ON THE VARIETY OF LAGRANGIAN SUBALGEBRAS, II

SAM EVENS AND JIANG-HUA LU

ABSTRACT. Motivated by Drinfeld’s theorem on Poisson homogeneous spaces, we study the
variety £ of Lagrangian subalgebras of g @ g for a complex semi-simple Lie algebra g. Let G
be the adjoint group of g. We show that the (G x G)-orbit closures in £ are smooth spherical
varieties. We also classify the irreducible components of £ and show that they are smooth. Using
some methods of M. Yakimov, we give a new description and proof of Karolinsky’s classification
of the diagonal G-orbits in £, which, as a special case, recovers the Belavin-Drinfeld classfication
of quasi-triangular r-matrices on g. Furthermore, £ has a canonical Poisson structure, and we
compute its rank at each point and describe its symplectic leaf decomposition in terms of
intersections of orbits of two subgroups of G x G.
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1. INTRODUCTION

Let ® be a 2n-dimensional Lie algebra over £ = R or C, together with a symmetric, non-
degenerate, and ad-invariant bilinear form (, ). When k& = R, we require (, ) to have signature
(n,n). A Lie subalgebra [ of d is said to be Lagrangian if [ is maximal isotropic with respect to
(, ), ie., if dimg [ =n and if (z,y) = 0 for all x,y € [. By a Lagrangian splitting of  we mean
a direct sum decomposition 9 = [} + o, where [; and [y are two Lagrangian subalgebras of 0.
Denote by L(0) the set of all Lagrangian subalgebras of 9. It is an algebraic subvariety of the
Grassmannian Gr(n,?) of n-dimensional subspaces of d. In [E-L2], we showed that associated
to each Lagrangian splitting @ = [ + [ there is a Poisson structure IIj, |, on £(?), making £(0)
into a Poisson variety. Moreover, if L; and Lo are the connected subgroups of the adjoint group
D of » with Lie algebras [; and [y respectively, all the L; and Lg-orbits in £(d) are Poisson
submanifolds of IIj, ,.

The above construction in [E-L2| was motivated by the work of Drinfeld [Dr] on Poisson
homogeneous spaces. Indeed, a Lagrangian splitting ? = [; + [5 of ? gives rise to the Manin
triple (9, [1, [2), which in turn defines Poisson structures 7; and 7y on the Lie groups L; and Lo
respectively, making them into Poisson Lie groups (see [K-S] for details). A Poisson space (M, )
is said to be (L1, 71 )-homogeneous if L; acts on M transitively and if the action map L1 xM — M
is a Poisson map. In [Dr], Drinfeld constructed an Lj-equivariant map M — L(d) for every
(L1, 71)-homogeneous Poisson space (M, ), and he proved (see [Dr] and [E-L2] for more detail)
that (L1, 7;)-homogeneous Poisson spaces correspond to Li-orbits in £(9) in this way. The
Poisson structure Il |, on £(9) is constructed in such a way that the Drinfeld map M — L(d)
is a Poisson map. In many cases, the Drinfeld map M — L(?) is a local diffeomorphism onto
its image. Thus we can think of Lj-orbits in £(?) as models for (L1, m)-homogeneous Poisson
spaces. For this reason, it is interesting to study the geometry of the variety £(9), the L; and
Lo-orbits in £(), and the Poisson structures IIj, |, on £(9).

There are many examples of Lie algebras 0 with symmetric, non-degenerate, and ad-invariant
bilinear forms. The geometry of £(9) is different from case to case. Moreover, there can be
many Lagrangian splittings for a given 0, resulting in many Poisson structures on £().

Example 1.1. Let g be a complex semi-simple Lie algebra with Killing form <, >. Regard g
as a real Lie algebra, and let (, ) be the imaginary part of <, >. The geometry of £(g) in this
case was studied in [E-L2]. In particular, we studied the irreducible components of £(g) and
classified the G-orbits in £(g), where G is the adjoint group of g. Let g = £+ a+n be an Iwasawa
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decomposition of g. Then both ¢ and a+n are Lagrangian subalgebras of g, so g = ¢+ (a+n) is
an example of a Lagrangian splitting, resulting in a Poisson structure on £(g) which we denote
by mo. Many interesting Poisson manifolds appear as G or K-orbits inside (£(g), 7o), where K
is the connected subgroup of G with Lie algebra €. Among such Poisson manifolds are the flag
manifolds of G and the compact symmetric spaces associated to real forms of G. Detailed studies
of the Poisson geometry of these Poisson structures and some applications to Lie theory have
been given in [Lul], [Lu2], [E-L1], and [Ft-L]. For example, the flag manifold X of G consisting
of all parabolic subalgebras of g of a certain type can be identified with a certain K-orbit in
L(g). The resulting Poisson structure on X is called the Bruhat-Poisson structure because
its symplectic leaves are Bruhat cells in X. In [Lul] and [E-L1], we established connections
between the Poisson geometry of the Bruhat-Poisson structure on X and the harmonic forms
on X constructed by Kostant [Ko] in 1963, and we gave a Poisson geometric interpretation of
the Kostant-Kumar approach [K-K] to Schubert calculus on X.

Example 1.2. Let g be any n-dimensional Lie algebra, and let 0 = g x1 g* be the semi-direct
2

product of g and the its dual space g*. Then the canonical symmetric product (, ) on d defined
by

(z+&y+n) =@+, zycglneg
is non-degenerate and ad-invariant. When g is semi-simple, Lagrangian subalgebras of ? are not
easy to classify (except for low dimensional cases), for, as a sub-problem, one needs to classify
all abelian subalgebras of g. See [K-S], [H-Y], [Ka-St], and the references therein for more detail.
The description of the geometry of £(0) in this case is an open problem.

In this paper, we will consider the complexification of Example 1.1. Namely, we consider the
case where g is a complex semi-simple Lie algebra and 9 = g ® g is the direct sum Lie algebra
with the bilinear form (, ) given by

(1, 72), (Y1,92)) =< 21,91 > — < T2, Y2 >,  T1,T2,Y1,Y2 € @,

where <, > is a fixed symmetric, non-degenerate, and ad-invariant bilinear form on g. The
variety of Lagrangian subalgebras of 0 will be denoted by L.

The classification of Lagrangian subalgebras of ? has been given by Karolinsky [Ka|, and
Lagrangian splittings of g @ g have been classified by Delorme [De]. In this paper, we establish
the first few steps in the study of the Poisson structures on £ defined by Lagrangian splittings
of g ® g. Namely, we will first describe the geometry of £ in the following terms:

1) the (G x G)-orbits in £ and their closures, where G is the adjoint group of g;

2) the irreducible components of L;
We will then look at the Poisson structure I1g on £ defined by the so-called standard Lagrangian
splitting 9 = g + g%, where go = {(z,x) : « € g} is the diagonal of 0 = g® g, and gi, CbD b~
with b and b~ being two opposite Borel subalgebras of g. Let GA = {(g,9) : g € G} be the
diagonal subgroup of G x G. We will study

3) the Ga-orbits in L;
4) the symplectic leaf decomposition of £ with respect to Ily in terms of the intersections of

G and (B x B7)-orbits in £, where B and B~ are the Borel subgroups of G with Lie algebras
b and b~ respectively.
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The study of the symplectic leaf decomposition of the Poisson structure IIj, |, on £ defined
by an arbitrary Lagrangian splitting g ® g = [; + [ will be carried out in [Lu-Y2], where one
first has to classify L-orbits in £, where L is the connected Lie subgroup of G x G whose Lie
algebra is an arbitrary Lagrangian subalgebra of g ® g. Such a classification will follow from
a general double coset theorem proved in [Lu-Y1]. Since the studies in [Lu-Y1] and [Lu-Y2]
are technically involved, we think it worthwhile to treat separately in this paper the important
special case of the standard Lagrangian splitting. Moreover, we hope that our study of Ga-
orbits in £ will find applications outside Poisson geometry. Indeed, as is shown in Section 2.7,
the wonderful compactifications of G constructed by De Concini and Procesi [D-P] are closures
of special (G x G)-orbits in £. We hope that our classification of Ga-orbits in £ will be useful
in the study of the conjugacy classes in G and their closures in the wonderful compactifications
of G.

We point out that E. Karolinsky has in [Ka] given a classification of Ga-orbits in £ in different
terms. Our classification is more in line with that of Lagrangian splittings given in [De], and in
particular, the Belavin-Drinfeld theorem [B-Dr] on Lagrangian splittings of the form gbg = ga+!(
follows easily from our classification. Our methods of classifying Ga-orbits in £ are adapted
from those used in [Y] by Yakimov. In [Lu-Y1] and [Lu-Y2], these methods are also used to
classify L-orbits in £, where L is the connected subgroup of G x G whose Lie algebra is any
given Lagrangian subalgebra of g @ g.

We now give more details of the results in this paper:

In Section 2, we study (G x G)-orbits in £. Following O. Schiffmann [Sch]|, we define a
generalized Belavin-Drinfeld triple (generalized BD-triple) to be a triple (S, T,d), where S and
T are two subsets of the set I' of vertices of the Dynkin diagram of g, and d : S — T is an
isometry with respect to <, >. For a generalized BD-triple (S,T,d) (see Notation 2.12 for
detail), let Pg and Pj be respectively the standard parabolic subgroups of G of type S and
opposite type T' with Levi decompositions Ps = MgNg and P, = MrN,. Let Gg and G
be the quotients of Mg and Mpr by their centers respectively, and let xg : Mg — Gg and
x1 : Mp — G7 be the natural projections. Denote by v4 : Gg — Gr the group isomorphism
induced by d. We define the subgroup Rg g4 of Ps x P by

Rsra={(ms,mr) € Mg x My : v4(xs(ms)) = xr(mr)}(Ns X Ny ).

We establish the following facts on (G x G)-orbits and their closures in £ (Proposition 2.19,
Corollary 2.24, and Proposition 2.27):

1) Every (G x G)-orbit in L is isomorphic to (G x G)/Rsra for a generalized BD-triple
(S,T,d), so there are finitely many (G x G)-orbit types in L, and they correspond bijectively
to generalized BD-triples for G; Every (G x G)-orbit in L is a (G x G)-spherical homogeneous
space.

2) When S =T =T, the closure of a (G x G)-orbit of type (S,T,d) is a De Concini-Procesi
compactification of G; For an arbitrary generalized BD-triple (S,T,d), the closure of a (G x G)-
orbit of type (S,T,d) is a fiber bundle over the flag manifold G/Ps x G/P; whose fiber is
isomorphic to a De Concini-Procesi compactification of Gg. In particular, the closure of every
(G x G)-orbit is a smooth (G x G)-spherical variety.
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We also study in Section 2 the irreducible components of £. We prove (Corollary 2.29,
Theorem 2.31, and Theorem 2.34):

1) The irreducible components of L are roughly (see Theorem 2.34 for detail) labeled by quadru-
ples (S,T,d,e€), where (S,T,d) are generalized BD-triples and € € {0,1};

2) The irreducible component corresponding to (S,T,d,€) is a fiber bundle over the flag man-
ifold G/Ps x G /Py whose fiber is isomorphic to the product of a De Concini-Procesi compact-
ification of Gs and a Hermitian symmetric space of a special orthogonal group. In particular,
all the irreducible components of L are smooth;

3) L has two connected components.

Let again Ga = {(g,9) : g € G} be the diagonal subgroup of G x G. In Section 3, we classify
Ga-orbits in £, which is equivalent to describing the (Ga, Rs r,q)-double coset space in G x G
for every generalized Belavin-Drinfeld triple (S, T, d). More precisely, let Wz be the subgroup
of the Weyl group W of T' generated by the elements in 7', and let W7 be the set of minimal
length representatives in cosets from W/Wr. For each v € W7, let © be a representative of v on
G, and let S(v,d) C S be the maximal subset of S that is invariant under vd. Let Mg, 4) be the
standard Levi subgroup of G defined by S(v,d). Let R; be the subgroup of Mg, 4y X Mg(y,q)
defined by

Ry = (MS(v,d) X MS(v,d)) N ((id x Ad@)RS,Tﬁl) )
and let R; act on Mg, ) (from the right) by

my - (m,m') = (m)'mym, my € Mg(y.q), (m,m’) € Ry.

We prove (Theorem 3.9) the following statement:

Every (Ga, Rsr.4)-double coset in G x G has a representative (m, ) for some v € WT and
m € Mgy, q)- Two such cosets through (m1,01) and (ma,v2) coincide if and only if v = v2 = v
and my, ma € Mg, q) are in the same Ry-orbit in Mg, 4)-

We also compute the stabilizer subalgebra of g at every [ € L.

In Section 4, we recall the definition of a Poisson structure on £ defined by a Lagrangian
splitting g & g = [; + 5. We study the symplectic leaf decomposition of the Poisson structure
Iy defined by the standard Lagrangian splitting g ® g = ga + g%. We have (Theorem 4.10 and
Theorem 4.19):

1) Every non-empty intersection of a Ga-orbit O and a (B x B™)-orbit O’ in L is a regular
Poisson manifold with respect to the Poisson structure Ilgy;

2) The Cartan subgroup Ha of Ga, where H = B N B~, acts transitively on the set of
symplectic leaves in O N O'.

We also compute the rank of Iy in Section 4. Thus, the study of symplectic leaves of Il
in £ is reduced to the understanding of the intersections of Ga and (B x B~ )-orbits in £ as
Ha-varieties. Since we have classified the Gao and (B x B~ )-orbits in £ (in Section 3.3 and
Section 2.6 respectively), one would next like to understand when two such orbits intersect and
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to study the topology of such intersections. The intersections of G a-orbits and (B x B~ )-orbits
inside the closed (G x G)-orbits in £ are related to double Bruhat cells in G (see Example 4.14),
and Kogan and Zelevinsky [K-Z] have constructed toric charts on some of the symplectic leaves
in these closed orbits. It would be interesting to see how their methods can be applied to other
symplectic leaves of Ilj.

We point out in Section 4 some interesting Poisson subvarieties £ with respect to the Poisson
structures IIpp defined by the Belavin-Drinfeld splittings, i.e., Lagrangian splittings of g & g
that are of the form g ® g = g + [ for some [ € £. One class of such examples consists of
the De Concini-Procesi compactifications of symmetric spaces G/G?, where o is an involutive
automorphism of G (Proposition 3.22). Another interesting example is the De Concini-Procesi
compactification Z1(G) of G, the closure of the (G x G)-orbit in £ through g,. Conjugacy classes
in G and their closures in Z;(G) are all Poisson subvarieties of (Z1(G),IIgp). In particular, the
Poisson structure Ily restricted to a conjugacy class C' in G is non-degenerate precisely on the
intersection of C' with the open Bruhat cell B~ B (see Corollary 4.11). It will be particularly
interesting to compare the Poisson structure IIy on the unipotent variety in G with the Kirillov-
Kostant structure on the nilpotent cone in g*.

Acknowledgment: We would like to thank Milen Yakimov and Eugene Karolinsky for
pointing out errors in a preliminary version of the paper. Discussions with Milen Yakimov
enabled us to improve earlier results and solve problems in more complete forms. We would also
like to thank Michel Brion, William Graham, and George McNinch for useful comments. The
first author was partially supported by (USA)NSF grant DMS-9970102 and the second author
by (USA)NSF grant DMS-0105195, HKRGC grant 701603, and the New Staff Seeding Fund at
HKU.

