Moments over Short Intervals

Yuk-Kam Lau and Kai-Man Tsang

Abstract

An asymptotic result for the k th moment ($k \leq 9$) of the error term in the Dirichlet divisor problem over short intervals is obtained, which improves on an earlier result of Nowak.

1. Introduction. Define for $x>0$,

$$
\Delta(x)=\sum_{n \leq x} d(n)-x(\log x+2 \gamma-1)
$$

where $d(n)$ denotes the number of positive divisors of n and γ is the Euler constant. This is the error term in the well-known Dirichlet divisor problem, which aims at the determination of the order of $\Delta(x)$. The conjecture that $\Delta(x) \ll x^{\beta+\epsilon}$ with $\beta=1 / 4$ is very difficult and it remains unsolved as of to-day. The current best result is $\beta \leq 131 / 416$, due to Huxley [3]. Throughout ϵ denotes any arbitrarily small positive constant which may differ at each occurrence.

Apart from the above conjecture, there are plenty of investigations focusing on various statistical properties of $\Delta(x)$, including the power moments and the probability distribution. For instance, the work of Voronoi [7] yields the asymptotic formula

$$
\begin{equation*}
\int_{0}^{X} \Delta(x) d x=\frac{1}{4} X+O\left(X^{3 / 4}\right) \tag{1.1}
\end{equation*}
$$

and Cramér [1] obtained for the mean square of $\Delta(x)$ an asymptotic formula with explicit error term. For higher power moments, Ivić [4] used the large sieve inequality to derive the essentially best possible upper bounds

$$
\begin{equation*}
\int_{0}^{X}|\Delta(x)|^{A} d x \ll X^{1+A / 4+\epsilon} \tag{1.2}
\end{equation*}
$$

for $0 \leq A \leq 28 / 3$. On the other hand, asymptotic formulas for moments of $\Delta(x)$ higher than the second was first obtained by the second author [6], who established for $k=3,4$,

$$
\begin{equation*}
\int_{0}^{X} \Delta(x)^{k} d x=c_{k} X^{1+k / 4}+F_{k}(X) \tag{1.3}
\end{equation*}
$$

[^0]with
\[

$$
\begin{equation*}
F_{k}(X) \ll X^{1+k / 4-\theta(k)} \tag{1.4}
\end{equation*}
$$

\]

where c_{k} and $\theta(k)$ are explicit positive numbers. Here the case for $k=3$ is particularly interesting and important, because it shows that the positive and negative parts of $\Delta(x)$ are not quite balanced, a fact which cannot be seen from (1.1) alone.

In another direction, Heath-Brown [2] initiated the study of the value distribution of $\Delta(x)$. He proved, among other things, that asymptotic formula for $\int_{0}^{X} \Delta(x)^{k} d x$ exist for all integers $k \in[0, A)$ whenever (1.2) holds. However the paper [2] does not contain any explicit estimate for the error term in the asymptotic formula. Recently Zhai [8, 9] proved (1.3) with $F_{k}(X)$ of the form (1.4) for $k=5, \cdots, 9$, together with explicit form for the constant c_{k}.

To better understand the local behaviour of $\Delta(x)$, it is natural to look at the moments over short intervals around X instead of the full interval $[0, X]$. Nowak [5] considered this problem and his results, in summary, are as follows: let $\Lambda=\Lambda(X)=o(X)$. Then

$$
\int_{X}^{X+\Lambda} \Delta(x)^{k} d x \sim\left(1+\frac{k}{4}\right) c_{k} \Lambda X^{k / 4} \quad(k=2,3,4)
$$

holds if $\lim _{X \rightarrow \infty} X^{1 / 2} \log ^{3} X / \Lambda=0$ when $k=2$, or for some constant $\delta>0$, $\lim _{X \rightarrow \infty} X^{3 / 4+\delta} / \Lambda=0$ when $k=3,4$.
Remark. It is sufficient to consider the situation $\Lambda=o(X)$ since otherwise it is contained in the asymptotics (1.3).

