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Abstract. An asymptotic result for the kth moment (k < 9) of the error
term in the Dirichlet divisor problem over short intervals is obtained, which

improves on an earlier result of Nowak.

1. Introduction. Define for = > 0,

Az) = Zd(n) —z(logz 427 —1)

n<z
where d(n) denotes the number of positive divisors of n and « is the Euler con-
stant. This is the error term in the well-known Dirichlet divisor problem, which
aims at the determination of the order of A(z). The conjecture that A(x) < 28+¢
with § = 1/4 is very difficult and it remains unsolved as of to-day. The current
best result is 5 < 131/416, due to Huxley [3]. Throughout ¢ denotes any arbi-
trarily small positive constant which may differ at each occurrence.

Apart from the above conjecture, there are plenty of investigations focusing on
various statistical properties of A(x), including the power moments and the prob-
ability distribution. For instance, the work of Voronoi [7] yields the asymptotic

formula
X 1
(1.1) / Afw)dz = X+ O(X4),
0

and Cramér [1] obtained for the mean square of A(z) an asymptotic formula
with explicit error term. For higher power moments, Ivié¢ [4] used the large sieve

inequality to derive the essentially best possible upper bounds

X
(1.2) / A de < XA/
0

for 0 < A < 28/3. On the other hand, asymptotic formulas for moments of
A(z) higher than the second was first obtained by the second author [6], who
established for k = 3,4,

X
(1.3) / A(2)F dz = e XM 4 F(X)
0
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with
(1.4) Frp(X) < X1HR/A=00)

where ¢, and (k) are explicit positive numbers. Here the case for k = 3 is
particularly interesting and important, because it shows that the positive and
negative parts of A(x) are not quite balanced, a fact which cannot be seen from
(1.1) alone.

In another direction, Heath-Brown [2] initiated the study of the value dis-
tribution of A(x). He proved, among other things, that asymptotic formula for
fOX A(x)* dz exist for all integers k € [0, A) whenever (1.2) holds. However the
paper [2] does not contain any explicit estimate for the error term in the asymp-
totic formula. Recently Zhai [8, 9] proved (1.3) with Fj(X) of the form (1.4) for
k=15---.9, together with explicit form for the constant cy.

To better understand the local behaviour of A(x), it is natural to look at
the moments over short intervals around X instead of the full interval [0, X].

Nowak [5] considered this problem and his results, in summary, are as follows:
let A =A(X) = o0(X). Then

X+A I
/X A(z)de ~ (1 + Z)ckAX’“/4 (k=2,3,4)
holds if limx_., X'/2log® X/A = 0 when k = 2, or for some constant § > 0,
limy oo X349 /A =0 when k = 3,4.

Remark. It is sufficient to consider the situation A = o(X) since otherwise it is
contained in the asymptotics (1.3).

The main purpose of this paper is to prove the following theorems.

Theorem 1 Suppose the estimate A(zx) < x°T€ holds for a certain 3 > 1. Let
k< min{11,83/(46 —1)} and let A = A(X) be an increasing function of X such
that X > A(X) > X* for some constant \, which satisfies

1 1
(1.5) A > 5T max{0, (k —2)(8 — Z)}
Then the limit

1 X+A .



exists. Furthermore, if k( < min{11,85/(458 — 1)}) is an odd integer and (1.5)
holds, then

1 X+A N

also exists.

By using Huxley’s estimate [3] that § = 131/416 is admissible, we deduce
readily from Theorem 1 the following improvement on the aforementioned result
of Nowak [5, Theorem 2].

Theorem 2 The limit (1.6) exists for every k < 9.7--- and the limit (1.7) exists
for k=1,3,5,7,9; provided A > X* with
27

1
- )N i
A > 5 + maz{0, (k )416

In particular, we only need A > 0.5649 - -+ fork =3 and A > 0.6298 - - - for k = 4.

It is known that pointwise upper bound for A(z) can be derived from the
power moments. Our next theorem shows that the conjectured upper bound:
A(z) < z'/4+€ yields asymptotic results for all power moments over short inter-
vals of the form [X, X + X/2+].

Theorem 3 Suppose the conjecture that A(z) < z'/**< is true. Then for X >
A > X* where X\ > 1/2 is any fized constant, the limits (1.6) and (1.7) exist for

all non-negative real k and all positive odd integers k respectively.