2. THE VARIETY £ OF LAGRANGIAN SUBALGEBRAS OF g® g

Throughout this paper, g will be a complex semi-simple Lie algebra, and <, > will be a
fixed symmetric and non-degenerate ad-invariant bilinear form on g. We will equip the direct
product Lie algebra g & g with the bilinear form

(2.1) (1, 22), (Y1, 42)) =< 21, Y1 > — < T2, Y2 >,  T1,%2,Y1,Y2 € g

Clearly (, ) is symmetric, non-degenerate, and ad-invariant. By a Lagrangian subalgebra of
g @ g we mean an n-dimensional complex Lie subalgebra of g @ g that is isotropic with respect

to (, ).

Notation 2.1. We use £ to denote the variety of all Lagrangian subalgebras of g @ g, and we
will use Lgpace(g @ g) to denote the variety of all n-dimensional isotropic subspaces of g @ g.

Let G be the adjoint group of g. The group G x G acts on L through the adjoint action.
In this section, we will classify the (G x G)-orbits and study their closures in £, and we will
determine the irreducible components of £. We show that each irreducible component of £ is a
fiber bundle with smooth fibers over a generalized flag variety of G x G and is thus smooth. We
show that all (G x G)-orbits in £ and their closures are smooth spherical varieties for G x G. Our
results in this section are based on the classification of Lagrangian subalgebras by Karolinsky
[Kal.
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2.1. Lagrangian subspaces. Let U be a finite-dimensional complex vector space with a sym-
metric and non-degenerate bilinear form (, ). A subspace V of U is said to be Lagrangian if V'
is a maximal isotropic subspace of U with respect to (, ). If dimU = 2n or 2n + 1, then Witt’s
theorem says that the dimension of a Lagrangian subspace of U is n. The set of Lagrangian
subspaces is easily seen to be a closed algebraic subvariety of Gr(n,U), the Grassmannian of
n-dimensional subspaces of U. Denote by Lspace(U) the variety of Lagrangian subspaces of U
with respect to (, ).

Proposition 2.2 ([A-C-G-H], pp. 102-103). Assume that dimU = 2n (resp. 2n + 1) with
n > 0. Then Lspace(U) is a smooth algebraic subvariety of Gr(n,U). It has two (resp. one)
connected components, each of which is isomorphic to the generalized flag variety SO(2n,C)/P

(resp. SO(2n+1,C)/P)) where P has Levi factor isomorphic to GL(n,C). Moreover, Lspace(U)

has complex dimension n(";l) (resp. @) When dim U = 2n, two Lagrangian subspaces Vi

and Va are in the same connected component of Lspace(U) if and only if dim(Vy) — dim(V; N'V3)
s even.

Notation 2.3. In the example of U = g @ g with the bilinear form (, ) given in (2.1), we
denote by L0 the intersection of £ with the connected component of Lgpace(g@® g) containing the
diagonal of g @ g. The intersection of £ with the other connected component of Lgpace(g @ g)
will be denoted by £1.

Let h be a Cartan subalgebra, and let n be the nilpotent subalgebra of g corresponding to a
choice of positive roots for (g, ), and let n~ be nilpotent subalgebra of g defined by the negative
roots. For a Lagrangian subspace V of h @ b with respect to (, ), let

ly=V+{(z,y): zenyen } Cgdg.

Then [y is a Lagrangian subalgebra of g @ g. It is easy to see from Proposition 2.2 that [y, and
[y, are in the same connected component of Lgpace(g @ g) if and only if Vi and V5 are in the
same connected component of Lepace(h @ b). In particular, L' is non-empty.

2.2. Isometries. We collect some results on automorphisms that will be used in later sections.

Notation 2.4. Throughout this paper, we will fix a Cartan subalgebra b and a choice ¥ of
positive roots in the set % of all roots of g relative to . We will use I' to denote the set of
simple roots in X 7. For each a € ¥, let H, € b be such that < H,, H >= «a(H) for all H € b.
For each o € %, we fix root vectors E,, € g, and F_,, € g_, such that < E,, F_, >=1. Let
g="b+> ,cx o be the root decomposition for g.

Let S and T be two subsets of I'. We are interested in Lie algebra isomorphisms gg — g that
preserve the restrictions of the bilinear form <, > of g to gg and gr. We will simply refer to
this property as preserving <, >>. To describe such isomorphisms, we introduce the following
definition.

Definition 2.5. Let S and T be two subsets of I'. By an isometry from S to T' (with respect to
the bilinear form <, ) we mean a bijection d : S — T such that < da,df >=< «, 5 > for
all o, € S, where < o, 8 >=< H,, Hg >. We use I(S,T) to denote the set of all isometries
from S to T. Following [Sch], a triple (S,T,d), where S,T C I" and d € I(S,T), will also be
called a generalized Belavin-Drinfeld (generalized BD-)triple for G.
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Remark 2.6. Note that our definition of I(S,7) depends on our choice of the ad-invariant
bilinear form <, > on g. On the other hand, for each S C I', we can identify S with the
vertices of the Dynkin diagram of gg so that there is also the scalar product on elements in S
coming from the Killing form Bg of gg. For another subset T' C I, let Ikiiing(S,7") denote the
set of bijections d : § — T that preserve the scalar products induced by the Killing forms Bg
and Br. Then it is easy to see that I(S,T) C Ikiling(S,T) but I(S,T) is not necessarily equal
to Ixilling (S, T). For example, consider the case when S = T consists of exactly two orthogonal
simple roots « and 3 of g such that < a,a >#< 3,8 >. Then the map d : § — T that
exchanges o and 3 is in Ixining (S, 1) but not in I(S,T).

Lemma 2.7. Let S and T be subsets of I and let d € I(S,T). There exists a unique isomorphism
Yd : 85 — 91 such that

(2:2) Va(Ea) = Ea)s  Ya(Ha) = Hy(a)

for every v € S. Moreover, vq preserves <, >, and for every Lie algebra isomorphism p :
g — gp preserving <, >, there is a unique isometry d € I(S,T) and a unique g € Gg such
that p = vqAd,.

Proof. Existence and uniqueness of 4 is by Theorem 2.108 in [Kn]. For a € ¥T, let \q, pto € C
be such that v4(Eq) = Mo Eo and v4(E_y) = paE—o. By applying v,4 to the identity [E,, E_,] =
H, we get A\qjta = 1 for every a € X, It follows that 4 preserves <, >. Now suppose that
i g8g — gr is a Lie algebra isomorphism preserving <, >. Let d; be any isomorphism from
the Dynkin diagram of gg to the Dynkin diagram of g;. Let v4, : gg — g1 be defined as in
(2.2). Then v := 'yd_ll ¢ is an automorphism of gg. Recall that there is a short exact sequence

1 — Gg — Autg, — Autg — 1,

where Autg is the group of all automorphisms of gg, and Autg is the group of all automorphisms
of the Dynkin diagram of gg. Let d2 € Autg be the image of v under the map Autg, — Autg
and write v = 74,Ad, for some g € Gg. Thus pu = v4,74,Adg = V4,d,Ady. Since p and Ady are
isometries of <, >, V4,4, is an isometry of <, >. Thus, d := dids € I(S,T) is an isometry,
and p = v4Ad,.

Uniqueness of d and g follows from the fact that if gg € Gg preserves a Cartan subalgebra
and acts as the identity on all simple root spaces, then gg is the identity element.

Q.E.D.

Definition 2.8. For a Lie algebra isomorphism p : gg — g preserving <, >, we will say that
p is of type d for d € I(S,T) if d is the unique element in I(S,T’) such that ;1 = v4Ad, for some
g € Gs.

2.3. Karolinsky’s classification. Karolinsky [Ka] has classified the Lagrangian subalgebras
of g ® g with respect to the bilinear form (, ) given in (2.1). We recall his results now.

Notation 2.9. For a parabolic subalgebra p of g, let n be its nilradical, and let m := p/n be its
Levi factor. Let m = [m, m] + 3 be the decomposition of m into the sum of its derived algebra
[m, m] and its center 3. Recall that [m, m] is semisimple and that the bilinear form <, > of g
induces a well-defined non-degenerate and ad-invariant bilinear form on m which we will still
denote by <, >. Moreover, <, > is nondegenerate on 3. If p’ is another parabolic subalgebra,
we denote its nilradical, Levi factor, and center of Levi factor, etc. by n’, m’, and 3/, etc..
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Let p and p’ be parabolic subalgebras. The bilinear form (, ) is nondegenerate on 3®3’. When
we speak of Lagrangian subspaces of 3 & 3/, we mean with respect to (, ).

Definition 2.10. A quadruple (p,p’, p, V) is called admissible if p and p’ are parabolic subal-

gebras of g, p : [m,m] — [m/,m] is a Lie algebra isomorphism preserving <, >, and V is a
Lagrangian subspace of 3 & 3.

If (p,p’, u, V) is admissible, set

((p 9", V) o= {(@,2") s € p,a” €0/ (@) = Ty )y (25, 25) €V C gD g,
where for € p, Ty € [m,m] and z; € 3 are respectively the [m,m]- and 3-components of
r+ne€p/n=[mml+3 We use similar notation for 2’ € p’.

Theorem 2.11 ([Kal). 1) I(p,p’, 1, V) is a Lagrangian subalgebra if (p,p’, p, V') is admissible.

2) Every Lagrangian subalgebra of g&®g is of the form [(p,p’, u, V') for some admissible quadru-
ple.

2.4. Partition of L. In this subsection, we partition £ into strata and determine the geometry
of each stratum. We fix some notation on parabolic subalgebras of g.

Notation 2.12. Recall the fixed choice of positive roots from Notation 2.4. Set

n= Z Yo no= Z [

aext acx™
A parabolic subalgebra p of g is called standard if it contains the Borel subalgebra b := h + n.
For a subset S of ', we will use [S] to denote the set of roots in the linear span of S, and we

will set
mg = b + ZaE[S}gaa s = ZQEE'F*[S]QO“ ns - EEZJ": [S] o

and
pg = mg +ng, pg =mg +ng.

We will refer to pg as the standard parabolic subalgebra of g defined by .S, and we will also refer
to pg as the opposite of pg. Let p be a parabolic subalgebra of g. We say that p is of the type S
if p is conjugate to pg, and we say that p is of the opposite-type S if p is conjugate to pg. Note
that pg is of opposite-type —wy[S], where wy is the long element of the Weyl group. Similarly,
mg will be referred to as the standard Levi subalgebra of g defined by S. We will further set
gg = [mg, mg] and

hg =bNgg =spanc{Hy:a € [S]}, js5={zreh: alz)=0,VVaecS}
Then we have the decompositions

Ps=35+8s+tns, pg=j35+08s+ng.
The connected subgroups of G' with Lie algebras pg,pg,ms,ns and ng will be respectively
denoted by Ps, Py, Mg, Ng and Ng . Correspondingly we have the group decompositions

Psg = MgNg, and P§ = MsN‘ST,

and Mg N Ng = {e} = Mg N Ng. Denote by Gs the adjoint group of gg. The adjoint action
of Mg on mg leaves gg invariant and induces a natural projection ys : Mg — Gs. We will also



10 S. EVENS AND J.-H. LU

use xs to denote the map Ps — Gg : ps = mgns — xs(mg) where mg € Mg and ng € Ng.
The similarly defined projection from Pg to Gs will also be denoted by xs.

Returning to the notation in Notation 2.9, we have

Lemma-Definition 2.13. Let (p,p’, 1) be a triple, where p and p’ are parabolic subalgebras of
g, and p: [m,m] — [m',m'] is a Lie algebra isomorphism preserving < , >. Assume that p is of
type S and p" is of opposite-type T. Let g1, g2 € G be such that Adg,p = pg and Adg,p" = pr.
Let Hgl and HE]Z be the induced Lie algebra isomorphisms

Adg, : (mm] — gg, Adg, : [m,m'] — g7,

and consider

W =By o po (Adg) 1 s g — gr-
If i/ : gg — gp is of type d € I(S,T) as in Definition 2.8, we will say that the triple (p,p’, ) is
of type (S, T,d). The type of (p,p’, 1) is independent of the choice of g1 and gs.

Proof. If h; and hy in G are such that Ady, p = pg and Adp,p’ = p;, then there exist pg € Ps
and py € Py such that h; = psg1 and he = pjge. Thus

p' = Adp,opo (Adhl)il = Adp; op o (Adps)il-

The action of Ad,g on gg is by definition the adjoint action of xs(ps) € Gg on gg. Similarly
for the action of Adp; on gp. Thus by Definition 2.8, the two maps p' and p” have the same

type, so the type of (p,p’, 1) is well-defined.
Q.E.D.

Remark 2.14. For S,T C T and d € I(S,T), (pg, pr,a) is of type (S, —wo(T), wowd d), where
wo is the longest element in the Weyl group W of T', and wOT is the longest element in the
subgroup of W generated by elements in 7T'.

We are now ready to partition £. Recall the definitions of £° and £! in Notation 2.3.

Definition 2.15. Let S,T C I',d € I(S,T), and € € {0,1}. Define £°(S,T,d) to be the set of
all Lagrangian subalgebras [(p,p’, i, V') such that

1) U(p,p', 1, V) € L
2) (p,p', 1) is of type (S, T’ d).
We say that [ € L is of type (¢,S,T,d) if [ € L(S,T,d).

It is clear that we have a disjoint union
(2.3) = J U L5(S,T,d),
ec{0,1} S,TCI',deI(S,T)
and that each L£(S,T,d) is invariant under G x G. To understand the (G x G)-orbits in
L(S,T,d), we will, for each generalized BD-triple (S, T, d), set
ng®n, ={(r,y):vcng,yen} Cgdg,
and for each V' € Lgpace(35 @ 37), set

(2.4) lsrayv =V + s @ng) + {(z,74(x)) : v € gg} € L.
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Lemma-Definition 2.16. For Vi,Va € Lgpace(3s @ 37), lsTav, and lsqy, are in the same
connected component of Lspace(gB @) if and only if Vi and Va are in the same connected component
Of Espace(ﬁS @ 3T)' For e = {07 1}’ we deﬁne

£§pace(35 D 5T) - {V € £space(ﬁs 693T) : [S,T,d,V € Ee}'
Proof. The statement follows from Proposition 2.2 and the fact

dim([S,T,d,Vl) — dim([S,T,d,Vl N [S,T,d,Vz) = dlm(vl) — d1m(V1 N Vg)

Q.E.D.
Proposition 2.17. For any generalized BD-triple (S,T,d) and € € {0,1}, we have the disjoint
UNILON
(2.5) L(8,T,d) = U @%@ -israyv.

Veﬁ:pace (3S@ZT)

Proof. It follows from Definition 2.15 that every (G x G)-orbit in L£(S,T,d) passes through
an [S,T,d,V for some V € ﬁgpace(ﬁS S 5T) If Vi,V € £§pace(35 S 3T) are such that [57T7d7V1 =
Adg, g»)ls,7,d,v, then (91, 92) normalizes (ng ® ny) so (g1,92) € Ps x Py, and it follows that
Vi=V.

Q.E.D.

2.5. (G x G)-orbits in L. The following theorem follows immediately from Proposition 2.17
and the decomposition of £ in (2.3).