The main purpose of this paper is to prove the following theorems.
Theorem 1 Suppose the estimate $\Delta(x) \ll x^{\beta+\epsilon}$ holds for a certain $\beta \geq \frac{1}{4}$. Let $k<\min \{11,8 \beta /(4 \beta-1)\}$ and let $\Lambda=\Lambda(X)$ be an increasing function of X such that $X \gg \Lambda(X) \gg X^{\lambda}$ for some constant λ, which satisfies

$$
\begin{equation*}
\lambda>\frac{1}{2}+\max \left\{0,(k-2)\left(\beta-\frac{1}{4}\right)\right\} \tag{1.5}
\end{equation*}
$$

Then the limit

$$
\begin{equation*}
\lim _{X \rightarrow \infty} \frac{1}{\Lambda X^{k / 4}} \int_{X}^{X+\Lambda}|\Delta(x)|^{k} d x \tag{1.6}
\end{equation*}
$$

exists. Furthermore, if $k(<\min \{11,8 \beta /(4 \beta-1)\})$ is an odd integer and (1.5) holds, then

$$
\begin{equation*}
\lim _{X \rightarrow \infty} \frac{1}{\Lambda X^{k / 4}} \int_{X}^{X+\Lambda} \Delta(x)^{k} d x \tag{1.7}
\end{equation*}
$$

also exists.
By using Huxley's estimate [3] that $\beta=131 / 416$ is admissible, we deduce readily from Theorem 1 the following improvement on the aforementioned result of Nowak [5, Theorem 2].

Theorem 2 The limit (1.6) exists for every $k<9.7 \cdots$ and the limit (1.7) exists for $k=1,3,5,7,9 ;$ provided $\Lambda \gg X^{\lambda}$ with

$$
\lambda>\frac{1}{2}+\max \left\{0,(k-2) \frac{27}{416}\right\} .
$$

In particular, we only need $\lambda>0.5649 \cdots$ for $k=3$ and $\lambda>0.6298 \cdots$ for $k=4$.
It is known that pointwise upper bound for $\Delta(x)$ can be derived from the power moments. Our next theorem shows that the conjectured upper bound: $\Delta(x) \ll x^{1 / 4+\epsilon}$ yields asymptotic results for all power moments over short intervals of the form $\left[X, X+X^{1 / 2+\epsilon}\right]$.

Theorem 3 Suppose the conjecture that $\Delta(x) \ll x^{1 / 4+\epsilon}$ is true. Then for $X \gg$ $\Lambda \gg X^{\lambda}$ where $\lambda>1 / 2$ is any fixed constant, the limits (1.6) and (1.7) exist for all non-negative real k and all positive odd integers k respectively.

To prove the theorems, we make use of a short interval version of the large value result and the distribution result of $\Delta(x)$. Our results suggest that this method is more effective than the direct treatment of the cross terms, as in the work of Nowak [5].
2. Preliminaries. Let $Y=Y(T)$ be a function of T such that $Y \rightarrow \infty$ as $T \rightarrow \infty$. Consider a function $F(t)$ which satisfies the following hypothesis.
$\left(\mathrm{H}_{s}\right)$: Let $a_{1}(t), a_{2}(t), \cdots$ be continuous real-valued functions of period 1 , and suppose that there are non-zero constants $\gamma_{1}, \gamma_{2}, \cdots$ such that

$$
\lim _{N \rightarrow \infty} \limsup _{T \rightarrow \infty} \frac{1}{Y} \int_{T}^{T+Y} \min \left\{1,\left|F(t)-\sum_{n \leq N} a_{n}\left(\gamma_{n} t\right)\right|\right\} d t=0
$$

(This is the short interval version of the Hypothesis (H) in [2].)
For any continuous function $f: \mathbb{R} \longrightarrow \mathbb{C}$, we define

$$
\mathrm{m}_{T}(f)=\frac{1}{Y} \int_{T}^{T+Y} f(t) d t
$$

In particular, as $T \rightarrow \infty$,

$$
\mathrm{m}_{T}(e(\gamma t)) \rightarrow \begin{cases}1, & \gamma=0 \\ 0, & \gamma \neq 0\end{cases}
$$

The results in [2, Section 2] are valid when the operator $m_{T}(\cdot)$ in [2] is replaced by our $\mathrm{m}_{T}(\cdot)$. Applying the argument in [2, Section 3] with Hypothesis $\left(\mathrm{H}_{s}\right)$ instead of (H), we obtain the following result which is analogous to [2, Theorem 6].

