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Abstract. Motivated by Drinfeld’s theorem on Poisson homogeneous spaces, we study the
variety L of Lagrangian subalgebras of g ⊕ g for a complex semi-simple Lie algebra g. Let G
be the adjoint group of g. We show that the (G ×G)-orbit closures in L are smooth spherical
varieties. We also classify the irreducible components of L and show that they are smooth. Using
some methods of M. Yakimov, we give a new description and proof of Karolinsky’s classification
of the diagonal G-orbits in L, which, as a special case, recovers the Belavin-Drinfeld classfication
of quasi-triangular r-matrices on g. Furthermore, L has a canonical Poisson structure, and we
compute its rank at each point and describe its symplectic leaf decomposition in terms of
intersections of orbits of two subgroups of G×G.

Contents

1. Introduction 2

2. The variety L of Lagrangian subalgebras of g⊕ g 6

2.1. Lagrangian subspaces 7

2.2. Isometries 7

2.3. Karolinsky’s classification 8

2.4. Partition of L 9

2.5. (G×G)-orbits in L 11

2.6. (B ×B−)-orbits in L 12

2.7. The De Concini-Procesi compactifications Zd(G) of G 13

2.8. Closures of (G×G)-orbits in L 14

2.9. The geometry of the strata Lε(S, T, d) 15

2.10. The geometry of the closures Lε(S, T, d) 16

2.11. Irreducible components of L 17

3. Classification of G∆-orbits in L 17

3.1. Some results on Weyl groups and generalized BD-triples 18

3.2. A double coset theorem 19

3.3. G∆-orbits in L 23

3.4. Normalizer subalgebras of g∆ at l ∈ L 23

3.5. Intersections of g∆ with an arbitrary l ∈ L 27

3.6. Examples of smooth G∆-orbit closures in L 28
1



2 S. EVENS AND J.-H. LU

4. The Poisson structure Π0 on L 30

4.1. Poisson Lie groups and Lagrangian splittings 30

4.2. The standard Lagrangian splitting and the Belavin-Drinfeld splittings 32

4.3. The rank of the Poisson structure Π0 34

4.4. The action of H∆ on the set of symplectic leaves of the Poisson structure Π0 37

5. Lagrangian subalgebras of g⊕ h 40

References 41

1. Introduction

Let d be a 2n-dimensional Lie algebra over k = R or C, together with a symmetric, non-
degenerate, and ad-invariant bilinear form 〈 , 〉. When k = R, we require 〈 , 〉 to have signature
(n, n). A Lie subalgebra l of d is said to be Lagrangian if l is maximal isotropic with respect to
〈 , 〉, i.e., if dimk l = n and if 〈x, y〉 = 0 for all x, y ∈ l. By a Lagrangian splitting of d we mean
a direct sum decomposition d = l1 + l2, where l1 and l2 are two Lagrangian subalgebras of d.
Denote by L(d) the set of all Lagrangian subalgebras of d. It is an algebraic subvariety of the
Grassmannian Gr(n, d) of n-dimensional subspaces of d. In [E-L2], we showed that associated
to each Lagrangian splitting d = l1 + l2 there is a Poisson structure Πl1,l2 on L(d), making L(d)
into a Poisson variety. Moreover, if L1 and L2 are the connected subgroups of the adjoint group
D of d with Lie algebras l1 and l2 respectively, all the L1 and L2-orbits in L(d) are Poisson
submanifolds of Πl1,l2 .

The above construction in [E-L2] was motivated by the work of Drinfeld [Dr] on Poisson
homogeneous spaces. Indeed, a Lagrangian splitting d = l1 + l2 of d gives rise to the Manin
triple (d, l1, l2), which in turn defines Poisson structures π1 and π2 on the Lie groups L1 and L2

respectively, making them into Poisson Lie groups (see [K-S] for details). A Poisson space (M, π)
is said to be (L1, π1)-homogeneous if L1 acts on M transitively and if the action map L1×M → M
is a Poisson map. In [Dr], Drinfeld constructed an L1-equivariant map M → L(d) for every
(L1, π1)-homogeneous Poisson space (M,π), and he proved (see [Dr] and [E-L2] for more detail)
that (L1, π1)-homogeneous Poisson spaces correspond to L1-orbits in L(d) in this way. The
Poisson structure Πl1,l2 on L(d) is constructed in such a way that the Drinfeld map M → L(d)
is a Poisson map. In many cases, the Drinfeld map M → L(d) is a local diffeomorphism onto
its image. Thus we can think of L1-orbits in L(d) as models for (L1, π1)-homogeneous Poisson
spaces. For this reason, it is interesting to study the geometry of the variety L(d), the L1 and
L2-orbits in L(d), and the Poisson structures Πl1,l2 on L(d).

There are many examples of Lie algebras d with symmetric, non-degenerate, and ad-invariant
bilinear forms. The geometry of L(d) is different from case to case. Moreover, there can be
many Lagrangian splittings for a given d, resulting in many Poisson structures on L(d).

Example 1.1. Let g be a complex semi-simple Lie algebra with Killing form ¿ , À. Regard g
as a real Lie algebra, and let 〈 , 〉 be the imaginary part of ¿ , À. The geometry of L(g) in this
case was studied in [E-L2]. In particular, we studied the irreducible components of L(g) and
classified the G-orbits in L(g), where G is the adjoint group of g. Let g = k+a+n be an Iwasawa
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decomposition of g. Then both k and a+n are Lagrangian subalgebras of g, so g = k+(a+n) is
an example of a Lagrangian splitting, resulting in a Poisson structure on L(g) which we denote
by π0. Many interesting Poisson manifolds appear as G or K-orbits inside (L(g), π0), where K
is the connected subgroup of G with Lie algebra k. Among such Poisson manifolds are the flag
manifolds of G and the compact symmetric spaces associated to real forms of G. Detailed studies
of the Poisson geometry of these Poisson structures and some applications to Lie theory have
been given in [Lu1], [Lu2], [E-L1], and [Ft-L]. For example, the flag manifold X of G consisting
of all parabolic subalgebras of g of a certain type can be identified with a certain K-orbit in
L(g). The resulting Poisson structure on X is called the Bruhat-Poisson structure because
its symplectic leaves are Bruhat cells in X. In [Lu1] and [E-L1], we established connections
between the Poisson geometry of the Bruhat-Poisson structure on X and the harmonic forms
on X constructed by Kostant [Ko] in 1963, and we gave a Poisson geometric interpretation of
the Kostant-Kumar approach [K-K] to Schubert calculus on X.

Example 1.2. Let g be any n-dimensional Lie algebra, and let d = g× 1
2

g∗ be the semi-direct
product of g and the its dual space g∗. Then the canonical symmetric product 〈 , 〉 on d defined
by

〈x + ξ, y + η〉 = 〈x, η〉+ 〈y, ξ〉, x, y ∈ g, ξ, η ∈ g∗

is non-degenerate and ad-invariant. When g is semi-simple, Lagrangian subalgebras of d are not
easy to classify (except for low dimensional cases), for, as a sub-problem, one needs to classify
all abelian subalgebras of g. See [K-S], [H-Y], [Ka-St], and the references therein for more detail.
The description of the geometry of L(d) in this case is an open problem.

In this paper, we will consider the complexification of Example 1.1. Namely, we consider the
case where g is a complex semi-simple Lie algebra and d = g ⊕ g is the direct sum Lie algebra
with the bilinear form 〈 , 〉 given by

〈(x1, x2), (y1, y2)〉 =¿ x1, y1 À −¿ x2, y2 À, x1, x2, y1, y2 ∈ g,

where ¿ , À is a fixed symmetric, non-degenerate, and ad-invariant bilinear form on g. The
variety of Lagrangian subalgebras of d will be denoted by L.