Theorem 2.18. Every (G x G)-orbit in L passes through an ls7qv for a unique quadruple
(S,T,d,V), where S,T CT',d € I(S,T) and V' € Lgpace(35 D 37)-

For each S,T CI" and d € I(S,T), let

(2.6) Rsr.a:={(ps,py) € Ps x Py : va(xs(ps)) = xr(pp)} C Ps x Pr.
(see Notation 2.12). It is easy to see that the group Rg 4 is the normalizer subgroup in G x G
of [g7.qv for any V € Lypace(35 @ 37). Thus we have the following proposition.

Proposition 2.19. Let S, T C I',d € I(S,T), and V € Lspace(3s D 37)-

1) The (G xG)-orbit in L through (g 4 is isomorphic to (GxG)/Rg 14 and it has dimension
n — z, where n = dimg and z = dim 3g4.

2) (G x Q) -lgr.ayv fibers over G/Ps x G /Py with fiber isomorphic to Gsg.

Proof. It is routine to check that the stabilizer of g7 4 v is Rg 74, and the dimensional formula
follows. The fiber may be identified with (Ps x Py )/Rs 1,4, which may be identified with Gg

via the map
(ps:pr) = g Oxr (7)) (xs(ps)) ™

Q.E.D.
Remark 2.20. It follows that (G x G)-orbits in £(S, T\ d) for e = 0,1 have conjugate stabilizers,
and there are finitely many conjugacy classes of stabilizers of points in £. Moreover, the number

of orbit types for G x G in L is exactly the number of generalized BD-triples for G. We will show
in Section 2.6 that all (G x G)-orbits in £ (and their closures) are (G x G)-spherical varieties.
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The following fact will be used in Section 3.3.

Lemma 2.21. Rg 4 is connected.

Proof. The projection map p : Rsrq — Ps, (ps,py) — ps is surjective and has fiber N, x
Z(Mr), where Z(Mr) is the center of the group M7. Clearly N is connected, and Z(Mr)
is connected by Proposition 8.1.4 of [C]. Since Pg is connected, it follows that Rg 74 is also
connected.

Q.E.D.

2.6. (B x B7)-orbits in L. Let B and B~ be the Borel subgroups of G with Lie algebras
b=h+nand b- = h+ n~ respectively. In this section, we show that there are finitely many
(B x B™)-orbits in each (G x G)-orbit in £. Recall that a normal variety X with an action of
(G x@) is said to be spherical if a Borel subgroup of G x G has an open orbit on X. Consequently,
all (G x G)-orbits in L are (G x G)-spherical homogeneous spaces. The description of (B x B™)-
orbits in £ in this section will also be used in Section 4 to understand a certain Poisson structure
on L.

By Proposition 2.19, every (G x G)-orbit in L is of the form (GXxG)/Rg 1 4 for some generalized
BD-triple (S, T,d), where Rg 4 is given by (2.6). Thus it is enough to consider (B x B~)-orbits
in (G x G)/Rgs 1,4 for any given generalized BD-triple (5,7, d).

Let W be the Weyl group of . For a subset S C I', we will use Wg to denote the subgroup
of W generated by the simple reflections corresponds to the elements in S. We will use W* to
denote the set of minimal length representatives of elements in the cosets in W/Wg. It is well-
known that w € W if and only if w(S) C ¥F. For each w € W, we will also fix a representative
w of win G.

The following assertion is similar to Lemma 1.3 in [Sp].

Proposition 2.22. Let (S,T,d) be an generalized BD-triple for G. Then the (B x B™)-orbits
in (G x G)/Rgq are of the form Qu, = (B x B™) - (w,0)Rs 1,4, where w € W and v € wT,

Moreover, Qv = Quy v, if and only if w = w1 and v = vy.

Proof. Consider the right action of Pg x Py on (B x B™)\(G x G) by right translations. By
the Bruhat decomposition of G, every (Ps x Pj )-orbit contains exactly one point of the form
(B x B™) (1, 19), where wy € W9 and wy € WT. Denote by Stab(y, w,) the stabilizer subgroup
of Pg x Py at (B x B™)(uy,us). It is easy to see that

Stab(y, wy) = (PsNwi'(B)) x (Py Nwy ' (B7))
— (H(NNnwy (V) x (H(N”" nwy ' (N7))).

Thus every Rg 1 4-orbit in (Bx B~ )\(GxG) is of the form (Bx B~ ) (w1 pg, wapy) for a unique pair
(wy,wz) € W3 x WT and for some (ps,pr) € Psx P;. Two such points (B x B™)(w1ps, Wapyr)
and (B x B™)(u1qs,w2qy) are in the same Rg 1 4-orbit if and only if (pg,pr) and (¢s, gy ) are
in the same (Stab(wl’wz), Rs 1 q)-double coset in Pg x P . To understand the double coset space
Stabu, we) \Ps X P /Rs T4, consider the projection 75 : Ps — Mg and 71 : P, — My with
respect to the decompositions Ps = MgNg and P, = MpN, respectively. Since Mg x Mr
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normalizes Ng X Np in Ps x Py, we see that mg x mp : Pg X P, — Mg x My induces an
identification

Stab(wth)\PS X P’]T/RS,T,CI = (71'3 X 7TT)<Stab(w17w2))\MS X MT/<7T5 X WT)(RS,T,d)~

Note that (mg x m7)(Stab(y, w,)) = Bs X Bp, where Bs = Mg N B and By, = My N B~ are
Borel subgroups of Mg and Myt respectively. On the other hand, it is easy to see that every
(Bsx By, (mg xmr)(Rs1,4))-double coset in Mg x My is of the form (71, e) for a unique u; € Wi.
By setting w = wiu; € W and v = wy € W7 for (wi,wsy) € WS x WT and u; € Wy, we have
proved Proposition 2.22.

Q.E.D.

Corollary 2.23. Every (B x B™)-orbit in L goes through exactly one point of L of the form
Ad 0\ lsTd,v, where (S,T,d) is a generalized BD-triple, V' € Lspace(35 © 37), and w € W,
ve W,

Since each (G x G)-orbit in £ has finitely many (B x B~ )-orbits, at least one of them is open.
Thus we have the following corollary.
Corollary 2.24. All (G x G)-orbits in L are (G x G)-spherical homogeneous spaces.
2.7. The De Concini-Procesi compactifications Z;(G) of G. In this section, we will con-

sider the closure in £ of some special (G x G)-orbits. Namely, when S =7 =T and d € I(I',T"),
we have the graph [, of 74 as a point in L:

(2.7) Ly, = {(z,74(2)) : = € g}.
The (G x G)-orbit in £ through [,, can be identified with G by the map
(2.8) Ij: G— (GxG)-ly,: gr— {(z, vgAdy(x)) : = € g}.

The identification I; is (G x G)-equivariant if we equip G with the action of G x G given by
(2.9) (91,92) - 9 = 77 (92)997 -
Since an orbit of an algebraic group on a variety is open in its closure (see Section 8.3 in

Hul), the orbit (G x G) - [, has the same closure in the Zariski topology and in the classical
Yd

topology. The closure (G x G) - ly,, called a De Concini-Procesi compactification of G, is a
smooth projective variety of dimension n = dim G (see [D-P, §6]). We denote this closure by
Z4(G). We note that Z4(G) = (id x v4) Zia(G) (but not (G x G)-equivariantly).

It is known [D-P] that G x G has finitely many orbits in Z;(G) indexed by subsets of I.
Indeed, for each S C I, let [g4 € £ be given by
(2.10) [s.0 =ns @ nyq +{(2,74(2)) : © € mg}.
Choose A € h such that there exists a one parameter subgroup e* : C* — H such that d(e*)(1) =
Aand a(A) =0 for all @ € S and a(\) > 0 for all @« € I' — S. Then it is easy to see that

lim Ad(e*(t),e) Ly, =lsa € Gr(n,g @ g).

t—+o00
Thus [gq € Z4(G). It is easy to see that [,, € LY(I',I',d) for ¢ = (dimbh — dim§h?¥) mod 2.
Thus lgq € L£(S,d(S),d|s) for the same value of e.

Theorem 2.25. [D-P| For every d € I(I',T"), Z4(G) = Ugr(G X G) - lsq is a disjoint union.
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2.8. Closures of (G x G)-orbits in L. By Theorem 2.18, every (G x G)-orbit in £ passes
through an [g 74 for a unique quadruple (S,7,d, V'), where (S, T, d) is a generalized BD-triple,
V € Lopace(ds ® 37), and [grqy is given in (2.4). For each quadruple (S,7,d, V), we will
now study the closure of the (G x G)-orbit through [g74y in Gr(n,g @ g). To this end, let
Gr(m, gg®gr) be the Grassmannian of m-dimensional subspaces in gg® gy, where m = dim gg.
For the Lie algebra isomorphism 74 : gg — g7 given in (2.2), let

by = {(z, 7a(2)) : = € gg} € Gr(m, gs © g7).

Definition 2.26. We define Z;(Gg) to be the closure of the (Gg x Gr)-orbit (Gg x Gr) -1, in
Gr(m, gs @ gr) through [,.

It is easy to see that (Gg x Gr) - I, consists of all {(x,vqAdy(x)) : € gg} for g € Gg. Thus
Z4(Gg) is the closure of Gg inside Gr(m, gg @ gr) under the embedding

(2.11) Gs — Gr(m,gs® gr) : g+ {(x,79Adgx) : = € gg}.
Let the group Ps x Pp act on Gr(m,gg @ gr) through the group homomorphism xgs % xr :

Pg x P, — Gs x Gr, and let Ps x Py act on Gg by

(2.12) (ps,p7) - 95 =75 " (xr(p7)) 95 (xs(ps)) ™,  (ps,py) € Ps x Py, gs € Gg

(see Notation 2.12). Then the embedding in (2.11) is (Ps x P )-equivariant. In particular,
Z4(Gs) is a (Ps x Py )-equivariant compactification of G'g for the action of Ps x P, on Gg
given in (2.12).

Proposition 2.27. For every generalized BD-triple (S,T,d) and every V € Lspace(35 B 37),

1) the closure (G x G) -lgray in Gr(n,g ® g) is a smooth subvariety of Gr(n,g & g) of
dimension n — z, where n = dimg and z = dim 34, and the map

a: (G X G) X(PSXP;) Zd(Gs) — (G X G) . [S,T,d,V
[(91,92), [ — Ad(g, ) (V + (ng ®ng) +1)

is a (G x G)-equivariant isomorphism;

2) (G x G) - lsrav is the finite disjoint union
(GxQ)-lsrayv = U (G x Q) - lg, q(s1),d1,V 5
S1CS
where for S1 C S, we have di = d|g,, and

Vi=V+{(z,7(z)) : v €bsNjg } Cig, ©ary-

Proof. Since G/Ps x G/Py is complete, it follows by standard arguments that the image of a
is closed. Since (G x G) X (PsxPy) Gy is dense in (G x G) X (psxPy) Z4(Gg) and a restricts to

give an isomorphism from (G x G) X (PsxPr) Gs to (G x G) - lgqy, it follows that the image

of a is dense in (G' x G) - lg1,4,. Hence a is onto. 2) follows easily from the fact that a is onto
and the description of orbits in Z4(Gg).

To show that a is an isomorphism, we note by 2) that if [(p,p’, 1, V) € (G x G) - lg7,4,v, then
p is of type S; C S and p’ is of opposite type T1 = d(S1) C T. For such an [(p,p’, 1, V), let

o(Up, "1, V) = (ps(p), pr(p')) € G/Ps x G/ Py,
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where ps : G/Ps, — G/Ps and pr : G/Pr, — G/Pp are the usual projections between
varieties of parabolic subgroups. Then ¢ : (G x G) - lsrqyv — G/Ps x G/P; is (G x G)-
equivariant and can be shown to be algebraic using the local coordinates in [D-P], §2.3. More-
over, ¢~ (ePs,ePr) = Z4(Gs). Indeed, if (g1, 92) € Ps x Py, then it is easy to check using the
Bruhat decomposition that (g1,g2) - (V + ng @ ny + [) does not project to (ePs, ePy ) under ¢
for any [ € Z4(Gg). Now we use Lemma 4 on p. 26 of [S]] to conclude that a is an isomorphism.

Q.E.D.

Consider now the case when S and T are the empty set (), so d = 1. By Theorem 2.18, every
(G x G)-orbit in £°(0,0, 1)UL (0,0, 1) goes through a unique Lagrangian subalgebra of the form

(2.13) ly=V+mon),
where V' € Lgpace(h @ ). The following fact follows immediately from Proposition 2.27.

Corollary 2.28. For every V € Lepace(h @ h), the (G x G)-orbit through ly is isomorphic to
G/B x G/B~. These are the only closed (G x G)-orbits in L.

Corollary 2.29. L has two connected components.

Proof. In Section 2.1, we observed that £ has at least two connected components, namely £°
and £'. Since every orbit of an algebraic group on a variety has a closed orbit in its boundary
(see Section 8.3 in [Hu]), every point in £ is in the same connected component as [y for some
V € Lypace(h @ b). Thus £ has at most two connected components.

Q.E.D.
2.9. The geometry of the strata £°(S,T,d). For a generalized BD-triple (S,T,d) and for

€ € {0,1}, we now determine the geometry of £°(S, T, d). Recall that the group Ps x P} acts on
Gs by (2.12). Let Ps x Pp act trivially on £g,,..(35 © 37), and consider the associated bundle

(G % G) X (s (Gis X Lipaealss @ 37))

over G/Ps x G/P; and the map

(2.14) a: (GXG) Xy (Gs X Lipealss ®37)) — LS. T.d)

(2.15) [(91,92), (9, V)] — Ad(ghgz)[g,%

where [y =V + (ng @ ny) + {(z,79Ady(x)) : € gg} for g € Gs.

Proposition 2.30. For every S,T C I';d € I(S,T), and ¢ € {0,1}, L(S,T,d) is a smooth

connected subvariety of Gr(n,g @ g) of dimension n + Z(Zgg) , where n = dimg and z = dim 34,

and the map a in (2.14) is a (G X G)-equivariant isomorphism.

Proof. Consider the (G x G)-equivariant projection
(2.16) J: LS, T,d) — G/Ps x G/Pp : Up,p',p, V) — (p,p').

Let F¢(S,T,d) be the fibre of J over the point (pg,p;) € G/Ps x G/P;. By Lemma 4, p. 26
of [Sl], the map

(G X G) X(PsXP,;) .’FG(S, T, d) — EG(S, T, d) : [(gl,gg), [] — Ad(g1,gz)[
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is a (G x G)-equivariant isomorphism. By Lemma 2.7,
F(S,T,d) ={lgv : g€ Gs, V€ Liucelss @s7)}-

The identification Gs X L&,ace(3s @ 37) — F(S,T,d) given by (g,V) +— lyv is (Ps x Pr)-
equivariant. It follows that a is a (G x G)-equivariant isomorphism. The dimension claim now
follows from Propositions 2.2 and 2.19. Smoothness and connectedness of L£(S,T,d) follow
easily.

Q.E.D.

2.10. The geometry of the closures £(S,T,d). In this section, we determine the geometry
of the closure of £(S,T,d) in Gr(n,g® g) for any generalized BD-triple (S, T,d) and € € {0,1}.
The closure is taken in the Zariski topology, and we will show that it is the same as the closure
in the classical topology.

Recall that Z;(Gg) is the closure in Gr(m, gg®gr) of the embedding of Gg into Gr(m, gs®gr)
given in (2.11). Moreover, Ps x Py acts on Z4(Gs) by (2.12). Let Pg x P act trivially on

‘Cgpace(ﬁs' D 3T)'
The proof of the following Theorem is quite similar to the proof of Theorem 2.27, and we will
omit it.