Theorem 4 Suppose $F(t)$ satisfies Hypothesis $\left(\mathrm{H}_{s}\right)$, and

$$
\begin{equation*}
\int_{T}^{T+Y}|F(t)|^{K} d t \ll Y \tag{2.1}
\end{equation*}
$$

for some positive K. Then all the limits

$$
\begin{equation*}
\lim _{T \rightarrow \infty} \frac{1}{Y} \int_{T}^{T+Y}|F(t)|^{k} d t \tag{2.2}
\end{equation*}
$$

for real $k \in[0, K)$, and

$$
\begin{equation*}
\lim _{T \rightarrow \infty} \frac{1}{Y} \int_{T}^{T+Y} F(t)^{k} d t \tag{2.3}
\end{equation*}
$$

for odd integers $k \in[0, K)$, exist.
Remark: Actually, replacing Hypothesis (H) by $\left(\mathrm{H}_{s}\right)$ we deduce, corresponding to Theorems 4 and 5 in [2] respectively, that
(i) $Y^{-1} \int_{T}^{T+Y} p(F(t)) d t$ converges,
(ii) Y^{-1} meas $\{t \in[T, T+Y]: F(t) \in I\} \rightarrow \int_{I} f(\alpha) d \alpha$ for any fixed interval I, as $T \rightarrow \infty$. (Note that the density function $f(\alpha)$ depends only on the sequences $\left\{a_{n}(t)\right\}$ and $\left\{\gamma_{n}\right\}$, but not on the function Y.)

Next we derive a large value result for $\Delta(x)$ over a short interval along the line of argument in [4].

Lemma 5 Let $\sqrt{T} \ll \Lambda \ll T$ and let $T \leq t_{1}<t_{2}<\cdots<t_{R}<T+\Lambda$ such that $\left|t_{r}-t_{s}\right| \geq V>T^{7 / 32+\epsilon}$ for $r \neq s$. Suppose $\Delta\left(t_{r}\right) \gg V$ for all $1 \leq r \leq R$. Then

$$
R \ll T^{\epsilon}\left(T V^{-3}+\Lambda T^{11 / 4} V^{-12}\right)
$$

This follows essentially the proof of [4, Theorem 1]. We carry out the same procedure of dividing the interval $[T, T+\Lambda]$ into subintervals of length T_{0}. Instead of $[4,(2.2)]$, we have

$$
R \ll R_{0}\left(1+\frac{\Lambda}{T_{0}}\right)
$$

The upper bound $R_{0} \ll T^{1+\epsilon} V^{-3}$ in [4, (2.10)] still holds since the argument in [4, (2.3)-(2.10)] is only applied to each of the subintervals. The proof then finishes with the same choice of T_{0} in [4].

Assume now that $\Delta(x) \ll x^{\beta+\epsilon}$ for a certain $\beta \geq \frac{1}{4}$. Take V to be a power of two such that

$$
\begin{equation*}
T^{1 / 4} \leq 2^{m}=V \leq T^{\beta+\epsilon} \tag{2.4}
\end{equation*}
$$

For each such V we divide the interval $[T, T+\Lambda]$ into subintervals of length V. As in [4, Section 3], we construct two systems of points, each of which satisfies

$$
V \leq\left|\Delta\left(t_{r}\right)\right| \leq 2 V, \quad\left|t_{r}-t_{s}\right| \geq V(r \neq s)
$$

if the points in the system are labelled as $t_{1}, \cdots, t_{R}, R=R(V)$. This is obtained by picking the points alternatively from the odd-indexed and the even-indexed subintervals. This ensures the validity of the separation condition. Then, similar to $[4,(3.2)-(3.3)]$ we find that

