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Abstract. We derive an explicit formula for the moments of the probability
density function of a class of functions. An application of this shows that the
density function of the error term in the Pilz divisor problem is asymmetric.

1. Introduction

The error term ∆(x) in the Dirichlet divisor problem has been studied extensively
by numerous authors. In the paper [3], Heath-Brown pioneered the study of the
limit distribution of ∆(x). Among other things, he showed that ∆(x) has a limiting
distribution and the probability density function decays rapidly. Heath-Brown’s
method actually applies to a rather general type of functions F (t), which satisfy
the following

Hypothesis (H). There exist a sequence a1(t), a2(t), · · · , of continuous real-valued
functions of period 1 such that

lim
N→∞

lim sup
T→∞

1
T

∫ T

0

min{1, |F (t)−
∑

n≤N

an(γnt)|} dt = 0

where γ1, γ2, · · · are nonzero constants which are linearly independent over Q.

Remark. The condition of taking min{1, | · |} in (H) is the weakest among all
measurements min{1, | · |β} (β > 0), in view of Hölder’s inequality (or see [4,
p.362]).

One of the main results in [3] is the following.

Theorem A. ([3, Theorem 5]) If F (t) satisfies Hypothesis (H) with the an(t)’s
satisfy the conditions:

(C.1)
∫ 1

0
an(t) dt = 0 (n ∈ N),

(C.2)
∑∞

n=1

∫ 1

0
an(t)2 dt < ∞,

(C.3) max
t∈[0,1]

|an(t)| ¿ n1−µ and lim
n→∞

nµ
∫ 1

0
an(t)2 dt = ∞

where µ > 1 is a constant, then

T−1meas{t ∈ [0, T ] : F (t) ∈ I} →
∫

I

f(α) dα

as T →∞. Furthermore, the density function f(α) satisfies

dk

dαk
f(α) ¿A,k (1 + |α|)−A

for k = 0, 1, 2, · · · and any constant A and f(α) extends to an entire function on
C.
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From the high decaying rate of f(α), it is apparent that all the power moments
of f(α) exist. But this does not imply that the power moments of F (t) converge.
Heath-Brown [3, Theorem 6] established that if limT→∞ T−1

∫ T

0
|F (t)|Kdt is finite,

then for any positive integer k < K, limT→∞ T−1
∫ T

0
F (t)kdt exists. In such cases,

it is known that

lim
T→∞

T−1

∫ T

0

F (t)k dt =
∫ ∞

−∞
αkf(α) dα.

The variance (second power moment) in [2] was also computed in this way.
In this note, we obtain a quite explicit formula for all the integral power moments

of the density function, without the knowledge of the power moments of F (t). As
a consequence, we can say something about the symmetry of the density functions
of some well-known error terms in number theory, including ∆(x) and ∆3(x), the
error terms in the Dirichlet and Pilz divisor problems respectively. (See Corollary
4.)

Theorem 1. Under the assumptions in Theorem A, we have, for any k ∈ N,
∫ ∞

−∞
αkf(α) dα =

∑

1≤r≤k

∑
l1,··· ,lr≥1

l1+···+lr=k

k!
l1!l2! · · · lr!

∑

1≤n1<···<nr

r∏

i=1

A(ni, li),(1.1)

where

A(n, l) =
∫ 1

0

an(t)l dt.(1.2)

The infinite series in (1.1) converges absolutely.

Remark. (i) As A(n, 1) = 0 for all n by (C.1), the first moment of f(α) always
vanishes, that is, ∫ ∞

−∞
αf(α) dα = 0.

(ii) The function f(α) is symmetric if and only if
∫ ∞

−∞
αkf(α)dα = 0

for all positive odd integers k. Hence it is known that the density function of
x−1/4∆(x) is asymmetric, since the third power moment X−1

∫ X

0
(x−1/2∆(x2))3dx

is non-zero (see [5]). For ∆3(x), however, we cannot draw similar conclusion in this
way since none of the odd power moments higher than the first is known for ∆3(x).
Using our Theorem 1, we can show that∫ ∞

−∞
α3f(α)dα 6= 0

for the density function f(α) of x−1/3∆3(x). Thus x−1/3∆3(x) also has an asym-
metric density function (see Corollary 4). More generally, concerning the symmetry
of the density function f(α) of certain F (t), we have the following theorems.