Theorem 2.31. For every generalized BD-triple (S,T,d) and every e € {0,1}, the closure

L(S,T,d) is a smooth algebraic variety of dimension n+ Z(Z;g) , where n = dim(g), z = dim g4,

and the map

@17 ar (G XG) X (ZalGs) X Lipacalss @ 57)) — LS Td)

(2.18) (915 92), (1, V)] — Ad g, g) (V + (ns © np) +1)

is a (G x G)-equivariant isomorphism.

Corollary 2.32. For every generalized BD-triple (S,T,d) and every e € {0,1}, we have a

disjoint union

(2.19) L(S,T,d) = U U (@ % G) 15, aesi)amviss
Veﬁgpace(ase}ﬁT) SICS

where for S C S and V € ﬁgpace(gs @ 37),

Vi(V,81) =V +{(z,7a(z)) : ® € hg N5, } T35, Daas)

Remark 2.33. 1). Since Z4(Gg) is also the closure in the classical topology of the (Gs x Gr)-
orbit through [, inside Gr(m, g5 ® gr), the L(S,T,d)’s also have the same closures in the two
topologies of Gr(n, g ® g).

2). Since Gg is a Zariski open subvariety of Z4(Gg), Z4(Gs) — Gg is an algebraic variety
of dimension strictly lower than m = dim Gg. It follows from the proof of Theorem 2.31 that
LS, T,d) — L(S,T,d) is of strictly lower dimension than £(S,T,d).
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2.11. Irreducible components of £. We can now determine the irreducible components of
L. Since L(S,T,d) is smooth and connected, it is a closed irreducible subvariety of £. Since

we have the finite union
c= U 1),
ec{0,1} S, TCI,del(S,T)

the irreducible components of £ are those L£°(S,T,d)’s not properly contained in some other
such set.

Theorem 2.34. L(S,T,d) is an irreducible component of L unless |I' — S| =1, T = dy(S) for
some dy € I(I,T"), d = di|s, and e = (dimbh — dim h7%) mod 2.

Proof. When (S5,7,d,¢€) are as described in the proposition, the set £(S,T,d) consists of a
single (G x G)-orbit because dim 3¢ = 1, and this single (G x G)-orbit lies in Z4, (G) by Theorem
2.25. We need to show that this is the only nontrivial case when the closure £(S,T,d) is
contained in another £¢(S1,71,d;).

Assume that £°(5,7T,d) is in the boundary of £(S1,T1,d;). Then by Corollary 2.32, S C S;
and T C Th. By Remark 2.33, dim £¢(S, T, d) < dim £(S1,T1,d;), and thus

dim(3g)(dim(35) — 3) - dim(3g,)(dim(3s,) — 3)
2 2
by the dimension formula in Proposition 2.30. Since S C S1, so dim(35) > dim(3g, ), these two
inequalities imply that dim(35,) = 0 and dim(35) = 1 or 2. In particular, S; = 171 = T, so
e = (dimbh —dim b’ ) mod 2, and L(S1,T1,d1) = Z4, (G).
If dim(3q) = 2, £5(S,T,d) contains infinitely many (G x G)-orbits by Theorem 2.18 and

Proposition 2.2. Since Zg, (G) has only finitely many (G x G)-orbits, £(S,T,d) can not be
contained in Zg, (G).

Assume now dim(3g) = 1. Then we know by Proposition 2.30 that £°(S,T,d) is a single
(G x G)-orbit. By the description of all (G x G)-orbits in Zg, (G) given in Theorem 2.25, we see
that we must have T and d as described in the proposition.

Q.E.D.

Example 2.35. Let g = sl(2,C). Then £ has two irreducible components, one being the De
Concini-Procesi compactification Ziq(G) of G = PSL(2,C) which is isomorphic to CP? (see
[D-P]), and the other being isomorphic to CP* x CP!, the closed (G x G)-orbit through the
Lagrangian subalgebra h + (n@n~), where h consists of diagonal elements in si(2,C), hA is the
diagonal of h @ b, and n and n™ are respectively the nilpotent subalgebras of sl(2, C) consisting
of strictly upper and lower triangular elements in sl(2, C).

For g = sl(3,C), there are four irreducible components Ziq(G), Z4, (G),C1 and Ca, where
Zia(G) and Zg, (G) are the two De Concini-Procesi compactifications of G = PSL(3,C) corre-
sponding to the identity and the non-trivial automorphism of the Dynkin diagram of si(3, C), and
Cy and Cy are the two components Ly(0,0,d) and £1(0,0,d). Both C; and Cy have dimension
7. Moreover, Ziq(G) N C} is a 6-dimensional closed (G x G)-orbit, and so is Zg, (G) N Cs.

3. CLASSIFICATION OF GA-ORBITS IN L
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3.1. Some results on Weyl groups and generalized BD-triples. In this section, we discuss
some results on Weyl groups in relation to generalized BD-triples. We will use these results in
Sections 3.2 and 3.3, to determine the Ga-orbits in £, where Ga = {(g,9) : g € G}. We first
fix some notation.

Notation 3.1. Let W be the Weyl group of I'. If F' is a subset of I', we let Wr denote the
subgroup of W generated by elements in F. If F and F' are two subsets of I, then G has the
Bruhat decomposition

(3.1) G = 11 PrwPy .
[’LU]GWE\W/WF

It is also well-known (see Proposition 2.7.3 of [C] or Lemma 4.3 of [Y]) that each coset from
Wg\W/Wp has a unique minimal length representative w with the property that

(3.2) wH(E)c¥T and w(F)c Xt

Let ZWT be the set of minimal length representatives for double cosets from Wg\W/Wg. When
F is the empty set 0, we set W =W . If E| and F, are two subsets of F, the set of minimal
length representatives in Wr for the double cosets from Wg, \Wr/Wg, will be denoted by
B\ W) P2, If u € P(WE)P2 and v € Pi(Wg )P are two such minimal length representatives, we
can regard both v € W and v € Wgr as elements in W, and by uv we will mean their product
in W.

Definition 3.2. Let (S,T,d) be a generalized BD-triple in I'. For v € W7, regard vd as a map
S — A. We define S(v,d) C S to be the largest subset in S that is invariant under vd. In other
words,

(3.3) S(v,d) ={a e S : (vd)"a € S,Vinteger n > 1}.
We will show that every Ga-orbit in £ gives rise to a unique generalized BD-triple (S, T, d)
and v € W7, and we will classify Ga-orbits in £ in terms of twisted conjugacy classes in M, S(v,d)-

We first have the following lemma which follows directly from Proposition 2.7.5 of [C] or
Lemma 4.3 of [Y].

Lemma 3.3. 1) Let w € SWT. Then uw € W for every u € (Wg)S™(T);

2) Every v € WY has a unique decomposition v = uw where w € “W7T and u € (Wg) (@),
Moreover, l(v) = l(u) + l(w).

For each w € W7, set
(3.4) Tw=SNw(T), S,=d (Tnw(9)).
Since Sy, Ty C S, we can regard (S, Ty, wd) as a generalized BD-triple in S. Let Sy, (u, wd) be
the largest subset of Sy, that is invariant under uwwd, i.e.,
(3.5) Sy(u,wd) ={a €8Sy : (vwd)"a € Sy, ¥n > 1}.

Lemma 3.4. Forve W7 and v =uw as in Lemma 3.3, we have Sy, (u,wd) = S(v,d).
Proof. Clearly Sy (u,wd) C S(v,d). Suppose now that a € S(v,d). To show that a €

Sy (u,wd), we show wda € S. Since a € S(v,d), vda € S, so wda € u=1S C [S]. Since
w(T) € ¥t wda € [S]NXT. To show that wda € S, suppose that wda = 1 + (B2 with
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B1, B2 € [S]NET. Then da = w B + w132, But wp, w18 € w H([S]NET) C ©+. This
contradicts to the fact that da € T is a simple root. Thus wda € S. It follows easily that
a € Sy, and hence o € Sy, (u, wd).

Q.E.D.

Notation 3.5. Consider a sequence of quadruples (S;, T}, d;, w;) indexed by i € N such that:
1) (S;,T;,d;) is a generalized BD-triple;
2) w; € Y(Ws, )T (we set So =T);
3) Tis1 = Si Nwi(Ty), diy1 = wid;, and Si1 = di (Ti41).

Since S;11 C 5;, there exists some k such that Sy = Sipy1. Let v = wrpwg_1---wi. Also note
that if (S1,741,d1,w1) = (S, T,d,w), then Sy = S, To = Ty, and ds = wd.

Proposition 3.6. Let the sequence {(S;,T;,di, w;) : i € N} be as in Notation 3.5, and assume
that (S1,T1,d1) = (S,T,d). Then

1) Sg+1 = Th41 = Sk
2)veWwrT.
3) S(v,d) = Sgy1 and dpyq = vd.

Proof. For 1), since Sy, = Sk1, it follows that the cardinalities of S and Ty1 = Sk N wy(Tk)
coincide. In particular, Sy = wg(T%), so Tx+1 = Sk. Let ugyq1 be the identity and let u; :=
wrwg_1 - - - wj. For 2), use decreasing induction to show that u; € (ng_l)Ti. The case it = k+1
is clear, and the inductive step follows from Lemma 3.3 (1). Repeated application of Lemma
3.4 gives
S(v,d) = Sa(ug,ds) = S3(us,ds) = - = Sgy1(ugt1, dgt1)-

Since ug41 is the identity and dyy1 = widy : Sky1 — Try1 is a self-map by (1), it follows that
Sk+1(Uk+1, dg+1) = Sk+1, which gives the first part of 3), and the remaining part follows easily.

Q.E.D.

Example 3.7. Let g = sl(n + 1,C) with the simple roots labeled as oy, ag,...,ay. let S =
{o,00,...,0n1}, T ={ag,a3,...,a,},and d: S = T : d(oj) = ojqq1 for j =1,2,...,n— 1.
The triple (S, T, d) is related to the Cremmer-Gervais Lie bialgebra structure on g (see [Cr-G]).
We take all w; = 1, the identity element in the Weyl group. Then k& = n and moreover,
Si = {Oél,Odz,...,Oén_i}, Tl = {ag,ag,...,an_iﬂ} for 1 S ) S n — 1, and S, :Tn =

3.2. A double coset theorem. By Theorem 2.18, to describe the Ga-orbits in £, it is enough
to describe Ga-orbits in (G x G)/Rgrq for all generalized BD-triples (S,T,d) for I', where
Rg 14 is given by (2.6). In this section, we will prove a double coset theorem which will allow
us to describe the Ga-orbits in £. The method we use is adapted from [Y], and a more general
double coset theorem is proved in [Lu-Y2], which, as special cases, gives a classification of
(Rs, 1y d1 > RSy 1y,dy )-double cosets in G x G for two BD-triples (S1,T1,d1) and (Sa, T3, da).

For the rest of this section, we assume that G is a connected complex reductive Lie group
with Lie algebra g, not necessarily of adjoint type. We use the same notation as in Notation
2.12 and Notation 3.1 for various subalgebras of g and subgroups of G and for elements in the
Weyl group. We now define a class of subgroups R of G x G that are slightly more general than
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the subgroups Rg 74, and we will prove a theorem on (G, R)-double cosets in G x G for such
a subgroup R.

Definition 3.8. Let (S5,7,d) be a generalized BD-triple in I'. Denote the centers of the Levi
subgroups Mg and M7 by Zg and Zp respectively. If Cg is a subgroup of Zg and Cr is a
subgroup of Zr, we let

jS:MS—>MS/CS and jT:MT—>MT/CT

be the projections. By a (5,7, d)-admissible subgroup of G x G we mean a subgroup R =
R(Cg,Cr,0,) of the form

(3.6) R(Cs,Cr,04) = {(m,m') € Mg x My : 04(js(m)) = jr(m')}(Ng x Ny),

where Cg is a subgroup of Zg, Cr is a subgroup of Zp, and 04 : Mg/Cs — M7 /Cr is a group
isomorphism that maps the one-dimensional unipotent subgroup of Mg/Cs defined by « to the
corresponding subgroup of My /Cr defined by da for each « € [S]. .

Clearly R(Zs, Z1,7v4) = Rs.1,4. Let R be any (S, T, d)-admissible subgroup of G x G. Recall
that the subset S(v,d) of S for v € W is defined in (3.3). If © is a representative of v in G, set
(3.7) Ry = {(m1,m}) € Mg(yay X Mg(ya) : Oa(is(m1)) = jr(v™'mio)}

(3.8) = (Ms(,a) X Ms(,a)) N ((d x Ady)R),

where Ady : G — G : g — 0go~ . Let R, act on Mgy q) (from the right) by

(3.9) m - (my,m}) = (m))tmmy, me Mg(y.q), (m1,m}) € Ry.

For (g1,92) € G x G, we will use [g1, g2] to denote the double coset Ga(g1,92)R in G x G.

Theorem 3.9. Let (S,T,d) be a generalized BD-triple, and let R = R(Cg,Cr,04) be a (S,T,d)-
admissible subgroup of G x G as given in (3.6). Forv e W, let S(v,d) C S be given in (3.3),
and let ¥ be a fized representative of v in G. Then

1) every (Ga, R)-double coset in Gx G is of the form [m,v] for somev € WT andm € Mg (y,ay;
2) Two double cosets [m1,01] and [mg, V2] in 1) coincide if and only if vi = va = v and my

and my are in the same Ry-orbit in Mg, q), where we use the R; action in (3.9).

Remark 3.10. If v € W7 and if © is another representative of G, then © = h,® for some h,, € H,
where H is the Cartan subgroup of G with Lie algebra h. It is easy to see that (m,m’) € Ry
if and only if (m,h;'m'h,) € Ry. It follows that if Theorem 3.9 holds for a particular set
{0 :v € WT}, then it holds for every such set.

We will present the main induction step in the proof of Theorem 3.9 in a lemma. To this
end, recall that every w € SW7 gives rise to the generalized BD-triple (S, Ty, wd) in S given
in (3.4). For each w € ‘W7, fix a representative u in G, and set

N§, =Ns,NMs, and Ny~ =N; NMs.
Define
(3.10) Ry = {(m,m') € Mg, x Mz, : 0a(js(m)) = jo(i~ " 'm'i)} (Négw X N;{)

(3.11) — (Mg, x Mp,) N ((id x Adg)R)) (Nssw X Nﬁ;—) .
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Note that Rg is an (Sy, Ty, wd)-admissible subgroup of Mg x Mg defined by the subgroup Cg
of Zg,,, the subgroup w(Cr) of Zr, and the group isomorphism

Yird © Adyby, Ms,, /Cs — Mr,, /w(Cr).

Lemma 3.11. 1) Every (Ga, R)-double coset in (G x G) is of the form [m,m'w] for a unique
w e WT and some m € Ms.

2) [m1, myw] = [ma, mh], where w € SWT and (my, m}), (mg, mh) € Ms x Mg, if and only
if (m1,m}) and (ma,mb) are in the same ((Mg)a, R3)-double coset in Mg x M.