The classification of Lagrangian subalgebras of d has been given by Karolinsky [Ka], and
Lagrangian splittings of g⊕ g have been classified by Delorme [De]. In this paper, we establish
the first few steps in the study of the Poisson structures on L defined by Lagrangian splittings
of g⊕ g. Namely, we will first describe the geometry of L in the following terms:

1) the (G×G)-orbits in L and their closures, where G is the adjoint group of g;

2) the irreducible components of L;

We will then look at the Poisson structure Π0 on L defined by the so-called standard Lagrangian
splitting d = g∆ + g∗st, where g∆ = {(x, x) : x ∈ g} is the diagonal of d = g⊕ g, and g∗st ⊂ b⊕ b−

with b and b− being two opposite Borel subalgebras of g. Let G∆ = {(g, g) : g ∈ G} be the
diagonal subgroup of G×G. We will study

3) the G∆-orbits in L;

4) the symplectic leaf decomposition of L with respect to Π0 in terms of the intersections of
G∆ and (B×B−)-orbits in L, where B and B− are the Borel subgroups of G with Lie algebras
b and b− respectively.
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The study of the symplectic leaf decomposition of the Poisson structure Πl1,l2 on L defined
by an arbitrary Lagrangian splitting g ⊕ g = l1 + l2 will be carried out in [Lu-Y2], where one
first has to classify L-orbits in L, where L is the connected Lie subgroup of G × G whose Lie
algebra is an arbitrary Lagrangian subalgebra of g ⊕ g. Such a classification will follow from
a general double coset theorem proved in [Lu-Y1]. Since the studies in [Lu-Y1] and [Lu-Y2]
are technically involved, we think it worthwhile to treat separately in this paper the important
special case of the standard Lagrangian splitting. Moreover, we hope that our study of G∆-
orbits in L will find applications outside Poisson geometry. Indeed, as is shown in Section 2.7,
the wonderful compactifications of G constructed by De Concini and Procesi [D-P] are closures
of special (G×G)-orbits in L. We hope that our classification of G∆-orbits in L will be useful
in the study of the conjugacy classes in G and their closures in the wonderful compactifications
of G.

We point out that E. Karolinsky has in [Ka] given a classification of G∆-orbits in L in different
terms. Our classification is more in line with that of Lagrangian splittings given in [De], and in
particular, the Belavin-Drinfeld theorem [B-Dr] on Lagrangian splittings of the form g⊕g = g∆+l
follows easily from our classification. Our methods of classifying G∆-orbits in L are adapted
from those used in [Y] by Yakimov. In [Lu-Y1] and [Lu-Y2], these methods are also used to
classify L-orbits in L, where L is the connected subgroup of G × G whose Lie algebra is any
given Lagrangian subalgebra of g⊕ g.

We now give more details of the results in this paper:

In Section 2, we study (G × G)-orbits in L. Following O. Schiffmann [Sch], we define a
generalized Belavin-Drinfeld triple (generalized BD-triple) to be a triple (S, T, d), where S and
T are two subsets of the set Γ of vertices of the Dynkin diagram of g, and d : S → T is an
isometry with respect to ¿ , À. For a generalized BD-triple (S, T, d) (see Notation 2.12 for
detail), let PS and P−

T be respectively the standard parabolic subgroups of G of type S and
opposite type T with Levi decompositions PS = MSNS and P−

T = MT N−
T . Let GS and GT

be the quotients of MS and MT by their centers respectively, and let χS : MS → GS and
χT : MT → GT be the natural projections. Denote by γd : GS → GT the group isomorphism
induced by d. We define the subgroup RS,T,d of PS × P−

T by

RS,T,d = {(mS ,mT ) ∈ MS ×MT : γd(χS(mS)) = χT (mT )}(NS ×N−
T ).

We establish the following facts on (G × G)-orbits and their closures in L (Proposition 2.19,
Corollary 2.24, and Proposition 2.27):

1) Every (G × G)-orbit in L is isomorphic to (G × G)/RS,T,d for a generalized BD-triple
(S, T, d), so there are finitely many (G × G)-orbit types in L, and they correspond bijectively
to generalized BD-triples for G; Every (G×G)-orbit in L is a (G×G)-spherical homogeneous
space.

2) When S = T = Γ, the closure of a (G×G)-orbit of type (S, T, d) is a De Concini-Procesi
compactification of G; For an arbitrary generalized BD-triple (S, T, d), the closure of a (G×G)-
orbit of type (S, T, d) is a fiber bundle over the flag manifold G/PS × G/P−

T whose fiber is
isomorphic to a De Concini-Procesi compactification of GS. In particular, the closure of every
(G×G)-orbit is a smooth (G×G)-spherical variety.
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We also study in Section 2 the irreducible components of L. We prove (Corollary 2.29,
Theorem 2.31, and Theorem 2.34):

1) The irreducible components of L are roughly (see Theorem 2.34 for detail) labeled by quadru-
ples (S, T, d, ε), where (S, T, d) are generalized BD-triples and ε ∈ {0, 1};

2) The irreducible component corresponding to (S, T, d, ε) is a fiber bundle over the flag man-
ifold G/PS ×G/P−

T whose fiber is isomorphic to the product of a De Concini-Procesi compact-
ification of GS and a Hermitian symmetric space of a special orthogonal group. In particular,
all the irreducible components of L are smooth;

3) L has two connected components.

Let again G∆ = {(g, g) : g ∈ G} be the diagonal subgroup of G×G. In Section 3, we classify
G∆-orbits in L, which is equivalent to describing the (G∆, RS,T,d)-double coset space in G×G
for every generalized Belavin-Drinfeld triple (S, T, d). More precisely, let WT be the subgroup
of the Weyl group W of Γ generated by the elements in T , and let W T be the set of minimal
length representatives in cosets from W/WT . For each v ∈ W T , let v̇ be a representative of v on
G, and let S(v, d) ⊂ S be the maximal subset of S that is invariant under vd. Let MS(v,d) be the
standard Levi subgroup of G defined by S(v, d). Let Rv̇ be the subgroup of MS(v,d) ×MS(v,d)

defined by
Rv̇ =

(
MS(v,d) ×MS(v,d)

) ∩ ((id×Adv̇)RS,T,d) ,

and let Rv̇ act on MS(v,d) (from the right) by

m1 · (m,m′) = (m′)−1m1m, m1 ∈ MS(v,d), (m,m′) ∈ Rv̇.

We prove (Theorem 3.9) the following statement:

Every (G∆, RS,T,d)-double coset in G × G has a representative (m, v̇) for some v ∈ W T and
m ∈ MS(v,d). Two such cosets through (m1, v̇1) and (m2, v̇2) coincide if and only if v1 = v2 = v
and m1,m2 ∈ MS(v,d) are in the same Rv̇-orbit in MS(v,d).

We also compute the stabilizer subalgebra of g∆ at every l ∈ L.

In Section 4, we recall the definition of a Poisson structure on L defined by a Lagrangian
splitting g ⊕ g = l1 + l2. We study the symplectic leaf decomposition of the Poisson structure
Π0 defined by the standard Lagrangian splitting g⊕ g = g∆ + g∗st. We have (Theorem 4.10 and
Theorem 4.19):

1) Every non-empty intersection of a G∆-orbit O and a (B ×B−)-orbit O′ in L is a regular
Poisson manifold with respect to the Poisson structure Π0;

2) The Cartan subgroup H∆ of G∆, where H = B ∩ B−, acts transitively on the set of
symplectic leaves in O ∩O′.

We also compute the rank of Π0 in Section 4. Thus, the study of symplectic leaves of Π0

in L is reduced to the understanding of the intersections of G∆ and (B × B−)-orbits in L as
H∆-varieties. Since we have classified the G∆ and (B × B−)-orbits in L (in Section 3.3 and
Section 2.6 respectively), one would next like to understand when two such orbits intersect and
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to study the topology of such intersections. The intersections of G∆-orbits and (B×B−)-orbits
inside the closed (G×G)-orbits in L are related to double Bruhat cells in G (see Example 4.14),
and Kogan and Zelevinsky [K-Z] have constructed toric charts on some of the symplectic leaves
in these closed orbits. It would be interesting to see how their methods can be applied to other
symplectic leaves of Π0.

We point out in Section 4 some interesting Poisson subvarieties L with respect to the Poisson
structures ΠBD defined by the Belavin-Drinfeld splittings, i.e., Lagrangian splittings of g ⊕ g
that are of the form g ⊕ g = g∆ + l for some l ∈ L. One class of such examples consists of
the De Concini-Procesi compactifications of symmetric spaces G/Gσ, where σ is an involutive
automorphism of G (Proposition 3.22). Another interesting example is the De Concini-Procesi
compactification Z1(G) of G, the closure of the (G×G)-orbit in L through g∆. Conjugacy classes
in G and their closures in Z1(G) are all Poisson subvarieties of (Z1(G), ΠBD). In particular, the
Poisson structure Π0 restricted to a conjugacy class C in G is non-degenerate precisely on the
intersection of C with the open Bruhat cell B−B (see Corollary 4.11). It will be particularly
interesting to compare the Poisson structure Π0 on the unipotent variety in G with the Kirillov-
Kostant structure on the nilpotent cone in g∗.

