gi(t)dt < T" 2 1og T < log T. (3.9)
T

5) Evaluation of [27 G}*(t)dt. [16, (3.6) and Section 5] gives
27
GZ* (t) dt = —4ili + 4ils + 4il3. (3.10)
T

Iy, I> and I3 are defined as follows: write

w(€,y) = A1oas ()€ 2y~ (1+ )~ *(log(1 + 1/y)) ™" cos(2&y), (3.11)
then
no= [ / * [ w(e sin(tlog(1 + 1/y) dydt de
= [ / t [ wlé )t (y) cos(tlon(1 + 1/y)) dy dr €
I — / / / w(€, y)Ho(y) sin(tlog(1 + 1/y)) dy dt dé

where Hy(y) and H;(y) are linear combinations of y*(log(1 + 1/y))™" with 4+ v < 2 and
p~+ v < 1 respectively. (Remark: It is stated in [16] u + v < 2 only for both Hy(y) and
Hi(y).)
When € > X <xT <t and p+ v <2, we have
2T oo (itlog(1+1 2

yor 1 +v) ”*2(10g(1 +1/y))r+!

/00 exp(zt log(1 +1/y)) cos(27&y)
o Yy H(1+y) 2 (log(l+1/y))+!

dy < T2, (3.13)

(3.13) can be seen from [16, p.368]. To see (3.12), we split the inner integral into [+ [
First derivative test gives [7° < ¢~1. For the first part Jo, we integrate over t first and it is
plain that [ [77 < 1.



Using (3.12) and Lemma 3.2, we have I3 < [{° Ai_9,(6)672de < TY47. Applying
integration by parts to the t-integral, we find that I < T%47 with (3.12) and (3.13). (Here
we have used p+ v <1 for Hy(y).) Since

2T
/ t2sin(tlog(1 + 1/y)) dt
T

2T
= —t?(log(1+4 1/y)) ! cos(tlog(1 + 1/y))’T
+ 2t(log(1 +1/y)) " sin(tlog(1 + 1/y))| — 2(log(1 + 1/y))~ /T " sin(tlog(1 + 1/y)) di

the last two terms contribute 7%/4~7 and T4~ in I; respectively by using (3.13) and (3.12).
Substituting into (3.10), we get with [14, Lemma 3] (or [5, Lemma 15.1]) and (3.11)

/2TG “(t) dt

= 4@152/ / w(é,y)(log(1+1/y)) ! cos(tlog(1 4+ 1/y)) dy dé
27

dg
T

t=2T
+ O(T3/4fa)

— i 1/245/2 /Oo Ay 55(€) cos(tV + 27EU — 7€ + 7/4)
X

EVIUIR(U — 1/2)°(U + 1/2)7+2 +O(T0) (3.14)

where U and V' are defined as in Lemma 3.1 with k replaced by £. Applying the argument
in [16, Section 6] to (3.14), we get

2T
G (¢) dt
[t N\ o1-20(n) t\7? .
_ 2@(%) Yy, el <1og2m) sin g(t,n) + O(log T). (3.15)

<B(t,VX)
(Remark: The ¢ in [16, Lemma 4] should be omitted, as mentioned in [15].)
Inserting (3.4), (3.5), (3.8), (3.9), (3.15) into (3.3), we obtain
2T
E,(t)dt = —2n((20 — )T + 21(t, X)|3T — Sa(t, X)|3T + O(logT).  (3.16)
T

6) Transformation of Dirichlet Polynomial. Let X, X2 < T (both are not integers) and
denote By = B(T,+/X1) and By = B(T,v/X2). Assume X; < Xy. Write

T \? T
_ o—1 o
F(z)== (log 27m) exp(i(T log 9oz T 2mr — T + 4))

then we have

Z 01_20(n)no_l(log(T/(an)))_2 sing(T,n)
B(T,v/X2)<n<B(T,v/X1)

= Im Y  o1-2,(n)F(n). (3.17)

Ba<n<B;



Stieltjes integration gives

Z al_gg(n)F(n)

By<n<B,
— /Bil F(£)(¢(20) + (2 — 20)t'727) dt + Ay oo () F ()|} — /le Ay o (t)F'(t) dt
= L+, — I, say. (3.18)
Now, since (d/dt)(g(T,t) + 2nt) = 2w — T/t < —c when By < t < By, we have
L = /B]jl(g(%) + (2 = 20)t 20Vt L log(T/ (27t))) 2 exp(i(g(T, t) + 2nt)) dt
< 1°°L