Proof. Consider the right action of Pg x P on Ga\(G x G) by right translations. By the
Bruhat decomposition G = J,,csyyr PswPy, the (Ps x Py )-orbits are parameterized by the
set {Gale, ) : w € SWT}. Let w € SWT. The stabilizer subgroup of Ps x Py at Ga(e,w) is
Ps N (wPrw™!) considered as a subgroup of Ps x P via the embedding

(3.12) Ps N (wPpw™t) — Ps x Py @ pg+— (ps, W™ 'psid).

Thus the set of R-orbits in GA\(G x G) can be identified with the disjoint union over w € W7
of the spaces of R-orbits in Ps N (P w™1)\(Ps x Py). Thus we get an injective map

(3.13) (Ps NP~ ")\Ps x Pr /R — Ga\G x G/R

given by (Ps NwPpw™")(ps, pr)R — [ps, wpr)-

We will complete the proof by identifying
(3.14) (Ps N (wPpw ")\Ps x Py /R = (Ms)a\Ms x Ms/R3
through a series of steps. Let mg : Pg — Mg be the projection with respect to the decomposition
Pg = MgNg. Similarly, we have the projection 7y : P, — My. Then the projection mg x mp :
Pg x P, — Mg x My gives an identification
(3.15) Ps N (wPqw ')\ Ps x Py /R — Ri\Mg x My/Rs,
where

R = (7r5 X FT)(PS N (”li)PE?l'}*l))7 Ry = (MS X MT> NR.
Now since the projection from (Mg x M7) N R to My is onto with kernel (Cs x {e}), the map
Gw: (Mg x Mr)/Ry — (Mg x Ms)/(Ms)a(Cs x {e})

that maps (mg, m7r)Ra to (mY,ms)((Ms)a(Cs x {e})) is a well-defined bijection, where for
mr € Mr, m'S is any element in Mg such that (m’S, mr) € Ry. Thus ¢, induces an identification
(3.16) ty : R1\Mgs x Myp/Ry — R3\Mg x Mg/((Ms)a(Cs x {e})),
where

Rs def {(mls,mg) € Mg x Mg : Imp € Mrsuchthat (mg, mr) € Ry, (mg,mr) € Ry}
By Theorem 2.8.7 of [C], we have the decomposition of Pg N (P w™!) as

(3.17) PsN (U')wafl) = MgN Adu')(MT)(MS N Adw(Nf))(NS N Adw(MT))(NS N Adw(N,;))

We note that Mg N Ady,(Mr) = MS’ﬂw(T)7 Mg N Adw(Nf) = Ng&;(T) = Mgn N.S_'ﬂw(T)’ and
NsNAdy(Mr) = qujmw—l(S) = M7 N Npn,-1(5)- These identities are easily verified at the level



22 S. EVENS AND J.-H. LU

of Lie algebras using the identity [S] N [w(T")] = [S Nw(T')] and follow for groups since all these
groups are connected. Thus

Ry = {(m, Ady-1(m)) : m € Mgnyr} (Ngr;u ) % N;me,l(s)) .

Therefore (m/y,mg) € R if and only if there exist n € Ngr’{u(T), ny € N%mw—l (5)’ and m €
Mgty such that
mg =mn, (ml, Ady-1(m)ny) € Ro.
Recall that T, = S Nw(T) and S, = d~1(T Nw1(S). It follows now from the definition
of R that (ml,mg) € Rs if and only if there exist m’ € Mg,,m € Mr,, n € N;;’;, and
n' € Ngw = Mg N Ng,, such that
mg=mn, mg=m'n', (m/,Ad;'(m)) € R.
Thus Rj is precisely the group Ri as given in (3.10). Moreover, since Cg lies is the center of
Mg and since Cis x {e} C R2, the (right) action of Cs x {e} on R3\(Mg x M) is trivial. Thus
we have
R3\Ms x Ms/((Ms)a(Cs x {e})) = R3\Ms x Ms/((Ms)a(Cs x {e}))

R3\Ms x Ms/(Ms)a

= (MS)A\MS X Ms/Ri,
where the last identification is induced by the inverse map of Mg x Mg.

Combining the above identification with the identifications in (3.15)-(3.16) and with the
inclusion of (3.13), we get a well-defined injective map

(Mg)a\Ms x Mg/RS — Ga\G x G/R

12

which is given by
(Ms)a(m,m" )R — [((m") =", iba(m™1)] = [(m') " m, ] = [m, m"i].
This finishes the proof of Lemma 3.11.
Q.E.D.

Proof of Theorem 3.9. By Lemma 3.11, each (Ga, R) double coset in G x G determines some
w € “WT and a double coset [m,m']; € (Mg)a\Mg x MS/R;?]. Let So=1,8,=8,T1 =T,
w1 = w, and d; = d. By successively applying Lemma 3.11 to a sequence of smaller subgroups,
we obtain a sequence of quadruples (S;, T;,d;, w;) as in Notation 3.5, as well as a double coset
in

(Ms;)a\Ms; x Mg, /R,
where R; is the subgroup of Mg, x Mg, defined analogously to Rg.

Let £ be minimal such that Si,1 = Sk. It follows that Sk‘“(WS,C)T’€+1 is the trivial group, so
wy41 = e is the identity. As in Notation 3.5, let v = wy, - --wy € WT. By Proposition 3.6, Sj41 =
S(v,d), and it follows that each double coset is of the form [m,m'v] for m € Mg, ). It follows
from definitions that Ryy1 = Ry, and thus double cosets in (Mg, )a\Ms,,, x Ms, /Rit1
coincide with double cosets in (Mg, q))a\Mg(v,a) X Ms(v,q4)/Ro- 1t is easy to see that the map

1

(Ms(v,ay) A\Ms(y,ay X Ms(w,a/ Ry — Mg(v,a)/Rs : [m,m'] — [m/™"m)]
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is a bijection. This proves Theorem 3.9.

Q.E.D.

3.3. Ga-orbits in L. Recall from Theorem 2.18 that every (G x G)-orbit in £ passes through
exactly one point of the form [g7 41 given in (2.4), where (S,T,d) is a generalized BD-triple,
and V' € Lgpace(35 37)- Recall also from Proposition 2.19 that the stabilizer subgroup of G x G
at [g74v is Rs7q given in (2.6). Thus to describe the space of G-orbits in £, it is enough to
describe the space of Ga-orbits in (G x G) - lg1qv = (G X G)/Rs 1,4, which are the same as
(Ga, Rs 1 4)-double cosets in G x G.

Notation 3.12. For a generalized BD-triple (S, T,d), V € Lspace(35®37), m € Mg(y.q), v € WT,
and ¥ € G a fixed representative of v in G, set

(3.18) (s.7.d,V,o,m = Ad(m,e)ls 1.4,V
where [g7 4y is given in (2.4). Define

(3.19) Ry = {(m1,m}) € Mgy ay X Mgy va(xs(m1)) = xr(d~ " mio)},
and let R; act on Mg, 4y (from the right) by
(3.20) m - (my,m}) = (m))tmmy, me Mgy q), (m1,m}) € Ry.

As an immediate corollary of Theorem 3.9, we have

Corollary 3.13. Every G = Ga-orbit in L passes through an s q,v,0.m for a unique generalized
BD-triple (S,T,d), a unique V € Lepace(3s ® 37), a unique v € W1, and some m € Mg (v,ay;
Two such Lagrangian subalgebras s 1.4 v.pm, and lsT.4v,em, are in the same Ga-orbit if and
only if my and my are in the same R;-orbits in Mgy q)-

3.4. Normalizer subalgebras of g at [ € L. For a Lagrangian subalgebra [ = [57 4 v,5,m in
Corollary 3.13, we now compute its normalizer subalgebra n(l) C g = gp = {(z,2) : € g}.
Introduce the map

¢ = AdyygxsAdl: pg — g.
Consider the standard parabolic subalgebra pg, 4y and its decomposition pg, 4y = 35(v,a) +
95(v,d) T Ms(v,a) (see Notation 2.12).

Lemma 3.14. The map ¢ = AdyygxsAd, ! leaves each 0f 35(v,d)s 8S(v,d)s and Ng(y ) nVATIGNT.
Moreover, ¢ : ng(y.q) — Ns(v,q) i nilpotent.

Proof. Let z € 35(,4)- Then ¢(z) = Adyyaxs(z) € h. For every a € S(v,d), since (vd)~ta €
S(v,d), we have
a(6(x)) = ((vd) ) (xs(2)) = ((vd)a)(@) = 0.

Thus ¢(x) € 35(p,4)s SO 35(v,a) i ¢-invariant. Since both Ad;7yg and Ad; ! leave g S(v,d) Invariant,
we see that ¢lgs, , = Adyv4Ad;t leaves g S(v,d) Invariant.

It remains to show that ng(,q) is ¢-invariant and that ¢ : ngy,q) — ng(y,ae) 1S nilpotent.
Decompose ng(,q) as Ng(y,q) = ns + ng(%d), where ng(v’d) = Bae[S]-[S(v,d)]Fa- Then p(ng) =0
and @lps = AdjygAdy,!, and AdyyaAdy, (ng, o) C Nsa)- Indeed, Ady'(ng, 4) C 12, 0

and Ad{,’}/d(l‘lg(v d)) C Ng(y,q) since v € WT. Thus Ng(y,d) I8 ¢-invariant.
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To show that ¢ : ng(,.q) — Ng(v,q) is nilpotent, set Y& =3 —[9], and for j > 1, set
5f = faeSt:acls), (vd) (o) € [S], (vd) (@) ¢ [S]}

= {ac[S]NET :vd(a) € E;l}
Then X1 — [S(v,d)] = Ujso Zj’ is a finite disjoint union. Let K > 0 be an integer such that
%S =0forj>K. For 0<j <K, set

n; = @QEnga'
Then ng = ng, and
NSw,d) = Mo + 1 + -+ g

is a direct sum. We claim that [mg(,q),n;] C n; each j > 0. Indeed, for a € Z‘;r, since
a ¢ [S(v,d)], a+ 5 #0 for any 8 € [S(v,d)]. Thus to prove the claim, it is enough to show the
following statement for every j > 0:

(3.21) ae¥l felSwvdl,a+fe¥ = a+pfecX].

We prove (3.21) by induction on j. When j = 0, since 3 € [S] and a € X1t —[S], a+3 € Tt —[S] =
Y. Now let j > 1 and assume that (3.21) holds for j — 1. Let o € Zj and 3 € [S(v,d)] be such
that o + (3 is a root. Then vd(a) € E;l, vd(B) € [S(v,d)] and vd(a) + vd(5) = vd(a + ) is a

root. Thus vd(a + ) € 2;_1. It follows that o + 3 € E;. We therefore have proved the claim
that [mg(y,q), nj] C ny for each j > 0. It follows that

Admnj = ny, Vj Z 0.

By setting n_; = 0, we also see from the definitions that Ad;ygxs(n;) C nj_; for every j > 0.
Thus we have

(b(n]) C n;—1, VJ > 0.
It thus follows that ng, 4) is ¢-invariant and that ¢ : ng(,q) — ng(v,a) is nilpotent.
Q.E.D.

Let again ¢ = AdyysxsAd,! and note that ¢(Ps(,a) C Ps(a by Lemma 3.14. Since
¢ 1 Mg(y,d) — NS(v,q) 1S nilpotent, we can define

Pi=(1=¢) ' =146+ +6°+ 1 nga — Ngwa)-

Let X = {a € X7 :v7ta € ¥7}. Since v([T]N L) € X7, it follows that X7 € XF — [S(v, d)].
Let

My = @pent 80 = 10 Ady(n7).
Then n, C ng(y,q)-

Theorem 3.15. The normalizer subalgebra n(l) in ga = g of [ = lg1dv,0m i (3.18) is
1‘1([) = 5:9(v,d) + g?(v,d) + ¢(“v)a
where gg(%d) is the fized point set of ¢|93(v,d> = AdyygAd; ! in 95(v,d), and

350 = {2 € 35(0.a) 7 — 0(2) € Adir} = {2 € 35(0,a) : Yaxs(2) = xT(Ad;'2)}.
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Proof. Set n(l)a = {(z,z) : € n(l)}. Since the normalizer subgroup of g7, in G x G is
Rs T4, we have

n(Da = ga N Ad(n,o)ts1.d5
where
tsrd = (35 ®3r) + (ns ®np) + {(z,7(2)) : v € gg}

is the Lie algebra of Rgr 4. Thus

n(l) = {13 €cg: (Ad;}x, Ad;ll’) S tS,T,d}'
It follows that = € n(l) if and only if z € pg N Adypy and yyxs(Ad;, (z)) = x7(Ad; 'x), which
is equivalent to Ad; 'z — vaxs(Ad,,' (z)) € 37+ ny, or
(3.22) z — Adyyaxs(Ady, (z)) € Ads(3r + 7).

Recall that the map xg is the projection from pg — gg with respect to the decomposition
Pg = 35 + g5 + ng. We will also use g to denote the projection g — gg with respect to the
decomposition g =ng + 35 + gg + ns, so Adyvgxs(Ad1x) is defined for all 2 € g. Let ¢ be the
set of all x € g satisfying (3.22). We will first determine ¢ and then determine ¢N (p s N Ad@p;).

Set again ¢ = AdyygxsAd,,! : g — g, and consider the decomposition
(3.23) g= ng(,,,d) + Mg (v,d) T NS(v,d)-
By Lemma 3.14, both mg, 4) and ng(, q) are invariant under ¢ and ¢ : ngq) — Ng(v,d) I8
nilpotent. Arguments similar to those in the proof of Lemma 3.14 show that LT is also
invariant under ¢ and that ¢ : ng, , — ng, ;) is nilpotent. Note that since v~ la ¢ [T)] implies
that a ¢ S(v,d), we have

Adgngy = (Adyny) N~ + (Adgnz) Nn C Ngwd) + MS(0,d)-

Moreover, it is easy to see that (Ad@n;) Nn= (Ad@n;) NNg(y,q) = Ny, SO

(3.24) Adyng = ny + (Adgng) Nng, )

Now let x € g and write © = x_ + 29 + x4, where z_ € ng(v ) T0 € Ms(v,d)5 and x4 € gy q)-
Then it follows from (3.24) that = € ¢, i.e., z satisfies (3.22), if and only if

zo — ¢(x0) € Ady3p
(3.25) Ty — P(zy) ENy

z_ —¢(x_) € (Adynz) N NG w.d)-
For zo € mgy q), write zo = 2o + Yo, where 20 € 35,9y and Yo € gg(y,q)- Since both zg(, 4y and
95(v,q) are ¢-invariant, and since Adyzp C 3g(v,a), To — ¢(20) € Adyap if and only if 2o — @(20) €
Ady37 and yo — ¢(yo) = 0, which implies that xo € 3’S(v7d) +92(u,d)' Recall that ¢ = (1—¢)~! on
Ng(y,q), and note that the same formula defines ¢ on ng(v’ e Thus, 4+ — ¢(z+) € n, if and only
if x4 € ¢(n,). Similarly, z_ — ¢(x_) € Adgn, N g q if and only if z_ € P(Adgny Nn
Thus,

g(v,d))'

€= 3:5'(1),11) + g(g(v,d) + ¢(ﬂv) +¢ <(Advn;) N ng(v,d))

as a direct sum.
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We now determine ¢ (pg N Adgpy). Since S(v,d) € SNo(T) and mg(, 4y C pg N Adspr, we
have
On the other hand, it follows from definitions that ¥(n,) C ng(, 4y Cn C pg and

Y(ny) C (ny + d(ng(u,q))) C Adp(n™ +mp) = Adypy,
so Y(n,) C pg N Adgps. Thus

cn (pS N Ad@p}) = 3/S(v,d) + gg(v,d) +(ny) + ¢,
where ¢y = ((Ad@n;) N ng(v d)) Nps N Adyp,. The theorem follows once we show ¢; = 0.

