A Study of the Mean Value of the Error Term in the Mean Square Formula of the Riemann Zeta-function in the Critical Strip $3/4 \le \sigma < 1$

Yuk-Kam Lau

Department of Mathematics

The University of Hong Kong

Abstract

Let $E_{\sigma}(T)$ be the error term in the mean square formula of the Riemann Zeta-function in the critical strip $1/2 < \sigma < 1$. It is an analogue of the error term E(T) for the case $\sigma = 1/2$. The research of E(T) has a long history but the investigation of $E_{\sigma}(T)$ is quite new. In particular there is only a few information known about $E_{\sigma}(T)$ for $3/4 < \sigma < 1$. As one way of exploration, we approach this problem by looking at its mean value $\int_{1}^{T} E_{\sigma}(u) du$. In this paper, we give it an Atkinson-type series expansion and explore its properties as a function of T. From this, we can obtain Ω -results of $E_{\sigma}(T)$ and its mean square for $3/4 < \sigma < 1$.

Key words: Mean value, Mean square formula, Riemann Zeta-function

1. INTRODUCTION

Let $\zeta(s)$ be the Riemann Zeta-function, and let

$$E(T) = \int_0^T |\zeta(1/2 + it)|^2 dt - T(\log \frac{T}{2\pi} + 2\gamma - 1)$$

denote the error term in the mean-square formula for $\zeta(s)$ (on the critical line). The behaviour of E(T) is interesting and many papers are devoted to study this function. However, the conjecture about its order of magnitude, $E(T) \ll T^{1/4+\epsilon}$, remains open. Analogously, it is defined for $1/2 < \sigma < 1$,

$$E_{\sigma}(T) = \int_{0}^{T} |\zeta(\sigma + it)|^{2} dt - \left(\zeta(2\sigma)T + (2\pi)^{2\sigma - 1} \frac{\zeta(2 - 2\sigma)}{2 - 2\sigma} T^{2 - 2\sigma}\right).$$

The behaviour of $E_{\sigma}(T)$ is very interesting too, and in fact, more delicate analysis is required to explore its properties such as the Atkinson-type series expansion and mean square formula, see ([14]-[17]). Excellent surveys are given in [10] and [15].

In the critical strip $1/2 < \sigma < 1$, our knowledge of $E_{\sigma}(T)$ is not 'uniform', for example, the mean square formula and Ω_{\pm} -results are available for $1/2 < \sigma \leq 3/4$ but not for the other part. In fact, not much is known for the case $3/4 < \sigma < 1$, except perhaps some upper bound estimates and

$$\int_{1}^{T} E_{\sigma}(t)^{2} dt \ll T \qquad (3/4 < \sigma < 1). \tag{1.1}$$

To furnish this part, we look at the mean value $\int_1^T E_{\sigma}(u) du$. The mean values of E(T) and $E_{\sigma}(T)$ (1/2 < σ < 3/4) are respectively studied in [2] and [6], each of which gives an asymptotic expansion. Correspondingly, we can represent it in this case 3/4 $\leq \sigma < 1$ by an asymptotic formula with a good error term. The proof of the asymptotic formula relies on the argument of [2] and uses the tools available in [2] and [16]. But there is a difficulty which we need to get around. In [2], Hafner and Ivić used a result of Jutila [8] on transformation of Dirichlet Polynomials, which depends on the formula

$$\sum_{a \le n \le b}^{\prime} d(n)f(n) = \int_{a}^{b} (\log x + 2\gamma)f(x) dx + \sum_{n=1}^{\infty} d(n) \int_{a}^{b} f(x)\alpha(nx) dx$$

where α is a combination of Bessel functions. It is not available in our case but this can be avoided by using the idea in [16].

In addition, we shall regard the mean value as a function of T and study its behaviour; more precisely, we consider

$$G_{\sigma}(T) = \int_{1}^{T} E_{\sigma}(t) dt + 2\pi \zeta (2\sigma - 1)T.$$

Unlike the case $1/2 \le \sigma < 3/4$, $G_{\sigma}(T)$ is now more fluctuating. Nevertheless we can still explore many interesting properties, including some power moments, Ω_{\pm} -results, gaps between sign-changes and limiting distribution functions. The second and third power moments are obtained by the methods used in [16] and [20]. The underlying principle in proving the Ω_{\pm} results are the same as other authors but the technical treatment is different (for example, compare our Section 6 with [2, Section 5]). To discuss the width of gaps between sign-changes, we need the method in [4], though the case $1/2 \le \sigma < 3/4$ can be handled by the argument in [11]. We can determine the exact order of magnitude of the gaps (see Theorems 5 and 6). This is because the series representation of $G_{\sigma}(t)$ has a fast rate of convergence. We apply the results in [1] and [3] to deal with the problem about limiting distribution function. Such an investigation is actually not done in the case $1/2 \le \sigma < 3/4$, perhaps because it is less interesting in the sense that the exact order of magnitude of $G_{\sigma}(t)$ $(1/2 \le \sigma < 3/4)$ is known; therefore, the limiting distribution is 'compactly supported'. Here, we say that a limiting distribution is compactly supported if it equals 0 or 1 outside a compact set. (Note that a distribution function is non-decreasing.) However, in our case it never vanishes (i.e. never equal to 0 or 1), and we shall investigate the rate of decay. Our approach here can give a more precise result than that of [1].

Finally, we want to remark that our work leads to

$$\int_{1}^{T} E_{\sigma}(t) dt = -2\pi \zeta (2\sigma - 1)T + O(\sqrt{T} \log T) \qquad (3/4 < \sigma < 1).$$

This suggests that we should further split $E_{\sigma}(t)$ into two parts: $E_{\sigma}(t) = -2\pi\zeta(2\sigma-1) + E_{\sigma}^{*}(t)$.

2. STATEMENT OF RESULTS

Throughout the paper, we assume $3/4 \le \sigma < 1$ and use c, c' and c" to denote some constants which may differ at each occurrence. The implied constants in \ll - or O-symbols and the unspecified positive constants c_i (i = 1, 2, ...) may depend on σ .

Let
$$\sigma_a(n) = \sum_{d|n} d^a$$
 and arinh $x = \log(x + \sqrt{x^2 + 1})$. We define

$$\Sigma_1(t,X) = \sqrt{2} \left(\frac{t}{2\pi}\right)^{5/4-\sigma} \sum_{n \le X} (-1)^n \frac{\sigma_{1-2\sigma}(n)}{n^{7/4-\sigma}} e_2(t,n) \sin f(t,n)$$

$$\Sigma_{1}(t,X) = \sqrt{2} \left(\frac{t}{2\pi}\right)^{5/4-\sigma} \sum_{n \leq X} (-1)^{n} \frac{\sigma_{1-2\sigma}(n)}{n^{7/4-\sigma}} e_{2}(t,n) \sin f(t,n)$$

$$\Sigma_{2}(t,X) = 2 \left(\frac{t}{2\pi}\right)^{1/2-\sigma} \sum_{n \leq B(t,\sqrt{X})} \frac{\sigma_{1-2\sigma}(n)}{n^{1-\sigma}} \left(\log \frac{t}{2\pi n}\right)^{-2} \sin g(t,n),$$

where

$$e_{2}(t,n) = \left(1 + \frac{\pi n}{2t}\right)^{-1/4} \left(\sqrt{\frac{2t}{\pi n}} \operatorname{arsinh} \sqrt{\frac{\pi n}{2t}}\right)^{-2},$$

$$f(t,n) = 2t \operatorname{arsinh} \sqrt{\frac{\pi n}{2t}} + (2\pi nt + \pi^{2}n^{2})^{1/2} - \frac{\pi}{4},$$

$$g(t,n) = t \log \frac{t}{2\pi n} - t + \frac{\pi}{4},$$

$$B(t,\sqrt{X}) = \frac{t}{2\pi} + \frac{X}{2} - \sqrt{X} \left(\frac{t}{2\pi} + \frac{X}{4}\right)^{1/2} = \left(\left(\frac{t}{2\pi} + \frac{X}{4}\right)^{1/2} - \frac{\sqrt{X}}{2}\right)^{2}.$$

Theorem 1 Let $T \ge 1$ and $N \asymp T$. We have

$$\int_{1}^{T} E_{\sigma}(t) dt = -2\pi \zeta (2\sigma - 1)T + \Sigma_{1}(T, N) - \Sigma_{2}(T, N) + O(\log^{2} T).$$

Remark: Bounding $\Sigma_1(T, N)$ and $\Sigma_2(T, N)$ trivially, we infer with (1.1) a result for $E_{\sigma}(t)$.

Corollary We have
$$\int_1^T E_{\sigma}(t) dt = -2\pi \zeta (2\sigma - 1)T + O(\sqrt{T} \min((\sigma - 3/4)^{-1}, \log T)).$$

Define $G_{\sigma}(t) = \int_{1}^{t} E_{\sigma}(u) du + 2\pi \zeta (2\sigma - 1)t$. Then $G_{\sigma}(t) \ll t^{1/2}$, and it is not hard to get

$$\int_{T}^{2T} G_{\sigma}(t) dt = o(T^{1+(5/4-\sigma)}). \tag{2.1}$$

Results of higher power moments are proved in the next theorem.

Theorem 2 Let $T \geq 1$. We have

(1)
$$\int_T^{2T} G_{\sigma}(t)^2 dt = B(\sigma) \int_T^{2T} (t/(2\pi))^{5/2 - 2\sigma} dt + O(T^{3-2\sigma}),$$

(2)
$$\int_T^{2T} G_{\sigma}(t)^3 dt = -C(\sigma) \int_T^{2T} (t/(2\pi))^{15/4 - 3\sigma} dt + O(T^{(13 - 8\sigma)/3}),$$

(3) for any real $k \in [0, A_0)$ and any odd integer $0 \le l < A_0$ where $A_0 = (\sigma - 3/4)^{-1}$,

$$\int_{1}^{T} |G_{\sigma}(t)|^{k} dt \sim \alpha_{k}(\sigma) T^{1+k(5/4-\sigma)} \text{ and } \int_{1}^{T} G_{\sigma}(t)^{l} dt \sim \beta_{l}(\sigma) T^{1+l(5/4-\sigma)}.$$

where $\alpha_k(\sigma) \geq 0$ and $\beta_l(\sigma)$ are some constants, $B(\sigma)$ and $C(\sigma)$ are defined by

$$B(\sigma) = \sum_{n=1}^{\infty} \sigma_{1-2\sigma}(n)^2 n^{2\sigma-7/2} = \zeta(7/2 - 2\sigma)\zeta(3/2 + 2\sigma)\zeta(5/2)^2 \zeta(5)^{-1},$$

$$C(\sigma) = \frac{3}{2} \sum_{s=1}^{\infty} \frac{\mu(s)^2}{s^{21/4 - 3\sigma}} \sum_{a,b=1}^{\infty} \frac{\sigma_{1-2\sigma}(sa^2)}{a^{7/2 - 2\sigma}} \frac{\sigma_{1-2\sigma}(sb^2)}{b^{7/2 - 2\sigma}} \frac{\sigma_{1-2\sigma}(s(a+b)^2)}{(a+b)^{7/2 - 2\sigma}}.$$

It is expected that $G_{\sigma}(t)$ is oscillatory in nature and its order of magnitude of $G_{\sigma}(t)$ is about $t^{5/4-\sigma}$. Although (2.1) tells us that there is plenty of cancellation between the positive and negative parts, Theorem 2 (2) shows the negative part should be more dominating. This phenomenon also appears in the case $1/2 \leq \sigma < 3/4$. Now, we look at its distribution of values from the probabilistic viewpoint.