By Lemma 3.2, I < 1. Direct computation gives

T T\ 2 T
F/(t) = i(m — )i <10g m) expli(Tlog o + 2t — T+ 1)) + 07 )

where By <t < Bj. As 5;1 |A1 90 (t)[t° 2 dt < T 1y/log T, we have by (3.18),

Z Jl_gg(n)F(n)

Bo<n<B;1
T By T
= —iexp(i(Tlog o= =T+ 7)) [ Arge(t)(2m — 27!
T 4 Bo t
T -2
X (log Qt) exp(i(2nt — T'logt)) dt + O(1). (3.19)
T

The integral fg? in (3.19) is, after by parts,

~ T T -2 Bo
Ay o (t)(2m — =)ot (log ) exp(i(2nt — T'logt))
t 27t B,
B o d T T \ 2
— Ay op(t)— (2 — =)t ! (log =—— j(2nt — T'1
5, C172 (t)dt {( Ll )t (og 27rt) exp(i(2mt ogt))} dt

The first term is < T Y2logT by Lemma 3.2. Besides, computing directly shows, for
By <t < By,

d , 2,0-3 TN\? , o—2

7 {-}=i2nt—-T)t (log 27rt> exp(i(2nt — Tlogt)) + O(t7 7).
Treating the O-term with Lemma 3.2, (3.19) becomes

Z 01-20(n)F(n)

Ba<n<B;
T B
= —exp(i(Tlog — — T+ 1)) [ Ar_so(t)(2rt — T3
27 477 /B,
T -2
X (log 2t> exp(i(2mt — T'logt)) dt + O(T° /2 log T). (3.20)
7T
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Inserting the Voronoi-type series of Aj_s,(t) (see Lemma 3.2) into (3.20), we get

Z o1-25(n)F(n)

Bo<n<B;
T o o
= —exp(i (Tlog——T—i— {C 2017/24 n) +Cy 2019/24 o )}
+ O(TJ—1/2 log T) (321)

where
-2

B
Ji(n) = /B 1(27rt — T2~/ (log 2Tt> exp(i(2nt — Tlogt)) cos(4mv/nt + %) dt
2

B —2
Ja(n) = /B 1(27r75 —T)2~9/4 (log 2Tt> exp(i(2nt — Tlogt)) cos(4mv/nt — %) dt
2

Applying the first derivative test or bounding trivially, we have Jo(n) < T4 forn < T,
Jo(n) < T3* for ¢I' < n < ¢T and < TY*n=1/2 for n > ¢T. Thus, the second sum in
(3.21) is

< (T1/4 Z +T3/4 Z )al_gg(n)n”9/4+T1/4 Z Ul_ga(n)n”*nﬂl

n<cT cT'<n<cdT n>c'T
< T2, (3.22)

After a change of variable t = 2,

)

\/E T -2
Ji(n) = / (2rz? — T)%z /2 <log 2) {exp(i(2n2® — 2T log = + 4m/nx + — 1

VB2
+ exp(i(2rx? — 2T log x — 4m\/nx — —))} dx.

Then we use [5, Theorem 2.2], with f(z) = 22 — 7 'Tlogz, ®(z) = 22, F(z) = T,
w(x) = x/2 and k = +2/n. Thus,

o (TN , T 3 14
Ji(n) = 627 (27r> eQ(T,n)eXp(z(f(T,n)—Tlog%+T—7m+Z))+O(5nT )

+ O(T3/* exp(—evV/nT — ¢T)) + O(T** min(1, |vV/X1 + v/n| 1))
+O(T** min(1, |VX, £ v/a| ™))

where 6, = 1 if By < zy < B; and k > 0, or 0, = 0 otherwise. (zog = \/T/(27) +n/4—+/n/2
is the saddle point.) Note that By < xg < Bj is equivalent to X1 < n < Xs. Thus, for the

first term in (3.21), we have

T ® 512
—Cy exp(i (Tlog— - T+ 4)) Z Wﬁ(n)
n=1

_ 1 <T>3/4 01-95(n)

75 \2n o ea(T,n) exp(i( f(T,n) — 7n + 7)) + O(T° /2 1log T)

