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Abstract. An asymptotic result for the kth moment (k ≤ 9) of the error
term in the Dirichlet divisor problem over short intervals is obtained, which
improves on an earlier result of Nowak.

1. Introduction. Define for x > 0,

∆(x) =
∑
n≤x

d(n)− x(log x + 2γ − 1)

where d(n) denotes the number of positive divisors of n and γ is the Euler con-

stant. This is the error term in the well-known Dirichlet divisor problem, which

aims at the determination of the order of ∆(x). The conjecture that ∆(x) ¿ xβ+ε

with β = 1/4 is very difficult and it remains unsolved as of to-day. The current

best result is β ≤ 131/416, due to Huxley [3]. Throughout ε denotes any arbi-

trarily small positive constant which may differ at each occurrence.

Apart from the above conjecture, there are plenty of investigations focusing on

various statistical properties of ∆(x), including the power moments and the prob-

ability distribution. For instance, the work of Voronoi [7] yields the asymptotic

formula
∫ X

0

∆(x) dx =
1

4
X + O(X3/4),(1.1)

and Cramér [1] obtained for the mean square of ∆(x) an asymptotic formula

with explicit error term. For higher power moments, Ivić [4] used the large sieve

inequality to derive the essentially best possible upper bounds

∫ X

0

|∆(x)|A dx ¿ X1+A/4+ε(1.2)

for 0 ≤ A ≤ 28/3. On the other hand, asymptotic formulas for moments of

∆(x) higher than the second was first obtained by the second author [6], who

established for k = 3, 4,
∫ X

0

∆(x)k dx = ckX
1+k/4 + Fk(X)(1.3)
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with

Fk(X) ¿ X1+k/4−θ(k),(1.4)

where ck and θ(k) are explicit positive numbers. Here the case for k = 3 is

particularly interesting and important, because it shows that the positive and

negative parts of ∆(x) are not quite balanced, a fact which cannot be seen from

(1.1) alone.

In another direction, Heath-Brown [2] initiated the study of the value dis-

tribution of ∆(x). He proved, among other things, that asymptotic formula for∫ X

0
∆(x)k dx exist for all integers k ∈ [0, A) whenever (1.2) holds. However the

paper [2] does not contain any explicit estimate for the error term in the asymp-

totic formula. Recently Zhai [8, 9] proved (1.3) with Fk(X) of the form (1.4) for

k = 5, · · · , 9 , together with explicit form for the constant ck.

To better understand the local behaviour of ∆(x), it is natural to look at

the moments over short intervals around X instead of the full interval [0, X].

Nowak [5] considered this problem and his results, in summary, are as follows:

let Λ = Λ(X) = o(X). Then

∫ X+Λ

X

∆(x)k dx ∼ (1 +
k

4
)ckΛXk/4 (k = 2, 3, 4)

holds if limX→∞ X1/2 log3 X/Λ = 0 when k = 2, or for some constant δ > 0,

limX→∞ X3/4+δ/Λ = 0 when k = 3, 4.

Remark. It is sufficient to consider the situation Λ = o(X) since otherwise it is

contained in the asymptotics (1.3).

The main purpose of this paper is to prove the following theorems.

Theorem 1 Suppose the estimate ∆(x) ¿ xβ+ε holds for a certain β ≥ 1
4
. Let

k < min{11, 8β/(4β− 1)} and let Λ = Λ(X) be an increasing function of X such

that X À Λ(X) À Xλ for some constant λ, which satisfies

λ >
1

2
+ max{0, (k − 2)(β − 1

4
)}.(1.5)

Then the limit

lim
X→∞

1

ΛXk/4

∫ X+Λ

X

|∆(x)|k dx(1.6)
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exists. Furthermore, if k( < min{11, 8β/(4β − 1)}) is an odd integer and (1.5)

holds, then

lim
X→∞

1

ΛXk/4

∫ X+Λ

X

∆(x)k dx(1.7)

also exists.

By using Huxley’s estimate [3] that β = 131/416 is admissible, we deduce

readily from Theorem 1 the following improvement on the aforementioned result

of Nowak [5, Theorem 2].