Theorem 3 The limiting distribution $D_{\sigma}(u)$ of $t^{\sigma-5/4}G_{\sigma}(t)$ exists, and is equal to the distribution of the random series $\eta = \sum_{n=1}^{\infty} a_n(t_n)$ where

$$a_n(t) = \sqrt{2} \frac{\mu(n)^2}{n^{7/4-\sigma}} \sum_{r=1}^{\infty} (-1)^{nr} \frac{\sigma_{1-2\sigma}(nr^2)}{r^{7/2-2\sigma}} \sin(2\pi rt - \pi/4)$$

and t_n are independent random variables uniformly distributed on [0,1]. Define $tail(D_{\sigma}(u))$ = $1 - D_{\sigma}(u)$ for $u \ge 0$ and $D_{\sigma}(u)$ for u < 0. Then

$$\exp(-c_1 \exp(|u|)) \\
\exp(-c_2|u|^{4/(4\sigma-3)})$$

$$\begin{cases}
\exp(-c_3 \exp(|u|)) & \text{if } \sigma = 3/4, \\
\exp(-c_4|u|^{4/(4\sigma-3)}) & \text{if } 3/4 < \sigma < 1.
\end{cases}$$
(2.2)

Remark: $D_{\sigma}(u)$ is non-symmetric and should skew towards the negative side because of Theorem 2 (2). Again it is also true for $1/2 \le \sigma < 3/4$. But in the case $1/2 \le \sigma < 3/4$, the set $\{u \in \mathbf{R} : 0 < D_{\sigma}(u) < 1\}$ is compact and it differs from our case.

To investigate the oscillatory nature, we consider the extreme values of $G_{\sigma}(t)$ and the frequency of occurrence of large values. These are revealed in the following three results.

Theorem 4 As $T \to \infty$, we have

$$G_{3/4}(T) = \Omega_{+}(\sqrt{T}\log\log\log T) \text{ and } G_{3/4}(T) = \Omega_{-}(\sqrt{T}\log\log T);$$

if $3/4 < \sigma < 1$, then

$$G_{\sigma}(T) = \Omega_{+}(T^{5/4-\sigma} \exp(c_{5} \frac{(\log \log T)^{\sigma-3/4}}{(\log \log \log T)^{7/4-\sigma}})) \text{ and } G_{\sigma}(T) = \Omega_{-}(T^{5/4-\sigma} (\log T)^{\sigma-3/4}).$$

Theorem 5 For every sufficiently large T, there exist t_1 , $t_2 \in [T, T + c_6\sqrt{T}]$ such that $G_{\sigma}(t_1) \geq c_7 t_1^{5/4-\sigma}$ and $G_{\sigma}(t_2) \leq -c_7 t_2^{5/4-\sigma}$. In particular, $G_{\sigma}(t)$ has (at least) one sign change in every interval $[T, T + c_8\sqrt{T}]$.

Theorem 6 Let $\delta > 0$ be a fixed small number. Then for all sufficiently large $T \geq T_0(\delta)$, there are two sets S^+ and S^- of disjoint intervals in [T, 2T] such that

- 1. any interval in S^{\pm} is of length $c_9\delta\sqrt{T}$,
- 2. cardinality of $S^{\pm} \ge c_{10} \delta^{4(1-\sigma)} \sqrt{T}$,
- 3. if $I \in S^{\pm}$, then $\pm G_{\sigma}(t) \geq (c_{11} \delta^{5/2 2\sigma})t^{5/4 \sigma}$ for all $t \in I$ (so no sign-changes on I).

3. SERIES REPRESENTATION

This section is to prove Theorem 1 and we need two lemmas.

Lemma 3.1 Let α , β , γ , a, b, k, T be real numbers such that α , β , γ are positive and bounded, $\alpha \neq 1$, 0 < a < 1/2, $a < T/(8\pi k)$, $b \geq T$, $k \geq 1$, $T \geq 1$,

$$U(t) = \left(\frac{t}{2\pi k} + \frac{1}{4}\right)^{1/2}, V(t) = 2 \operatorname{arsinh} \sqrt{\frac{\pi k}{2t}},$$

$$L_k(t) = (2ki\sqrt{\pi})^{-1} t^{1/2} V(t)^{-\gamma - 1} U(t)^{-1/2} \left(U(t) - \frac{1}{2}\right)^{-\alpha} \left(U(t) + \frac{1}{2}\right)^{-\beta}$$

$$\times \exp\left(itV(t) + 2\pi ikU(t) - \pi ik + \frac{\pi i}{4}\right),$$

and

$$J(T) = \int_{T}^{2T} \int_{a}^{b} y^{-\alpha} (1+y)^{-\beta} \left(\log \frac{1+y}{y} \right)^{-\gamma} \exp(it \log(1+1/y) + 2\pi iky) \, dy dt.$$

Then uniformly for $|\alpha - 1| \ge \epsilon$, $1 \le k \le T + 1$, we have

$$J(T) = L_k(2T) - L_k(T) + O(a^{1-\alpha}) + O(Tk^{-1}b^{\gamma - \alpha - \beta}) + O((T/k)^{(\gamma + 1 - \alpha - \beta)/2}T^{-1/4}k^{-5/4}).$$

In the case -k in place of k, the result holds without $L_k(2T) - L_k(T)$ for the corresponding integral.

This is [2, Lemma 3].

Lemma 3.2 Let

$$\Delta_{1-2\sigma}(t) = \sum_{n \le t}' \sigma_{1-2\sigma}(n) - \left(\zeta(2\sigma)t + \frac{\zeta(2-2\sigma)}{2-2\sigma}t^{2-2\sigma} - \frac{1}{2}\zeta(2\sigma-1)\right)$$

where the sum $\sum_{n\leq t}'$ counts half of the last term only when t is an integer. Define $\tilde{\Delta}_{1-2\sigma}(\xi) = \int_0^{\xi} \Delta_{1-2\sigma}(t) dt - \zeta(2\sigma - 2)/12$. Assuming $3/4 \leq \sigma < 1$, we have for $\xi \geq 1$,

$$\tilde{\Delta}_{1-2\sigma}(\xi) = C_1 \xi^{5/4-\sigma} \sum_{n=1}^{\infty} \sigma_{1-2\sigma}(n) n^{\sigma-7/4} \cos(4\pi\sqrt{n\xi} + \pi/4)$$

$$+ C_2 \xi^{3/4-\sigma} \sum_{n=1}^{\infty} \sigma_{1-2\sigma}(n) n^{\sigma-9/4} \cos(4\pi\sqrt{n\xi} - \pi/4) + O(\xi^{1/4-\sigma})$$

where the two infinite series on the right-hand side are uniformly convergent on any finite closed subinterval in $(0,\infty)$, and the values of the constants are $C_1 = -1/(2\sqrt{2}\pi^2)$, $C_2 = (5-4\sigma)(7-4\sigma)/(64\sqrt{2}\pi^3)$. In addition, we have for $3/4 \le \sigma < 1$,

$$\Delta_{1-2\sigma}(v) \ll v^{1-\sigma}, \quad \int_1^x \Delta_{1-2\sigma}(v)^2 dv \ll x \log x,$$
$$\tilde{\Delta}_{1-2\sigma}(\xi) \ll \xi^r \log \xi, \quad \int_1^x \tilde{\Delta}_{1-2\sigma}(v)^2 dv \ll x^{7/2-2\sigma}$$

where $0 < r = -(4\sigma^2 - 7\sigma + 2)/(4\sigma - 1) \le 1/2$.

This comes from [16, Lemma 1] and the result in [19].

Proof of Theorem 1. From [14, (3.4)] and [17, (3.1)], we have

$$\begin{split} & \int_{-t}^{t} |\zeta(\sigma+iu)|^2 \, du \\ = & 2\zeta(2\sigma)t + 2\zeta(2\sigma-1)\Gamma(2\sigma-1)\frac{\sin(\pi\sigma)}{1-\sigma}t^{2-2\sigma} - 2i\int_{\sigma-it}^{\sigma+it} g(u,2\sigma-u) \, du + O(\min(1,|t|^{-2\sigma})). \end{split}$$

(Note that the value of c_3 in [17, (3.1)] is zero.) Hence, we have

$$E_{\sigma}(t) = -i \int_{\sigma - it}^{\sigma + it} g(u, 2\sigma - u) du + O(\min(1, t^{-2\sigma})).$$

Define

$$h(u,\xi) = 2\int_0^\infty y^{-u} (1+y)^{u-2\sigma} \cos(2\pi\xi y) \, dy.$$
 (3.1)

Assume $AT \leq X \leq T$ and X is not an integer where 0 < A < 1 is a constant. Then, following [16, p.364-365], we define

$$G_{1}(t) = \sum_{n \leq X} \sigma_{1-2\sigma}(n) \int_{\sigma-it}^{\sigma+it} h(u,n) du,$$

$$G_{2}(t) = \Delta_{1-2\sigma}(X) \int_{\sigma-it}^{\sigma+it} h(u,X) du,$$

$$G_{3}(t) = \int_{\sigma-it}^{\sigma+it} \int_{X}^{\infty} (\zeta(2\sigma) + \zeta(2-2\sigma)\xi^{1-2\sigma}) h(u,\xi) d\xi du,$$

$$G_{4}^{*}(t) = \tilde{\Delta}_{1-2\sigma}(X) \int_{\sigma-it}^{\sigma+it} \frac{\partial h}{\partial \xi}(u,X) du,$$

$$G_{4}^{**}(t) = \int_{X}^{\infty} \tilde{\Delta}_{1-2\sigma}(\xi) \int_{\sigma-it}^{\sigma+it} \frac{\partial^{2} h}{\partial \xi^{2}}(u,\xi) du d\xi.$$

$$(3.2)$$

Then, we have

$$\int_{T}^{2T} E_{\sigma}(t) dt = -i \int_{T}^{2T} G_{1}(t) dt + i \int_{T}^{2T} G_{2}(t) dt - i \int_{T}^{2T} G_{3}(t) dt
-i \int_{T}^{2T} G_{4}^{*}(t) dt - i \int_{T}^{2T} G_{4}^{**}(t) dt + O(1)$$
(3.3)

1) Evaluation of $\int_T^{2T} G_1(t) dt$. We take $\gamma = 1$, $\alpha = \beta = \sigma$ in Lemma 3.1, we have from (3.1),

$$\int_{T}^{2T} \int_{\sigma-it}^{\sigma+it} h(u,n) \, du \, dt$$

$$= 4i \int_{T}^{2T} \int_{0}^{\infty} (y(1+y))^{-\sigma} (\log(1+1/y))^{-1} \sin(t \log((1+y)/y)) \cos(2\pi ny) \, dy \, dt$$

$$= 2i \operatorname{Im} \int_{T}^{2T} \int_{0}^{\infty} (y(1+y))^{-\sigma} (\log(1+1/y))^{-1} \{ \exp(i(t \log((1+y)/y) + 2\pi ny)) + \exp(i(t \log((1+y)/y) - 2\pi ny)) \} \, dy \, dt$$

$$= 2i \operatorname{Im} (L_{n}(2T) - L_{n}(T)) + O(T^{3/4-\sigma} n^{\sigma-9/4})$$

Noting that $L_n(t) = (i\sqrt{2})^{-1}(t/(2\pi))^{5/4-\sigma}(-1)^n n^{\sigma-7/4} e_2(t,n) \exp(i(f(t,n)+\pi/2))$, we get, with (3.2),

$$\int_{T}^{2T} G_{1}(t) dt$$

$$= \sqrt{2}i \left(\frac{t}{2\pi}\right)^{5/4-\sigma} \sum_{n \leq X} (-1)^{n} \frac{\sigma_{1-2\sigma}(n)}{n^{7/4-\sigma}} e_{2}(t,n) \sin f(t,n) \Big|_{T}^{2T} + O(T^{3/4-\sigma}) \tag{3.4}$$

2) Evaluation of $\int_T^{2T} G_2(t) dt$. The treatment is similar to G_1 . From (3.2) and Lemma 3.1, $\int_T^{2T} \int_{\sigma-it}^{\sigma+it} h(u,X) du dt = 2i \operatorname{Im}(L_X(2T) - L_X(T)) + O(T^{3/4-\sigma}X^{\sigma-9/4})$. Since $L_X(t) \ll t^{5/4-\sigma}X^{\sigma-7/4} \ll T^{-1/2}$ for t=T or 2T, we have

$$\int_{T}^{2T} G_2(t) dt \ll \Delta_{1-2\sigma}(X) T^{-1/2} \ll T^{1/2-\sigma}.$$
 (3.5)