X1<n< X2

10



Together with (3.22), (3.21) and (3.17), we obtain

Z 0125 (n)n° t(log T/(27n)) 2 sin g(T,n)
B(T,v/X2)<n<B(T,v/X1)
1 < T >3/4 3 01-20(n) :
= S \sz (_1)717_062(117”) sin f(T',n)
V2 \27 X1<n<Xs nf/t
+O(T° 2 10gT). (3.23)

We can complete our proof now. Taking X = [T] — 1/2 in (3.16), we have ¥;(¢t, X) —
Yi(t,T) < logT for i =1,2 and t = T, 2T; hence

/2T E,(t)dt = —2r((20 — )T + S1(t,t)[3 — Sa(t,t)3
T
— ((21(2T,2T) — 22T, T)) + (2227, T) — X2(2T, 2T))) 4+ O(log T).

Choosing X7 and X, in (3.23) to be half-integers closest to T and 2T respectively, then
(X1(2T,2T) — (2T, T)) + (X2(2T,T) — X9(2T,2T)) < logT. Hence,

/1T E,(t)ydt = —2r((20 — )T + (T, T) — %o(T,T) + O(log? T).

The extra logT in the O-term comes from the number of dyadic intervals. Suppose N =< T.

We apply (3.23) again with X; = [N] + 1/2 and X3 = [T] 4+ 1/2 to yield our theorem.

4. THE SECOND AND THIRD POWER MOMENTS
Using the arguments in [16, p.374-375] and the argument in [18, p.341], we can obtain

the lemma below.

Lemma 4.1 We have for N < T, fj%T Yo(t, N)?dt < T, f%T Y1(t, N)Xo(t, N)dt < TlogT

and

2T t

21 (t, N)2 dt = B(o) /T . ()5/2_20 dt + O(T3%).

T 2T

Moreover, if we define for 1 < M < M' < T,

5/4—0o
v (t) = V2 (;ﬁ) Z (—1)"%62(@ n)sin f(t,n)
M<n<M’

then, [7 Sapap(t)? dt < T7/2=20 \f20-5/2,
Remark: Part (1) of Theorem 2 follows immediately.
Lemma 4.2 Let 0 < A < (o — 3/4)7. Then, we have

2T
/ |Gy ()[4 dt < THHAGB/A=),
T

11



Proof. The case 0 < A < 2 is proved by Hélder’s inequality and part (1) of Theorem 2.
Consider the situation 2 < A < (¢ — 3/4)7!. Then, for T <t < 2T and N < T, we have
So(t, N) < T/ and hence [21 |So(t, N)|A dt < TA/? by Lemma 4.1. We take N = 28 -1 =
T and write M = 2" in the proof of this lemma. Then ¥1(¢t, N) < >0, g [Xm2m(t)]. By

Holder’s inequality, we have

A-1
‘El<t7N)|A <K (Z OJT‘EMQM ) (Z aiA/A 1) .

r<R r<R

By taking o, = MU~A(@=3/4)/(24) and using the trivial bound Smom(t) < /A= pfo—3/4,

we have
o A-1
/ SN dE < TEAA) [ 3 ger(-Ale-3/4)/ ()
T r<R
X ZaAMU 3/4)(A-2) / EMQM() dt
r<R
<, TIHAG/=0) Z anA(U_SM)_l < 4 TIHAG/4=0) (4.1)
r<R

by Lemma 4.1.

Now we can prove part (2) of Theorem 2 but part (3) will be proved in next section.
Proof of Theorem 2 (2). We have, with M = [§7"/3] for some small constant § > 0,

2T

2T
Go (1) dt = / Siar(t) e+ O [ 1Golt) = Srar(t)|(Galt)? + 5 00 (1)) ).
T

Lemma 4.2 and (4.1) give [71 G, (t)*dt and [77 %y (t)* dt < THH4G/4=9) Since

2T 2T
/ (Golt) — Siar(t)?dt < Sarr(t)?dt + Tlogh T
T T

< T3

we get
2T 2T

Go(t)Pdt = [ 1(t)? dt + O(TI3780)/3), (4.2)
T T

After multiplying out, rearranging and renaming the terms, we obtain

2T

A Yy (t)®dt

3 tn . 2T /¢ \15/4=30

= \ﬁn“%;M +n+ r(m,n, k)/T (271_) sin(f(t,m) + f(t,n) — f(t,k))dt
+ O(TY7/4=3 S rmyn, k) (Vi + Va4 VR (4.3)

m,n, k<M

12



o=7/4 Here, we have used the first

where r(m,n,k) = o01-20(m)o1-25(n)o1-2,(k)(mnk)
derivative test and the fact that (d/dt)(f(t,m) + f(t,n) + f(t,k)) > (Vm+/n + VE)t=1/2,
The O-term in (4.3) is < T17/4-30+¢ ZmSnSkSM(mn)"J/‘lkU*g/‘l, so absorbed by the O-term
in (4.2).