Theorem 2. If each an(t) in Theorem A is of the form an(t) = b(n) cos(2πt + φn)
where b(n), φn ∈ R, then all the odd power moments of f(α) are equal to zero and
hence f(α) is symmetric.
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Theorem 3. Suppose for each n ∈ N, an(t) is of the form

an(t) =
∞∑

m=1

bn(m) cos(2πmt− θ)

where θ ∈ [−π, π] and the series is absolutely convergent. If the assumptions in
Theorem A hold then

(a) when θ = ±π/2, the density function f(α) is symmetric,
(b) when θ 6= ±π/2, all bn(m) are nonnegative and satisfy bn(m1)bn(m2)bn(m1+

m2) 6= 0 for some n,m1,m2 ∈ N, the density function f(α) is asymmetric.

Theorem 2 is straightforward, since by (1.2), A(n, l) = 0 for any positive odd
integer l, and for l1 + l2 + · · ·+ lr equal to an odd integer, at least one li must be
odd.

To deduce Theorem 3, we first evaluate each of A(n, l). Let El be the set of all
maps σ sending (x1, · · · , xl) in Rl to one of x1 ± · · · ± xl, and let n−(σ) denote
the number of minus signs in σ(x1, · · · , xl). Using the identity

∏l
i=1 cos Ai =

21−l
∑

σ∈El
cos(σ(A1, · · · , Al)), we see that

A(n, l) = 21−l
∑

σ∈El

∑
m1,··· ,ml≥1

σ(m1,··· ,ml)=0

l∏

i=1

bn(mi) · cos((l − 2n−(σ))θ).

For θ = ±π/2, it is clear that A(n, l) = 0 for all odd l. Hence for all positive odd k,∫ ∞

−∞
αkf(α) dα = 0,

since for l1 + · · · + lr = k, at least one li is odd. Thus f(α) is symmetric. On the
other hand, under the conditions in (b), the third power moment

∫ ∞

−∞
α3f(α) dα =

cos θ

4

∞∑
n=1

∑
m1±m2±m3=0

3∏

i=1

bn(mi) 6= 0.(1.3)

Hence, the density function f(α) is asymmetric.

Remark. In view of the proof, the conditions imposed on the coefficients bn(m) in
Theorem 3 (b) can be relaxed to the nonvanishing of the multiple sum in (1.3).

Corollary 4. Let ∆(x) and ∆3(x) be the error terms in the Dirichlet divisor prob-
lem and the Pilz divisor problem respectively. Then both of their density functions
are asymmetric.

The corollary follows from the fact that the Voronoi series approximations for
x−1/4∆(x) and x−1/3∆3(x), as can be seen in [3], for example, are of the type in
Theorem 3(b).

In [3], it is also shown that the odd power moments
∫ X

0

∆(x)kdx ∼ βkX1+k/4,

for 1 ≤ k ≤ 9, with undetermined constants βk. Recently Zhai [6] reported that
these constants are all positive (except β1 = 0) and he conjectured that this is also
the case for all odd k ≥ 11. We now, however, give the following two examples to
illustrate the possible peculiar features of the density function.
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Example 1. Let K be any positive integer and

an(t) = µ(n)2n−3/4(cos(2πt) + cos(4πKt)).

Define F (t) =
∑∞

n=1 an(
√

nt). We shall see that the kth power moment of f is
equal to zero for k = 1, 3, · · · , 2K − 1 but is positive for k = 2K + 1.

Let 1 ≤ l ≤ 2K + 1 be odd and mi ∈ {1, 2K}. Each σ(m1, · · · ,ml) (σ ∈ El) can
be written as

σ(m1, · · · ,ml) = ±2Kσ1(1, · · · , 1)± σ2(1, · · · , 1)

for certain σ1 ∈ Er and σ2 ∈ Es with r + s = l. Since |σ2(1, · · · , 1)| ≤ s ≤ l,
σ(m1, · · · ,ml) = 0 only if l = 2K + 1, r = 1 and σ2(1, · · · , 1) = 2K. Hence∫ 1

0
an(t)l dt is equal to zero for all odd l ≤ 2K − 1 and is positive for l = 2K + 1.

Example 2. We construct below a function F (t) =
∑∞

n=1 an(
√

nt) whose third
power moment is positive while its fifth power moment is negative.

Let

an(t) = µ(n)2n−3/4(cos(2πt− π/4) + b cos(4πt− π/4) + cos(16πt− π/4))

where b > 0 is a large number to be determined later. Direct computation shows
that A(n, 3) = 3

4bµ2(n)n−9/4 cos(π/4), and the third power moment equals

3b

4
√

2
ζ(9/4)
ζ(9/2)

> 0.

To evaluate the fifth power moment, we note that A(n, 2) = (1 + 1
2b2)µ2(n)n−3/2.

From Theorem 1, the fifth power moment is thus equal to

∑

n 6=n′

5!
3!2!

A(n, 2)A(n′, 3) +
∞∑

n=1

A(n, 5).