$$
\begin{aligned}
\int_{T}^{T+\Lambda}|\Delta(x)|^{A} d x & \ll \Lambda T^{A / 4}+\sum_{V} V^{A+1} R(V) \\
& \ll \Lambda T^{A / 4}+T^{\epsilon} \sum_{V}\left(T V^{A-2}+\Lambda T^{11 / 4} V^{A-11}\right)
\end{aligned}
$$

by Lemma 5 . Invoking (2.4), we then obtain the following.
Theorem 6 Suppose $\Delta(x) \ll x^{\beta+\epsilon}$ and $\sqrt{X} \ll \Lambda \ll X$. Then for any positive constant A, we have

$$
\int_{X}^{X+\Lambda}|\Delta(x)|^{A} d x \ll \Lambda X^{A / 4+\epsilon}+X^{1 / 2+(A-2)(\beta-1 / 4)+A / 4+\epsilon}+\Lambda X^{A / 4+(A-11)(\beta-1 / 4)+\epsilon} .
$$

Remark: The third term on the right-side is dominated by the first when $A \leq 11$.

3. Proofs of Theorems 1 and 3. The basis of the proofs of these two

 theorems is Theorem 4, in which $F(t)=\Delta\left(t^{2}\right) t^{-1 / 2}$.Define $a_{n}(t)$ and γ_{n} as in [2, Section 5]. Then from [2, p.402] we have, for any $1 \leq N \leq \sqrt{T}$,

$$
F(t)-\sum_{n \leq N} a_{n}\left(\gamma_{n} t\right) \ll\left|\sum_{\substack{n \leq T^{2} \\ s(\bar{n})>N}} \frac{d(n)}{n^{3 / 4}} e(2 t \sqrt{n})\right|+N^{1 / 2} T^{-1 / 2+\epsilon}
$$

uniformly for $t \in[T, 2 T]$, where $s(n)$ denotes the squarefree kernel of n. Integrating over $[T, T+Y]$, we have

$$
\begin{aligned}
\int_{T}^{T+Y}\left|\sum_{\substack{n \leq T^{2} \\
s(n)>N}} \frac{d(n)}{n^{3 / 4}} e(2 t \sqrt{n})\right|^{2} d t & \ll Y \sum_{\substack{n \leq T^{2} \\
s(n)>N}} \frac{d(n)^{2}}{n^{3 / 2}}+\sum_{m \neq n \leq T^{2}} \frac{d(n) d(m)}{(m n)^{3 / 4}} \frac{1}{|\sqrt{m}-\sqrt{n}|} \\
& \ll Y N^{\epsilon-1 / 2}+T^{\epsilon} .
\end{aligned}
$$

It follows that

$$
\begin{equation*}
\int_{T}^{T+Y}\left|F(t)-\sum_{n \leq N} a_{n}\left(\gamma_{n} t\right)\right|^{2} d t \ll Y N^{\epsilon-1 / 2}+T^{\epsilon}+Y N T^{\epsilon-1} \tag{3.1}
\end{equation*}
$$

and hence, by Hölder's inequality, Hypothesis $\left(\mathrm{H}_{s}\right)$ is valid whenever $Y \gg T^{\delta}$ for some $\delta>0$.

Next, let L be any fixed positive integer. Analogous to [2, (5.4)], we take

$$
\begin{equation*}
N=Y^{2^{-(2 L+2)}} \tag{3.2}
\end{equation*}
$$

Lemma 5 in [2] implies that for any positive integers $n_{1}, \cdots, n_{2 L} \leq N^{4}$,

$$
\begin{equation*}
\left|\sqrt{n_{1}} \pm \cdots \pm \sqrt{n_{2 L}}\right| \gg N^{-2^{2 L+1}}=Y^{-1 / 2} \tag{3.3}
\end{equation*}
$$

by (3.2), unless the product $n_{1} \cdots n_{2 L}$ is squarefull.
From [2, p.403], we get

$$
\sum_{n \leq N} a_{n}\left(\gamma_{n} t\right)=\frac{1}{\pi \sqrt{2}} \sum_{\substack{n \leq N^{4} \\ s(n) \leq N}} \frac{d(n)}{n^{3 / 4}} \cos (4 \pi t \sqrt{n}-\pi / 4)+O(1)
$$