3) Evaluation of $\int_T^{2T} G_3(t) dt$. Using [14, (4.6)], we have

$$G_{3}(t) = -2i\pi^{-1}(\zeta(2\sigma) + \zeta(2-2\sigma)X^{1-2\sigma}) \int_{0}^{\infty} y^{-\sigma-1}(1+y)^{-\sigma}(\log(1+1/y))^{-1}$$

$$\times \sin(2\pi Xy) \sin(t\log(1+1/y)) dy$$

$$+ (1-2\sigma)\pi^{-1}\zeta(2-2\sigma)X^{1-2\sigma} \int_{0}^{\infty} y^{-1}(1+y)^{1-2\sigma} \sin(2\pi Xy)$$

$$\times \int_{\sigma-it}^{\sigma+it} (u+1-2\sigma)^{-1} \left(\frac{1+y}{y}\right)^{u} du dy.$$

Direct computation shows that for y > 0,

$$\int_{\sigma-it}^{\sigma+it} (u+1-2\sigma)^{-1} (1+1/y)^u du$$

$$= 2\pi i \left(\frac{1+y}{y}\right)^{2\sigma-1} + \left(\int_{-\infty+it}^{\sigma+it} + \int_{\sigma-it}^{-\infty-it} \right) (1+1/y)^u (u+1-2\sigma)^{-1} du.$$

Then, we have

$$\int_{T}^{2T} G_{3}(t) dt$$

$$= 2i(1 - 2\sigma)\zeta(2 - 2\sigma)TX^{1 - 2\sigma}I_{1} - 2i\pi^{-1}(\zeta(2\sigma) + \zeta(2 - 2\sigma)X^{1 - 2\sigma})I_{2}$$

$$+ \pi^{-1}(1 - 2\sigma)\zeta(2 - 2\sigma)X^{1 - 2\sigma}I_{3} \tag{3.6}$$

where

$$I_{1} = \int_{0}^{\infty} y^{-2\sigma} \sin(2\pi Xy) \, dy$$

$$I_{2} = \int_{T}^{2T} \int_{0}^{\infty} y^{-1-\sigma} (1+y)^{-\sigma} (\log(1+1/y))^{-1} \sin(2\pi Xy) \sin(t \log(1+1/y)) \, dy \, dt,$$

$$I_{3} = \int_{T}^{2T} \int_{0}^{\infty} y^{-1} (1+y)^{1-2\sigma} \sin(2\pi Xy)$$

$$\times \left(\int_{-\infty+it}^{\sigma+it} + \int_{\sigma-it}^{-\infty-it} \right) (1+1/y)^{u} (u+1-2\sigma)^{-1} \, du \, dy \, dt.$$

Then, $I_1 = 2^{2\sigma-2}\pi^{2\sigma}X^{2\sigma-1}/(\Gamma(2\sigma)\sin(\pi\sigma))$ which is the main contribution. Interchanging the integrals, we have

$$I_2 = -\int_0^\infty y^{-1-\sigma} (1+y)^{-\sigma} \left(\log(1+1/y) \right)^{-2} \sin(2\pi Xy) \cos(t \log(1+1/y)) |_{t=T}^{t=2T} dy.$$

We split the integral into two parts $\int_0^c + \int_c^\infty$ for some large constant c > 0. Expressing the product $\sin(\cdots)\cos(\cdots)$ as a combination of $\exp(i(t\log(1+1/y)\pm 2\pi Xy))$, since $(d/dy)(t\log(1+1/y)\pm 2\pi Xy) = \pm 2\pi X - t/(y(1+y)) \gg X$ for $y \geq c$ (recall t=T or 2T), the integral \int_c^∞ is $\ll X^{-1}$ by the first derivative test. Applying the mean value theorem for integrals, we have

$$\int_0^c \ll \left| \int_{c'}^{c''} y^{-1-\sigma} (1+y)^{-1} \sin(2\pi Xy) \cos(t \log(1+1/y)) \, dy \right|.$$

Integration by parts yields that the last integral $\int_{c'}^{c''}$ equals

$$t^{-1} \left(y^{-\sigma} \sin(2\pi Xy) \sin(t \log(1 + 1/y)) |_{c'}^{c''} - \int_{c'}^{c''} O(y^{-\sigma - 1} |\sin(2\pi Xy)| + y^{-\sigma} X) \, dy \right)$$

$$\ll 1. \tag{3.7}$$

Hence $I_2 \ll 1$. For I_3 , the extra integration over t is in fact not necessary to yield our bound. Thus, we write $I_3 = \int_T^{2T} (I_{31} + I_{32}) dt$, separated according to the integrals over u. I_{31} and I_{32} are treated in the same way, so we work out I_{31} only. Using integration by parts over u,

$$I_{31} = \int_0^\infty y^{-1} (1+y)^{1-2\sigma} (\log(1+1/y))^{-1} \sin(2\pi Xy) \exp(it \log(1+1/y))$$

$$\times \left\{ \frac{(1+1/y)^{\alpha}}{\alpha+1-2\sigma+it} \Big|_{\alpha=-\infty}^{\alpha=\sigma} + \int_{-\infty}^{\sigma} (1+1/y)^{\alpha} \frac{d\alpha}{(\alpha+1-2\sigma+it)^2} \right\} dy.$$

Then we consider $\int_0^\infty y^{-1}(1+y)^{1-2\sigma}(\log(1+1/y))^{-1}\sin(2\pi Xy)\exp(it\log(1+1/y))(1+1/y)^{\alpha}dy$. Again, we split it into $\int_0^c + \int_c^\infty$. Then $\int_c^\infty \ll X^{-1}$. If $\alpha \leq -2$, then $\int_0^c \ll 1$ trivially; otherwise, we have (see (3.7))

$$\int_0^c \ll \left| \int_{c'}^{c''} y^{-1-\alpha} (1+y)^{-1} \sin(2\pi Xy) \exp(it \log(1+1/y)) \, dy \right| \ll 1.$$

Therefore, $I_{31} \ll T^{-1}$ and so $I_3 \ll 1$. Putting these estimates into (3.6), we get

$$\int_{T}^{2T} G_{3}(t) dt = i2^{2\sigma - 1} \pi^{2\sigma} \frac{(1 - 2\sigma)\zeta(2 - 2\sigma)}{\Gamma(2\sigma)\sin(\pi\sigma)} T + O(1)$$

$$= -2\pi i\zeta(2\sigma - 1)T + O(1). \tag{3.8}$$

4) Evaluation of $\int_T^{2T} G_4^*(t) dt$. From [16, Section 4], we obtain

$$\int_{T}^{2T} G_4^*(t) dt = 4i\tilde{\Delta}_{1-2\sigma}(X)((2\sigma - 1)I_1 + I_2 - \sigma I_3 - I_4)$$

where by Lemma 3.1, (recall $L_X(t) \ll T^{-1/2} \ll X^{-1/2}$ for t = T or 2T)

$$\begin{split} I_1 &= X^{2\sigma-2} \int_T^{2T} \int_0^\infty \frac{\cos(2\pi y) \sin(t \log(1+X/y))}{y^\sigma(X+y)^\sigma \log(1+X/y)} \, dy \, dt \\ &= X^{-1} \int_T^{2T} \int_0^\infty \frac{\cos(2\pi Xy) \sin(t \log(1+1/y))}{y^\sigma(1+y)^\sigma \log(1+1/y)} \, dy \, dt \ll X^{-3/2} \\ I_2 &= X^{2\sigma-1} \int_T^{2T} t \int_0^\infty \frac{\cos(2\pi y) \cos(t \log(1+X/y))}{y^\sigma(X+y)^{\sigma+1} \log(1+X/y)} \, dy \, dt \\ &\ll X^{-1} T \sup_{T \le T_1 \le T_2 \le 2T} \left| \int_{T_1}^{T_2} \int_0^\infty \frac{\cos(2\pi Xy) \cos(t \log(1+1/y))}{y^\sigma(1+y)^{\sigma+1} \log(1+1/y)} \, dy \, dt \right| \ll X^{-1/2} \end{split}$$

and similarly I_3 , $I_4 \ll X^{-3/2}$. With Lemma 3.2,

$$\int_{T}^{2T} G_4^*(t) dt \ll T^{r-1/2} \log T \ll \log T.$$
 (3.9)

5) Evaluation of $\int_T^{2T} G_4^{**}(t) dt$. [16, (3.6) and Section 5] gives

$$\int_{T}^{2T} G_4^{**}(t) dt = -4iI_1 + 4iI_2 + 4iI_3.$$
 (3.10)

 I_1 , I_2 and I_3 are defined as follows: write

$$w(\xi, y) = \tilde{\Delta}_{1-2\sigma}(\xi)\xi^{-2}y^{-\sigma}(1+y)^{-\sigma-2}(\log(1+1/y))^{-1}\cos(2\pi\xi y), \tag{3.11}$$

then

$$I_{1} = \int_{X}^{\infty} \int_{T}^{2T} t^{2} \int_{0}^{\infty} w(\xi, y) \sin(t \log(1 + 1/y)) \, dy \, dt \, d\xi$$

$$I_{2} = \int_{X}^{\infty} \int_{T}^{2T} t \int_{0}^{\infty} w(\xi, y) H_{1}(y) \cos(t \log(1 + 1/y)) \, dy \, dt \, d\xi$$

$$I_{3} = \int_{X}^{\infty} \int_{T}^{2T} \int_{0}^{\infty} w(\xi, y) H_{0}(y) \sin(t \log(1 + 1/y)) \, dy \, dt \, d\xi$$

where $H_0(y)$ and $H_1(y)$ are linear combinations of $y^{\mu}(\log(1+1/y))^{-\nu}$ with $\mu + \nu \leq 2$ and $\mu + \nu \leq 1$ respectively. (Remark: It is stated in [16] $\mu + \nu \leq 2$ only for both $H_0(y)$ and $H_1(y)$.)

When $\xi \geq X \approx T \approx t$ and $\mu + \nu \leq 2$, we have

$$\int_{T}^{2T} \int_{0}^{\infty} \frac{\exp(it \log(1 + 1/y)) \cos(2\pi \xi y)}{y^{\sigma - \mu} (1 + y)^{\sigma + 2} (\log(1 + 1/y))^{\nu + 1}} \, dy \, dt \ll 1, \tag{3.12}$$

$$\int_0^\infty \frac{\exp(it\log(1+1/y))\cos(2\pi\xi y)}{y^{\sigma-\mu}(1+y)^{\sigma+2}(\log(1+1/y))^{\nu+1}} \, dy \ll T^{-1/2}. \tag{3.13}$$

(3.13) can be seen from [16, p.368]. To see (3.12), we split the inner integral into $\int_0^c + \int_c^{\infty}$. First derivative test gives $\int_c^{\infty} \ll \xi^{-1}$. For the first part \int_0^c , we integrate over t first and it is plain that $\int_0^c \int_T^{2T} \ll 1$.

Using (3.12) and Lemma 3.2, we have $I_3 \ll \int_X^{\infty} \tilde{\Delta}_{1-2\sigma}(\xi) \xi^{-2} d\xi \ll T^{1/4-\sigma}$. Applying integration by parts to the *t*-integral, we find that $I_2 \ll T^{3/4-\sigma}$ with (3.12) and (3.13). (Here we have used $\mu + \nu \leq 1$ for $H_1(y)$.) Since

$$\int_{T}^{2T} t^{2} \sin(t \log(1 + 1/y)) dt$$

$$= -t^{2} (\log(1 + 1/y))^{-1} \cos(t \log(1 + 1/y)) \Big|_{T}^{2T}$$

$$+ 2t (\log(1 + 1/y))^{-2} \sin(t \log(1 + 1/y)) \Big|_{T}^{2T} - 2(\log(1 + 1/y))^{-2} \int_{T}^{2T} \sin(t \log(1 + 1/y)) dt,$$

the last two terms contribute $T^{3/4-\sigma}$ and $T^{1/4-\sigma}$ in I_1 respectively by using (3.13) and (3.12). Substituting into (3.10), we get with [14, Lemma 3] (or [5, Lemma 15.1]) and (3.11)

$$\int_{T}^{2T} G_{4}^{**}(t) dt$$

$$= 4it^{2} \int_{X}^{\infty} \int_{0}^{\infty} w(\xi, y) (\log(1 + 1/y))^{-1} \cos(t \log(1 + 1/y)) dy d\xi \Big|_{t=T}^{t=2T} + O(T^{3/4 - \sigma})$$

$$= i\pi^{-1/2} t^{5/2} \int_{X}^{\infty} \frac{\tilde{\Delta}_{1-2\sigma}(\xi) \cos(tV + 2\pi \xi U - \pi \xi + \pi/4)}{\xi^{3} V^{2} U^{1/2} (U - 1/2)^{\sigma} (U + 1/2)^{\sigma+2}} d\xi \Big|_{T}^{2T} + O(T^{3/4 - \sigma}) \tag{3.14}$$

where U and V are defined as in Lemma 3.1 with k replaced by ξ . Applying the argument in [16, Section 6] to (3.14), we get

$$\int_{T}^{2T} G_{4}^{**}(t) dt$$

$$= -2i \left(\frac{t}{2\pi}\right)^{1/2-\sigma} \sum_{n \leq B(t,\sqrt{X})} \frac{\sigma_{1-2\sigma}(n)}{n^{1-\sigma}} \left(\log \frac{t}{2\pi n}\right)^{-2} \sin g(t,n) + O(\log T). \quad (3.15)$$

(Remark: The σ in [16, Lemma 4] should be omitted, as mentioned in [15].)