Acknowledgment: We would like to thank Milen Yakimov and Eugene Karolinsky for
pointing out errors in a preliminary version of the paper. Discussions with Milen Yakimov
enabled us to improve earlier results and solve problems in more complete forms. We would also
like to thank Michel Brion, William Graham, and George McNinch for useful comments. The
first author was partially supported by (USA)NSF grant DMS-9970102 and the second author
by (USA)NSF grant DMS-0105195, HKRGC grant 701603, and the New Staff Seeding Fund at
HKU.

2. The variety L of Lagrangian subalgebras of g⊕ g

Throughout this paper, g will be a complex semi-simple Lie algebra, and ¿ , À will be a
fixed symmetric and non-degenerate ad-invariant bilinear form on g. We will equip the direct
product Lie algebra g⊕ g with the bilinear form

(2.1) 〈(x1, x2), (y1, y2)〉 =¿ x1, y1 À −¿ x2, y2 À, x1, x2, y1, y2 ∈ g.

Clearly 〈 , 〉 is symmetric, non-degenerate, and ad-invariant. By a Lagrangian subalgebra of
g⊕ g we mean an n-dimensional complex Lie subalgebra of g⊕ g that is isotropic with respect
to 〈 , 〉.
Notation 2.1. We use L to denote the variety of all Lagrangian subalgebras of g⊕ g, and we
will use Lspace(g⊕ g) to denote the variety of all n-dimensional isotropic subspaces of g⊕ g.

Let G be the adjoint group of g. The group G × G acts on L through the adjoint action.
In this section, we will classify the (G × G)-orbits and study their closures in L, and we will
determine the irreducible components of L. We show that each irreducible component of L is a
fiber bundle with smooth fibers over a generalized flag variety of G×G and is thus smooth. We
show that all (G×G)-orbits in L and their closures are smooth spherical varieties for G×G. Our
results in this section are based on the classification of Lagrangian subalgebras by Karolinsky
[Ka].
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2.1. Lagrangian subspaces. Let U be a finite-dimensional complex vector space with a sym-
metric and non-degenerate bilinear form 〈 , 〉. A subspace V of U is said to be Lagrangian if V
is a maximal isotropic subspace of U with respect to 〈 , 〉. If dimU = 2n or 2n + 1, then Witt’s
theorem says that the dimension of a Lagrangian subspace of U is n. The set of Lagrangian
subspaces is easily seen to be a closed algebraic subvariety of Gr(n,U), the Grassmannian of
n-dimensional subspaces of U . Denote by Lspace(U) the variety of Lagrangian subspaces of U
with respect to 〈 , 〉.
Proposition 2.2 ([A-C-G-H], pp. 102-103). Assume that dimU = 2n (resp. 2n + 1) with
n > 0. Then Lspace(U) is a smooth algebraic subvariety of Gr(n,U). It has two (resp. one)
connected components, each of which is isomorphic to the generalized flag variety SO(2n,C)/P
(resp. SO(2n+1,C)/P )) where P has Levi factor isomorphic to GL(n,C). Moreover, Lspace(U)
has complex dimension n(n−1)

2 (resp. n(n+1)
2 ). When dimU = 2n, two Lagrangian subspaces V1

and V2 are in the same connected component of Lspace(U) if and only if dim(V1)− dim(V1 ∩ V2)
is even.

Notation 2.3. In the example of U = g ⊕ g with the bilinear form 〈 , 〉 given in (2.1), we
denote by L0 the intersection of L with the connected component of Lspace(g⊕g) containing the
diagonal of g ⊕ g. The intersection of L with the other connected component of Lspace(g ⊕ g)
will be denoted by L1.

Let h be a Cartan subalgebra, and let n be the nilpotent subalgebra of g corresponding to a
choice of positive roots for (g, h), and let n− be nilpotent subalgebra of g defined by the negative
roots. For a Lagrangian subspace V of h⊕ h with respect to 〈 , 〉, let

lV = V + {(x, y) : x ∈ n, y ∈ n−} ⊂ g⊕ g.

Then lV is a Lagrangian subalgebra of g⊕ g. It is easy to see from Proposition 2.2 that lV1 and
lV2 are in the same connected component of Lspace(g ⊕ g) if and only if V1 and V2 are in the
same connected component of Lspace(h⊕ h). In particular, L1 is non-empty.

2.2. Isometries. We collect some results on automorphisms that will be used in later sections.

Notation 2.4. Throughout this paper, we will fix a Cartan subalgebra h and a choice Σ+ of
positive roots in the set Σ of all roots of g relative to h. We will use Γ to denote the set of
simple roots in Σ+. For each α ∈ Σ, let Hα ∈ h be such that ¿ Hα, H À= α(H) for all H ∈ h.
For each α ∈ Σ+, we fix root vectors Eα ∈ gα and E−α ∈ g−α such that ¿ Eα, E−α À= 1. Let
g = h +

∑
α∈Σ gα be the root decomposition for g.

Let S and T be two subsets of Γ. We are interested in Lie algebra isomorphisms gS → gT that
preserve the restrictions of the bilinear form ¿ , À of g to gS and gT . We will simply refer to
this property as preserving ¿ , À. To describe such isomorphisms, we introduce the following
definition.

Definition 2.5. Let S and T be two subsets of Γ. By an isometry from S to T (with respect to
the bilinear form ¿ , À) we mean a bijection d : S → T such that ¿ dα, dβ À=¿ α, β À for
all α, β ∈ S, where ¿ α, β À=¿ Hα,Hβ À. We use I(S, T ) to denote the set of all isometries
from S to T . Following [Sch], a triple (S, T, d), where S, T ⊂ Γ and d ∈ I(S, T ), will also be
called a generalized Belavin-Drinfeld (generalized BD-)triple for G.
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Remark 2.6. Note that our definition of I(S, T ) depends on our choice of the ad-invariant
bilinear form ¿ , À on g. On the other hand, for each S ⊂ Γ, we can identify S with the
vertices of the Dynkin diagram of gS so that there is also the scalar product on elements in S
coming from the Killing form BS of gS . For another subset T ⊂ Γ, let IKilling(S, T ) denote the
set of bijections d : S → T that preserve the scalar products induced by the Killing forms BS

and BT . Then it is easy to see that I(S, T ) ⊂ IKilling(S, T ) but I(S, T ) is not necessarily equal
to IKilling(S, T ). For example, consider the case when S = T consists of exactly two orthogonal
simple roots α and β of g such that ¿ α, α À6=¿ β, β À. Then the map d : S → T that
exchanges α and β is in IKilling(S, T ) but not in I(S, T ).

Lemma 2.7. Let S and T be subsets of Γ and let d ∈ I(S, T ). There exists a unique isomorphism
γd : gS → gT such that

(2.2) γd(Eα) = Ed(α), γd(Hα) = Hd(α)

for every α ∈ S. Moreover, γd preserves ¿ , À, and for every Lie algebra isomorphism µ :
gS → gT preserving ¿ , À, there is a unique isometry d ∈ I(S, T ) and a unique g ∈ GS such
that µ = γdAdg.

Proof. Existence and uniqueness of γd is by Theorem 2.108 in [Kn]. For α ∈ Σ+, let λα, µα ∈ C
be such that γd(Eα) = λαEα and γd(E−α) = µαE−α. By applying γd to the identity [Eα, E−α] =
Hα we get λαµα = 1 for every α ∈ Σ+. It follows that γd preserves ¿ , À. Now suppose that
µ : gS → gT is a Lie algebra isomorphism preserving ¿ , À. Let d1 be any isomorphism from
the Dynkin diagram of gS to the Dynkin diagram of gT . Let γd1 : gS → gT be defined as in
(2.2). Then ν := γ−1

d1
µ is an automorphism of gS . Recall that there is a short exact sequence

1 −→ GS −→ AutgS
−→AutS −→ 1,

where AutgS
is the group of all automorphisms of gS , and AutS is the group of all automorphisms

of the Dynkin diagram of gS . Let d2 ∈ AutS be the image of ν under the map AutgS
→ AutS

and write ν = γd2Adg for some g ∈ GS . Thus µ = γd1γd2Adg = γd1d2Adg. Since µ and Adg are
isometries of ¿ , À, γd1d2 is an isometry of ¿ , À. Thus, d := d1d2 ∈ I(S, T ) is an isometry,
and µ = γdAdg.