Multiplying out and integrating term by term, we find that

$$
\begin{align*}
& \int_{T}^{T+Y}\left|\sum_{n \leq N} a_{n}\left(\gamma_{n} t\right)\right|^{2 L} d t \tag{3.4}\\
\ll & \int_{T}^{T+Y}\left|\sum_{\substack{n \leq N^{4} \\
s(n) \leq N}} \frac{d(n)}{n^{3 / 4}} e(2 t \sqrt{n})\right|^{2 L} d t+Y \\
\ll & Y \sum^{\prime} \frac{d\left(n_{1}\right) \cdots d\left(n_{2 L}\right)}{\left(n_{1} \cdots n_{2 L}\right)^{3 / 4}}+Y^{1 / 2} \sum_{n_{1}, \cdots, n_{2 L} \leq N^{4}} \frac{d\left(n_{1}\right) \cdots d\left(n_{2 L}\right)}{\left(n_{1} \cdots n_{2 L}\right)^{3 / 4}}+Y
\end{align*}
$$

by (3.3), where the summation \sum^{\prime} runs over all $n_{1}, \cdots, n_{2 L} \leq N^{4}$ such that the product $n_{1} \cdots n_{2 L}$ is squarefull. The argument in [2, p.404] shows that

$$
\sum^{\prime} \frac{d\left(n_{1}\right) \cdots d\left(n_{2 L}\right)}{\left(n_{1} \cdots n_{2 L}\right)^{3 / 4}} \ll \sum_{\substack{q=1 \\ q \text { squarefull }}}^{\infty} q^{-3 / 4+2 \epsilon} \ll 1
$$

Moreover, the second sum $\sum_{n_{1}, \cdots, n_{2 L} \leq N^{4}}$ is clearly $\ll N^{2 L(1+\epsilon)} \ll Y^{1 / 4}$, by (3.2). The integral in (3.4) is thus $\ll Y$. Hence, for any $k \geq 0$, by taking $L=\lceil k\rceil$ and using Hölder's inequality, we have

$$
\begin{equation*}
\int_{T}^{T+Y}\left|\sum_{n \leq N} a_{n}\left(\gamma_{n} t\right)\right|^{k} d t<_{k} Y \quad(\text { any } k \geq 0) \tag{3.5}
\end{equation*}
$$

(Note that N is a small positive power of Y, depending on k.)
Assume for the time being that for a certain positive K,

$$
\begin{equation*}
\int_{T}^{T+Y}|F(t)|^{K} d t \ll Y^{1+\epsilon} \tag{3.6}
\end{equation*}
$$

Then, by (3.5)

$$
\begin{aligned}
& \int_{T}^{T+Y}\left|F(t)-\sum_{n \leq N} a_{n}(\gamma t)\right|^{K} d t \\
\ll & \int_{T}^{T+Y}|F(t)|^{K} d t+\int_{T}^{T+Y}\left|\sum_{n \leq N} a_{n}(\gamma t)\right|^{K} d t \ll Y^{1+\epsilon} .
\end{aligned}
$$

By the same argument in the paragraph below [2, (5.7)], we then deduce from this and (3.1) that, for any $0 \leq k<K$,

$$
\begin{equation*}
\int_{T}^{T+Y}\left|F(t)-\sum_{n \leq N} a_{n}(\gamma t)\right|^{k} d t \ll Y \tag{3.7}
\end{equation*}
$$

(Recall that $Y \gg T^{\delta}$.) Hence, by (3.5) again,

$$
\begin{align*}
& \int_{T}^{T+Y}|F(t)|^{k} d t \tag{3.8}\\
\ll & \int_{T}^{T+Y}\left|F(t)-\sum_{n \leq N} a_{n}(\gamma t)\right|^{k} d t+\int_{T}^{T+Y}\left|\sum_{n \leq N} a_{n}(\gamma t)\right|^{k} d t \ll Y,
\end{align*}
$$

for any $0 \leq k<K$. In view of Theorem 4, the limits in (2.2) and (2.3) all exist. The passing from these limits to those for $\Delta(x)$ in (1.6) and (1.7) can be seen as follows. For $X \rightarrow \infty, X^{\lambda} \ll \Lambda=\Lambda(X)=o(X)$, set $T=\sqrt{X}$ and $Y=\sqrt{X+\Lambda}-\sqrt{X}$. Then

$$
\begin{equation*}
Y \sim \frac{1}{2} \Lambda X^{-1 / 2} \gg \Lambda\left(T^{2}\right) T^{-1} \gg T^{2 \lambda-1} \tag{3.9}
\end{equation*}
$$