To estimate the main term in (4.3), we note that

d ) ™ . ™ . Tk
%(f(t, m)+ f(t,n) — f(t, k) = 2(arsmh\/;+ arsmh\/g — arsmh\/;)

- \/?(\/ﬁJr\f—\/E)JrO((Hmm’k))g/Q).

t

Write A = /m + /n — vk, then provided the choice of § in M is small enough, the last line
is > |Alt=1/2 as |A| > (max(m,n, k)32 when A # 0, from [20, Lemma 2]. If J denotes

the sum over non-diagonal terms 3° 5 4, in (4.3), then

J < T17/A=30 Z r(m,n, k)AL

AF#0
m,n, k<M

We separate the sum 3 5 into three parts 3 o |aj«m-1/2 + 2m-1/2<|a|<m/2 22| Asmi/2-
Suppose n < m are fixed. When |A| < m~Y2 it is apparent that only one k can satisfy this
condition and k =< m. As |A| > m~3/2 we have 2o<|ajem-12 L T¢ Zn§m<M(nm2)"_7/4m3/2
<L To- T2 1t m~1/2 < |A] < /m, we divide this range into dyadic intervals I, = (u,, 2u,],
say. When |A| € I, the number of such k is < 1 + u,y/m. Thus, Zm—1/2<<\A|<<m1/2
L TS pcment(nm?)7 =4 /m < To-11/12+€ " The last case Ziapsmiz 18 < To/3=1/4%e,
Therefore, J <« T1/3-20+¢ « T(13-80)/3
The diagonal term > A_ in (4.3) contributes

2T 15/4—30 - 3/2
5? m,n,Z,KM (=1)™ R (m, n, k:)/T (;ﬂ) (sin(—Z) + O(k\/i)) dt. (4.4)

Vmty/n=vk

Crude estimation gives

Z (mn)0—7/4k0—1/4 < Z m20=20=T/4 & 30=T/4 414

A=0 n<m<M
m,n, k<M
Z (mnk)a—7/4 < Z na—7/4m20—7/2 < M30_13/4.
A=0 n<m, m>M

k>M

Hence, (4.4) becomes

2T
_g Z(—l)m+n+kr(m,n, k:)/ (t/27r)15/4*3°' dt+O(T11/3720’+6)‘
A=0 T

13



This completes the proof, with the fact that /m + \/n = vk holds only if m = sa?, n = sb?
and k = s(a+b)? for squarefree positive integer s and some positive integers a, b. (Note that

m + n + k is then even.)

5. LIMITING DISTRIBUTION FUNCTION
We first quote some results from [1, Theorem 4.1] and [3, Theorem 6]
Let F be a real-valued function defined on [1,00), and let ay(t), az(t),... be continuous
real-valued periodic functions of period 1 such that fol an(t)dt =0 and Y 02, fol an(t)?dt <

00. Suppose that there are positive constants v, 72, ... which are linearly independent over

Q, such that

1 T
lim limsu —/ min(1, |F(t) — an(Ynt)|) dt = 0.
im tmsup . [ min, [F(0) = 37 ax(0nt))

Fact I. For every continuous bounded function g on R, we have
1 (T o0
Jim [ gp@) = [ glap(a).

where v(dz) is the distribution of the random series n = > 02 | a,(t,) and t,, are independent
random variables uniformly distributed on [0, 1]. Equivalently, the distribution function of F'
defined by Pr(u) = T~ 'u{t € [1,T] : F(t) < u} converges weakly to a function P(u), called
the limiting distribution, as T — oo.