For notational simplicity, we set n’ = (Adyn7) Mgy.a)- It suffices to show that ¢ (n")Npg = 0.
Since (n') C N,y it suffices to show that (') N ng’(; g = 0, where ng’( g = Ms Mg

v, v, v,d)’
Since

) gy, = v (VN (1=0) (n3,,)) =¥ (Adnz (1= 0) (n5,) ) -
we only need to show that Adyny N (1 — ¢) (ng(; d)) = 0. Let

Ay ={a e :a ¢vdS]},

and for ¢ > 1,

Ai+1 = Ud(AZ N [SD
It is easy to see inductively that A; C 37 for ¢ > 1. Set s, = ZaeAi g, Cn fori>1. Itis
casy to see that A4; N A; = 0 if i # j and it follows that s; Ns; = 0 if ¢ # j. Moreover, since
[S] — [S(U, d)] = UiZI(Ai N [S]), we have

ng’(;’d) = @i(s; N gg)-

A proof similar to that of (3.21) in the proof of Lemma 3.14 shows that Mg, 4) preserves s; for

each ¢ > 1. It follows easily that ¢ maps s; N gg injectively into s;4; for all¢ > 1. If z € ng(v d)

T nonzero, write
rT=2x1+...2%, T; €5;Ngg, wWith xy # 0.

Then

(1=¢)(@) =21+ (22 — P(21)) + - + (24 — P(wr-1)) — D).
Here x1 € 51, ©; — ¢(i-1) € 8;, and ¢(xy) € s,11. Note that ¢(x) # 0 since ¢ is injective on sg.
Since Adgny is a sum of its root spaces and the s;’s have trivial intersections, (1—¢)(x) € Adyn .
implies ¢(xy) € Adyny,. But ¢(x) € Ady(gr) and Ady(gr) N Adyny = 0, so ¢(zy) = 0. Thus,
x =0, so x = 0 and it follows that (Adsn;) N (1 —¢)n~(S,) = 0. This proves that ¢; = 0, and
the Theorem follows.

Q.E.D.

Remark 3.16. Theorem 3.15 implies that n(l) C pg(, 4 N Adypz. Since v € SAWT and since
S(v,d) C v(T) we have the direct sum decomposition

(3.26) Pswa) N Adypr = Mg(y,d) + Mo +Ng(y,a) N Ady;myp.
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Note that n, + ng, 4) N Adymy is a subalgebra with n, as an ideal. Note also that ¢(ng(y.q)) C
Ng(v,d) N Adymyp. If we define

V=9 —l=¢Y=0+¢"+ i N5 = s N Adgmy,
then ¢ (n,) = {z + ¢(z) : £ € n,}. The fact that ¢(n,) is a Lie subalgebra of g implies that

[mvy]new = [ﬂ?,y] + [x,z/;(y)] + [1;(95)79], V.T,y € Ny,

is a new Lie bracket on n,,, and that ¢ : (0, [, Jnew) — (0, [, ]) is a Lie algebra homomorphism.

3.5. Intersections of go with an arbitrary [ € £. In this section, we compute the intersec-
tion of go with an arbitrary Lagrangian subalgebra [ of g & g. By Corollary 3.13, it is enough
to assume that [ = [g7.4v.4m as given in (3.18).

Proposition 3.17. For the Lagrangian subalgebra | = g7 4v.om as given in (3.18), let the
notation be as in Theorem 3.15. Then we have

ga N s 7avom = Adga V' + (gﬁ(v,d) + ¢(%)>A ,
where
V' ={(z,07'2) 1 2 € 5500} O (V + {(z,7a()) : € hg}).
Proof. By Theorem 3.15,
[c () = (3 4 y
ganlc Tl( ) (35(1;,(1) + gS(v,d) + Q;Z)(n ))A

Since (g?(ud) + w(nv)>A C [, we see that

ganNl= ((3§(v,d))A N [> + (g‘g(md) + @Z)(nv)>A,
and
<3IS(v,d))A Nni= (3§(v,d))A NIN(h@bh) = Adnn V'
Q.E.D.

Recall that a Belavin-Drinfeld triple [B-Dr| for g is a triple (5,7, d), where S,T C I, d €
I(S,T), and S(1,d) = (), where 1 is the identity element in the Weyl group W.

Definition 3.18. By a Belavin-Drinfeld system we mean a quadruple (S, T, d, V'), where (S, T, d)
is a Belavin-Drinfeld triple, and V' is a Lagrangian subspace of 3¢ @ 37 such that

ha N (V +{(z,v4(x)) : x € hg}) = 0.

We now show that a theorem of Belavin and Drinfeld [B-Dr] follows easily from Proposition
3.17.

Corollary 3.19. [Belavin-Drinfeld] A Lagrangian subalgebra  of g ® g has trivial intersection
with ga if and only if | is Ga-conjugate to a Lagrangian subalgebra of the form g1 qv, where
(S,T,d,V) is a Belavin-Drinfeld system.
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Proof. With the same notation as that in Theorem 3.15 and Proposition 3.17, it is enough
to determine those [g7 4 v,om such that ga N ls7av,em = 0. Suppose that [g7 4y m has this
property. Since dim(n,) = [(v), the length of v, and since every automorphism of a semi-simple
Lie algebra has fixed point set of dimension at least one [Wi], v = 1 and S(1,d) = 0. In this
case, V' as in Proposition 3.17 is given by

Vi=ba 0 (V+{(z,7(2)) : = € bg}),
s0 ba N (V 4+ {(z,74(x)) : = € hg}) =0, and we have

ls,r.d,v,0,m = Ad(m,o)lsT,d,v

for some m € H and v € H. Note that in this case

Ry = {(h1,h2) € H x H : 74(xs(h1)) = x7(h2)}

and R; acts on H from the right by h - (hy,h) = hhlhgl, where h € H and (hy,h2) € Ry.
Consider the map

m: R,— H: (hl,hg)r—>h1h;1.

The assumption that V' = 0 implies that the dimension of the kernel of the differential of m is
less than or equal to dim(3,). It follows easily that the differential of m is onto, thus m is onto.
Thus, by Corollary 3.13, [s7,4,v,5,m is in the Ga-orbit of g 741 .

Q.E.D.

3.6. Examples of smooth Ga-orbit closures in L. The closure of a Ga-orbit in £ is in
general not necessarily smooth. In this section, we look at two cases for which such a closure is
smooth.

Proposition 3.20. Ifl is a Lagrangian subalgebra of g g such that go Nl = 0, then the closure
of the Ga-orbit Ga -l is the same as the closure of the (G x G)-orbit (G x G) -1 which is smooth.

Proof. We only need to show that Ga - [ and (G x G) - [ have the same dimension. By the
Belavin-Drinfeld theorem, we may assume that [ = [g74v, where (S,7T,d,V) is a Belavin-
Drinfeld system. In particular,

gaNtsra =haN((3s S 3r) + Vs)),

where Vg = {(z,v4(x)) : € hg}. For a subspace A of h @ b, let
At ={(z,y) €@ b: ((2,9), (x1,3)) = 0¥(z1,3) € A}.

Then

(ha N (Gs @37) + Vs)))" =ba + Vs.
Since hp N Vg = 0, we see that dim(hp + Vg) = dimbh + dim hg, so

dim(ha N ((3s ©37) +Vs))) = dimjg.
Thus dim(Ga - ) = dimg — dim 3¢ = dim((G x G) - [) by Proposition 2.19.

Q.E.D.
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We now show that the De Concini-Procesi compactifications of complex symmetric spaces of
G can be embedded into £ as closures of some G a-orbits in L.

Let 0 : g — g be an involution with lift ¢ to G, and let g° and G be the fixed subalgebra and
subgroup of o. Let again [, € £ be the graph of 0. The orbit G - [, may be identified with the
complex symmetric space G/G?. Let Ga - [, be the closure of Ga - [, in £. We will show that
G - I, may be identified with the De Concini-Procesi compactification of G/G?, which may be
defined as follows. Let dim(g?) = m, so g° € Gr(m,g). Then G-g° = G/G?, and X, := G - g% is
the De Concini—Procesi compactification. It is known to be smooth with finitely many G-orbits
[D-P].

We recall some basic results about involutions. Choose a o-stable maximal split Cartan
subalgebra b, of g, i.e., a o-stable Cartan subalgebra b, such that h;“ has maximal dimension.
There is an induced action of o on the roots of hj, in g, and there is a positive root system
¥t (h,) for b, with the property that if o € Xt (h,), then either o(a) = a and olg, = id, or
o(a) € £T(h,). A weight A € h¥ is called a regular special dominant weight if A is nonnegative
on roots in L1 (h,), o(A) = —A, and A(H,) = 0 for « simple implies that o(a) = . If XA and p
are weights, we say A\ > pif \—pu = Za62+(f)s) nqa. For a weight u, let @ = %(u —o(w)).

Ma>0

Lemma 3.21. [De Concini-Procesi, [D-P], Lemmas 4.1 and 6.1] Let V' be a representation of
G, and suppose there exists a vector v € V such that G is the stabilizer of the line through v.
Suppose that when we decompose v into a sum of weight vectors for by, v = vy + Y v; where vy

has regular special dominant weight A\ and each v; has weight p; where X\ > ;. Let [v] be class
of v in Proj(V) and let X' be the closure of G - [v] in Proj(V). Then X' = X,.

Proposition 3.22. There is a G-equivariant isomorphism Ga - 1, = X,.

Proof. To apply the Lemma 3.21, let n = dim(g) and consider the diagonal action of G on
V = A"(g @ g) and the vector vy, = A"™(l,). In order to represent v, as a sum of weight vectors
in A"(g @ g), we choose a basis. Let Uy, ...,U; be a basis of h,. Let 31,..., s be the roots of
Y1 (h,) such that o(8;) = B3;, and let aq,...,a; be the other roots in X7 (h,). For each root «,
choose a root vector X,. Then

{(Uiv J(Ul))‘l =1,..., l} U {(Xi5¢7Xiﬁi)|i =1, 73} U {(X:taj70-(X:taj)>‘i =1,-- 't}

is clearly a basis of [,. Now v, is the wedge of the vectors (Y;,o(Y;)) as Y; runs through the
above basis, and v, contains the summand

u: /\ (UUO-(Ul)) /\ (Xﬁiv 0) A (X—Biv O) /\ (Xai’ 0) A (OvU(X*Oéi))'
i=1,...,l i=1,..., G=1,t

It is easy to see that u is a weight vector for the diagonal Cartan subalgebra with weight
vi=) iy i—o(a),andv=2%_,  «;onthesubspace h;?. Thus, v is a regular special
dominant weight by Lemma 6.1 in [D-P]. Moreover, the other weight vectors appearing in v,
have weights ¢ such that 1 is of the form v — ) (h )naa. Thus, by Lemma 3.21,
- S
G-v, =2 X,.

Note that using the Plucker embedding of Gr(n,g @ g) — Proj(V), we can identify G - v,
with Ga - 5. Thus, Ga - I, =2 X,.

1m20,a€2+

Q.E.D.
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Remark 3.23. Let d be the automorphism of the Dynkin diagram of g such that o = v4Ad,,
for some gg. Consider the embedding

G/G” — G : gG” — v (9)909™ ",

which in turn gives an embedding of G/G? into the De Concini-Procesi compactification Zy of
G. Proposition 3.22 then says that the closure of G/G? in Z; is isomorphic to the De Concini-
Procesi compactification of G/G°.

4. THE POISSON STRUCTURE Il ON L

By a Lagrangian splitting of g & g we mean a decomposition g ® g = [; + lo, where [; and [y
are Lagrangian subalgebras of g @ g. In this section, we will recall the definition of the Poisson
structure IIj, |, on £ associated to a Lagrangian splitting of g ® g. For the Poisson structure 1l
determined by the so-called standard splitting (see Definition 4.4), we will study its symplectic
leaf decomposition in terms of intersections of Ga and (B x B™)-orbits. We will also point
out some interesting Poisson submanifold/varieties of £ with respect to the Poisson structures
defined by the Belavin-Drinfeld splittings (Definition 4.4). A review of some basic facts on
Poisson Lie groups is given in Section 4.1. Details of most of these facts can be found in [K-S].

4.1. Poisson Lie groups and Lagrangian splittings. Recall that a Poisson bi-vector field
77, on a Lie group L is said to be multiplicative if the map m : L x L — L : (I1,l2) — lil2 is a
Poisson map with respect to 7. A Poisson Lie group is a pair (L, 7y ), where L is a Lie group
and 7, is a multiplicative Poisson bi-vector field on L. An action o : L x P — P of a Poisson Lie
group (L, 7) on a Poisson manifold (P, 7p) is said to be Poisson if ¢ is a Poisson map, where
L x P is equipped with the product Poisson structure 7y @ wp. A Poisson homogeneous space
of (L,mr) is a Poisson manifold (P,7p) with a transitive Poisson action by (L, 7). We now
recall the relations between Poisson Lie groups and Lagrangian splittings (or Manin triples).

Assume that 0 is a 2n-dimensional Lie algebra over a field of characteristic 0, and assume
that (, ) is a symmetric, non-degenerate, and ad-invariant bilinear form on 9. By a Lagrangian
subalgebra of 0 we mean an n-dimensional Lie subalgebra of ? that is also isotropic with respect
to (, ). By a Lagrangian splitting of @ we mean a decomposition ? = [y + [, where [; and [y are
Lagrangian subalgebras of 0. The triple (0, [, [2) is also called a Manin triple.

Assume that (0, (1, [2) is a Manin triple. Define
(4.1) 6o b — APl (Gi(21),y2 A 22) = (21, [y2, 22]), V1 € 11,2, 22 € L.

Let D be the adjoint group of 0, and let L; be the connected subgroup of D with Lie algebra
[1. Then there is a unique multiplicative Poisson bivector field 7, on L; whose linearization at
the identity element e of Ly is 4y, i.e.,

(Lamr,)(e) = di(x), @1 €h,

where for z1 € [1, Z1 is any vector field on Ly with Z1(e) = 1, and Lz, denotes the Lie derivative
by Z1. By changing the roles of [; and [o, we also have a multiplicative Poisson bi-vector field
7L, on the connected subgroup Lo of D whose Lie algebra is [5.

Denote by £(9) the set of all Lagrangian subalgebras of 9. Then £(?) is an algebraic subvariety
of the Grassmannian Gr(n,?) of n-dimensional subspaces of 0. It is shown in [E-L2] that every
Lagrangian splitting @ = [; + [ of 0 defines a Poisson structure Il , on £(2). Indeed, if {z;}
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is a basis for [1, and if {{;} is the basis for [y such that (x;,£;) = d;; for 1 < j,k < n = dimg,
we set
1 9
(4.2) R = 52(&“%) EN(gDg).
j=1

The action of D on the Grassmannian Gr(n,?) through the adjoint action defines a Lie algebra
anti-homomorphism « from 0 to the space of vector fields on Gr(n,?). We will also use k to
denote the induced map from A%d to the space of bi-vector fields on Gr(n,?). Set

1 n

H[1,[2 = ’%(R) = 5 Z(K(gj) N H($j)).
j=1

Note that £(d) C Gr(n,?) is D-invariant, so IIj, |, restricts to a bi-vector field on £(9). Let Ly
and Lo act on £(9) as subgroups of D.