Uniqueness of d and g follows from the fact that if g0 ∈ GS preserves a Cartan subalgebra
and acts as the identity on all simple root spaces, then g0 is the identity element.

Q.E.D.

Definition 2.8. For a Lie algebra isomorphism µ : gS → gT preserving ¿ , À, we will say that
µ is of type d for d ∈ I(S, T ) if d is the unique element in I(S, T ) such that µ = γdAdg for some
g ∈ GS .

2.3. Karolinsky’s classification. Karolinsky [Ka] has classified the Lagrangian subalgebras
of g⊕ g with respect to the bilinear form 〈 , 〉 given in (2.1). We recall his results now.

Notation 2.9. For a parabolic subalgebra p of g, let n be its nilradical, and let m := p/n be its
Levi factor. Let m = [m, m] + z be the decomposition of m into the sum of its derived algebra
[m,m] and its center z. Recall that [m, m] is semisimple and that the bilinear form ¿ , À of g
induces a well-defined non-degenerate and ad-invariant bilinear form on m which we will still
denote by ¿ , À. Moreover, ¿ , À is nondegenerate on z. If p′ is another parabolic subalgebra,
we denote its nilradical, Levi factor, and center of Levi factor, etc. by n′, m′, and z′, etc..
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Let p and p′ be parabolic subalgebras. The bilinear form 〈 , 〉 is nondegenerate on z⊕z′. When
we speak of Lagrangian subspaces of z⊕ z′, we mean with respect to 〈 , 〉.
Definition 2.10. A quadruple (p, p′, µ, V ) is called admissible if p and p′ are parabolic subal-
gebras of g, µ : [m,m] → [m′, m′] is a Lie algebra isomorphism preserving ¿ , À, and V is a
Lagrangian subspace of z⊕ z′.

If (p, p′, µ, V ) is admissible, set

l(p, p′, µ, V ) := {(x, x′) : x ∈ p, x′ ∈ p′, µ(x[m,m]) = x′[m′,m′], (xz, x
′
z′) ∈ V } ⊂ g⊕ g,

where for x ∈ p, x[m,m] ∈ [m, m] and xz ∈ z are respectively the [m, m]- and z-components of
x + n ∈ p/n = [m,m] + z. We use similar notation for x′ ∈ p′.

Theorem 2.11 ([Ka]). 1) l(p, p′, µ, V ) is a Lagrangian subalgebra if (p, p′, µ, V ) is admissible.

2) Every Lagrangian subalgebra of g⊕g is of the form l(p, p′, µ, V ) for some admissible quadru-
ple.

2.4. Partition of L. In this subsection, we partition L into strata and determine the geometry
of each stratum. We fix some notation on parabolic subalgebras of g.

Notation 2.12. Recall the fixed choice of positive roots from Notation 2.4. Set

n =
∑

α∈Σ+

gα, n− =
∑

α∈Σ+

g−α.

A parabolic subalgebra p of g is called standard if it contains the Borel subalgebra b := h + n.
For a subset S of Γ, we will use [S] to denote the set of roots in the linear span of S, and we
will set

mS = h +
∑

α∈[S]
gα, nS =

∑
α∈Σ+−[S]

gα, n−S =
∑

α∈Σ+−[S]

g−α

and
pS = mS + nS , p−S = mS + n−S .

We will refer to pS as the standard parabolic subalgebra of g defined by S, and we will also refer
to p−S as the opposite of pS . Let p be a parabolic subalgebra of g. We say that p is of the type S

if p is conjugate to pS , and we say that p is of the opposite-type S if p is conjugate to p−S . Note
that pS is of opposite-type −w0[S], where w0 is the long element of the Weyl group. Similarly,
mS will be referred to as the standard Levi subalgebra of g defined by S. We will further set
gS = [mS , mS ] and

hS = h ∩ gS = spanC{Hα : α ∈ [S]}, zS = {x ∈ h : α(x) = 0, ∀α ∈ S}.
Then we have the decompositions

pS = zS + gS + nS , p−S = zS + gS + n−S .

The connected subgroups of G with Lie algebras pS , p−S ,mS , nS and n−S will be respectively
denoted by PS , P−

S ,MS , NS and N−
S . Correspondingly we have the group decompositions

PS = MSNS , and P−
S = MSN−

S ,

and MS ∩ NS = {e} = MS ∩ N−
S . Denote by GS the adjoint group of gS . The adjoint action

of MS on mS leaves gS invariant and induces a natural projection χS : MS → GS . We will also
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use χS to denote the map PS → GS : pS = mSnS 7→ χS(mS) where mS ∈ MS and nS ∈ NS .
The similarly defined projection from P−

S to GS will also be denoted by χS .

Returning to the notation in Notation 2.9, we have

Lemma-Definition 2.13. Let (p, p′, µ) be a triple, where p and p′ are parabolic subalgebras of
g, and µ : [m, m] → [m′, m′] is a Lie algebra isomorphism preserving ¿ , À. Assume that p is of
type S and p′ is of opposite-type T . Let g1, g2 ∈ G be such that Adg1p = pS and Adg2p

′ = p−T .
Let Adg1 and Adg2 be the induced Lie algebra isomorphisms

Adg1 : [m, m] −→ gS , Adg2 : [m′,m′] −→ gT ,

and consider
µ′ := Adg2 ◦ µ ◦ (Adg1)

−1 : gS −→ gT .

If µ′ : gS → gT is of type d ∈ I(S, T ) as in Definition 2.8, we will say that the triple (p, p′, µ) is
of type (S, T, d). The type of (p, p′, µ) is independent of the choice of g1 and g2.

Proof. If h1 and h2 in G are such that Adh1p = pS and Adh2p
′ = p−T , then there exist pS ∈ PS

and p−T ∈ P−
T such that h1 = pSg1 and h2 = p−T g2. Thus

µ′′ := Adh2 ◦ µ ◦ (Adh1)
−1 = Adp−T

◦ µ′ ◦ (AdpS )−1.

The action of AdpS on gS is by definition the adjoint action of χS(pS) ∈ GS on gS . Similarly
for the action of Adp−T

on gT . Thus by Definition 2.8, the two maps µ′ and µ′′ have the same
type, so the type of (p, p′, µ) is well-defined.

Q.E.D.

Remark 2.14. For S, T ⊂ Γ and d ∈ I(S, T ), (pS , pT , γd) is of type (S,−w0(T ), w0w
T
0 d), where

w0 is the longest element in the Weyl group W of Γ, and wT
0 is the longest element in the

subgroup of W generated by elements in T .

We are now ready to partition L. Recall the definitions of L0 and L1 in Notation 2.3.

Definition 2.15. Let S, T ⊂ Γ, d ∈ I(S, T ), and ε ∈ {0, 1}. Define Lε(S, T, d) to be the set of
all Lagrangian subalgebras l(p, p′, µ, V ) such that

1) l(p, p′, µ, V ) ∈ Lε;

2) (p, p′, µ) is of type (S, T, d).

We say that l ∈ L is of type (ε, S, T, d) if l ∈ Lε(S, T, d).

It is clear that we have a disjoint union

(2.3) L =
⋃

ε∈{0,1}

⋃

S,T⊂Γ,d∈I(S,T )

Lε(S, T, d),

and that each Lε(S, T, d) is invariant under G × G. To understand the (G × G)-orbits in
Lε(S, T, d), we will, for each generalized BD-triple (S, T, d), set

nS ⊕ n−T = {(x, y) : x ∈ nS , y ∈ n−T } ⊂ g⊕ g,

and for each V ∈ Lspace(zS ⊕ zT ), set

(2.4) lS,T,d,V = V + (nS ⊕ n−T ) + {(x, γd(x)) : x ∈ gS} ∈ L.
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Lemma-Definition 2.16. For V1, V2 ∈ Lspace(zS ⊕ zT ), lS,T,d,V1 and lS,T,d,V2 are in the same
connected component of Lspace(g⊕g) if and only if V1 and V2 are in the same connected component
of Lspace(zS ⊕ zT ). For ε = {0, 1}, we define

Lε
space(zS ⊕ zT ) = {V ∈ Lspace(zS ⊕ zT ) : lS,T,d,V ∈ Lε}.

Proof. The statement follows from Proposition 2.2 and the fact

dim(lS,T,d,V1)− dim(lS,T,d,V1 ∩ lS,T,d,V2) = dim(V1)− dim(V1 ∩ V2).

Q.E.D.