To prove the theorems, we make use of a short interval version of the large
value result and the distribution result of A(z). Our results suggest that this
method is more effective than the direct treatment of the cross terms, as in the
work of Nowak [5].

2. Preliminaries. Let Y = Y(T) be a function of 7" such that Y — oo as
T — oo. Consider a function F'(t) which satisfies the following hypothesis.

(Hs): Let aq(t),as(t), -+ be continuous real-valued functions of period 1, and
suppose that there are non-zero constants 7y, s, --- such that
T+Y

1
lim lim sup v/, min{1, |F(t) — Z an(Ynt)|} dt = 0.

—00
T—o00 n<N



(This is the short interval version of the Hypothesis (H) in [2].)

For any continuous function f : R — C, we define
1 T+Y
wr(f) =y [ fw

T

In particular, as T" — oo,

mr(ern) = { o7 150

The results in [2, Section 2] are valid when the operator my(-) in [2] is replaced by
our mr(-). Applying the argument in [2, Section 3] with Hypothesis (H;) instead

of (H), we obtain the following result which is analogous to [2, Theorem 6].

Theorem 4 Suppose F(t) satisfies Hypothesis (Hy), and

(2.1) /TTW P dt < Y

for some positive K. Then all the limits

1 T+Y )
(2.2) fim o [P
for real k € [0, K), and
T+Y
(2.3) lim —/ F(t)*dt,
T—o0 T

for odd integers k € [0, K), exist.

Remark: Actually, replacing Hypothesis (H) by (H;) we deduce, corresponding
to Theorems 4 and 5 in [2] respectively, that

(i) Yy ! 5+Y p(F(t)) dt converges,

(ii) Y 'meas{t € [T, T+Y]: F(t) € I} — [, f(o) da for any fixed interval I,

as T'— oo. (Note that the density function f(«) depends only on the sequences
{a,(t)} and {7,}, but not on the function Y.)
Next we derive a large value result for A(x) over a short interval along the

line of argument in [4].



Lemma 5 Let VT < A< T and let T <t; <ty < -+ <tp<T+ A such that
t, —ts| >V > T7/3%% forr # 5. Suppose A(t,) >V for alll <r < R. Then

R TTV ™ + ATV —12),

This follows essentially the proof of [4, Theorem 1]. We carry out the same
procedure of dividing the interval [T, T+ A] into subintervals of length Ty. Instead
of [4, (2.2)], we have

A
R < Ry(1+ To)'

The upper bound Ry < TV =3 in [4, (2.10)] still holds since the argument in [4,
(2.3)-(2.10)] is only applied to each of the subintervals. The proof then finishes
with the same choice of Tj in [4].

Assume now that A(z) < 7% for a certain 3 > 1. Take V to be a power of

two such that
(2.4) TV <om =V < TPt

For each such V' we divide the interval [T, T+ A] into subintervals of length V.

As in [4, Section 3], we construct two systems of points, each of which satisfies
VSIA 2V, —tl2V (r#9),

if the points in the system are labelled as t1,--- ,tg, R = R(V). This is obtained
by picking the points alternatively from the odd-indexed and the even-indexed

subintervals. This ensures the validity of the separation condition. Then, similar
to [4, (3.2)-(3.3)] we find that

T

T+A
/ A@)|[de < ATY* 4> VATR(V)
Vv

< AT TN (TVAT? 4 ATHAYAT),
v
by Lemma 5. Invoking (2.4), we then obtain the following.
Theorem 6 Suppose A(z) < z°T¢ and VX < A < X. Then for any positive

constant A, we have

X+A
/ |A(x)|A dr < AXAA4te L X1/2+(A-2)(6-1/9+A/A+e | A x A/A+(A-11)(B-1/4)+e
X



Remark: The third term on the right-side is dominated by the first when A < 11.