Integrating by parts yields

$$
\begin{aligned}
& \int_{X}^{X+\Lambda}|\Delta(x)|^{k} d x=2 \int_{T}^{T+Y} t^{1+k / 2}|F(t)|^{k} d t \\
= & 2(T+Y)^{1+k / 2} \int_{T}^{T+Y}|F(t)|^{k} d t-(2 k+1) \int_{T}^{T+Y} t^{k / 2} \int_{T}^{t}|F(u)|^{k} d u d t .
\end{aligned}
$$

By (3.8) and (3.9), the second term is

$$
\ll T^{k / 2} \int_{T}^{T+Y} \int_{T}^{t}|F(u)|^{k} d u d t \ll Y^{2} T^{k / 2} \ll \Lambda^{2} X^{k / 4-1}
$$

As $2(T+Y)^{1+k / 2} \sim \Lambda X^{k / 4} Y^{-1}$ and $\Lambda=o(X)$, we deduce that

$$
\begin{equation*}
\int_{X}^{X+\Lambda}|\Delta(x)|^{k} d x \sim \Lambda X^{k / 4} Y^{-1} \int_{T}^{T+Y}|F(t)|^{k} d t \tag{3.10}
\end{equation*}
$$

The limit in (1.6) then follows from (2.2). The proof of (1.7) is the same.
It remains to determine the largest K for which (3.6) holds with the T and Y defined above. In view of (3.10) and Theorem 6 , for $A=K \leq 11$ we have

$$
\int_{T}^{T+Y}|F(t)|^{K} d t \ll Y\left(X^{\epsilon}+\sqrt{X} \Lambda^{-1} X^{(K-2)(\beta-1 / 4)+\epsilon}\right)
$$

which is $\ll Y^{1+\epsilon}$ provided $\frac{1}{2}-\lambda+(K-2)(\beta-1 / 4) \leq 0$. This is the condition (1.5). The fact that $\lambda \leq 1$ gives rise to the requirement $K \leq 8 \beta /(4 \beta-1)$. The proof of Theorem 1 is thus complete. To prove Theorem 3, we just have to note that, in this case (3.6) holds for all $K>0$.

References

[1] H. Cramér, Über zwei Sätz von Herrn G.H. Hardy, Math. Zeit. 15 (1922), 200-210.
[2] D.R. Heath-Brown, The distribution and moments of the error term in the Dirichlet divisor problem, Acta Arith. 60 (1992), 389-415.
[3] M.N. Huxley, Exponential sums and lattice points III, Proc. London Math. Soc. 87 (2003), 591-609.
[4] A. Ivić, Large Values of the Error Term in the Divisor Problem Invent. math. 71 (1983), 513-520.
[5] W.G. Nowak, On the divisor problem: Moments of $\Delta(x)$ over short intervals, Acta Arith. 109 (2003), 329-341
[6] K.-M. Tsang, Higher power moments of $\Delta(x), E(t)$ and $P(x)$, Proc. London Math. Soc. 65 (1992), 65-84.
[7] G.F. Voronoi, Sur une fonction transcendente et ses applications à la sommation de quelques séries, Ann. École Normale 21 (1904), 207-268 \& 459534.
[8] W. Zhai, On higher-power moments of $\Delta(x)$, Acta Arith. 112 (2004), 367395.
[9] W. Zhai, On higher-power moments of $\Delta(x)$ (II), Acta Arith. 114 (2004), 35-54.

Department of Mathematics, The University of Hong Kong, Pokfulam Road, HONG KONG.
Email: yklau@maths.hku.hk, kmtsang@maths.hku.hk

[^0]: 2000 Mathematics Subject Classification: 11N37