Fact IT. Tf [ |F(t)|* dt < T, then for any real k € [0, A) and any odd integer [ € [0, A),
the following limits exist:

T T
lim 771 [ |F(t)|* dt and Jim T F(t)dt.
1 —00

T—o0 1

Now, let us take F(t) = t**=%2G, (27t?), vp, = 2¢/n and

n)? & O1—20(nr?
an(t) = \/5:7(/410 Z(—l)"’“if/‘;(_%) sin(27rt — 7/4). (5.1)

By Lemma 4.1, we see that for N < /T,
2T
| @526, (2mt) - 20752 (2t dt < TN
T

Using the fact that ex(27t2,n) = 14+ O(n/t?) and f(27t%,n) = 4m/nt — /4 + O(n>/?/t) for
n < v/t and following the computation in [3, p.402], we can show

/T 2T(t2”_5/2G0(27rt2) — 3 ap(2v/nt)?dt < TN* 72 (N < VT).

n<N
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This completes the proofs of Theorem 2 (c¢) and the first part of Theorem 3, by Facts I and
II with Lemma 4.2.

We proceed to prove the lower bounds in (2.2) with the idea in [1, Section V]. Because
t,’s are independent random variables, we firstly consider the size of the set over which a,(t)

is quite large.

Lemma 5.1 Let n be squarefree. Define A, = {t € [0,1] : an(t) > B lo1_9,(n)n""7/4}
where B = 4A(X°2, r* )1 and A = /230, 0195 (r2)1r2° /2. Then, we have u(Ay) >
1/(AB) where 1 is the Lebesgue measure.

Proof. Since fol an(t)dt = 0 from (5.1), we have [} a;\ (t)dt = [y a;, (t) dt where a;f(t) =
max(0, £ay(t)). Observing that

sup lan(t)] < Aoi_og(n)n® /4, (5.2)
0<t<1

1 9 1 X, 0194 (nr?)?

/Oan(t) dt = ,,7‘7/272021 7‘7_4‘7 ) (53)

we have

1 1 1 0194 (nr?)?
[ arwraes [ aprae= o> T

r=1

and [) af(t)2dt < Aoy_ae(n)n®~7/* [ (t)dt. Hence [ ai(t)dt > 2B~ o1 _a,(n)n® /4.

Since

1 o1-25(n . 1
sup Jan(l(A) + £ 722 uac) > [arar,
0<t<1 n 0

we get u(Ap,) > 1/(AB) from (5.2) and p(A%) < 1.
Proof of lower bounds in Theorem 8. Let n be a large positive integer. By Markov’s

inequality, we have

00 1 00 1
Pr(| Y am(tm) <2VK)>1- e > / am ()% dt > %
m=n-+1 m=1"0

where Pr(#) denotes the probability of the event # and K = > 7°_, fol am(t)? dt < +oo. For
1 < m < n, define A,, as in Lemma 5.1 if m is squarefree and A,, = [0, 1] otherwise. Consider

the set

oo

E, ={(t1,t2,...) i t;m € Ay for 1 <m <n and | Z am(tm)| < 2VK}.
m=n-+1

15



Then,

Pr(E,) = [ Pr(Am)Pr(| Y am<tm>|§2@)24<;}8>n
m=1 m=n+1

due to Pr(A,,) = u(A,,) and Lemma 5.1. When (¢1,t9,...) € E,, we have

[e.9]
1 0-1_20'(m)

am(tm) > = — - 2VK

mzz:l B ng:n mi/A=e

m squarefree

> B! Z w(m)?m?~ 7t — WK

m<n

S logn if o = 3/4,
no=3% if3/4 <o < 1.

Our result for 1 — Dy (u) follows after we replace n by [e%] if o = 3/4 and by [u®/(47=3)] if
3/4 < o < 1. The case of D,(—u) can be proved in the same way.
To derive the upper bounds, we need a result related to the Laplace transform of limiting

distribution functions.

Lemma 5.2 Let X be a real random variable with the probability distribution D(z). Suppose
D(xz) > 0 for any x > 0. For the two cases: (i) Y(x) = xlogx and ¢(z) = logx, or (ii)

() = 2749 and ¢(z) = 247=3)/4, there exist two positive numbers L and L' such that

(a) if limsup,_ ., ¥(\)"tlog E(exp(AX)) < L, then limsup,_ .z 'log(1 — D(¢(x))) <
g

)

(b) iflimsup, . ¥ (A)~tlog E(exp(—AX)) < L, thenlimsup, .., v~ 'log D(—¢(z)) < —L'.