The first double sum is O(b3). Up to permutations, for each σ ∈ E5, σ(m1, · · · ,m5)
is of the form

±(m1+m2+m3+m4−m5) or ±(m1+m2+m3−m4−m5) or m1+· · ·+m5.

When mi ∈ {1, 2, 8}, the first form equals 0 only for the case m1 = · · · = m4 = 2
and m5 = 8; the second form takes zero with at most three mi’s equal to 2, while
the last form never vanishes. This yields

A(n, 5) =
(5b4

16
cos(

3π

4
) + O(b3)

)µ2(n)
n15/4

.

Therefore, when b is large enough, the fifth power moment of the corresponding
density function is equal to

− 5
16
√

2
ζ(15/4)
ζ(15/2)

b4 + O(b3) < 0.

2. Some Preparations

We first prove a lemma for later use, and meanwhile, show that the infinite sum
in (1.1) is absolutely convergent.
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Lemma 1. For any integer k ≥ 1, the multiple sum in (1.1) converges absolutely.
Let ck be the value of this multiple sum. Then,

lim
N→∞

lim
T→∞

T−1

∫ T

0

(
∑

n≤N

an(γnt))k dt = ck.

To prove Lemma 1, we approximate each an(t) by the trigonometric polynomial
σn,M (t), which is the convolution of an with the Fejér kernel, that is,

σn,M (t) =
∫ 1

0

an(t + v)
1
M

( sinπMv

sin πv

)2

dv =
∑

|m|≤M

cn,me(mt),(2.1)

where cn,m = (1− |m|/M)ân(m), and e(y) = e2πiy. It is well-known that

‖an − σn,M‖ → 0 as M →∞.(2.2)

Here ‖ · ‖ denotes the supremum norm on [0, 1]. Moreover, from (2.1) and (C.3),
we see that

‖σn,M‖ ≤ ‖an‖ ¿ 1 for n ∈ N.(2.3)

Using ak − bk ¿k |a− b|(|a|k−1 + |b|k−1) and (2.3), we obtain

(
∑

n≤N

an(γnt))k − (
∑

n≤N

σn,M (γnt))k

¿k (
∑

n≤N

‖an‖)k−1
∑

n≤N

|an(γnt)− σn,M (γnt)|

¿k Nk−1
∑

n≤N

‖an − σn,M‖.

Let us write mT (f) = T−1
∫ T

0
f(t) dt for short. Then

mT ((
∑

n≤N

an(γnt))k)−mT ((
∑

n≤N

σn,M (γnt))k)(2.4)

¿k Nk−1
∑

n≤N

‖an − σn,M‖.

Let

SM (n, l) =
∫ 1

0

σn,M (t)l dt,(2.5)

and define

S
(k)
M (N) =

∑

1≤r≤k

∑
l1,··· ,lr≥1

l1+···+lr=k

k!
l1! · · · lr!

∑

n1<···<nr≤N

r∏

i=1

SM (ni, li).(2.6)

Then we have

Lemma 2. Given any positive integers k,N and M ,

mT ((
∑

n≤N

σn,M (γnt))k) → S
(k)
M (N) as T →∞.

The rate of convergence depends on N, M, k and the γn’s.
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The proof of this will be given at the end of this section.
Now we prove that the right hand side of (1.1) is absolutely convergent. By (1.2)

and (C.3), |A(n, l)| ¿ A(n, 2) for any l ≥ 2 and by (C.1), A(n, 1) = 0. Hence,

∑
n1,··· ,nr

r∏

i=1

|A(ni, li)| ¿
∑

n1,··· ,nr

r∏

i=1

A(ni, 2) = (
∑

n

A(n, 2))r < ∞,

by (C.2), and the right hand side of (1.1) converges absolutely.
By (2.3) we get that for any l ≥ 1,

|SM (n, l)| ¿ 1, |A(n, l)| ¿ 1 and SM (n, l)−A(n, l) ¿l ‖an − σn,M‖.(2.7)

Using |∏r
i=1 xi −

∏r
i=1 yi| ¿r

∑r
i=1 |xi − yi| when |xi|, |yi| ¿ 1, we obtain from

(2.6) and (2.7) that (recall that ck is the sum in the right side of (1.1))

S
(k)
M (N)− ck

¿k

∑

1≤r≤k

∑
l1,··· ,lr≥1

l1+···+lr=k

k!
l1! · · · lr!

∑

n1<···<nr≤N

r∑

i=1

|SM (ni, li)−A(ni, li)|

+
∑

1≤r≤k

∑
l1,··· ,lr≥1

l1+···+lr=k

k!
l1! · · · lr!