Proposition 2.17. For any generalized BD-triple (S, T, d) and ε ∈ {0, 1}, we have the disjoint
union

(2.5) Lε(S, T, d) =
⋃

V ∈Lε
space(zS⊕zT )

(G×G) · lS,T,d,V .

Proof. It follows from Definition 2.15 that every (G × G)-orbit in Lε(S, T, d) passes through
an lS,T,d,V for some V ∈ Lε

space(zS ⊕ zT ). If V1, V ∈ Lε
space(zS ⊕ zT ) are such that lS,T,d,V1 =

Ad(g1,g2)lS,T,d,V , then (g1, g2) normalizes (nS ⊕ n−T ) so (g1, g2) ∈ PS × P−
T , and it follows that

V1 = V .

Q.E.D.

2.5. (G × G)-orbits in L. The following theorem follows immediately from Proposition 2.17
and the decomposition of L in (2.3).

Theorem 2.18. Every (G × G)-orbit in L passes through an lS,T,d,V for a unique quadruple
(S, T, d, V ), where S, T ⊂ Γ, d ∈ I(S, T ) and V ∈ Lspace(zS ⊕ zT ).

For each S, T ⊂ Γ and d ∈ I(S, T ), let

(2.6) RS,T,d := {(pS , p−T ) ∈ PS × P−
T : γd(χS(pS)) = χT (p−T )} ⊂ PS × P−

T

(see Notation 2.12). It is easy to see that the group RS,T,d is the normalizer subgroup in G×G
of lS,T,d,V for any V ∈ Lspace(zS ⊕ zT ). Thus we have the following proposition.

Proposition 2.19. Let S, T ⊂ Γ, d ∈ I(S, T ), and V ∈ Lspace(zS ⊕ zT ).

1) The (G×G)-orbit in L through lS,T,d,V is isomorphic to (G×G)/RS,T,d and it has dimension
n− z, where n = dim g and z = dim zS.

2) (G×G) · lS,T,d,V fibers over G/PS ×G/P−
T with fiber isomorphic to GS.

Proof. It is routine to check that the stabilizer of lS,T,d,V is RS,T,d, and the dimensional formula
follows. The fiber may be identified with (PS × P−

T )/RS,T,d, which may be identified with GS

via the map
(pS , p−T ) 7→ γ−1

d (χT (p−T ))(χS(pS))−1

Q.E.D.

Remark 2.20. It follows that (G×G)-orbits in Lε(S, T, d) for ε = 0, 1 have conjugate stabilizers,
and there are finitely many conjugacy classes of stabilizers of points in L. Moreover, the number
of orbit types for G×G in L is exactly the number of generalized BD-triples for G. We will show
in Section 2.6 that all (G×G)-orbits in L (and their closures) are (G×G)-spherical varieties.
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The following fact will be used in Section 3.3.

Lemma 2.21. RS,T,d is connected.

Proof. The projection map p : RS,T,d → PS , (pS , p−T ) 7→ pS is surjective and has fiber N−
T ×

Z(MT ), where Z(MT ) is the center of the group MT . Clearly N−
T is connected, and Z(MT )

is connected by Proposition 8.1.4 of [C]. Since PS is connected, it follows that RS,T,d is also
connected.

Q.E.D.

2.6. (B × B−)-orbits in L. Let B and B− be the Borel subgroups of G with Lie algebras
b = h + n and b− = h + n− respectively. In this section, we show that there are finitely many
(B × B−)-orbits in each (G ×G)-orbit in L. Recall that a normal variety X with an action of
(G×G) is said to be spherical if a Borel subgroup of G×G has an open orbit on X. Consequently,
all (G×G)-orbits in L are (G×G)-spherical homogeneous spaces. The description of (B×B−)-
orbits in L in this section will also be used in Section 4 to understand a certain Poisson structure
on L.

By Proposition 2.19, every (G×G)-orbit in L is of the form (G×G)/RS,T,d for some generalized
BD-triple (S, T, d), where RS,T,d is given by (2.6). Thus it is enough to consider (B×B−)-orbits
in (G×G)/RS,T,d for any given generalized BD-triple (S, T, d).

Let W be the Weyl group of Σ. For a subset S ⊂ Γ, we will use WS to denote the subgroup
of W generated by the simple reflections corresponds to the elements in S. We will use WS to
denote the set of minimal length representatives of elements in the cosets in W/WS . It is well-
known that w ∈ WS if and only if w(S) ⊂ Σ+. For each w ∈ W , we will also fix a representative
ẇ of w in G.

The following assertion is similar to Lemma 1.3 in [Sp].

Proposition 2.22. Let (S, T, d) be an generalized BD-triple for G. Then the (B × B−)-orbits
in (G×G)/RS,T,d are of the form Qw,v = (B × B−) · (ẇ, v̇)RS,T,d, where w ∈ W and v ∈ W T .
Moreover, Qw,v = Qw1,v1 if and only if w = w1 and v = v1.

Proof. Consider the right action of PS × P−
T on (B × B−)\(G × G) by right translations. By

the Bruhat decomposition of G, every (PS × P−
T )-orbit contains exactly one point of the form

(B×B−)(ẇ1, ẇ2), where w1 ∈ WS and w2 ∈ W T . Denote by Stab(w1,w2) the stabilizer subgroup
of PS × P−

T at (B ×B−)(ẇ1, ẇ2). It is easy to see that

Stab(w1,w2) =
(
PS ∩ w−1

1 (B)
)× (

P−
T ∩ w−1

2 (B−)
)

=
(
H(N ∩ w−1

1 (N))
)× (

H(N− ∩ w−1
2 (N−))

)
.

Thus every RS,T,d-orbit in (B×B−)\(G×G) is of the form (B×B−)(ẇ1pS , ẇ2p
−
T ) for a unique pair

(w1, w2) ∈ WS×W T and for some (pS , p−T ) ∈ PS×P−
T . Two such points (B×B−)(ẇ1pS , ẇ2p

−
T )

and (B × B−)(ẇ1qS , ẇ2q
−
T ) are in the same RS,T,d-orbit if and only if (pS , p−T ) and (qS , q−T ) are

in the same (Stab(w1,w2), RS,T,d)-double coset in PS×P−
T . To understand the double coset space

Stab(w1,w2)\PS × P−
T /RS,T,d, consider the projection πS : PS → MS and πT : P−

T → MT with
respect to the decompositions PS = MSNS and P−

T = MT N−
T respectively. Since MS × MT
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normalizes NS × N−
T in PS × P−

T , we see that πS × πT : PS × P−
T → MS × MT induces an

identification

Stab(w1,w2)\PS × P−
T /RS,T,d

∼= (πS × πT )(Stab(w1,w2))\MS ×MT /(πS × πT )(RS,T,d).

Note that (πS × πT )(Stab(w1,w2)) = BS × B−
T , where BS = MS ∩ B and B−

T = MT ∩ B− are
Borel subgroups of MS and MT respectively. On the other hand, it is easy to see that every
(BS×B−

T , (πS×πT )(RS,T,d))-double coset in MS×MT is of the form (u̇1, e) for a unique u1 ∈ WS .
By setting w = w1u1 ∈ W and v = w2 ∈ W T for (w1, w2) ∈ WS ×W T and u1 ∈ WS , we have
proved Proposition 2.22.

Q.E.D.

Corollary 2.23. Every (B × B−)-orbit in L goes through exactly one point of L of the form
Ad(ẇ,v̇)lS,T,d,V , where (S, T, d) is a generalized BD-triple, V ∈ Lspace(zS ⊕ zT ), and w ∈ W ,
v ∈ W T .

Since each (G×G)-orbit in L has finitely many (B×B−)-orbits, at least one of them is open.
Thus we have the following corollary.

Corollary 2.24. All (G×G)-orbits in L are (G×G)-spherical homogeneous spaces.

2.7. The De Concini-Procesi compactifications Zd(G) of G. In this section, we will con-
sider the closure in L of some special (G×G)-orbits. Namely, when S = T = Γ and d ∈ I(Γ,Γ),
we have the graph lγd

of γd as a point in L:

(2.7) lγd
= {(x, γd(x)) : x ∈ g}.

The (G×G)-orbit in L through lγd
can be identified with G by the map

(2.8) Id : G −→ (G×G) · lγd
: g 7−→ {(x, γdAdg(x)) : x ∈ g}.

The identification Id is (G×G)-equivariant if we equip G with the action of G×G given by

(2.9) (g1, g2) · g = γ−1
d (g2)gg−1

1 .