This can be seen from [12, Lemma 3.1].
Proof of upper bounds in Theorem 3. We take N = X\ if 0 = 3/4, and N = N4/ (1—40) jf
3/4 <o < 1. When n < N, we use

2
/01 exp(£Aan(t)) dt < exp()\AW).

Recall that A = v23.%% 01 _9,(r2)r7/2727 If n > N and Moy_,(n) < n7/*=7, then by the
inequality e® <1+ z + 22 for x < 1 and (5.3),
1 1
/ exp(tAan(t)) dt < / (1 £ Aan(t) + N2an()?) dt
0 0

201-25(n)*p(n)?
n7/2—20’

< 1+ (MA)

01—95(n)2u(n)?
< exp((ray Zmzelnl 1
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as fol an(t)dt = 0. Finally, for n > N and MAo1_s,(n) > n7/*77 we can get

/01 exp(EAan(t)) dt < exp()\AW) < exp((AA)? o1-25(n )2,u(n)2)'

ni/2—20
Therefore,
01— 20 01720(71)2
log E(exp(£AX)) < A Y- T 4 ()2 Y0 T
n<N n>N

< [ Moegx ifo=3/4,
M/(T=49) i 3/4 < o < 1.

The proof is complete with Lemma 5.2.

6. QL -RESULT
We firstly prepare a result.

Lemma 6.1 We have

> (- Y T

oyt B ’I’L7/4 o
271720 (¢ — 3/4)" (0 — 1/4)"1¢(20)B* 32 + O(1) if o > 3/4,
2-1/2¢(3/2)log B + O(1) if o = 3/4,

and

Z( \/ﬁ)Ul 20’( )

et B n7/4—o
27 Yo —=3/4)" o —1/4)71¢(20)B** 32 - 0(1)  if o > 3/4,
N 2¢(3/2)log B+ O(1) if o =3/4,

Proof. To prove the first equality, we consider

Bi-ao(t,1/2) = Shed (1) o-an) — (27276010 + 222220y (0,12)),

where Ej_5,(0,1/2) is a constant. Then, we have Aj_s,(t,1/2) < t'/(H49)+e from (9,
Remark 1]. Then,

> (- - Y T

iy B n7/4—0c
32
= / (1- \L/j)t" 142727 ¢(20) 4 22072¢(2 — 20)t1 %) dt

BQ
+/ VE =T AL o (t.1/2),
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The second integral is < 1 after by parts. The first integral is

2

B
2—2%(20)/ (777 — B~ dt + 0(1).
1

Separating into two cases o = 3/4 or not, our assertion follows. The second one is proved
similarly with Lemma 3.2.

Proof of Theorem 4. We convolve G, (t) with the kernel

sin 27rBu) 2

K(u)=2B ( 2w Bu

Let t < VT and 1 < B < LY* < T8, Similar to [13, (4.7)], we have [, (27 (t +
u)?, T)K (u) du < 1, and

/L S (2 (t 4+ w)?, T)K (u) du

L
W O1—20 oy )
= V2 E<T 77117/24 a) /—L(t + 1)/ 22 ey (2 (t 4 u)?, n) sin f (27 (t + u)?, n) K (u) du.

The integral can be treated in the same way as [13, (4.8)] when B* < n < T. Hence,
ZB4<<77,§T < ZB4<<n§T Ul_gg(n)n"_7/4 (BQn—1t5/2—20 + BLn—1/2t3/2—20) < t5/2—2034a—5‘
For n < B*, we note that

L ,
Im/ (t 4+ u)>27 2 ey (21 (t 4 u)?, n)K(u)e’f(QW(t+u)2’”) du
~L

o [ LL sin(4my/n(t + ) — 7/4) K () du + O(F2~2 (n¥/2 4 L))

/2720 max (0,1 — /n/B) sin(4my/nt — m/4) + O(t*/>727 (032 + L)).
Hence denoting

= V2 Y (- YD gt - T, (6.1)

oyt B 7/4 o
we have, for 1 < B < L'/* « TV16,
L
{20-5/2 / G (27(t + u)?) K (u) du = Sp(t) + O(B79). (6.2)
~L

With (6.2), it suffices to consider the Qi-results of Sp(t). Let 6 > 0 be a sufficiently
small constant. Take B = [6y/logT/10] and L = B*, then Dirichlet’s Theorem gives that
there exists [ such that |[Iy/n]| < & and T/ < [ < (1+ 6~B*)T/10. Then, we have