Proposition 4.1. [E-L2] For any Lagrangian splitting 0 = [; + l3, the bi-vector field IIy, |, is a
Poisson structure on L(d) with the properties that

1) the actions of (L1, 7r,) and (La,7r,) on (L(9),11 ) are Poisson;

2) all Ly and Lo-orbits in L are Poisson submanifolds with respect to 1l (,, and are thus
Poisson homogeneous spaces of (L1,mr,) and (La,7r,) respectively. Moreover, their Zariski
closures are Poisson subvarieties.

Remark 4.2. It is clear from the definition of IIj, |, that II;, |, is tangent to every D-orbit in
L(d). Thus every D-orbit in £(9) is a Poisson submanifold of (£,IIj, ,), and the closure of
every D-orbit in £() is a Poisson subvariety of (£, Iy, (,). This property also follows from 2) of
Proposition 4.1.

The rank of the Poisson structure I , can be computed as in the following Lemma 4.3. A
version of Lemma 4.3 first appeared in [E-L2], and a generalization of Lemma 4.3 can be found
in [Lu-Y2].

Lemma 4.3. Let 0 = [y + Iy be a Lagrangian splitting. For [ € L(0), let n([) be the normalizer
subalgebra of [ in 0, and let ni(I) =n() N1, Let n()* ={x €0 : (z,y) =0Vy € n(l)}. Set

T(1) = ny (1) +n()* Co.

Then T (1) is a Lagrangian subalgebra of 0, and the rank of Il 1, at [ is equal to dim(Lq - [) —
dim(lo N7 (1)), where Ly - is the Li-orbit in L through [.

Proof. In Theorem 2.21 of [E-L2], we showed that 77 (I) := ny(I) + ny ()~ N[ is a Lagrangian
subalgebra (in fact, it is the Lagrangian subalgebra associated to the Poisson homogeneous space
(L1 - LI, ) at [ by Drinfeld [Dr]). We show 7 (I) = 7;(l). Clearly, 7:(l) C n([), so since 7;(I)
is Lagrangian, n([)* C 71(I). Thus, 7(I) C 71(I). Since n([) is co-isotropic and [; is Lagrangian,
it follows easily that 7 ([) is co-isotropic, so 7 () = 71(1).

To compute the rank of the symplectic leaf & at [, we identify Ti(Lq - [) = [; /ny (1), Ty(D - I) =
o/n(l), and 77 (D - I) 2 n(I)L. The Poisson tensor Iy, ,(I) € A2(TY(D - [)) induces a linear map
A:THD 1) — T(D - 1) via AN\ () = My, (A, p) for A, € TF(D - 1). Under the above
identifications, A corresponds to a linear map A : n(l)* — 9/n(l). In the proof of Theorem 2.18
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in [E-L2], we show that A(X; + X5) = X1 +n(l) for X1 + Xy € n(0)*, X1 € l1, X9 € [r. Thus,
A factors through [; /n; () C 9/n(l). By construction, Ti& is the image of A, so it follows that

(4.3) Ti€ = qopn(l)*) = gop(T (V).
The dimension formula follows easily.

Q.E.D.

4.2. The standard Lagrangian splitting and the Belavin-Drinfeld splittings. We now
return to the semi-simple Lie algebra g @ g with the bilinear form (, ) given in (2.1). Lagrangian
splittings of g @ g up to conjugation by elements in G x G have been classified by P. Delorme
[De].

A study of the Poisson structures IIj, (, defined by arbitrary Lagrangian splittings gbg = 141>
will be carried out in [Lu-Y2]. More precisely, let N([;) and N ([3) be respectively the normalizer
subgroups of [; and [z in G x G. Then both N([;) and N(l2) are conjugate to subgroups of G x G
of the type Rg 14 in (2.6). By Proposition 4.1, all N(l;)-orbits and N (lz)-orbits in £ are Poisson
submanifolds with respect to IIj, i,. It will be shown in [Lu-Y2] that every non-empty intersection
of an N ([;)-orbit and an N(Iz)-orbit in £ is a regular Poisson manifold with respect to IIj, ,.
Thus the study of the symplectic leaves of IIj, , is reduced to the study of intersections of N([;)
and N (I2)-orbits in £. To classify N(I;) and N(ly)-orbits in £, we need first to classify double
cosets in G x G by two groups of the type Rg 1 4. Such a classification will be given in [Lu-Y1].
Using the classification of N(I1) and N(l)-orbits in £, the rank of ITy, |, at every point in £ will
be computed in [Lu-Y2].

Definition 4.4. By the standard Lagrangian splitting of g @ g we mean the splitting g ® g =
ga + gs, Where

g =b_a+mon).

We will denote by Iy the Poisson structure on £ determined by the standard Lagrangian split-
ting. The multiplicative Poisson structure on G defined by the standard splitting will be de-
noted by mg. By a Belavin-Drinfeld splitting of g ® g we will mean a splitting of the form
g®g=ga + lg74v, where (S,7T,d,V) is a Belavin-Drinfeld system (Definition 3.18). When
a Belavin-Drinfeld splitting g © g = ga + lg,7,4,v is fixed, we will set [gp = [g 1,4, the Pois-
son structure on £ defined by the splitting will be denoted by Ilgp, and the corresponding
multiplicative Poisson structure on the group G = G will be denoted by 7gp.

Note that when S =T =0 and V =h_, = {(x — z) : = € b}, the Belavin-Drinfeld splitting
becomes the standard Lagrangian splitting g ® g = ga + g%. In Section 4.3, we will compute
the rank of IIy. As a consequence, we will see that every non-empty intersection of a Ga-orbit
and a (B x B7)-orbit in £ is a regular Poisson submanifold with respect to Ily, and the group
Ha ={(h,h): h € H} acts transitively on the set of symplectic leaves in any such intersection.
Thus the study of symplectic leaves of Iy becomes the study of the Ga and the (B x B™)-orbits
in £ as Ha-varieties.

We will now point out some interesting Poisson submanifolds of (£,IIpp). We first state a
consequence of Remark 4.2 and Proposition 2.27, which holds for any Lagrangian splitting of

gD g
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Proposition 4.5. Every (G x G)-orbit in L is a Poisson submanifold of (L,I1y, 1,) for any
Lagrangian splitting g ® g = [; + lo. Consequently, every (G x G)-orbit closure in L is a smooth
Poisson subvariety of (L, 11y ,).

Example 4.6. Fix a diagram automorphism d and consider the embedding of G into £ as the
(G x G)-orbit through [,,:

(4.4) G—L: gr— {(z,74Ady(2)) : = € g}.

Then by Proposition 4.5, every Lagrangian splitting of g @ g gives rise to a Poisson structure
Iy, 1, on G which extends to the closure Z4(G) of G in L. Recall from Section 2.7 that Z4(G)
is a De Concini-Procesi compactification of G. Under the embedding (4.4), the Ga-action on £
becomes the following action of G on itself

(4.5) GxG— G: (hg)— 7, (h)gh™".

We will refer to the action in (4.5) as the d-twisted conjugation action of G on itself and refer
to its orbits as the d-twisted conjugacy classes of G.

For a Belavin-Drinfeld splitting g ® g = ga + Igp and a diagram automorphism d, the
restriction of Ilgp to G — L (via (4.4)) has the following properties by Proposition 4.1.

Proposition 4.7. For a Belavin-Drinfeld splitting gg = ga+Isp and a diagram automorphism
d, embed G into L via (4.4) and regard Ilgp as a Poisson structure on G and on Zy(G). Then

1) the d-twisted conjugation action of (G,wpp) on (G,Ipp) in (4.5) is Poisson;

2) every d-twisted conjugacy class in G is a Poisson submanifold of (G,11pp) and is thus a
Poisson homogeneous space of (G,mpp), and the closure of a d-twisted conjugacy class in G is
a Poisson subvariety of (Z4(G),lpp).

Example 4.8. Let o be an involutive automorphism of g. Write o = 74 o Ad, for a diagram
automorphism d and g € G. By results from Section 3.6, the De Concini-Procesi compactification
X, of the complex symmetric space G/G? is isomorphic to the closure of the Ga-orbit in £
through the point g = {(z,0(z)) : € g} of L. Consequently, for every Belavin-Drinfeld splitting
gD g = ga + IBp, the restriction of llpp to G/G? — L is a Poisson structure on G/G? that
extends smoothly to X,. Moreover, the action of G on (X,,IIpp), which is the extension of
the action of G on G/G” by left translations, is Poisson for the Poisson Lie group (G,7pp)
determined by the given Belavin-Drinfeld splitting.

Remark 4.9. Let Lpp be the connected Lie subgroup of G x G with Lie algebra [pp. By
Section 4.1, the splitting g ®© g = ga + [pp induces a multiplicative Poisson structure 7r,,,, on
Lpp. The pair (Lpp,mr,,) is called a dual Poisson Lie group [K-S] of (G, 7). The restriction
to Lpp of themap F': G xG — G : (g1,92) — 92g1_1 is a local diffeomorphism from Lgp to an
open subset U of G containing the identity element. The Poisson structure Ilpp on G can be
regarded as an extension of 7, on U to G. Symplectic leaves of (G,npp) and (Lpp,7L,,)
have been classified by Yakimov [Y] and Kogan and Zelevinsky [K-Z].
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4.3. The rank of the Poisson structure IIy. Recall from Definition 4.4 that Il is the Poisson
structure on £ defined by the standard Lagrangian splitting g & g = ga + g4, where g, =
h_a + (n@n7). In this section, we will compute the rank of IIp on L.

Let O be a Ga-orbit in £ and O" a (B x B™)-orbit in £ such that O N O" # (. Since
(b&b7)+ga = g g, O and O intersect transversally in their (G x G)-orbit. Moreover,
since both @ and O’ are Poisson submanifolds for IIy, the intersection @ N O is a Poisson
submanifold of (£,IIy). Thus, it is enough to compute the rank of IIy as a Poisson structure
in the intersection @ N O’. By Theorem 2.18, there exists a generalized Belavin-Drinfeld triple
(S,T,d) and V € Lgpace(35 P 37) such that O, 0" C (G x G) - lgqv with [g7 4 v given in (2.4).
By Corollaries 2.23 and 3.13, there exist w € W, v,v; € W, and m € Mg (y,q4) such that

(4.6) O = Ga-Adgyalsray

(4.7) o0 = (B X Bf) . Ad(u‘),i;l)[S,T,d,V

where w, ¥ and ¥ are representatives of w, v, and v; in G respectively. Set

(4.8) Xs1do ={(2,0712) : 2 € 35000y, 1a(x5(2)) = xr(v'2)} + Ve Ch @ b

with Vg = {(z,74(x)) : © € hg}. One can show directly that Xg7 4, is a Lagrangian subspace
of h B b.

Theorem 4.10. Let O and O’ be as in (4.6) and (4.7), and suppose that ONO' # 0. The rank
of Iy at every L€ ON O’ is equal to

dim(O N O') — dim(h_ N (w, 01) XS T.dw)s

where X4, is given in (4.8). In particular, the intersection O N O is a regular Poisson
submanifold of Il

Proof. Let [ be an arbitrary point in £. Let nggg([l) be the normalizer of [ in g @ g, and let
ngag() = {(4,2) € 8@ 8: ((4,2), ngaq()) = 0},

Set

(4.9) T (1) =n()a + ngag(h) ™.

By Lemma 4.3, the rank of Il at [ is equal to dim(Ga - [) — dim(gX, N7 (1)).

Let now [ = Ad(y AdmolsTay € O, where g € G. It is easy to see from (4.9) that
T([) = Ad(g’g)T(Ad(m’i)) [S,T,d,V)- Let th”,T,d = (ﬂs D ﬂj_w) + {(x,’yd(a;)) X € gs}, and let

(4.10) lsTdw = XsT,dw + t/s,T,d-
By (4.9) and Theorem 3.15,

T(Ad(mp)lstav) = 8aNAdGotsrd + Adg, o tsr
= (35a)a+ (qub(ud) + ¢(“v)>A + Ad(m,0) 5,10

Since Ad(;rlm.)) (92‘(1;41) + ¢(nv)>A C 7,4, we have

T(Adgngylsrar) = Adon (Adjh 5 G50.0)a +tsma)
= Ad(m,z’))([S,T,d,v) C Ad(m,iz)tS,T,d-
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Thus the rank of Iy at [ is equal to
Rankno([) =dim O — dim(g:t N Ad(gmg@) [S,T,d,v)-

Let
0= dlm((b S5 b_) N Ad(gm,gi;)tS,T,d) - dim(g:t N Ad(gm,gi)) [S,T,d,v)'
Then
Rankr, (I) = dim O + § — dim((b © b™) N Ad (g, go)ts5,7,d)-
Since
dim 0" = dim(b®b™) —dim((b®b™ )N Ad(gm,gi;)tS,T,d)7
we have

Rankyy, (1) = dim O + dim O’ + § — dim(b & b7 ) = dim O + dim O’ + § — 2dim b.
Since O and O’ intersect transversally at [ inside the (G x G)-orbit through [, and since dim(G x
G) -l =dimg — dim 35 by Proposition 2.19, we have
Rankp,(I) = dim(ONO') +dim((G x G) 1) +§ —2dimb
= dim(ONO') — (dimzg + dimb) + 4.
It remains to compute 6. Since [ € O N ', there exist r € Rgrq and (b,b~) € B x B~ such
that (gm, gv) = (b,b7)(w, v1)r. Thus, using Ad,-)(b©b7) =b@ b~ and Ad(p-)8s+ = Ggp+
we have
6 =dim((b®b™) N Ad(ps,)ts1.d) — dim(gg N Ad o) lsTd0)-
Set
Y = (n@nT)NAdgys) ((ns @ ny) +spanc{(Ea, 7a(Ea)) - a € [S]}) .
Then
(b@b™) N Adw e tsrd = (w,v1)(3s @37 + Vs) + Y.
Since Y C g% N Adyy,,)ls,7,d,0, We have
g5 N Ad (o) lsrde =Y +b_a N (w,v1) X5 7,00
Thus
6 = dim(3s @7+ Vs) —dim(h_a N (w,v1) Xs1d0)
= dimjg +dimb — dim(h_A N (w,v1)Xs1.d,0)-
Thus the rank of Iy at [ is equal to
dlm(O N O/) - dim(h_A N (’LU7 UI)XS,T,d,v)-

In particular, O N O’ is a regular Poisson manifold for ITj.

Q.E.D.

Corollary 4.11. Equip G with the Poisson structure I1y via the embedding of G into L in (4.4)
ford =1. Let C be a conjugacy class of in G and let w € W be such that C N (B~ wB) # 0.
Then the rank of Iy at every point in C N (B~ wB) is

dim C — [(w) — dim(h™"),

where l(w) is the length of w, and h= = {x € b : w(x) = —zx}. In particular, C N B~ B is an
open dense leaf for C, and Iy is degenerate on the complement of B"BNC in C.
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Proof. By Proposition 4.7, each conjugacy class of G is a Poisson submanifold of (G,Ily). By
the Bruhat decomposition

C = Upew (CN (B wB)).
Since B~ B is open in G and C' N B # () (Theorem 1 on P. 69 of [St]), it follows that C N B~ B
is open and dense in C'. The rank formula follows from Theorem 4.10, and it follows easily that
C' N B~ B is a symplectic leaf and IIj is degenerate on C'N (B~ wB) if w # e.