Inserting (3.4), (3.5), (3.8), (3.9), (3.15) into (3.3), we obtain

$$\int_{T}^{2T} E_{\sigma}(t) dt = -2\pi \zeta (2\sigma - 1)T + \Sigma_{1}(t, X)|_{T}^{2T} - \Sigma_{2}(t, X)|_{T}^{2T} + O(\log T).$$
 (3.16)

6) Transformation of Dirichlet Polynomial. Let $X_1, X_2 \approx T$ (both are not integers) and denote $B_1 = B(T, \sqrt{X_1})$ and $B_2 = B(T, \sqrt{X_2})$. Assume $X_1 < X_2$. Write

$$F(x) = x^{\sigma - 1} \left(\log \frac{T}{2\pi x} \right)^{-2} \exp(i(T \log \frac{T}{2\pi x} + 2\pi x - T + \frac{\pi}{4})),$$

then we have

$$\sum_{B(T,\sqrt{X_2}) < n \le B(T,\sqrt{X_1})} \sigma_{1-2\sigma}(n) n^{\sigma-1} (\log(T/(2\pi n)))^{-2} \sin g(T,n)$$

$$= \operatorname{Im} \sum_{B_2 < n \le B_1} \sigma_{1-2\sigma}(n) F(n). \tag{3.17}$$

Stieltjes integration gives

$$\sum_{B_{2} < n \le B_{1}} \sigma_{1-2\sigma}(n) F(n)$$

$$= \int_{B_{2}}^{B_{1}} F(t) (\zeta(2\sigma) + \zeta(2-2\sigma)t^{1-2\sigma}) dt + \Delta_{1-2\sigma}(t) F(t)|_{B_{2}}^{B_{1}} - \int_{B_{2}}^{B_{1}} \Delta_{1-2\sigma}(t) F'(t) dt$$

$$= I_{1} + I_{2} - I_{3}, \text{ say.}$$
(3.18)

Now, since $(d/dt)(g(T,t)+2\pi t)=2\pi-T/t<-c$ when $B_2< t< B_1$, we have

$$I_1 = \int_{B_2}^{B_1} (\zeta(2\sigma) + \zeta(2-2\sigma)t^{1-2\sigma})t^{\sigma-1} (\log(T/(2\pi t)))^{-2} \exp(i(g(T,t)+2\pi t)) dt$$

$$\ll T^{\sigma-1}.$$

By Lemma 3.2, $I_2 \ll 1$. Direct computation gives

$$F'(t) = i(2\pi - \frac{T}{t})t^{\sigma - 1} \left(\log \frac{T}{2\pi t}\right)^{-2} \exp(i(T\log \frac{T}{2\pi t} + 2\pi t - T + \frac{\pi}{4})) + O(t^{\sigma - 2})$$

where $B_2 \le t \le B_1$. As $\int_{B_2}^{B_1} |\Delta_{1-2\sigma}(t)| t^{\sigma-2} dt \ll T^{\sigma-1} \sqrt{\log T}$, we have by (3.18),

$$\sum_{B_{2} < n \leq B_{1}} \sigma_{1-2\sigma}(n)F(n)$$

$$= -i \exp(i(T \log \frac{T}{2\pi} - T + \frac{\pi}{4})) \int_{B_{2}}^{B_{1}} \Delta_{1-2\sigma}(t)(2\pi - \frac{T}{t})t^{\sigma-1}$$

$$\times \left(\log \frac{T}{2\pi t}\right)^{-2} \exp(i(2\pi t - T \log t)) dt + O(1). \tag{3.19}$$

The integral $\int_{B_1}^{B_2}$ in (3.19) is, after by parts,

$$\tilde{\Delta}_{1-2\sigma}(t)(2\pi - \frac{T}{t})t^{\sigma-1} \left(\log \frac{T}{2\pi t}\right)^{-2} \exp(i(2\pi t - T\log t)) \bigg|_{B_1}^{B_2} - \int_{B_2}^{B_1} \tilde{\Delta}_{1-2\sigma}(t) \frac{d}{dt} \left\{ (2\pi - \frac{T}{t})t^{\sigma-1} \left(\log \frac{T}{2\pi t}\right)^{-2} \exp(i(2\pi t - T\log t)) \right\} dt$$

The first term is $\ll T^{\sigma-1/2} \log T$ by Lemma 3.2. Besides, computing directly shows, for $B_2 \le t \le B_1$,

$$\frac{d}{dt} \{\cdots\} = i(2\pi t - T)^2 t^{\sigma - 3} \left(\log \frac{T}{2\pi t}\right)^{-2} \exp(i(2\pi t - T\log t)) + O(t^{\sigma - 2}).$$

Treating the O-term with Lemma 3.2, (3.19) becomes

$$\sum_{B_{2} < n \leq B_{1}} \sigma_{1-2\sigma}(n) F(n)$$

$$= -\exp(i(T \log \frac{T}{2\pi} - T + \frac{\pi}{4})) \int_{B_{2}}^{B_{1}} \tilde{\Delta}_{1-2\sigma}(t) (2\pi t - T)^{2} t^{\sigma-3}$$

$$\times \left(\log \frac{T}{2\pi t}\right)^{-2} \exp(i(2\pi t - T \log t)) dt + O(T^{\sigma-1/2} \log T). \tag{3.20}$$

Inserting the Voronoi-type series of $\tilde{\Delta}_{1-2\sigma}(t)$ (see Lemma 3.2) into (3.20), we get

$$\sum_{B_{2} < n \leq B_{1}} \sigma_{1-2\sigma}(n)F(n)$$

$$= -\exp(i(T\log\frac{T}{2\pi} - T + \frac{\pi}{4})) \left\{ C_{1} \sum_{n=1}^{\infty} \frac{\sigma_{1-2\sigma}(n)}{n^{7/4-\sigma}} J_{1}(n) + C_{2} \sum_{n=1}^{\infty} \frac{\sigma_{1-2\sigma}(n)}{n^{9/4-\sigma}} J_{2}(n) \right\}$$

$$+ O(T^{\sigma-1/2}\log T) \tag{3.21}$$

where

$$J_1(n) = \int_{B_2}^{B_1} (2\pi t - T)^2 t^{-7/4} \left(\log \frac{T}{2\pi t} \right)^{-2} \exp(i(2\pi t - T \log t)) \cos(4\pi \sqrt{nt} + \frac{\pi}{4}) dt$$

$$J_2(n) = \int_{B_2}^{B_1} (2\pi t - T)^2 t^{-9/4} \left(\log \frac{T}{2\pi t} \right)^{-2} \exp(i(2\pi t - T \log t)) \cos(4\pi \sqrt{nt} - \frac{\pi}{4}) dt.$$

Applying the first derivative test or bounding trivially, we have $J_2(n) \ll T^{-1/4}$ for $n \leq cT$, $J_2(n) \ll T^{3/4}$ for cT < n < c'T and $\ll T^{1/4}n^{-1/2}$ for $n \geq c'T$. Thus, the second sum in (3.21) is

$$\ll \left(T^{-1/4} \sum_{n \le cT} + T^{3/4} \sum_{cT < n < c'T}\right) \sigma_{1-2\sigma}(n) n^{\sigma-9/4} + T^{1/4} \sum_{n \ge c'T} \sigma_{1-2\sigma}(n) n^{\sigma-11/4}
\ll T^{\sigma-1/2}.$$
(3.22)

After a change of variable $t = x^2$,

$$J_1(n) = \int_{\sqrt{B_2}}^{\sqrt{B_1}} (2\pi x^2 - T)^2 x^{-5/2} \left(\log \frac{T}{2\pi x^2} \right)^{-2} \left\{ \exp(i(2\pi x^2 - 2T \log x + 4\pi \sqrt{n}x + \frac{\pi}{4})) + \exp(i(2\pi x^2 - 2T \log x - 4\pi \sqrt{n}x - \frac{\pi}{4})) \right\} dx.$$

Then we use [5, Theorem 2.2], with $f(x) = x^2 - \pi^{-1}T \log x$, $\Phi(x) = x^{3/2}$, F(x) = T, $\mu(x) = x/2$ and $k = \pm 2\sqrt{n}$. Thus,

$$J_1(n) = \delta_n 2\pi^2 \left(\frac{T}{2\pi}\right)^{3/4} e_2(T,n) \exp(i(f(T,n) - T\log\frac{T}{2\pi} + T - \pi n + \frac{3\pi}{4})) + O(\delta_n T^{-1/4})$$

$$+ O(T^{3/4} \exp(-c\sqrt{nT} - cT)) + O(T^{3/4} \min(1, |\sqrt{X_1} \pm \sqrt{n}|^{-1}))$$

$$+ O(T^{3/4} \min(1, |\sqrt{X_2} \pm \sqrt{n}|^{-1}))$$

where $\delta_n = 1$ if $B_2 < x_0 < B_1$ and k > 0, or $\delta_n = 0$ otherwise. $(x_0 = \sqrt{T/(2\pi) + n/4} - \sqrt{n}/2)$ is the saddle point.) Note that $B_2 < x_0 < B_1$ is equivalent to $X_1 < n < X_2$. Thus, for the first term in (3.21), we have

$$-C_1 \exp(i(T \log \frac{T}{2\pi} - T + \frac{\pi}{4})) \sum_{n=1}^{\infty} \frac{\sigma_{1-2\sigma}(n)}{n^{7/4-\sigma}} J_1(n)$$

$$= \frac{1}{\sqrt{2}} \left(\frac{T}{2\pi}\right)^{3/4} \sum_{X_1 \le n \le X_2} \frac{\sigma_{1-2\sigma}(n)}{n^{7/4-\sigma}} e_2(T,n) \exp(i(f(T,n) - \pi n + \pi)) + O(T^{\sigma-1/2} \log T)$$

Together with (3.22), (3.21) and (3.17), we obtain

$$\sum_{B(T,\sqrt{X_2}) < n \le B(T,\sqrt{X_1})} \sigma_{1-2\sigma}(n) n^{\sigma-1} (\log T/(2\pi n))^{-2} \sin g(T,n)$$

$$= -\frac{1}{\sqrt{2}} \left(\frac{T}{2\pi}\right)^{3/4} \sum_{X_1 < n < X_2} (-1)^n \frac{\sigma_{1-2\sigma}(n)}{n^{7/4-\sigma}} e_2(T,n) \sin f(T,n)$$

$$+ O(T^{\sigma-1/2} \log T). \tag{3.23}$$

We can complete our proof now. Taking X = [T] - 1/2 in (3.16), we have $\Sigma_i(t, X) - \Sigma_i(t, T) \ll \log T$ for i = 1, 2 and t = T, 2T; hence

$$\int_{T}^{2T} E_{\sigma}(t) dt = -2\pi \zeta (2\sigma - 1)T + \Sigma_{1}(t, t)|_{T}^{2T} - \Sigma_{2}(t, t)|_{T}^{2T} - ((\Sigma_{1}(2T, 2T) - \Sigma(2T, T)) + (\Sigma_{2}(2T, T) - \Sigma_{2}(2T, 2T))) + O(\log T).$$

Choosing X_1 and X_2 in (3.23) to be half-integers closest to T and 2T respectively, then $(\Sigma_1(2T,2T) - \Sigma(2T,T)) + (\Sigma_2(2T,T) - \Sigma_2(2T,2T)) \ll \log T$. Hence,

$$\int_{1}^{T} E_{\sigma}(t) dt = -2\pi \zeta (2\sigma - 1)T + \Sigma_{1}(T, T) - \Sigma_{2}(T, T) + O(\log^{2} T).$$

The extra $\log T$ in the O-term comes from the number of dyadic intervals. Suppose $N \approx T$. We apply (3.23) again with $X_1 = [N] + 1/2$ and $X_2 = [T] + 1/2$ to yield our theorem.