V2 Y (1)1 - Vi) 1-20(n) sin(—%) +E (6.3)

= B n7/4—c
n<
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where

B[ <2v2 3 ( 1——” g1-20(1)) G o).

n< B2 ni/te
Hence, by Lemma 4.1, the first sum in (6.3) is < —¢12B%°~3/2min((o — 3/4)~",log B). In
addition, |E| < ¢130B%°~%/2min((0 — 3/4)~',1log B) (note that ¢;3 is independent of §). We
thus infer (as B < /logt)

Sp(f) = { Q,(loglogtgg if o = 3/4,
Q_((logt)°=3/1) if3/4 <o < 1.
To prove the Q. -result, we take x = §loglogTlogloglogT and B = TV/10 (I, = BY).

Again, ¢ > 0 is a small number. Define P, = {p <z : pis an odd prime} and Q, to be the

set of positive squarefree integers whose prime factors lie in P,. Consider the kernel

e47m'\/§u €f4ﬂi\/§u
T, (u) = H (14 cos(4my/qu)) = H (1 + +2 )

q€Qq q€Qx

and

f(x) = inf{|v/m + pu| : m is a natural number and p € S, }
where S; = {1 = > ,eq, Tqv/q : 7¢ = 0,£1 and >>r2 > 2}. It is known from [2, Lemma 4]
that

x < —logn(x) < exp(c

). (6.4)

log

Write € = 277j(z), then € > exp(—+/logT). Note that

6‘/oo (sineﬂ'u>2 PRI A max(1 — ’U
€

S ETU

,0).

Hence,

ETTU

= ¢Im ei(47rx/ﬁt—7r/4)/ 1+ Z 47rzfu_|_ Z e—4miv/au | Z h, pAmipu
- quz quz UESy

: 2
; SN emu
« e47rz\/ﬁu ( ) du

ETU

{ sin(4my/nt — 7/4), n€ Qy (6.5)

/ Ty (u) sin(4my/n(t +u) — Z) <Sm 67ru>2 du

0, otherwise

where h,, (u € S;) are some constants. Hence, we have

6/_0:0 T.(u)Sp(t+ u) (sinewu)Q du

= V2 Z (—=1)™(1 — \gﬁ)m?i‘f( n) sin(4my/nt — —)
=
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Note that maxgeq, |g| < €** < B/2, |Q.| < exp(cz/(logz)) < y/IogT and n is odd when
n € Q,. Choose [ such that ||l\/n| < & and TV <1 < (14 671QNTY10 « TV where
§’ > 0 is a sufficiently small constant, then (recall n € Q, is odd)

0 : 2
e/ Ty(w)Sp(l + ) (Smmu) du > Y U;;/QZ_(?)

E€ETU
ne Qz

> log x if o = 3/4,
exp(cz®3/%/(logx)) if o > 3/4.

Plainly, we have

: 2
[ TelwSa ) (T2 ) du < I/ Y az2(n) g
\u|2T1/20

ETTU /1 %
11<B2 n

and ef_T;/f/(;o T (u)(sin(eru) /(eru))? du < 1 by (6.5) with n = 0. Thus, we obtain

logloglogT if o =3/4,

sup Sp(u) > { exp(c(loglog T)?—3/4(logloglog T)? /%) if o > 3/4.

T1/10<<u<<T1/4

7. OCCURRENCE OF LARGE VALUES
Proof of Theorem 5. Define K (u) = (1 — |u|)(1 + 7sin(4rau)) where 7 = —1 or +1 and
« is a large constant. Then, we have

™

/1 K, (u) sin(4my/n(t + au) 1
-1

Ydu = _gél,n cos(4mt — /4) + O(a"2n71)
where 01, =1 if n =1 and 0 otherwise. This gives with (6.2)

1 L
/‘@+M%%p/ Go(2m(t +u +v)*) K (v) dv - (u) du
— %(1 — B—l) cos(47rt — 77/4) + O(oz_Z) + 0(340—5)'

Our assertion follows once we take sufficiently large constants B and o (L = B*), and choose
|4t|| < 1/8 with t € [T, /T 4 1]. (Note that 7 can be +1 or —1 at our disposal.)