Theorem 2 The limit (1.6) exists for every k < 9.7 · · · and the limit (1.7) exists

for k = 1, 3, 5, 7, 9; provided Λ À Xλ with

λ >
1

2
+ max{0, (k − 2)

27

416
}.

In particular, we only need λ > 0.5649 · · · for k = 3 and λ > 0.6298 · · · for k = 4.

It is known that pointwise upper bound for ∆(x) can be derived from the

power moments. Our next theorem shows that the conjectured upper bound:

∆(x) ¿ x1/4+ε yields asymptotic results for all power moments over short inter-

vals of the form [X, X + X1/2+ε].

Theorem 3 Suppose the conjecture that ∆(x) ¿ x1/4+ε is true. Then for X À
Λ À Xλ where λ > 1/2 is any fixed constant, the limits (1.6) and (1.7) exist for

all non-negative real k and all positive odd integers k respectively.

To prove the theorems, we make use of a short interval version of the large

value result and the distribution result of ∆(x). Our results suggest that this

method is more effective than the direct treatment of the cross terms, as in the

work of Nowak [5].

2. Preliminaries. Let Y = Y (T ) be a function of T such that Y → ∞ as

T →∞. Consider a function F (t) which satisfies the following hypothesis.

(Hs): Let a1(t), a2(t), · · · be continuous real-valued functions of period 1, and

suppose that there are non-zero constants γ1, γ2, · · · such that

lim
N→∞

lim sup
T→∞

1

Y

∫ T+Y

T

min{1, |F (t)−
∑
n≤N

an(γnt)|} dt = 0.
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(This is the short interval version of the Hypothesis (H) in [2].)

For any continuous function f : R −→ C, we define

mT (f) =
1

Y

∫ T+Y

T

f(t) dt.

In particular, as T →∞,

mT (e(γt)) →
{

1, γ = 0,
0, γ 6= 0.

The results in [2, Section 2] are valid when the operator mT (·) in [2] is replaced by

our mT (·). Applying the argument in [2, Section 3] with Hypothesis (Hs) instead

of (H), we obtain the following result which is analogous to [2, Theorem 6].

Theorem 4 Suppose F (t) satisfies Hypothesis (Hs), and

∫ T+Y

T

|F (t)|K dt ¿ Y(2.1)

for some positive K. Then all the limits

lim
T→∞

1

Y

∫ T+Y

T

|F (t)|k dt,(2.2)

for real k ∈ [0, K), and

lim
T→∞

1

Y

∫ T+Y

T

F (t)k dt,(2.3)

for odd integers k ∈ [0, K), exist.

Remark: Actually, replacing Hypothesis (H) by (Hs) we deduce, corresponding

to Theorems 4 and 5 in [2] respectively, that

(i) Y −1
∫ T+Y

T
p(F (t)) dt converges,

(ii) Y −1meas{t ∈ [T, T + Y ] : F (t) ∈ I} → ∫
I
f(α) dα for any fixed interval I,

as T →∞. (Note that the density function f(α) depends only on the sequences

{an(t)} and {γn}, but not on the function Y .)

Next we derive a large value result for ∆(x) over a short interval along the

line of argument in [4].
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Lemma 5 Let
√

T ¿ Λ ¿ T and let T ≤ t1 < t2 < · · · < tR < T + Λ such that

|tr − ts| ≥ V > T 7/32+ε for r 6= s. Suppose ∆(tr) À V for all 1 ≤ r ≤ R. Then

R ¿ T ε(TV −3 + ΛT 11/4V −12).

This follows essentially the proof of [4, Theorem 1]. We carry out the same

procedure of dividing the interval [T, T +Λ] into subintervals of length T0. Instead

of [4, (2.2)], we have

R ¿ R0(1 +
Λ

T0

).

The upper bound R0 ¿ T 1+εV −3 in [4, (2.10)] still holds since the argument in [4,

(2.3)-(2.10)] is only applied to each of the subintervals. The proof then finishes

with the same choice of T0 in [4].