4. THE SECOND AND THIRD POWER MOMENTS

Using the arguments in [16, p.374-375] and the argument in [18, p.341], we can obtain the lemma below.

Lemma 4.1 We have for $N \approx T$, $\int_T^{2T} \Sigma_2(t, N)^2 dt \ll T$, $\int_T^{2T} \Sigma_1(t, N) \Sigma_2(t, N) dt \ll T \log T$ and

$$\int_{T}^{2T} \Sigma_{1}(t,N)^{2} dt = B(\sigma) \int_{T}^{2T} \left(\frac{t}{2\pi}\right)^{5/2 - 2\sigma} dt + O(T^{3 - 2\sigma}).$$

Moreover, if we define for $1 \leq M \leq M' \ll T$,

$$\Sigma_{M,M'}(t) = \sqrt{2} \left(\frac{t}{2\pi}\right)^{5/4-\sigma} \sum_{M \le n \le M'} (-1)^n \frac{\sigma_{1-2\sigma}(n)}{n^{7/4-\sigma}} e_2(t,n) \sin f(t,n)$$

then, $\int_T^{2T} \Sigma_{M,M'}(t)^2 dt \ll T^{7/2-2\sigma} M^{2\sigma-5/2}$.

Remark: Part (1) of Theorem 2 follows immediately.

Lemma 4.2 Let $0 \le A < (\sigma - 3/4)^{-1}$. Then, we have

$$\int_{T}^{2T} |G_{\sigma}(t)|^{A} dt \ll T^{1+A(5/4-\sigma)}.$$

Proof. The case $0 \le A \le 2$ is proved by Hölder's inequality and part (1) of Theorem 2. Consider the situation $2 < A < (\sigma - 3/4)^{-1}$. Then, for $T \le t \le 2T$ and $N \times T$, we have $\Sigma_2(t,N) \ll T^{1/2}$ and hence $\int_T^{2T} |\Sigma_2(t,N)|^A dt \ll T^{A/2}$ by Lemma 4.1. We take $N = 2^R - 1 \times T$ and write $M = 2^r$ in the proof of this lemma. Then $\Sigma_1(t,N) \le \sum_{r \le R} |\Sigma_{M,2M}(t)|$. By Hölder's inequality, we have

$$|\Sigma_1(t,N)|^A \ll \left(\sum_{r\leq R} \alpha_r^A |\Sigma_{M,2M}(t)|^A\right) \left(\sum_{r\leq R} \alpha_r^{-A/(A-1)}\right)^{A-1}$$

By taking $\alpha_r = M^{(1-A(\sigma-3/4))/(2A)}$ and using the trivial bound $\Sigma_{M,2M}(t) \ll T^{5/4-\sigma}M^{\sigma-3/4}$, we have

$$\int_{T}^{2T} |\Sigma_{1}(t,N)|^{A} dt \ll T^{(5/4-\sigma)(A-2)} \left(\sum_{r \leq R} 2^{-r(1-A(\sigma-3/4))/(2(A-1))} \right)^{A-1} \times \sum_{r \leq R} \alpha_{r}^{A} M^{(\sigma-3/4)(A-2)} \int_{T}^{2T} \Sigma_{M,2M}(t)^{2} dt$$

$$\ll_{A} T^{1+A(5/4-\sigma)} \sum_{r \leq R} \alpha_{r}^{A} M^{A(\sigma-3/4)-1} \ll_{A} T^{1+A(5/4-\sigma)} \tag{4.1}$$

by Lemma 4.1.

Now we can prove part (2) of Theorem 2 but part (3) will be proved in next section. Proof of Theorem 2 (2). We have, with $M = [\delta T^{1/3}]$ for some small constant $\delta > 0$,

$$\int_{T}^{2T} G_{\sigma}(t)^{3} dt = \int_{T}^{2T} \Sigma_{1,M}(t)^{3} dt + O(\int_{T}^{2T} |G_{\sigma}(t) - \Sigma_{1,M}(t)| (G_{\sigma}(t)^{2} + \Sigma_{1,M}^{2}(t)) dt).$$

Lemma 4.2 and (4.1) give $\int_T^{2T} G_{\sigma}(t)^4 dt$ and $\int_T^{2T} \Sigma_{1,M}(t)^4 dt \ll T^{1+4(5/4-\sigma)}$. Since

$$\int_{T}^{2T} (G_{\sigma}(t) - \Sigma_{1,M}(t))^{2} dt \ll \int_{T}^{2T} \Sigma_{M,T}(t)^{2} dt + T \log^{4} T$$

$$\ll T^{4(2-\sigma)/3},$$

we get

$$\int_{T}^{2T} G_{\sigma}(t)^{3} dt = \int_{T}^{2T} \Sigma_{1,M}(t)^{3} dt + O(T^{(13-8\sigma)/3}). \tag{4.2}$$

After multiplying out, rearranging and renaming the terms, we obtain

$$\int_{T}^{2T} \Sigma_{1,M}(t)^{3} dt$$

$$= \frac{3}{\sqrt{2}} \sum_{m,n,k < M} (-1)^{m+n+k} r(m,n,k) \int_{T}^{2T} \left(\frac{t}{2\pi}\right)^{15/4-3\sigma} \sin(f(t,m) + f(t,n) - f(t,k)) dt$$

$$+ O(T^{17/4-3\sigma} \sum_{m,n,k < M} r(m,n,k) (\sqrt{m} + \sqrt{n} + \sqrt{k})^{-1}) \tag{4.3}$$

where $r(m,n,k) = \sigma_{1-2\sigma}(m)\sigma_{1-2\sigma}(n)\sigma_{1-2\sigma}(k)(mnk)^{\sigma-7/4}$. Here, we have used the first derivative test and the fact that $(d/dt)(f(t,m)+f(t,n)+f(t,k))\gg (\sqrt{m}+\sqrt{n}+\sqrt{k})t^{-1/2}$. The O-term in (4.3) is $\ll T^{17/4-3\sigma+\epsilon}\sum_{m\leq n\leq k\leq M}(mn)^{\sigma-7/4}k^{\sigma-9/4}$, so absorbed by the O-term in (4.2).

To estimate the main term in (4.3), we note that

$$\frac{d}{dt}(f(t,m) + f(t,n) - f(t,k)) = 2(\operatorname{arsinh}\sqrt{\frac{\pi m}{2t}} + \operatorname{arsinh}\sqrt{\frac{\pi n}{2t}} - \operatorname{arsinh}\sqrt{\frac{\pi k}{2t}})$$

$$= \sqrt{\frac{2\pi}{t}}(\sqrt{m} + \sqrt{n} - \sqrt{k}) + O\left(\left(\frac{\max(m,n,k)}{t}\right)^{3/2}\right).$$

Write $\Delta = \sqrt{m} + \sqrt{n} - \sqrt{k}$, then provided the choice of δ in M is small enough, the last line is $\gg |\Delta|t^{-1/2}$ as $|\Delta| \geq (\max(m,n,k))^{-3/2}$ when $\Delta \neq 0$, from [20, Lemma 2]. If J denotes the sum over non-diagonal terms $\sum_{\Delta \neq 0}$ in (4.3), then

$$J \ll T^{17/4-3\sigma} \sum_{\substack{\Delta \neq 0 \\ m,n,k \leq M}} r(m,n,k) |\Delta|^{-1}.$$

We separate the sum $\sum_{\Delta\neq 0}$ into three parts $\sum_{0<|\Delta|\ll m^{-1/2}}+\sum_{m^{-1/2}\ll|\Delta|\ll m^{1/2}}+\sum_{|\Delta|\gg m^{1/2}}$. Suppose $n\leq m$ are fixed. When $|\Delta|\leq m^{-1/2}$, it is apparent that only one k can satisfy this condition and $k\asymp m$. As $|\Delta|\geq m^{-3/2}$, we have $\sum_{0<|\Delta|\ll m^{-1/2}}\ll T^\epsilon\sum_{n\leq m< M}(nm^2)^{\sigma-7/4}m^{3/2}\ll T^{\sigma-7/12+\epsilon}$. If $m^{-1/2}\ll|\Delta|\ll\sqrt{m}$, we divide this range into dyadic intervals $I_r=(u_r,2u_r]$, say. When $|\Delta|\in I_r$, the number of such k is $\ll 1+u_r\sqrt{m}$. Thus, $\sum_{m^{-1/2}\ll|\Delta|\ll m^{1/2}}\ll T^\epsilon\sum_{n\leq m< M}(nm^2)^{\sigma-7/4}\sqrt{m}\ll T^{\sigma-11/12+\epsilon}$. The last case $\sum_{|\Delta|\gg m^{1/2}}$ is $\ll T^{\sigma/3-1/4+\epsilon}$. Therefore, $J\ll T^{11/3-2\sigma+\epsilon}\ll T^{(13-8\sigma)/3}$.

The diagonal term $\sum_{\Delta=0}$ in (4.3) contributes

$$\frac{3}{\sqrt{2}} \sum_{\substack{m,n,k < M \\ \sqrt{m} + \sqrt{n} = \sqrt{k}}} (-1)^{m+n+k} r(m,n,k) \int_{T}^{2T} \left(\frac{t}{2\pi}\right)^{15/4 - 3\sigma} \left(\sin(-\frac{\pi}{4}) + O(\frac{k^{3/2}}{\sqrt{t}})\right) dt. \tag{4.4}$$

Crude estimation gives

$$\sum_{\substack{\Delta=0\\m,n,k< M}} (mn)^{\sigma-7/4} k^{\sigma-1/4} \ll \sum_{n \le m < M} m^{2\sigma-2} n^{\sigma-7/4} \ll M^{3\sigma-7/4} \text{ and }$$

$$\sum_{\substack{\Delta=0\\k \ge M}} (mnk)^{\sigma-7/4} \ll \sum_{n \le m, m \ge M} n^{\sigma-7/4} m^{2\sigma-7/2} \ll M^{3\sigma-13/4}.$$

Hence, (4.4) becomes

$$-\frac{3}{2}\sum_{\Delta=0}^{\infty}(-1)^{m+n+k}r(m,n,k)\int_{T}^{2T}(t/2\pi)^{15/4-3\sigma}\,dt+O(T^{11/3-2\sigma+\epsilon}).$$

This completes the proof, with the fact that $\sqrt{m} + \sqrt{n} = \sqrt{k}$ holds only if $m = sa^2$, $n = sb^2$ and $k = s(a+b)^2$ for squarefree positive integer s and some positive integers a, b. (Note that m+n+k is then even.)

5. LIMITING DISTRIBUTION FUNCTION

We first quote some results from [1, Theorem 4.1] and [3, Theorem 6]

Let F be a real-valued function defined on $[1, \infty)$, and let $a_1(t)$, $a_2(t)$,... be continuous real-valued periodic functions of period 1 such that $\int_0^1 a_n(t) dt = 0$ and $\sum_{n=1}^{\infty} \int_0^1 a_n(t)^2 dt < \infty$. Suppose that there are positive constants $\gamma_1, \gamma_2, \ldots$ which are linearly independent over \mathbf{Q} , such that

$$\lim_{N \to \infty} \limsup_{T \to \infty} \frac{1}{T} \int_0^T \min(1, |F(t) - \sum_{n \le N} a_n(\gamma_n t)|) dt = 0.$$

<u>Fact I.</u> For every continuous bounded function g on \mathbb{R} , we have

$$\lim_{T \to \infty} \frac{1}{T} \int_0^T g(F(t)) dt = \int_{-\infty}^\infty g(x) \nu(dx),$$

where $\nu(dx)$ is the distribution of the random series $\eta = \sum_{n=1}^{\infty} a_n(t_n)$ and t_n are independent random variables uniformly distributed on [0,1]. Equivalently, the distribution function of F defined by $P_T(u) = T^{-1}\mu\{t \in [1,T] : F(t) \leq u\}$ converges weakly to a function P(u), called the limiting distribution, as $T \to \infty$.