Since an orbit of an algebraic group on a variety is open in its closure (see Section 8.3 in
[Hu]), the orbit (G × G) · lγd

has the same closure in the Zariski topology and in the classical
topology. The closure (G×G) · lγd

, called a De Concini-Procesi compactification of G, is a
smooth projective variety of dimension n = dimG (see [D-P, §6]). We denote this closure by
Zd(G). We note that Zd(G) = (id× γd)Zid(G) (but not (G×G)-equivariantly).

It is known [D-P] that G × G has finitely many orbits in Zd(G) indexed by subsets of Γ.
Indeed, for each S ⊂ Γ, let lS,d ∈ L be given by

(2.10) lS,d = nS ⊕ n−d(S) + {(x, γd(x)) : x ∈ mS}.
Choose λ ∈ h such that there exists a one parameter subgroup eλ : C∗ → H such that d(eλ)(1) =
λ and α(λ) = 0 for all α ∈ S and α(λ) > 0 for all α ∈ Γ− S. Then it is easy to see that

lim
t→+∞Ad(eλ(t),e)lγd

= lS,d ∈ Gr(n, g⊕ g).

Thus lS,d ∈ Zd(G). It is easy to see that lγd
∈ Lε(Γ, Γ, d) for ε = (dim h− dim hγd) mod 2.

Thus lS,d ∈ Lε(S, d(S), d|S) for the same value of ε.

Theorem 2.25. [D-P] For every d ∈ I(Γ, Γ), Zd(G) =
⋃

S⊂Γ(G×G) · lS,d is a disjoint union.
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2.8. Closures of (G × G)-orbits in L. By Theorem 2.18, every (G × G)-orbit in L passes
through an lS,T,d,V for a unique quadruple (S, T, d, V ), where (S, T, d) is a generalized BD-triple,
V ∈ Lspace(zS ⊕ zT ), and lS,T,d,V is given in (2.4). For each quadruple (S, T, d, V ), we will
now study the closure of the (G × G)-orbit through lS,T,d,V in Gr(n, g ⊕ g). To this end, let
Gr(m, gS⊕gT ) be the Grassmannian of m-dimensional subspaces in gS⊕gT , where m = dim gS .
For the Lie algebra isomorphism γd : gS → gT given in (2.2), let

lγd
= {(x, γd(x)) : x ∈ gS} ∈ Gr(m, gS ⊕ gT ).

Definition 2.26. We define Zd(GS) to be the closure of the (GS ×GT )-orbit (GS ×GT ) · lγd
in

Gr(m, gS ⊕ gT ) through lγd
.

It is easy to see that (GS ×GT ) · lγd
consists of all {(x, γdAdg(x)) : x ∈ gS} for g ∈ GS . Thus

Zd(GS) is the closure of GS inside Gr(m, gS ⊕ gT ) under the embedding

(2.11) GS −→ Gr(m, gS ⊕ gT ) : g 7−→ {(x, γdAdgx) : x ∈ gS}.
Let the group PS × P−

T act on Gr(m, gS ⊕ gT ) through the group homomorphism χS × χT :
PS × P−

T → GS ×GT , and let PS × P−
T act on GS by

(2.12) (pS , p−T ) · gS = γ−1
d (χT (p−T )) gS (χS(pS))−1, (pS , p−T ) ∈ PS × P−

T , gS ∈ GS

(see Notation 2.12). Then the embedding in (2.11) is (PS × P−
T )-equivariant. In particular,

Zd(GS) is a (PS × P−
T )-equivariant compactification of GS for the action of PS × P−

T on GS

given in (2.12).

Proposition 2.27. For every generalized BD-triple (S, T, d) and every V ∈ Lspace(zS ⊕ zT ),

1) the closure (G×G) · lS,T,d,V in Gr(n, g ⊕ g) is a smooth subvariety of Gr(n, g ⊕ g) of
dimension n− z, where n = dim g and z = dim zS, and the map

a : (G×G)×(PS×P−T ) Zd(GS) −→ (G×G) · lS,T,d,V

[(g1, g2), l] 7−→ Ad(g1,g2)(V + (nS ⊕ n−T ) + l)

is a (G×G)-equivariant isomorphism;

2) (G×G) · lS,T,d,V is the finite disjoint union

(G×G) · lS,T,d,V =
⋃

S1⊂S

(G×G) · lS1,d(S1),d1,V1
,

where for S1 ⊂ S, we have d1 = d|S1, and

V1 = V + {(x, γd(x)) : x ∈ hS ∩ zS1
} ⊂ zS1

⊕ zT1
.

Proof. Since G/PS ×G/P−
T is complete, it follows by standard arguments that the image of a

is closed. Since (G × G) ×(PS×P−T ) GS is dense in (G × G) ×(PS×P−T ) Zd(GS) and a restricts to
give an isomorphism from (G×G)×(PS×P−T ) GS to (G×G) · lS,T,d,V , it follows that the image

of a is dense in (G×G) · lS,T,d,V . Hence a is onto. 2) follows easily from the fact that a is onto
and the description of orbits in Zd(GS).

To show that a is an isomorphism, we note by 2) that if l(p, p′, µ, V ) ∈ (G×G) · lS,T,d,V , then
p is of type S1 ⊂ S and p′ is of opposite type T1 = d(S1) ⊂ T . For such an l(p, p′, µ, V ), let

φ(l(p, p′, µ, V )) = (ρS(p), ρT (p′)) ∈ G/PS ×G/P−
T ,
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where ρS : G/PS1 → G/PS and ρT : G/P−
T1

→ G/P−
T are the usual projections between

varieties of parabolic subgroups. Then φ : (G×G) · lS,T,d,V → G/PS × G/P−
T is (G × G)-

equivariant and can be shown to be algebraic using the local coordinates in [D-P], §2.3. More-
over, φ−1(ePS , eP−

T ) ∼= Zd(GS). Indeed, if (g1, g2) 6∈ PS × P−
T , then it is easy to check using the

Bruhat decomposition that (g1, g2) · (V + nS ⊕ n−T + l) does not project to (ePS , eP−
T ) under φ

for any l ∈ Zd(GS). Now we use Lemma 4 on p. 26 of [Sl] to conclude that a is an isomorphism.

Q.E.D.

Consider now the case when S and T are the empty set ∅, so d = 1. By Theorem 2.18, every
(G×G)-orbit in L0(∅, ∅, 1)∪L1(∅, ∅, 1) goes through a unique Lagrangian subalgebra of the form

(2.13) lV = V + (n⊕ n−),

where V ∈ Lspace(h⊕ h). The following fact follows immediately from Proposition 2.27.

Corollary 2.28. For every V ∈ Lspace(h ⊕ h), the (G × G)-orbit through lV is isomorphic to
G/B ×G/B−. These are the only closed (G×G)-orbits in L.

Corollary 2.29. L has two connected components.

Proof. In Section 2.1, we observed that L has at least two connected components, namely L0

and L1. Since every orbit of an algebraic group on a variety has a closed orbit in its boundary
(see Section 8.3 in [Hu]), every point in L is in the same connected component as lV for some
V ∈ Lspace(h⊕ h). Thus L has at most two connected components.

Q.E.D.

2.9. The geometry of the strata Lε(S, T, d). For a generalized BD-triple (S, T, d) and for
ε ∈ {0, 1}, we now determine the geometry of Lε(S, T, d). Recall that the group PS×P−

T acts on
GS by (2.12). Let PS × P−

T act trivially on Lε
space(zS ⊕ zT ), and consider the associated bundle

(G×G)×(PS×P−T ) (GS × Lε
space(zS ⊕ zT ))

over G/PS ×G/P−
T and the map

a : (G×G)×(PS×P−T ) (GS × Lε
space(zS ⊕ zT )) −→ Lε(S, T, d)(2.14)

[(g1, g2), (g, V )] 7−→ Ad(g1,g2)lg,V ,(2.15)

where lg,V = V + (nS ⊕ n−T ) + {(x, γdAdg(x)) : x ∈ gS} for g ∈ GS .

Proposition 2.30. For every S, T ⊂ Γ, d ∈ I(S, T ), and ε ∈ {0, 1}, Lε(S, T, d) is a smooth
connected subvariety of Gr(n, g⊕ g) of dimension n + z(z−3)

2 , where n = dim g and z = dim zS,
and the map a in (2.14) is a (G×G)-equivariant isomorphism.