Assume now that ∆(x) ¿ xβ+ε for a certain β ≥ 1
4
. Take V to be a power of

two such that

T 1/4 ≤ 2m = V ≤ T β+ε.(2.4)

For each such V we divide the interval [T, T + Λ] into subintervals of length V .

As in [4, Section 3], we construct two systems of points, each of which satisfies

V ≤ |∆(tr)| ≤ 2V , |tr − ts| ≥ V (r 6= s),

if the points in the system are labelled as t1, · · · , tR, R = R(V ). This is obtained

by picking the points alternatively from the odd-indexed and the even-indexed

subintervals. This ensures the validity of the separation condition. Then, similar

to [4, (3.2)-(3.3)] we find that

∫ T+Λ

T

|∆(x)|A dx ¿ ΛTA/4 +
∑
V

V A+1R(V )

¿ ΛTA/4 + T ε
∑
V

(TV A−2 + ΛT 11/4V A−11),

by Lemma 5. Invoking (2.4), we then obtain the following.

Theorem 6 Suppose ∆(x) ¿ xβ+ε and
√

X ¿ Λ ¿ X. Then for any positive

constant A, we have

∫ X+Λ

X

|∆(x)|A dx ¿ ΛXA/4+ε + X1/2+(A−2)(β−1/4)+A/4+ε + ΛXA/4+(A−11)(β−1/4)+ε.
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Remark: The third term on the right-side is dominated by the first when A ≤ 11.

3. Proofs of Theorems 1 and 3. The basis of the proofs of these two

theorems is Theorem 4, in which F (t) = ∆(t2)t−1/2.

Define an(t) and γn as in [2, Section 5]. Then from [2, p.402] we have, for any

1 ≤ N ≤ √
T ,

F (t)−
∑
n≤N

an(γnt) ¿
∣∣∣

∑

n≤T2

s(n)>N

d(n)

n3/4
e(2t

√
n)

∣∣∣ + N1/2T−1/2+ε

uniformly for t ∈ [T, 2T ], where s(n) denotes the squarefree kernel of n. Integrat-

ing over [T, T + Y ], we have

∫ T+Y

T

∣∣∣
∑

n≤T2

s(n)>N

d(n)

n3/4
e(2t

√
n)

∣∣∣
2

dt ¿ Y
∑

n≤T2

s(n)>N

d(n)2

n3/2
+

∑

m6=n≤T 2

d(n)d(m)

(mn)3/4

1

|√m−√n|

¿ Y N ε−1/2 + T ε.

It follows that

∫ T+Y

T

∣∣∣F (t)−
∑
n≤N

an(γnt)
∣∣∣
2

dt ¿ Y N ε−1/2 + T ε + Y NT ε−1(3.1)

and hence, by Hölder’s inequality, Hypothesis (Hs) is valid whenever Y À T δ for

some δ > 0.

Next, let L be any fixed positive integer. Analogous to [2, (5.4)], we take

N = Y 2−(2L+2)

.(3.2)

Lemma 5 in [2] implies that for any positive integers n1, · · · , n2L ≤ N4,

|√n1 ± · · · ± √n2L| À N−22L+1

= Y −1/2(3.3)

by (3.2), unless the product n1 · · ·n2L is squarefull.

From [2, p.403], we get

∑
n≤N

an(γnt) =
1

π
√

2

∑

n≤N4

s(n)≤N

d(n)

n3/4
cos(4πt

√
n− π/4) + O(1).
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Multiplying out and integrating term by term, we find that

∫ T+Y

T

∣∣ ∑
n≤N

an(γnt)
∣∣2L

dt(3.4)

¿
∫ T+Y

T

∣∣∣
∑

n≤N4

s(n)≤N

d(n)

n3/4
e(2t

√
n)

∣∣∣
2L

dt + Y

¿ Y
∑′ d(n1) · · · d(n2L)

(n1 · · ·n2L)3/4
+ Y 1/2

∑

n1,··· ,n2L≤N4

d(n1) · · · d(n2L)

(n1 · · ·n2L)3/4
+ Y

by (3.3), where the summation
∑′ runs over all n1, · · · , n2L ≤ N4 such that the

product n1 · · ·n2L is squarefull. The argument in [2, p.404] shows that

∑′ d(n1) · · · d(n2L)

(n1 · · ·n2L)3/4
¿

∞∑
q=1

q squarefull

q−3/4+2ε ¿ 1.