<u>Fact II</u>. If $\int_1^T |F(t)|^A dt \ll T$, then for any real $k \in [0, A)$ and any odd integer $l \in [0, A)$, the following limits exist:

$$\lim_{T\to\infty} T^{-1} \int_1^T |F(t)|^k dt \text{ and } \lim_{T\to\infty} T^{-1} \int_1^T F(t)^l dt.$$

Now, let us take $F(t) = t^{2\sigma - 5/2}G_{\sigma}(2\pi t^2)$, $\gamma_n = 2\sqrt{n}$ and

$$a_n(t) = \sqrt{2} \frac{\mu(n)^2}{n^{7/4 - \sigma}} \sum_{r=1}^{\infty} (-1)^{nr} \frac{\sigma_{1-2\sigma}(nr^2)}{r^{7/2 - 2\sigma}} \sin(2\pi rt - \pi/4).$$
 (5.1)

By Lemma 4.1, we see that for $N \leq \sqrt{T}$,

$$\int_{T}^{2T} (t^{2\sigma - 5/2} G_{\sigma}(2\pi t^2) - t^{2\sigma - 5/2} \Sigma_{1,N}(2\pi t^2))^2 dt \ll T N^{2\sigma - 5/2}.$$

Using the fact that $e_2(2\pi t^2, n) = 1 + O(n/t^2)$ and $f(2\pi t^2, n) = 4\pi\sqrt{n}t - \pi/4 + O(n^{3/2}/t)$ for $n \le \sqrt{t}$ and following the computation in [3, p.402], we can show

$$\int_{T}^{2T} (t^{2\sigma - 5/2} G_{\sigma}(2\pi t^{2}) - \sum_{n \le N} a_{n}(2\sqrt{n}t))^{2} dt \ll TN^{2\sigma - 5/2} \qquad (N \le \sqrt{T}).$$

This completes the proofs of Theorem 2 (c) and the first part of Theorem 3, by Facts I and II with Lemma 4.2.

We proceed to prove the lower bounds in (2.2) with the idea in [1, Section V]. Because t_n 's are independent random variables, we firstly consider the size of the set over which $a_n(t)$ is quite large.

Lemma 5.1 Let n be squarefree. Define $A_n = \{t \in [0,1] : a_n(t) > B^{-1}\sigma_{1-2\sigma}(n)n^{\sigma-7/4}\}$ where $B = 4A(\sum_{r=1}^{\infty} r^{4\sigma-7})^{-1}$ and $A = \sqrt{2}\sum_{r=1}^{\infty} \sigma_{1-2\sigma}(r^2)r^{2\sigma-7/2}$. Then, we have $\mu(A_n) \ge 1/(AB)$ where μ is the Lebesgue measure.

Proof. Since $\int_0^1 a_n(t) dt = 0$ from (5.1), we have $\int_0^1 a_n^+(t) dt = \int_0^1 a_n^-(t) dt$ where $a_n^{\pm}(t) = \max(0, \pm a_n(t))$. Observing that

$$\sup_{0 \le t \le 1} |a_n(t)| \le A\sigma_{1-2\sigma}(n)n^{\sigma-7/4}, \tag{5.2}$$

$$\int_0^1 a_n(t)^2 dt = \frac{1}{n^{7/2 - 2\sigma}} \sum_{r=1}^\infty \frac{\sigma_{1-2\sigma}(nr^2)^2}{r^{7-4\sigma}},$$
 (5.3)

we have

$$\int_0^1 a_n^+(t)^2 dt + \int_0^1 a_n^-(t)^2 dt = \frac{1}{n^{7/2 - 2\sigma}} \sum_{r=1}^\infty \frac{\sigma_{1 - 2\sigma}(nr^2)^2}{r^{7 - 4\sigma}}$$

and $\int_0^1 a_n^{\pm}(t)^2 dt \le A\sigma_{1-2\sigma}(n)n^{\sigma-7/4} \int_0^1 a_n^{+}(t) dt$. Hence $\int_0^1 a_n^{+}(t) dt \ge 2B^{-1}\sigma_{1-2\sigma}(n)n^{\sigma-7/4}$. Since

$$\sup_{0 \le t \le 1} |a_n(t)| \mu(A_n) + \frac{1}{B} \frac{\sigma_{1-2\sigma}(n)}{n^{\sigma-7/4}} \mu(A_n^c) \ge \int_0^1 a_n^+(t) dt,$$

we get $\mu(A_n) \ge 1/(AB)$ from (5.2) and $\mu(A_n^c) \le 1$.

Proof of lower bounds in Theorem 3. Let n be a large positive integer. By Markov's inequality, we have

$$\Pr(|\sum_{m=n+1}^{\infty} a_m(t_m)| \le 2\sqrt{K}) \ge 1 - \frac{1}{4K} \sum_{m=1}^{\infty} \int_0^1 a_m(t)^2 dt \ge \frac{3}{4}$$

where $\Pr(\#)$ denotes the probability of the event # and $K = \sum_{m=1}^{\infty} \int_0^1 a_m(t)^2 dt < +\infty$. For $1 \le m \le n$, define A_m as in Lemma 5.1 if m is squarefree and $A_m = [0, 1]$ otherwise. Consider the set

$$E_n = \{(t_1, t_2, \ldots) : t_m \in A_m \text{ for } 1 \le m \le n \text{ and } |\sum_{m=n+1}^{\infty} a_m(t_m)| \le 2\sqrt{K}\}.$$

Then,

$$\Pr(E_n) = \prod_{m=1}^n \Pr(A_m) \Pr(|\sum_{m=n+1}^{\infty} a_m(t_m)| \le 2\sqrt{K}) \ge \frac{3}{4(AB)^n}$$

due to $Pr(A_m) = \mu(A_m)$ and Lemma 5.1. When $(t_1, t_2, ...) \in E_n$, we have

$$\sum_{m=1}^{\infty} a_m(t_m) \geq \frac{1}{B} \sum_{\substack{m \leq n \\ m \text{ squarefree}}} \frac{\sigma_{1-2\sigma}(m)}{m^{7/4-\sigma}} - 2\sqrt{K}$$

$$\geq B^{-1} \sum_{m \leq n} \mu(m)^2 m^{\sigma-7/4} - 2\sqrt{K}$$

$$\gg \begin{cases} \log n & \text{if } \sigma = 3/4, \\ n^{\sigma-3/4} & \text{if } 3/4 < \sigma < 1. \end{cases}$$

Our result for $1 - D_{\sigma}(u)$ follows after we replace n by $[e^u]$ if $\sigma = 3/4$ and by $[u^{4/(4\sigma-3)}]$ if $3/4 < \sigma < 1$. The case of $D_{\sigma}(-u)$ can be proved in the same way.

To derive the upper bounds, we need a result related to the Laplace transform of limiting distribution functions.

Lemma 5.2 Let X be a real random variable with the probability distribution D(x). Suppose D(x) > 0 for any x > 0. For the two cases: (i) $\psi(x) = x \log x$ and $\phi(x) = \log x$, or (ii) $\psi(x) = x^{4/(7-4\sigma)}$ and $\phi(x) = x^{(4\sigma-3)/4}$, there exist two positive numbers L and L' such that

- (a) if $\limsup_{\lambda \to \infty} \psi(\lambda)^{-1} \log E(\exp(\lambda X)) \le L$, then $\limsup_{x \to \infty} x^{-1} \log(1 D(\phi(x))) \le -L'$,
- (b) if $\limsup_{\lambda \to \infty} \psi(\lambda)^{-1} \log E(\exp(-\lambda X)) \le L$, then $\limsup_{x \to \infty} x^{-1} \log D(-\phi(x)) \le -L'$.

This can be seen from [12, Lemma 3.1].

Proof of upper bounds in Theorem 3. We take $N = \lambda$ if $\sigma = 3/4$, and $N = \lambda^{4/(7-4\sigma)}$ if $3/4 < \sigma < 1$. When $n \le N$, we use

$$\int_0^1 \exp(\pm \lambda a_n(t)) dt \le \exp(\lambda A \frac{\sigma_{1-2\sigma}(n)\mu(n)^2}{n^{7/4-\sigma}}).$$

Recall that $A = \sqrt{2} \sum_{r=1}^{\infty} \sigma_{1-2\sigma}(r^2) r^{7/2-2\sigma}$. If n > N and $\lambda A \sigma_{1-2\sigma}(n) < n^{7/4-\sigma}$, then by the inequality $e^x \le 1 + x + x^2$ for $x \le 1$ and (5.3),

$$\int_{0}^{1} \exp(\pm \lambda a_{n}(t)) dt \leq \int_{0}^{1} (1 \pm \lambda a_{n}(t) + \lambda^{2} a_{n}(t)^{2}) dt$$

$$\leq 1 + (\lambda A)^{2} \frac{\sigma_{1-2\sigma}(n)^{2} \mu(n)^{2}}{n^{7/2-2\sigma}}$$

$$\leq \exp((\lambda A)^{2} \frac{\sigma_{1-2\sigma}(n)^{2} \mu(n)^{2}}{n^{7/2-2\sigma}})$$

as $\int_0^1 a_n(t) dt = 0$. Finally, for n > N and $\lambda A \sigma_{1-2\sigma}(n) \ge n^{7/4-\sigma}$, we can get

$$\int_0^1 \exp(\pm \lambda a_n(t)) \, dt \le \exp(\lambda A \frac{\sigma_{1-2\sigma}(n)\mu(n)^2}{n^{7/4-\sigma}}) \le \exp((\lambda A)^2 \frac{\sigma_{1-2\sigma}(n)^2 \mu(n)^2}{n^{7/2-2\sigma}}).$$

Therefore.

$$\log E(\exp(\pm \lambda X)) \leq \lambda A \sum_{n \leq N} \frac{\sigma_{1-2\sigma}(n)}{n^{7/4-\sigma}} + (\lambda A)^2 \sum_{n > N} \frac{\sigma_{1-2\sigma}(n)^2}{n^{7/2-2\sigma}}$$

$$\ll \begin{cases} \lambda \log \lambda & \text{if } \sigma = 3/4, \\ \lambda^{4/(7-4\sigma)} & \text{if } 3/4 < \sigma < 1. \end{cases}$$

The proof is complete with Lemma 5.2.

6.
$$\Omega_{+}$$
-RESULT

We firstly prepare a result.

Lemma 6.1 We have

$$\sum_{n \le B^2} (-1)^n (1 - \frac{\sqrt{n}}{B}) \frac{\sigma_{1-2\sigma}(n)}{n^{7/4-\sigma}}$$

$$= \begin{cases} 2^{-1-2\sigma} (\sigma - 3/4)^{-1} (\sigma - 1/4)^{-1} \zeta(2\sigma) B^{2\sigma - 3/2} + O(1) & \text{if } \sigma > 3/4, \\ 2^{-1/2} \zeta(3/2) \log B + O(1) & \text{if } \sigma = 3/4, \end{cases}$$

and

$$\begin{split} & \sum_{n \leq B^2} (1 - \frac{\sqrt{n}}{B}) \frac{\sigma_{1-2\sigma}(n)}{n^{7/4-\sigma}} \\ = & \begin{cases} 2^{-1} (\sigma - 3/4)^{-1} (\sigma - 1/4)^{-1} \zeta(2\sigma) B^{2\sigma - 3/2} + O(1) & \text{if } \sigma > 3/4, \\ 2\zeta(3/2) \log B + O(1) & \text{if } \sigma = 3/4, \end{cases} \end{split}$$

Proof. To prove the first equality, we consider

$$\Delta_{1-2\sigma}(t,1/2) = \sum_{n \le t}' (-1)^n \sigma_{1-2\sigma}(n) - \left(2^{-2\sigma} \zeta(2\sigma)t + 2^{2\sigma-2} \frac{\zeta(2-2\sigma)}{2-2\sigma} t^{2-2\sigma} - E_{1-2\sigma}(0,1/2)\right),$$

where $E_{1-2\sigma}(0,1/2)$ is a constant. Then, we have $\Delta_{1-2\sigma}(t,1/2) \ll_{\epsilon} t^{1/(1+4\sigma)+\epsilon}$ from [9, Remark 1]. Then,

$$\sum_{n \leq B^{2}} (-1)^{n} (1 - \frac{\sqrt{n}}{B}) \frac{\sigma_{1-2\sigma}(n)}{n^{7/4-\sigma}}$$

$$= \int_{1}^{B^{2}} (1 - \frac{\sqrt{t}}{B}) t^{\sigma-7/4} (2^{-2\sigma} \zeta(2\sigma) + 2^{2\sigma-2} \zeta(2-2\sigma) t^{1-2\sigma}) dt$$

$$+ \int_{1}^{B^{2}} (1 - \frac{\sqrt{t}}{B}) t^{\sigma-7/4} d\Delta_{1-2\sigma}(t, 1/2).$$

The second integral is $\ll 1$ after by parts. The first integral is

$$2^{-2\sigma}\zeta(2\sigma)\int_{1}^{B^{2}} (t^{\sigma-7/4} - B^{-1}t^{\sigma-5/4}) dt + O(1).$$

Separating into two cases $\sigma = 3/4$ or not, our assertion follows. The second one is proved similarly with Lemma 3.2.