Proof. Consider the (G×G)-equivariant projection

(2.16) J : Lε(S, T, d) −→ G/PS ×G/P−
T : l(p, p′, µ, V ) 7−→ (p, p′).

Let F ε(S, T, d) be the fibre of J over the point (pS , p−T ) ∈ G/PS × G/P−
T . By Lemma 4, p. 26

of [Sl], the map

(G×G)×(PS×P−T ) F ε(S, T, d) −→ Lε(S, T, d) : [(g1, g2), l] 7−→ Ad(g1,g2)l
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is a (G×G)-equivariant isomorphism. By Lemma 2.7,

F ε(S, T, d) = {lg,V : g ∈ GS , V ∈ Lε
space(zS ⊕ zT )}.

The identification GS × Lε
space(zS ⊕ zT ) → F ε(S, T, d) given by (g, V ) 7→ lg,V is (PS × P−

T )-
equivariant. It follows that a is a (G×G)-equivariant isomorphism. The dimension claim now
follows from Propositions 2.2 and 2.19. Smoothness and connectedness of Lε(S, T, d) follow
easily.

Q.E.D.

2.10. The geometry of the closures Lε(S, T, d). In this section, we determine the geometry
of the closure of Lε(S, T, d) in Gr(n, g⊕ g) for any generalized BD-triple (S, T, d) and ε ∈ {0, 1}.
The closure is taken in the Zariski topology, and we will show that it is the same as the closure
in the classical topology.

Recall that Zd(GS) is the closure in Gr(m, gS⊕gT ) of the embedding of GS into Gr(m, gS⊕gT )
given in (2.11). Moreover, PS × P−

T acts on Zd(GS) by (2.12). Let PS × P−
T act trivially on

Lε
space(zS ⊕ zT ).

The proof of the following Theorem is quite similar to the proof of Theorem 2.27, and we will
omit it.

Theorem 2.31. For every generalized BD-triple (S, T, d) and every ε ∈ {0, 1}, the closure
Lε(S, T, d) is a smooth algebraic variety of dimension n+ z(z−3)

2 , where n = dim(g), z = dim zS,
and the map

a : (G×G)×(PS×P−T ) (Zd(GS)× Lε
space(zS ⊕ zT )) −→ Lε(S, T, d)(2.17)

[(g1, g2), (l, V )] 7−→ Ad(g1,g2)(V + (nS ⊕ n−T ) + l)(2.18)

is a (G×G)-equivariant isomorphism.

Corollary 2.32. For every generalized BD-triple (S, T, d) and every ε ∈ {0, 1}, we have a
disjoint union

(2.19) Lε(S, T, d) =
⋃

V ∈Lε
space(zS⊕zT )

⋃

S1⊂S

(G×G) · lS1,d(S1),d,V1(V,S1),

where for S1 ⊂ S and V ∈ Lε
space(zS ⊕ zT ),

V1(V, S1) = V + {(x, γd(x)) : x ∈ hS ∩ zS1
} ⊂ zS1

⊕ zd(S1).

Remark 2.33. 1). Since Zd(GS) is also the closure in the classical topology of the (GS ×GT )-
orbit through lγd

inside Gr(m, gS ⊕ gT ), the Lε(S, T, d)’s also have the same closures in the two
topologies of Gr(n, g⊕ g).

2). Since GS is a Zariski open subvariety of Zd(GS), Zd(GS) − GS is an algebraic variety
of dimension strictly lower than m = dimGS . It follows from the proof of Theorem 2.31 that
Lε(S, T, d)− Lε(S, T, d) is of strictly lower dimension than Lε(S, T, d).
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2.11. Irreducible components of L. We can now determine the irreducible components of
L. Since Lε(S, T, d) is smooth and connected, it is a closed irreducible subvariety of L. Since
we have the finite union

L =
⋃

ε∈{0,1}

⋃

S,T⊂Γ,d∈I(S,T )

Lε(S, T, d),

the irreducible components of L are those Lε(S, T, d)’s not properly contained in some other
such set.

Theorem 2.34. Lε(S, T, d) is an irreducible component of L unless |Γ− S| = 1, T = d1(S) for
some d1 ∈ I(Γ, Γ), d = d1|S, and ε = (dim h− dim hγd1 ) mod 2.

Proof. When (S, T, d, ε) are as described in the proposition, the set Lε(S, T, d) consists of a
single (G×G)-orbit because dim zS = 1, and this single (G×G)-orbit lies in Zd1(G) by Theorem
2.25. We need to show that this is the only nontrivial case when the closure Lε(S, T, d) is
contained in another Lε(S1, T1, d1).

Assume that Lε(S, T, d) is in the boundary of Lε(S1, T1, d1). Then by Corollary 2.32, S ⊂ S1

and T ⊂ T1. By Remark 2.33, dimLε(S, T, d) < dimLε(S1, T1, d1), and thus

dim(zS)(dim(zS)− 3)
2

<
dim(zS1

)(dim(zS1
)− 3)

2
by the dimension formula in Proposition 2.30. Since S ⊂ S1, so dim(zS) ≥ dim(zS1

), these two
inequalities imply that dim(zS1

) = 0 and dim(zS) = 1 or 2. In particular, S1 = T1 = Γ, so
ε = (dim h− dim hγd1 ) mod 2, and Lε(S1, T1, d1) = Zd1(G).

If dim(zS) = 2, Lε(S, T, d) contains infinitely many (G × G)-orbits by Theorem 2.18 and
Proposition 2.2. Since Zd1(G) has only finitely many (G × G)-orbits, Lε(S, T, d) can not be
contained in Zd1(G).

Assume now dim(zS) = 1. Then we know by Proposition 2.30 that Lε(S, T, d) is a single
(G×G)-orbit. By the description of all (G×G)-orbits in Zd1(G) given in Theorem 2.25, we see
that we must have T and d as described in the proposition.

Q.E.D.

Example 2.35. Let g = sl(2,C). Then L has two irreducible components, one being the De
Concini-Procesi compactification Zid(G) of G = PSL(2, C) which is isomorphic to CP 3 (see
[D-P]), and the other being isomorphic to CP 1 × CP 1, the closed (G × G)-orbit through the
Lagrangian subalgebra h∆ +(n⊕n−), where h consists of diagonal elements in sl(2, C), h∆ is the
diagonal of h⊕ h, and n and n− are respectively the nilpotent subalgebras of sl(2,C) consisting
of strictly upper and lower triangular elements in sl(2,C).

For g = sl(3,C), there are four irreducible components Zid(G), Zd1(G), C1 and C2, where
Zid(G) and Zd1(G) are the two De Concini-Procesi compactifications of G = PSL(3,C) corre-
sponding to the identity and the non-trivial automorphism of the Dynkin diagram of sl(3,C), and
C1 and C2 are the two components L0(∅, ∅, d) and L1(∅, ∅, d). Both C1 and C2 have dimension
7. Moreover, Zid(G) ∩ C1 is a 6-dimensional closed (G×G)-orbit, and so is Zd1(G) ∩ C2.

3. Classification of G∆-orbits in L
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3.1. Some results on Weyl groups and generalized BD-triples. In this section, we discuss
some results on Weyl groups in relation to generalized BD-triples. We will use these results in
Sections 3.2 and 3.3, to determine the G∆-orbits in L, where G∆ = {(g, g) : g ∈ G}. We first
fix some notation.

Notation 3.1. Let W be the Weyl group of Γ. If F is a subset of Γ, we let WF denote the
subgroup of W generated by elements in F . If E and F are two subsets of Γ, then G has the
Bruhat decomposition

(3.1) G =
∐

[w]∈WE\W/WF

PEwP−
F .

It is also well-known (see Proposition 2.7.3 of [C] or Lemma 4.3 of [Y]) that each coset from
WE\W/WF has a unique minimal length representative w with the property that

(3.2) w−1(E) ⊂ Σ+ and w(F ) ⊂ Σ+.

Let EWF be the set of minimal length representatives for double cosets from WE\W/WF . When
E is the empty set ∅, we set WF = ∅WF . If E1 and E2 are two subsets of F , the set of minimal
length representatives in WF for the double cosets from WE1\WF /WE2 will be denoted by
E1(WF )E2 . If u ∈ E1(WF )E2 and v ∈ E′1(WF ′)E′2 are two such minimal length representatives, we
can regard both u ∈ WF and v ∈ WF ′ as elements in W , and by uv we will mean their product
in W .