Moreover, the second sum
∑

n1,··· ,n2L≤N4 is clearly ¿ N2L(1+ε) ¿ Y 1/4, by (3.2).

The integral in (3.4) is thus ¿ Y . Hence, for any k ≥ 0, by taking L = dke and

using Hölder’s inequality, we have

∫ T+Y

T

∣∣ ∑
n≤N

an(γnt)
∣∣k dt ¿k Y (any k ≥ 0).(3.5)

(Note that N is a small positive power of Y , depending on k.)

Assume for the time being that for a certain positive K,

∫ T+Y

T

∣∣F (t)
∣∣K dt ¿ Y 1+ε.(3.6)

Then, by (3.5)

∫ T+Y

T

∣∣F (t)−
∑
n≤N

an(γt)
∣∣K dt

¿
∫ T+Y

T

∣∣F (t)
∣∣K dt +

∫ T+Y

T

∣∣ ∑
n≤N

an(γt)
∣∣K dt ¿ Y 1+ε.

By the same argument in the paragraph below [2, (5.7)], we then deduce from

this and (3.1) that, for any 0 ≤ k < K,

∫ T+Y

T

∣∣F (t)−
∑
n≤N

an(γt)
∣∣k dt ¿ Y.(3.7)
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(Recall that Y À T δ.) Hence, by (3.5) again,

∫ T+Y

T

∣∣F (t)
∣∣k dt(3.8)

¿
∫ T+Y

T

∣∣F (t)−
∑
n≤N

an(γt)
∣∣k dt +

∫ T+Y

T

∣∣ ∑
n≤N

an(γt)
∣∣k dt ¿ Y,

for any 0 ≤ k < K. In view of Theorem 4, the limits in (2.2) and (2.3) all

exist. The passing from these limits to those for ∆(x) in (1.6) and (1.7) can

be seen as follows. For X → ∞, Xλ ¿ Λ = Λ(X) = o(X), set T =
√

X and

Y =
√

X + Λ−√X. Then

Y ∼ 1

2
ΛX−1/2 À Λ(T 2)T−1 À T 2λ−1.(3.9)

Integrating by parts yields

∫ X+Λ

X

|∆(x)|k dx = 2

∫ T+Y

T

t1+k/2|F (t)|k dt

= 2(T + Y )1+k/2

∫ T+Y

T

|F (t)|k dt− (2k + 1)

∫ T+Y

T

tk/2

∫ t

T

|F (u)|k du dt.

By (3.8) and (3.9), the second term is

¿ T k/2

∫ T+Y

T

∫ t

T

|F (u)|k du dt ¿ Y 2T k/2 ¿ Λ2Xk/4−1.

As 2(T + Y )1+k/2 ∼ ΛXk/4Y −1 and Λ = o(X), we deduce that

∫ X+Λ

X

|∆(x)|k dx ∼ ΛXk/4Y −1

∫ T+Y

T

|F (t)|k dt.(3.10)

The limit in (1.6) then follows from (2.2). The proof of (1.7) is the same.

It remains to determine the largest K for which (3.6) holds with the T and

Y defined above. In view of (3.10) and Theorem 6, for A = K ≤ 11 we have

∫ T+Y

T

|F (t)|K dt ¿ Y (Xε +
√

XΛ−1X(K−2)(β−1/4)+ε),

which is ¿ Y 1+ε provided 1
2
− λ + (K − 2)(β − 1/4) ≤ 0. This is the condition

(1.5). The fact that λ ≤ 1 gives rise to the requirement K ≤ 8β/(4β − 1). The

proof of Theorem 1 is thus complete. To prove Theorem 3, we just have to note

that, in this case (3.6) holds for all K > 0.
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