Proof of Theorem 4. We convolve $G_{\sigma}(t)$ with the kernel

$$K(u) = 2B \left(\frac{\sin 2\pi Bu}{2\pi Bu}\right)^2.$$

Let $t \approx \sqrt{T}$ and $1 \ll B \ll L^{1/4} \ll T^{1/16}$. Similar to [13, (4.7)], we have $\int_{-L}^{L} \Sigma_2(2\pi(t+u)^2,T)K(u)\,du \ll 1$, and

$$\int_{-L}^{L} \Sigma_{1}(2\pi(t+u)^{2}, T)K(u) du$$

$$= \sqrt{2} \sum_{n < T} (-1)^{n} \frac{\sigma_{1-2\sigma}(n)}{n^{7/4-\sigma}} \int_{-L}^{L} (t+u)^{5/2-2\sigma} e_{2}(2\pi(t+u)^{2}, n) \sin f(2\pi(t+u)^{2}, n)K(u) du.$$

The integral can be treated in the same way as [13, (4.8)] when $B^4 \ll n \leq T$. Hence, $\sum_{B^4 \ll n \leq T} \ll \sum_{B^4 \ll n \leq T} \sigma_{1-2\sigma}(n) n^{\sigma-7/4} \left(B^2 n^{-1} t^{5/2-2\sigma} + B L n^{-1/2} t^{3/2-2\sigma} \right) \ll t^{5/2-2\sigma} B^{4\sigma-5}$. For $n \ll B^4$, we note that

$$\operatorname{Im} \int_{-L}^{L} (t+u)^{5/2-2\sigma} e_2(2\pi(t+u)^2, n) K(u) e^{if(2\pi(t+u)^2, n)} du$$

$$= t^{5/2-2\sigma} \int_{-L}^{L} \sin(4\pi\sqrt{n}(t+u) - \pi/4) K(u) du + O(t^{3/2-2\sigma}(n^{3/2} + L))$$

$$= t^{5/2-2\sigma} \max(0, 1 - \sqrt{n}/B) \sin(4\pi\sqrt{n}t - \pi/4) + O(t^{3/2-2\sigma}(n^{3/2} + L)).$$

Hence denoting

$$S_B(t) = \sqrt{2} \sum_{n < B^2} (-1)^n \left(1 - \frac{\sqrt{n}}{B}\right) \frac{\sigma_{1-2\sigma}(n)}{n^{7/4-\sigma}} \sin(4\pi\sqrt{n}t - \frac{\pi}{4}), \tag{6.1}$$

we have, for $1 \ll B \ll L^{1/4} \ll T^{1/16}$.

$$t^{2\sigma-5/2} \int_{-L}^{L} G_{\sigma}(2\pi(t+u)^2) K(u) du = S_B(t) + O(B^{4\sigma-5}).$$
 (6.2)

With (6.2), it suffices to consider the Ω_{\pm} -results of $S_B(t)$. Let $\delta > 0$ be a sufficiently small constant. Take $B = [\delta \sqrt{\log T}/10]$ and $L = B^4$, then Dirichlet's Theorem gives that there exists l such that $||l\sqrt{n}|| < \delta$ and $T^{1/10} \le l \le (1 + \delta^{-B^2})T^{1/10}$. Then, we have

$$S_B(l) = \sqrt{2} \sum_{n \le B^2} (-1)^n \left(1 - \frac{\sqrt{n}}{B}\right) \frac{\sigma_{1-2\sigma}(n)}{n^{7/4-\sigma}} \sin(-\frac{\pi}{4}) + E$$
 (6.3)

where

$$|E| \le 2\sqrt{2} \sum_{n \le B^2} (1 - \frac{\sqrt{n}}{B}) \frac{\sigma_{1-2\sigma}(n)}{n^{7/4-\sigma}} |\sin(2\pi\sqrt{n}l)|.$$

Hence, by Lemma 4.1, the first sum in (6.3) is $\leq -c_{12}B^{2\sigma-3/2}\min((\sigma-3/4)^{-1},\log B)$. In addition, $|E| \leq c_{13}\delta B^{2\sigma-3/2}\min((\sigma-3/4)^{-1},\log B)$ (note that c_{13} is independent of δ). We thus infer (as $B \approx \sqrt{\log t}$)

$$S_B(t) = \begin{cases} \Omega_{-}(\log \log t) & \text{if } \sigma = 3/4, \\ \Omega_{-}((\log t)^{\sigma - 3/4}) & \text{if } 3/4 < \sigma < 1. \end{cases}$$

To prove the Ω_+ -result, we take $x = \delta \log \log T \log \log \log T$ and $B = T^{1/100}$ $(L = B^4)$. Again, $\delta > 0$ is a small number. Define $\mathbf{P}_x = \{p \leq x : p \text{ is an odd prime}\}$ and \mathbf{Q}_x to be the set of positive squarefree integers whose prime factors lie in \mathbf{P}_x . Consider the kernel

$$T_x(u) = \prod_{q \in \mathbf{Q}_x} (1 + \cos(4\pi\sqrt{q}u)) = \prod_{q \in \mathbf{Q}_x} \left(1 + \frac{e^{4\pi i\sqrt{q}u} + e^{-4\pi i\sqrt{q}u}}{2}\right)$$

and

$$\tilde{\eta}(x) = \inf\{|\sqrt{m} + \mu|: \ m \text{ is a natural number and } \mu \in S_x\}$$

where $S_x = \{ \mu = \sum_{q \in \mathbf{Q}_x} r_q \sqrt{q} : r_q = 0, \pm 1 \text{ and } \sum r_q^2 \ge 2 \}$. It is known from [2, Lemma 4] that

$$x \ll -\log \tilde{\eta}(x) \ll \exp(c\frac{x}{\log x}).$$
 (6.4)

Write $\epsilon = 2\pi \tilde{\eta}(x)$, then $\epsilon \gg \exp(-\sqrt{\log T})$. Note that

$$\epsilon \int_{-\infty}^{\infty} \left(\frac{\sin \epsilon \pi u}{\epsilon \pi u} \right)^2 e^{2\pi i u v} du = \max(1 - \left| \frac{v}{\epsilon} \right|, 0).$$

Hence,

$$\epsilon \int_{-\infty}^{\infty} T_{x}(u) \sin(4\pi\sqrt{n}(t+u) - \frac{\pi}{4}) \left(\frac{\sin \epsilon \pi u}{\epsilon \pi u}\right)^{2} du$$

$$= \epsilon \operatorname{Im} e^{i(4\pi\sqrt{n}t - \pi/4)} \int_{-\infty}^{\infty} \left\{ 1 + \frac{1}{2} \sum_{q \in \mathbf{Q}_{x}} e^{4\pi i \sqrt{q}u} + \frac{1}{2} \sum_{q \in \mathbf{Q}_{x}} e^{-4\pi i \sqrt{q}u} + \sum_{\mu \in S_{x}} h_{\mu} e^{4\pi i \mu u} \right\}$$

$$\times e^{4\pi i \sqrt{n}u} \left(\frac{\sin \epsilon \pi u}{\epsilon \pi u}\right)^{2} du$$

$$= \begin{cases} \sin(4\pi\sqrt{n}t - \pi/4), & n \in \mathbf{Q}_{x} \\ 0, & \text{otherwise} \end{cases} \tag{6.5}$$

where h_{μ} ($\mu \in S_x$) are some constants. Hence, we have

$$\epsilon \int_{-\infty}^{\infty} T_x(u) S_B(t+u) \left(\frac{\sin \epsilon \pi u}{\epsilon \pi u}\right)^2 du$$

$$= \sqrt{2} \sum_{\substack{n \le B^2 \\ n \in \mathbf{Q}_x}} (-1)^n (1 - \frac{\sqrt{n}}{B}) \frac{\sigma_{1-2\sigma}(n)}{n^{7/4-\sigma}} \sin(4\pi \sqrt{n}t - \frac{\pi}{4}).$$

Note that $\max_{q \in \mathbf{Q}_x} |q| \le e^{2x} \le B/2$, $|\mathbf{Q}_x| \ll \exp(cx/(\log x)) \ll \sqrt{\log T}$ and n is odd when $n \in \mathbf{Q}_x$. Choose l such that $||l\sqrt{n}|| < \delta'$ and $T^{1/10} \le l \le (1 + \delta^{-|\mathbf{Q}_x|})T^{1/10} \ll T^{1/4}$ where $\delta' > 0$ is a sufficiently small constant, then (recall $n \in \mathbf{Q}_x$ is odd)

$$\epsilon \int_{-\infty}^{\infty} T_x(u) S_B(l+u) \left(\frac{\sin \epsilon \pi u}{\epsilon \pi u}\right)^2 du \gg \sum_{n \in \mathbf{Q}_x} \frac{\sigma_{1-2\sigma}(n)}{n^{7/4-\sigma}}$$

$$\gg \begin{cases} \log x & \text{if } \sigma = 3/4, \\ \exp(cx^{\sigma-3/4}/(\log x)) & \text{if } \sigma > 3/4. \end{cases}$$

Plainly, we have

$$\epsilon \int_{|u| \ge T^{1/20}} T_x(u) S_B(l+u) \left(\frac{\sin \epsilon \pi u}{\epsilon \pi u} \right)^2 du \ll \epsilon^{-1} T^{-1/20} 2^{|\mathbf{Q}_x|} \sum_{n \le B^2} \frac{\sigma_{1-2\sigma}(n)}{n^{7/4-\sigma}} \ll 1,$$

and $\epsilon \int_{-T^{1/20}}^{T^{1/20}} T_x(u) (\sin(\epsilon \pi u)/(\epsilon \pi u))^2 du \ll 1$ by (6.5) with n = 0. Thus, we obtain

$$\sup_{T^{1/10} \ll u \ll T^{1/4}} S_B(u) \gg \begin{cases} \log \log \log T & \text{if } \sigma = 3/4, \\ \exp(c(\log \log T)^{\sigma - 3/4} (\log \log \log T)^{\sigma - 7/4}) & \text{if } \sigma > 3/4. \end{cases}$$

7. OCCURRENCE OF LARGE VALUES

Proof of Theorem 5. Define $K_{\tau}(u) = (1 - |u|)(1 + \tau \sin(4\pi\alpha u))$ where $\tau = -1$ or +1 and α is a large constant. Then, we have

$$\int_{-1}^{1} K_{\tau}(u) \sin(4\pi\sqrt{n}(t+\alpha u) - \frac{\pi}{4}) du = -\frac{\tau}{2} \delta_{1,n} \cos(4\pi t - \pi/4) + O(\alpha^{-2}n^{-1})$$

where $\delta_{1,n} = 1$ if n = 1 and 0 otherwise. This gives with (6.2)

$$\int_{-1}^{1} (t+u)^{2\sigma-5/2} \int_{-L}^{L} G_{\sigma}(2\pi(t+u+v)^{2}) K(v) \, dv K_{\tau}(u) \, du$$

$$= \frac{\tau}{2} (1-B^{-1}) \cos(4\pi t - \pi/4) + O(\alpha^{-2}) + O(B^{4\sigma-5}).$$

Our assertion follows once we take sufficiently large constants B and α ($L = B^4$), and choose $||4t|| \le 1/8$ with $t \in [\sqrt{T}, \sqrt{T} + 1]$. (Note that τ can be +1 or -1 at our disposal.)

The next lemma is used to prove Theorem 6.