The next lemma is used to prove Theorem 6.
Lemma 7.1 For T°/12 <H< T1/2,
T 2 5—4

where the implied constant depends on o.
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Proof. Following the arguments in [7], we have

/TZT(GJ(t +h) — Go(t))? dt < ThS4 min((o — 3/4) 71, log(T/h?)) (7.1)

where log? T < h < V/T. Let b = T'/?* and H = 2*b. Suppose (j — 1)b < h < jb. Then,
using the bound E, (t) < t2(179)/3%¢ we have

|Go(t+h) —Gs(t)] < |Go(t+jb) — Go(t)| + |Go(t + jb) — G (h)]
= |Go(t+jb) — Go(t)| + O(T?1=9)/3T<p)

and hence for any fixed ¢,

< 2(1—0)/3+e€ _ _
omax |Go(t +h) = Go(t) nax, Go(t +jb) — Go(t)| + O(T b) (7.2)

Let us take 1 < jo = jo(t) < 2* such that

|Go(t +job) = Go(t)] = max |Go(t+jb) = Go(t)].

1<5<

Then we can express jo = 2* Zpe s, 271 where S; is a certain set of non-negative integers.
Hence,
Go(t+job) — Go(t) = Y Go(t+ (v +1)221b) — G, (t + 12X #b)
HESt

where 0 < v = 1, < 2# is an integer. By Cauchy-Schwarz inequality and inserting all v’s

other than vy ,, we get
(Gcr(t + ]Ob) - Gcr(t))Q

< (Z 9~ (1=2) ) 7 207G (¢ + (v + 1)2V7HD) — Go(t + 122 7HD))?

LES: LES:

< 33 2G4 (v + 1)22HD) — Go(t + v2)Hb))?
HESE 0<v<2H

as 3 s, 2-(1=9)r « 1. Integrating over [T, 27 and using (7.1), we see that

2T
. 2
/T max (Go(t+ h) = Gy (1) at

< Y ¥ 2t / (Go(t + (v +1)227Hb) — Gy (t + 127 Fp))2 dt + THHAI=0)/3+ep?2
peSy 0<r<28

2T 422~ Hp
< Z Z 2(170)u/ (Gg(t—|—2)‘*”b) —Gg(t))2 dt + TY7/12+e

pES, 0<p<2n T+v2X kb

< TH5—4UZ Z o—(4=30)u

HESE 0<v<2H
< TH>.
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Proof of Theorem 6. Define G (t) = max(0,4+G,(t)). By using Theorem 2 (c), we have
211Gy (1)]? dt < T1H306/479) Hence, by Cauchy-Schwarz inequality,

2
( QTGU(t)2dt> < [T 1awa [ Gowp a

T T
2T 1+(5/4—0) . 2T ~+ 2T ,5/4—0
we have [;° |Go(t)|dt > T . Together with (2.1), [;7 GZ(t)dt > cia 7 t dt.
Consider K*(t) = GE(t) — (c14 — €)t*77 where € = 6°/272% we have
2T

2T
K*(t)dt > (—:/ /4= gt
T

T
and K*(t +h) — K*=(t) = GE(t + h) — GE(t) + O(T*/*=7h). This gives
2T 2T

max |[KT(t + h) — KT ()| dt < max |Gy (t + h) — Go(t)| dt + T4~ H
T h<H T h<H

since |GE(t + h) — GE(t)| < |Go(t + h) — Go(t)|. Lemma 7.1 yields that

2T
/ max ‘Ki(t —+ h,) — Ki(t” dt < TH5/2720’ + T5/470—H‘
T h<H

Define w* (t) = K*(t) — max< |K*(t+h) — K*(t)|. Taking H = /¥ 64T (= ¢6VT)

for some sufficiently small constant ¢’ > 0, we have
2T 2T 2T
/ wE(t)dt > € / /4= gy — / max |[K*(t + h) — K+ ()| dt > eT'+06/4=9),
T T T h<H

Let I = {t € [T, 2T] : w*(t) > 0}. Then

/ZTwi(t) dt < /Ii wE(t) dt < /Ii K*(t)dt

T
g(/ dt) ( Ki(t)th> :
I+ T

We infer |ZF| > €27 as fj%T K*(t)?2dt < fTQT Gy (t)?dt + T7/>727. When t € TF, we have
K*(t) > maxp<y |[KE(t + h) — K£(t)] > 0. Hence, K*(u) > 0 for all u € [t,t + H],
ie. GE(t) > (c14a — €)t®/*~7. The number of such intervals is not less than |Z*|/H >
015540-9) /T,
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