Q.E.D.

Remark 4.12. Let d = 1 in Corollary 4.11. Then any unipotent conjugacy class (and its
closure in Z1(G)) has an induced Poisson structure IIy with an open symplectic leaf, although
the structure is not symplectic unless the orbit is a single point. Since the unipotent variety
is isomorphic to the nilpotent cone in g*, it follows that every nilpotent orbit in g* has an
induced Poisson structure with the same properties. It would be quite interesting to compare
this structure with the Kirillov-Kostant symplectic structure.

Remark 4.13. Let o be an involutive automorphism as in Example 4.8. Then the Ga orbit
through o does not have an open symplectic leaf if ¢ is not inner. The leaves of maximal rank
have dimension dim(G/G?) — dim(h™74).

Example 4.14. Consider the closed (G x G)-orbit through a Lagrangian subalgebra of the form
V + (n®n7), where V is any Lagrangian subspace of h @ f. Such an orbit can be identified
with G/B x G/B~, so we can regard Il as a Poisson structure on G/B x G/B~. Let O be a
Ga-orbit and let @' be a (B x B™)-orbit in G/B x G/B~ such that ON O’ # (). By the Bruhat
decomposition of G, there are elements w,u,v € W such that
O=Ga - (B,wB™), O =(BxB7)-(uB,vB7).
The stabilizer subgroup of Ga = G at the point (B,wB~) € G/B x G/B~ is BN w(B™).
Identify O = G/(BNw(B7)), and let
p: G— 0O = G/(BNnw(B™))

be the projection. It is then easy to see that O N O’ = p(Gy") C O, where

G%Y = (BuB) N (B vB~w™1).
We will refer to Giy" as the shifted double Bruhat cell in G determined by u,v and w. Note that
Bnw(B™) acts freely on Gy" by right multiplications, so

ono = G4 /(BNw(B)).
Since dim O = dimg — dim b — I(w) and dim O’ = [(u) + I(v), we have

dim(ON O =dimO + dim O’ — dim(G/B x G/B™) = l(u) + I(v) — l(w),

and

dim Gy’ = l(u) 4+ I(v) + dim b.
By Theorem 4.10, the rank of Iy at every point of O N O’ is equal to

I(u) + 1(v) — l(w) — dim h™* v
where h=% """ = {z € h : ulow 'z = —z}. When w = 1, we have O = G/H, and
ONO = G“Y/H, where G** = G} is the double Bruhat cell in G determined by u and v.
The set G*"/H is called a reduced double Bruhat cell in [Z]. In [K-Z], Kogan and Zelevinsky
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constructed toric charts on symplectic leaves of Iy in O N O’ (for the case when w = 1) by using
the so-called twisted minors that are developed in [Fm-Z], and they also constructed integrable
systems on the symplectic leaves. It would very interesting to generalize Kogan-Zelevinsky
construction to all symplectic leaves of Iy in G/B x G/B~.

4.4. The action of Hx on the set of symplectic leaves of the Poisson structure Ilj.

Proposition 4.15. Let D be a connected complex algebraic group with connected algebraic
subgroups A and C. Suppose there exists a connected algebraic subgroup Cy C C' such that the
multiplication morphism A x C1 — D is an isomorphism to a connected open set U of D. Let X
be a homogeneous space for D such that the stabilizer in D of a point in X is connected. Then
any nonempty intersection of an A-orbit in X with a C-orbit in X is smooth and connected.

Proof. Let A-xNC-x be a nonempty intersection of orbits in X, and note that this intersection
is smooth since the hypotheses imply that the orbits intersect transversely. We show there is a
fiber bundle 7 : V — U, with fiber 77 1(e) 2 A -2 N C - x over the identity and V connected,
that is trivial in the Zariski topology. This implies the connectedness of the intersection, and
hence the proposition. The proof is inspired by the proof of Kleiman’s transversality theorem.

Let Y=C-zand Z=A-x. Let h: D xY — X be the action map and let ¢ : Z — X be
the obvious embedding. Let
W=(DxY)xxZ
be the fiber product. Then h is a smooth fiber bundle (see the proof of 10.8 in [Ha]) and the
fibers h~!(z) are connected. For the second claim, note that h=!(z) = {(d,c-x) : de-x = x} and
Y : h~1(x) — D, - C given by ¥(d, c-x) = d is an isomorphism. Since D, and C are connected,
the claim follows. Thus, the induced morphism from W — Z also has connected fibers. Since

Z is connected, it follows that W is connected. Moreover, W is smooth (again by the proof of
10.8 in [Ha]), so W is irreducible.

Let m: W — DxY — D be the composition of the induced fiber product map with projection
to the first factor. Since 7~1(U) is open in W, it is smooth and irreducible, and thus connected.
Note also that 7=!(e) 2 YN Z. It remains to show that 7 : 771 (U) — U is a trivial fiber bundle.
We define a free left A action and a free right C action on W by the formulas

a- (d,y,Z) = (advyaa' Z)

c: (d7 Y, Z) = (d07 C_l Y, Z)

acAceCdeDyeY,zeZ
A and Cj have the obvious free left and right multiplication actions on U, and 7 : 7= %(U) — U
is equivariant for these actions. It follows that the morphism
p:AxCyx(A-xnNC-2)— 71 YU), (a,¢,v) — (ac,c™'-v,a-v), a€ A,c€Cr,veYNZ
is a bijection, and hence is an isomorphism since 7= (U) is smooth. This implies the fiber bundle
is trivial.
Q.E.D.

Remark 4.16. We thank Michel Brion for suggesting this approach. We also remark that the
Proposition 4.15 is false as stated if we only assume that A - C is open in D. For example, let

A=Ga, and let
C={(nh,h 'n"): ne NJh€ Hn~ € N}
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be the connected subgroup of D = G x G corresponding to g%. Let X = D and let D act on
X by left translation. Then the intersection of the A-orbit and the C-orbit through the identity
element of D is AN C which is disconnected.

Proposition 4.17. The intersection of any Ga-orbit and any (B x B~)-orbit in L is either
empty or a smooth connected subvariety of L.

Proof. This is a consequence of Proposition 4.15. Indeed, we take A = Gao, C = B x B™,
D =G x G, and Cy = B x N™. The fact that the stabilizer of a point in £ is connected follows
from Lemma 2.21.

Q.E.D.

Let now H be the Cartan subgroup of G with Lie algebra b, and let Ha = {(h,h) : h € H}.
For every G a-orbit O and every (B x B~ )-orbit O’ such that ONQO’ # 0, Ha clearly leaves ONO’
invariant. It is easy to show that the element R € A%(g @ g) given in (4.2) is invariant under
Ady ) for every h € H. Thus the Poisson structure IIp on £ is Ha-invariant. In particular, for
every h € H, Ad( ;)€ is a symplectic leaf of Il in O N O if € is.

Lemma 4.18. Let O be a Ga-orbit and O’ a (B x B™)-orbit in L such that ONO' # 0. Let £
be any symplectic leaf of Iy in O N O'. Then the map
0: HxE—0NO": (k1) — Ad )l

15 a submersion.

Proof. Let e be the identity element of H and let [ € £. It is enough to show that
dimker o, (e, [) = dimbh + dim & — dimO N O,
where o.(e,l) : h x TiIE — TI(O N O') is the differential of o at (e, ).
We may assume that O and O are respectively given by (4.6) and (4.7), and that
[ = Ad(gm,go)ls,1.a,v = Adwip—i) s,V
for some g € G and (b,b~) € B x B~. By Theorem 4.10, it is enough to show that
dim(ker o (e, [)) = dim b — dim(h_A N (w, v1) X5 7.d0),
where Xg 14, is given in (4.8). Identify the tangent space of O at [ as
1O = ga/(8a N Ad (g gs)ts,T,)

and let ¢ : go — ga/(8a N Ad(gm gi)ts1,a) be the projection. Let p : g g — ga be the
projection with respect to the decomposition g ® g = ga + g%. By (4.3) and the computation
of 7(1) in the proof of Theorem 4.10, the tangent space of £ at [ is given by

T[E = (q Op) (Ad(gm,gij) [S,T,d,v) s

where [g 7.4, is given in (4.10). For x € b, let k; be the vector field on O N O’ that generates
the action of Ad(exptaexptz)- Then

keroy(e,l) = {z e bh: r(I) € TIE}.
Let x € h. If k() € TYE, then there exists y € g and (y1,y2) € g with (y + y1,y + y2) €

Ad(gm,gi)) ls 7.4 such that
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(li Y, x— y) €gan Ad(gm,gi))tS,T,d Cgan Ad(gm,gi)) [S,T,d,v‘

It follows that

(z+y1,2+y2) € (b® )N Ad(gm gi)ls,Tdv-
Let r € Rg 14 be such that (gm, gv) = (bw, b~ 01)r. Then

(b®67) N Ad(gm,goyls.1.dw = Adpp-y (6@ 67) N Adgy o) s 7d0) -

Thus there exists (v, y5) € g& such that

(z+y1, 2 +y3) € (b®b7) N A0y lsTd,0-
If (y/, —y) is the h_A-component of (y},y5) € g%, we see that

(z+y, 2 —v) € (w,v1)Xs1d0

Thus (z,z) € p((w,v1)Xs1.4.0), where we are also using p to denote the projection h & h — ha
with respect to the decomposition h @ h = ha + h_A. Conversely, if x € h is such that (z,z) €
p((w,v1)Xs1,40), then there exists y' € b such that

(z+y, =) € (w,v)Xsra0 C Adgi)lsT.des

and thus
Adpp-y (@ 4y, 2 —y') € Adgm.go)ls.T,d0-
Since Adpp—y(z + ¢, 2 —y') = (z+ ¢,z —y)mod(n ®n~), we see that
p(Adpp-y(z +y', 2 —y)) = (z,2),

s0 k() € TiE. Thus we have shown that

keroy(e,l) = {z € bh: (z,z) € p((w,v1)Xs1d0)}
Hence,

dim(ker oy (e, [)) = dim b — dim(h_A N (w, v1) Xs7.d0)-

The lemma now follows from Theorem 4.10.

Q.E.D.

Theorem 4.19. For every Ga-orbit O and every (B x B™)-orbit O' such that ONO’" #£ 0, Ha
acts transitively on the set of symplectic leaves of Iy in O N O'.

Proof. For [ € O N O, let & be the symplectic leaf of TIy through [, and let
Fi= U Ad(hﬁ)é’[ coOonaoO.
heH

Then it is easy to see that either FyN Fy = 0 or F; = Fy for any [,I' € ON O'. It follows from
Lemma 4.18 that F; is open in O N O’ for every [. Since O N O’ is connected by Proposition
417, ONO' = F for every e ONO'.

Q.E.D.
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Remark 4.20. When O and O’ are respectively given as in (4.6) and (4.7), we take any
subspace h; of h such that (h;)a is transversal to p((w,vi1)Xs,) in ha and such that the
connected subgroup H; of H with Lie algebra b; is closed in H. By the proofs of Lemma 4.18
and Theorem 4.19, the subtorus H; already acts transitively on the set of symplectic leaves of
HO in OnN O/.

5. LAGRANGIAN SUBALGEBRAS OF g @ b

Let again g be a complex semi-simple Lie algebra with Killing form <, >. Let h C g be a
Cartan subalgebra. In this section, we will consider the direct sum Lie algebra g @ b, together
with the symmetric, non-degenerate, and ad-invariant bilinear form

(51) <(x17y1)7 (any2)> = 71,22 > — < Y1,Y2 >, T1,22 € §,Y1,Y2 € b

We wish to describe the variety £(g® bh) of Lagrangian subalgebras of g ® b with respect to (, ).
We can describe all such Lagrangian subalgebras by using a theorem of Delorme [De].

Definition 5.1. [De| Let m be a complex reductive Lie algebra with simple factors m;,i € I. A
complex linear involution ¢ of m is called an f-involution if o does not preserve any m;.

Theorem 5.2. [De| Let u be a complex reductive Lie algebra with a symmetric, non-degenerate,
and ad-invariant bilinear form (.

1). Letp be a parabolic subalgebra of u with Levi decomposition p = m +n, and decompose m
into m = m + 3, where m is its semisimple part and 3 its center. Let o be an f-involution of m
such that m? is a Lagrangian subalgebra of m with respect to the restriction of 3, and let V' be
a Lagrangian subspace of 3 with respect to the restriction of 3. Then [(p,o, V) :=m &V & n is
a Lagrangian subalgebra of w with respect to 3.

2). Every Lagrangian subalgebra of u is [(p,o, V) for some p, o, and V as in 1).

Proposition 5.3. Every Lagrangian subalgebra of g ® b with respect to (, ) given in (5.1) is of
the form n+V, where n is the nilradical of a Borel subalgebra b of g, V' is a Lagrangian subspace
of hdh, and

n+V = {($+y1,y2) rxren, (3/1792) € V}

Proof. Applying Delorme’s theorem to our case of u = g @ h and (, ) as the bilinear form 3,
every Lagrangian subalgebra of g ® b is of the form

[={(z+y1,y2): vem” +n, (y1,42) €V}

for some parabolic subalgebra p of g with Levi decomposition p = m+n=m+ 3+ n, an f-
involution ¢ on m, and a Lagrangian subspace V of 3 & §. we will now show that if m # 0 and
if o is an f-involution of m, then Mm? is not an isotropic subspace of m for the restriction of the
Killing form <, > of g to m. It follows that p must be Borel, which gives Proposition 5.3.

Assume that m # 0. Let m; be a simple factor of m. Then since m; is simple, it has a unique
nondegenerate invariant form up to scalar multiplications. Hence the Killing form <, > of g
restricts to a scalar multiple of the Killing form of m;. Recall that the Killing form on a maximal
compact subalgebra of a semisimple Lie algebra is negative definite. It follows that the Killing
form of g restricts to a nonzero positive scalar multiple of the Killing form on m;. Suppose that
o is an involution of M mapping m; to m; with ¢ # j. Then o is an isometry with respect to
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the Killing form of m; and the Killing form of m;. Thus, there exists a nonzero positive scalar
1 such that

(5.2) Lo(z),oy) >=p<Lz,y> Vazyecm.

The fixed point set m? contains the subspace {z + o(z) : € m;}. Let x be a nonzero element
of a maximal compact subalgebra of m;. Then < z + o(z),z+o(z) >= (1+p) <€ z,z,>># 0.
Thus m? cannot be isotropic with respect to <, >.

Q.E.D.

Now let GG be the adjoint group of g, and let B be the Borel subgroup of G corresponding to
a Borel subalgebra b.

Theorem 5.4. The variety L(g®h) is isomorphic to the trivial fiber bundle over G/ B with fibre
Lspace(h @Y, (, ). In particular, L(g & bh) is smooth with two disjoint irreducible components,
corresponding to the two connected components of Lspace(h & h, (, ).

Proof. Identify G/B with the variety of all Borel subalgebras of g. We map L(g&h) to G/B by
mapping a Lagrangian algebra [ = n+ V to the unique Borel subalgebra with nilradical n. The
fiber over n may be identified with Lspace(h @ b, (, )). The claim about connected components
follows from the fact the bundle is trivial.

Q.E.D.
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