3. Proofs of Theorems 1 and 3. The basis of the proofs of these two
theorems is Theorem 4, in which F(t) = A(t?)t~1/2,
Define a,(t) and ~, as in [2, Section 5]. Then from [2, p.402] we have, for any

1 <N <VT,

F(t) - Zan(% <<‘ Z 3/4 e(2ty/n)| + N2V

n<N n<T
s(n)>N

uniformly for ¢ € [T, 2T, where s(n) denotes the squarefree kernel of n. Integrat-
ing over [T, T + Y], we have

Y d(n)d(m) 1
LS freenafa < v ¥ Tos ¥ Ot

n<T2 m#n<T?
s(n) >N s(n)>N

< YN<V2 e

It follows that

EEV VAT SrRCHilk

T n<N

dt < YNV2 L e f Y NT !

and hence, by Holder’s inequality, Hypothesis (H,) is valid whenever Y > T? for
some 0 > 0.
Next, let L be any fixed positive integer. Analogous to [2, (5.4)], we take

(3.2) N=Yy>""?,
Lemma 5 in [2] implies that for any positive integers ny, - -+, nyp, < N4,
(33) |\/7’L1:t"':t\/ngL| >>]\,7_22L+1 :Y_1/2

by (3.2), unless the product n; - - - nyy, is squarefull.
From [2, p.403], we get

Zan(%t) = 7r\/_ Z 3/4 cos(4mty/n — w/4) + O(1).

n<N n<N%
.5(n)<N



Multiplying out and integrating term by term, we find that

(3.4) / | Z an(”ynt)|2L dt

T n<N
T+Y

/ ‘ Z 3/4 ztf)( dt +Y
n<N4
s(n)<N

n2L) 1/2 d(nl) o 'd(nQL)
Y +Y Y
< yyydmdi oy d) )
ni,- oL <N
by (3.3), where the summation > ' runs over all ny,--- ,ny;, < N* such that the

product n; - - - nyy, is squarefull. The argument in [2, p.404] shows that

d(nl) s d(ngL) > _
! < 3/4+2¢ < 1.
> (1 nar )4 >«

q squ;refull
Moreover, the second sum Y3y is clearly < N2 < Y14 by (3.2).
The integral in (3.4) is thus < Y. Hence, for any k > 0, by taking L = [k] and

using Holder’s inequality, we have
T+Y i
(3.5) / 1) an(mt)| dt < Y (any k> 0).
T n<N

(Note that N is a small positive power of Y, depending on k.)

Assume for the time being that for a certain positive K,

T+Y K
(3.6) / |F(t)|" dt < Y

T

Then, by (3.5)

T n<N
T+Y K T+Y %

< / |F(t)] dt+/ 1> an(pt)|" dt < Y
T

T n<N

By the same argument in the paragraph below [2, (5.7)], we then deduce from
this and (3.1) that, for any 0 < k < K,

T+Y k
(3.7) / |F(t) =Y a,(t)|" dt < Y-

T n<N



(Recall that Y >> T°.) Hence, by (3.5) again,
T+Y .
(3.8) / |F(t)|" dt
TT+Y i T+Y i
< / |F(t) — Z an(71)] dt+/ | Z a,(11)|" dt <,

T n<N T n<N
for any 0 < k < K. In view of Theorem 4, the limits in (2.2) and (2.3) all
exist. The passing from these limits to those for A(x) in (1.6) and (1.7) can
be seen as follows. For X — oo, X* < A = A(X) = o(X), set T = v/X and
Y =X +A—VX. Then

1

(3.9) Y ~ EAX‘W > ANTHT ! > 7271

Integrating by parts yields

X+A T+Y
/ |A(z)[F do = 2/ R P (2)|* dt
T

X

T+Y T+Y

— 2(T+Y)1+k/2/

t
/2 / P ()" du dt.
T T

PO dt — (2K + 1)/

T

By (3.8) and (3.9), the second term is
T+Y [t
< TW/ / |F(u)|® dudt < Y?TH? < A2XF/A7L
T T
As 2(T + Y)HF2 ~ AX*/4Y =1 and A = o(X), we deduce that

X+A T+Y
(3.10) / \A(q;)|kdx~AXk/4Y1/ |F(t)|* dt.

X T

The limit in (1.6) then follows from (2.2). The proof of (1.7) is the same.
It remains to determine the largest K for which (3.6) holds with the 7" and
Y defined above. In view of (3.10) and Theorem 6, for A = K < 11 we have

T4y
/ IF@)|Fdt < V(X + VXA XE-DE-1/D+e)

T

which is < Y€ provided § — A + (K — 2)(3 — 1/4) < 0. This is the condition
(1.5). The fact that A < 1 gives rise to the requirement K < 83/(45 — 1). The
proof of Theorem 1 is thus complete. To prove Theorem 3, we just have to note
that, in this case (3.6) holds for all K > 0.
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