∑
n1,··· ,nr−1

nr>N

r∏

i=1

|A(ni, li)|

¿k Nk−1
∑

n≤N

‖an − σn,M‖+
∑

n>N

A(n, 2).(2.8)

For any ε > 0, in view of (C.2), we can fix an N = N(ε) > 1 such that

∑

n>N

∫ 1

0

an(t)2dt < ε/2.

According to (2.2) we take M = M(N, ε) ≥ 1 for which

‖an − σn,M‖ <
ε

2
N−k for all n ≤ N.

For this value of M , both (2.8) and (2.4) are ¿k ε. By the triangle inequality,
(2.8), (2.4) and Lemma 2, we conclude that

mT ((
∑

n≤N

an(γnt))k)− ck ¿k 3ε,

for all T ≥ T0(ε, γ1, · · · , γN ). The proof of Lemma 1 is complete.
It remains to prove Lemma 2. From (2.5) and (2.1) it follows that

SM (n, l) =
∑

|m1|,··· ,|ml|≤M
m1+···+ml=0

cn,m1 · · · cn,ml
.(2.9)

By (2.1),

mT ((
∑

n≤N

σn,M (γnt))k)

=
∑

n1,··· ,nk≤N

∑

|m1|,··· ,|mk|≤M

cn1,m1 · · · cnk,mk
mT (

k∏

i=1

e(miγnit)).



MOMENTS OF PROBABILITY DENSITY FUNCTIONS 7

Now mT (
∏k

i=1 e(miγnit)) tends to 0 unless the linear combination
∑k

i=1 miγni = 0,
in which case the limit is 1. Hence mT ((

∑
n≤N σn,M (γnt))k) converges as T →∞.

Indeed, as N and M are fixed integers, for any ε > 0,

|mT ((
∑

n≤N

σn,M (γnt))k)− L| < ε

for all T ≥ T0(ε,N,M, γ1, · · · , γN ), where

L =
∑

n1,··· ,nk≤N

∑∗
cn1,m1 · · · cnk,mk

(2.10)

and the summation
∑∗ runs over |m1|, · · · , |mk| ≤ M for which

∑k
i=1 miγni = 0.

The proof of Lemma 2 will be complete after checking that L = S
(k)
M (N).

Using the linear independence over Q of the γn’s, when
∑k

i=1 miγni = 0, the
γn’s can be partitioned into r subsums (for some r ≤ k) in which each subsum is of
the form γnj

∑
mv with

∑
mv = 0, and the γnj ’s of different subsums are distinct.

It follows that L in (2.10) is equal to S
(k)
M (N), by (2.9) and (2.6).

3. Proof of Theorem 1

We follow the argument in [3] to show that for any ε > 0,
∣∣∣
∫ ∞

−∞
αkf(α) dα− T−1

∫ T

0

(
∑

n≤N

an(γnt))k dt
∣∣∣ < ε(3.1)

for N ≥ N(ε) and T ≥ T (ε,N, γ1, · · · , γN ). The proof is then completed by apply-
ing Lemma 1.

For simplicity, denote

SN (t) =
∑

n≤N

an(γnt) and L(α, N) =
∏

n≤N

∫ 1

0

e(αan(t)) dt.

Following from [3, (3.1) and (3.5)] with SN (t) in place of F (t), we have
∣∣∣mT (p(SN (t)))−

∫ A

−A

p̂(α)L(α, N) dα
∣∣∣ < 3ε(3.2)

for A ≥ A(ε, p̂), N ≥ N(ε, A) and T ≥ T (ε, A, N). Here p(·) is any twice con-
tinuously differentiable function such that both p and its Fourier transform p̂ are
absolutely integrable. From the proof of [3, Theorem 4] (see [3, p.400]), replacing
by a greater A(ε) and N(ε, A) if necessary, we obtain

∣∣∣∣∣
∫ A

−A

p̂(α)L(α, N) dα−
∫ ∞

−∞
p(α)f(α) dα

∣∣∣∣∣ < ε(3.3)

for A ≥ A(ε, p̂), N ≥ N(ε, A). Choose now a twice continuously differentiable p of
compact support such that p(α) = αk for |α| ≤ B, and |p(α)| ≤ |α|k for |α| > B,
as in the proof of [3, Theorem 6] (see [3, p.397]). Then, for B > 2ck+1ε

−1, N ≥
N0(ε), T ≥ T0(ε,N), we have

|mT (p(SN (t)))−mT (SN (t)k)| ≤ B−1mT (SN (t)k+1) ≤ 2ck+1B
−1 < ε,
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by Lemma 1. The fast decay of f(α) (see Theorem A) yields
∣∣∣
∫ ∞

−∞
p(α)f(α) dα−

∫ ∞

−∞
αkf(α) dα

∣∣∣ < ε.

This proves (3.1), by adding up the last two inequalities with (3.3) and (3.2).
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