Lemma 7.1 For $T^{5/12} \leq H \leq T^{1/2}$,

$$\int_{T}^{2T} \max_{0 \le h \le H} (G_{\sigma}(t+h) - G_{\sigma}(t))^{2} dt \ll TH^{5-4\sigma}$$

where the implied constant depends on σ .

Proof. Following the arguments in [7], we have

$$\int_{T}^{2T} (G_{\sigma}(t+h) - G_{\sigma}(t))^{2} dt \ll Th^{5-4\sigma} \min((\sigma - 3/4)^{-1}, \log(T/h^{2}))$$
 (7.1)

where $\log^2 T \le h \le \sqrt{T}$. Let $b = T^{1/24}$ and $H = 2^{\lambda}b$. Suppose $(j-1)b \le h < jb$. Then, using the bound $E_{\sigma}(t) \ll t^{2(1-\sigma)/3+\epsilon}$, we have

$$|G_{\sigma}(t+h) - G_{\sigma}(t)| \le |G_{\sigma}(t+jb) - G_{\sigma}(t)| + |G_{\sigma}(t+jb) - G_{\sigma}(h)|$$

= $|G_{\sigma}(t+jb) - G_{\sigma}(t)| + O(T^{2(1-\sigma)/3+\epsilon}b)$

and hence for any fixed t,

$$\max_{0 \le h \le H} |G_{\sigma}(t+h) - G_{\sigma}(t)| \le \max_{1 \le j \le 2^{\lambda}} |G_{\sigma}(t+jb) - G_{\sigma}(t)| + O(T^{2(1-\sigma)/3+\epsilon}b). \tag{7.2}$$

Let us take $1 \le j_0 = j_0(t) \le 2^{\lambda}$ such that

$$|G_{\sigma}(t+j_0b) - G_{\sigma}(t)| = \max_{1 \le j \le 2^{\lambda}} |G_{\sigma}(t+jb) - G_{\sigma}(t)|.$$

Then we can express $j_0 = 2^{\lambda} \sum_{\mu \in S_t} 2^{-\mu}$ where S_t is a certain set of non-negative integers. Hence,

$$G_{\sigma}(t+j_0b) - G_{\sigma}(t) = \sum_{\mu \in S_t} G_{\sigma}(t+(\nu+1)2^{\lambda-\mu}b) - G_{\sigma}(t+\nu 2^{\lambda-\mu}b)$$

where $0 \le \nu = \nu_{t,\mu} < 2^{\mu}$ is an integer. By Cauchy-Schwarz inequality and inserting all ν 's other than $\nu_{t,\mu}$, we get

$$(G_{\sigma}(t+j_{0}b) - G_{\sigma}(t))^{2} \leq \left(\sum_{\mu \in S_{t}} 2^{-(1-\sigma)\mu}\right) \sum_{\mu \in S_{t}} 2^{(1-\sigma)\mu} (G_{\sigma}(t+(\nu+1)2^{\lambda-\mu}b) - G_{\sigma}(t+\nu2^{\lambda-\mu}b))^{2}$$

$$\ll \sum_{\mu \in S_{t}} \sum_{0 \leq \nu < 2^{\mu}} 2^{(1-\sigma)\mu} (G_{\sigma}(t+(\nu+1)2^{\lambda-\mu}b) - G_{\sigma}(t+\nu2^{\lambda-\mu}b))^{2}$$

as $\sum_{\mu \in S_t} 2^{-(1-\sigma)\mu} \ll 1$. Integrating over [T, 2T] and using (7.1), we see that

$$\int_{T}^{2T} \max_{0 \le h \le H} (G_{\sigma}(t+h) - G_{\sigma}(t))^{2} dt$$

$$\ll \sum_{\mu \in S_{t}} \sum_{0 \le \nu < 2^{\mu}} 2^{(1-\sigma)\mu} \int_{T}^{2T} (G_{\sigma}(t+(\nu+1)2^{\lambda-\mu}b) - G_{\sigma}(t+\nu2^{\lambda-\mu}b))^{2} dt + T^{1+4(1-\sigma)/3+\epsilon}b^{2}$$

$$\ll \sum_{\mu \in S_{t}} \sum_{0 \le \nu < 2^{\mu}} 2^{(1-\sigma)\mu} \int_{T+\nu2^{\lambda-\mu}b}^{2T+\nu2^{\lambda-\mu}b} (G_{\sigma}(t+2^{\lambda-\mu}b) - G_{\sigma}(t))^{2} dt + T^{17/12+\epsilon}$$

$$\ll TH^{5-4\sigma} \sum_{\mu \in S_{t}} \sum_{0 \le \nu < 2^{\mu}} 2^{-(4-3\sigma)\mu}$$

$$\ll TH^{5-4\sigma}.$$

Proof of Theorem 6. Define $G_{\sigma}^{\pm}(t) = \max(0, \pm G_{\sigma}(t))$. By using Theorem 2 (c), we have $\int_{T}^{2T} |G_{\sigma}(t)|^{3} dt \ll T^{1+3(5/4-\sigma)}$. Hence, by Cauchy-Schwarz inequality,

$$\left(\int_{T}^{2T} G_{\sigma}(t)^{2} dt\right)^{2} \leq \int_{T}^{2T} |G_{\sigma}(t)| dt \int_{T}^{2T} |G_{\sigma}(t)|^{3} dt.$$

we have $\int_{T}^{2T} |G_{\sigma}(t)| dt \gg T^{1+(5/4-\sigma)}$. Together with (2.1), $\int_{T}^{2T} G_{\sigma}^{\pm}(t) dt \geq c_{14} \int_{T}^{2T} t^{5/4-\sigma} dt$. Consider $K^{\pm}(t) = G_{\sigma}^{\pm}(t) - (c_{14} - \epsilon)t^{5/4-\sigma}$ where $\epsilon = \delta^{5/2-2\sigma}$, we have

$$\int_{T}^{2T} K^{\pm}(t) dt \ge \epsilon \int_{T}^{2T} t^{5/4 - \sigma} dt$$

and $K^{\pm}(t+h)-K^{\pm}(t)=G^{\pm}_{\sigma}(t+h)-G^{\pm}_{\sigma}(t)+O(T^{1/4-\sigma}h)$. This gives

$$\int_{T}^{2T} \max_{h \le H} |K^{\pm}(t+h) - K^{\pm}(t)| dt \ll \int_{T}^{2T} \max_{h \le H} |G_{\sigma}(t+h) - G_{\sigma}(t)| dt + T^{5/4 - \sigma} H$$

since $|G_{\sigma}^{\pm}(t+h) - G_{\sigma}^{\pm}(t)| \leq |G_{\sigma}(t+h) - G_{\sigma}(t)|$. Lemma 7.1 yields that

$$\int_{T}^{2T} \max_{h \le H} |K^{\pm}(t+h) - K^{\pm}(t)| dt \ll TH^{5/2 - 2\sigma} + T^{5/4 - \sigma}H.$$

Define $\omega^{\pm}(t) = K^{\pm}(t) - \max_{h \leq H} |K^{\pm}(t+h) - K^{\pm}(t)|$. Taking $H = c' \epsilon^{2/(5-4\sigma)} \sqrt{T}$ (= $c' \delta \sqrt{T}$) for some sufficiently small constant c' > 0, we have

$$\int_{T}^{2T} \omega^{\pm}(t) dt \ge \epsilon \int_{T}^{2T} t^{5/4-\sigma} dt - \int_{T}^{2T} \max_{h \le H} |K^{\pm}(t+h) - K^{\pm}(t)| dt \gg \epsilon T^{1+(5/4-\sigma)}.$$

Let $\mathcal{I}^{\pm} = \{ t \in [T, 2T] : \omega^{\pm}(t) > 0 \}$. Then

$$\int_{T}^{2T} \omega^{\pm}(t) dt \le \int_{\mathcal{I}^{\pm}} \omega^{\pm}(t) dt \le \int_{\mathcal{I}^{\pm}} K^{\pm}(t) dt$$
$$\le \left(\int_{\mathcal{I}^{\pm}} dt \right)^{1/2} \left(\int_{T}^{2T} K^{\pm}(t)^{2} dt \right)^{1/2}.$$

We infer $|\mathcal{I}^{\pm}| \gg \epsilon^2 T$ as $\int_T^{2T} K^{\pm}(t)^2 dt \ll \int_T^{2T} G_{\sigma}(t)^2 dt + T^{7/2-2\sigma}$. When $t \in \mathcal{I}^{\pm}$, we have $K^{\pm}(t) \geq \max_{h \leq H} |K^{\pm}(t+h) - K^{\pm}(t)| \geq 0$. Hence, $K^{\pm}(u) \geq 0$ for all $u \in [t, t+H]$, i.e. $G_{\sigma}^{\pm}(t) \geq (c_{14} - \epsilon)t^{5/4-\sigma}$. The number of such intervals is not less than $|\mathcal{I}^{\pm}|/H \gg c_{15}\delta^{4(1-\sigma)}\sqrt{T}$.

REFERENCES

- P.M. Bleher, Z. Cheng, F.J. Dyson and J.L. Lebowitz, Distribution of the Error Term for the Number of Lattice Points Inside a Shifted Circle, Comm. Math. Phys. 154 (1993), 433-469.
- J.L. Hafner and A. Ivić, On the Mean-Square of the Riemann Zeta-Function on the Critical Line, J. Number Theory 32 (1989), 151-191.
- 3. D.R. Heath-Brown, The Distribution and Moments of the Error Term in the Dirichlet Divisor Problem, Acta Arith. 60 (1992), 389-415.
- 4. D.R. Heath-Brown and K. Tsang, Sign Changes of E(T), $\Delta(x)$ and P(x), J. Number Theory 49 (1994), 73-83.
- 5. A. Ivić, "The Riemann Zeta-Function," Wiley, New York, 1985.
- A. Ivić, "Mean values of the Riemann zeta function", Lectures on Math. 82, Tata Instit. Fund. Res., Springer, 1991.
- M. Jutila, On the divisor problem for short intervals, Ann. Univ. Turkuensis Ser. A I 186 (1984), 23-30.
- M. Jutila, Transformation Formulae for Dirichlet Polynomials, J. Number Theory 18 (1984), p. 135-156.
- 9. I. Kiuchi, On an exponential sum involving the arithmetical function $\sigma_a(n)$, Math. J. Okayama Univ. 29 (1987), 193-205.
- 10. I. Kiuchi and K. Matsumoto, The resemblance of the behaviour of the remainder terms $E_{\sigma}(t)$, $\Delta_{1-2\sigma}(x)$ and $R(\sigma+it)$, in Sieve Methods, Exponential Sums, and their Applications in Number Theory, G.R.H. Greaves et al.(eds.), London Math. Soc. LN 237, Cambridge Univ. Press (1997), 255-273.

- 11. Y.-K. Lau, On the mean square formula for the Riemann zeta-function on the critical line, Monatsh. Math. 117 (1994), 103-106.
- 12. Y.-K. Lau, On the limiting distribution of a generalized divisor problem for the case -1/2 < a < 0, to appear in Acta Arith..
- 13. Y.-K. Lau and K.-M. Tsang, Ω_{\pm} -results of the Error Term in the Mean Square Formula of the Riemann Zeta-function in the Critical Strip, to appear in Acta Arith..
- K. Matsumoto, The mean square of the Riemann zeta-function in the critical strip,
 Japan J. Math. 15 (1989), 1-13.
- K. Matsumoto, Recent Developments in the Mean Square Theory of the Riemann Zeta and Other Zeta-Functions, in Number Theory, Trends Math., Birhkäuser, Basel, (2000), 241-286.
- K. Matsumoto and T. Meurman, The mean square of the Riemann zeta-function in the critical strip III, Acta Arith. 64 (1993), 357-382.
- 17. K. Matsumoto and T. Meurman, The mean square of the Riemann zeta-function in the critical strip II, Acta Arith. 68 (1994), 369-382.
- T. Meurman, On the mean square of the Riemann zeta-function, Quart. J. Math. Oxford (2) 38 (1987), 337-343.
- 19. T. Meurman, The mean square of the error term in a generalization of Dirichlet's divisor problem, Acta Arith. 74 (1996), 351-364.
- 20. K.-M. Tsang, Higher power moments of $\Delta(x)$, E(t) and P(x), Proc. London Math. Soc. (3) 65 (1992), 65-84.