Definition 3.2. Let (S, T, d) be a generalized BD-triple in Γ. For v ∈ W T , regard vd as a map
S → ∆. We define S(v, d) ⊂ S to be the largest subset in S that is invariant under vd. In other
words,

(3.3) S(v, d) = {α ∈ S : (vd)nα ∈ S,∀ integer n ≥ 1}.
We will show that every G∆-orbit in L gives rise to a unique generalized BD-triple (S, T, d)

and v ∈ W T , and we will classify G∆-orbits in L in terms of twisted conjugacy classes in MS(v,d).

We first have the following lemma which follows directly from Proposition 2.7.5 of [C] or
Lemma 4.3 of [Y].

Lemma 3.3. 1) Let w ∈ SW T . Then uw ∈ W T for every u ∈ (WS)S∩w(T );

2) Every v ∈ W T has a unique decomposition v = uw where w ∈ SW T and u ∈ (WS)S∩w(T ).
Moreover, l(v) = l(u) + l(w).

For each w ∈ SW T , set

(3.4) Tw = S ∩ w(T ), Sw = d−1(T ∩ w−1(S)).

Since Sw, Tw ⊂ S, we can regard (Sw, Tw, wd) as a generalized BD-triple in S. Let Sw(u,wd) be
the largest subset of Sw that is invariant under uwd, i.e.,

(3.5) Sw(u,wd) = {α ∈ Sw : (uwd)nα ∈ Sw ∀n ≥ 1}.
Lemma 3.4. For v ∈ W T and v = uw as in Lemma 3.3, we have Sw(u,wd) = S(v, d).

Proof. Clearly Sw(u,wd) ⊂ S(v, d). Suppose now that α ∈ S(v, d). To show that α ∈
Sw(u,wd), we show wdα ∈ S. Since α ∈ S(v, d), vdα ∈ S, so wdα ∈ u−1S ⊂ [S]. Since
w(T ) ⊂ Σ+, wdα ∈ [S] ∩ Σ+. To show that wdα ∈ S, suppose that wdα = β1 + β2 with
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β1, β2 ∈ [S] ∩ Σ+. Then dα = w−1β1 + w−1β2. But w−1β1, w
−1β2 ∈ w−1([S] ∩ Σ+) ⊂ Σ+. This

contradicts to the fact that dα ∈ T is a simple root. Thus wdα ∈ S. It follows easily that
α ∈ Sw, and hence α ∈ Sw(u, wd).

Q.E.D.

Notation 3.5. Consider a sequence of quadruples (Si, Ti, di, wi) indexed by i ∈ N such that:

1) (Si, Ti, di) is a generalized BD-triple;

2) wi ∈ Si(WSi−1)
Ti (we set S0 = Γ);

3) Ti+1 = Si ∩ wi(Ti), di+1 = widi, and Si+1 = d−1
i+1(Ti+1).

Since Si+1 ⊂ Si, there exists some k such that Sk = Sk+1. Let v = wkwk−1 · · ·w1. Also note
that if (S1, T1, d1, w1) = (S, T, d, w), then S2 = Sw, T2 = Tw, and d2 = wd.

Proposition 3.6. Let the sequence {(Si, Ti, di, wi) : i ∈ N} be as in Notation 3.5, and assume
that (S1, T1, d1) = (S, T, d). Then

1) Sk+1 = Tk+1 = Sk.

2) v ∈ W T .

3) S(v, d) = Sk+1 and dk+1 = vd.

Proof. For 1), since Sk = Sk+1, it follows that the cardinalities of Sk and Tk+1 = Sk ∩ wk(Tk)
coincide. In particular, Sk = wk(Tk), so Tk+1 = Sk. Let uk+1 be the identity and let ui :=
wkwk−1 · · ·wi. For 2), use decreasing induction to show that ui ∈ (WSi−1)

Ti . The case i = k + 1
is clear, and the inductive step follows from Lemma 3.3 (1). Repeated application of Lemma
3.4 gives

S(v, d) = S2(u2, d2) = S3(u3, d3) = · · · = Sk+1(uk+1, dk+1).
Since uk+1 is the identity and dk+1 = wkdk : Sk+1 → Tk+1 is a self-map by (1), it follows that
Sk+1(uk+1, dk+1) = Sk+1, which gives the first part of 3), and the remaining part follows easily.

Q.E.D.

Example 3.7. Let g = sl(n + 1,C) with the simple roots labeled as α1, α2, . . . , αn. let S =
{α1, α2, . . . , αn−1}, T = {α2, α3, . . . , αn}, and d : S → T : d(αj) = αj+1 for j = 1, 2, . . . , n − 1.
The triple (S, T, d) is related to the Cremmer-Gervais Lie bialgebra structure on g (see [Cr-G]).
We take all wi = 1, the identity element in the Weyl group. Then k = n and moreover,
Si = {α1, α2, . . . , αn−i}, Ti = {α2, α3, . . . , αn−i+1} for 1 ≤ i ≤ n− 1, and Sn = Tn = ∅.

3.2. A double coset theorem. By Theorem 2.18, to describe the G∆-orbits in L, it is enough
to describe G∆-orbits in (G × G)/RS,T,d for all generalized BD-triples (S, T, d) for Γ, where
RS,T,d is given by (2.6). In this section, we will prove a double coset theorem which will allow
us to describe the G∆-orbits in L. The method we use is adapted from [Y], and a more general
double coset theorem is proved in [Lu-Y2], which, as special cases, gives a classification of
(RS1,T1,d1 , RS2,T2,d2)-double cosets in G×G for two BD-triples (S1, T1, d1) and (S2, T2, d2).

For the rest of this section, we assume that G is a connected complex reductive Lie group
with Lie algebra g, not necessarily of adjoint type. We use the same notation as in Notation
2.12 and Notation 3.1 for various subalgebras of g and subgroups of G and for elements in the
Weyl group. We now define a class of subgroups R of G×G that are slightly more general than
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the subgroups RS,T,d, and we will prove a theorem on (G∆, R)-double cosets in G×G for such
a subgroup R.

Definition 3.8. Let (S, T, d) be a generalized BD-triple in Γ. Denote the centers of the Levi
subgroups MS and MT by ZS and ZT respectively. If CS is a subgroup of ZS and CT is a
subgroup of ZT , we let

jS : MS −→ MS/CS and jT : MT −→ MT /CT

be the projections. By a (S, T, d)-admissible subgroup of G × G we mean a subgroup R =
R(CS , CT , θd) of the form

(3.6) R(CS , CT , θd) = {(m,m′) ∈ MS ×MT : θd(jS(m)) = jT (m′)}(NS ×N−
T ),

where CS is a subgroup of ZS , CT is a subgroup of ZT , and θd : MS/CS −→ MT /CT is a group
isomorphism that maps the one-dimensional unipotent subgroup of MS/CS defined by α to the
corresponding subgroup of MT /CT defined by dα for each α ∈ [S]. .

Clearly R(ZS , ZT , γd) = RS,T,d. Let R be any (S, T, d)-admissible subgroup of G×G. Recall
that the subset S(v, d) of S for v ∈ W T is defined in (3.3). If v̇ is a representative of v in G, set

Rv̇ = {(m1,m
′
1) ∈ MS(v,d) ×MS(v,d) : θd(jS(m1)) = jT (v̇−1m′

1v̇)}(3.7)

= (MS(v,d) ×MS(v,d)) ∩ ((id×Adv̇)R) ,(3.8)

where Adv̇ : G → G : g 7→ v̇gv̇−1. Let Rv̇ act on MS(v,d) (from the right) by

(3.9) m · (m1,m
′
1) = (m′

1)
−1mm1, m ∈ MS(v,d), (m1,m

′
1) ∈ Rv̇.

For (g1, g2) ∈ G×G, we will use [g1, g2] to denote the double coset G∆(g1, g2)R in G×G.

Theorem 3.9. Let (S, T, d) be a generalized BD-triple, and let R = R(CS , CT , θd) be a (S, T, d)-
admissible subgroup of G×G as given in (3.6). For v ∈ W T , let S(v, d) ⊂ S be given in (3.3),
and let v̇ be a fixed representative of v in G. Then

1) every (G∆, R)-double coset in G×G is of the form [m, v̇] for some v ∈ W T and m ∈ MS(v,d);

2) Two double cosets [m1, v̇1] and [m2, v̇2] in 1) coincide if and only if v1 = v2 = v and m1

and m2 are in the same Rv̇-orbit in MS(v,d), where we use the Rv̇ action in (3.9).

Remark 3.10. If v ∈ W T and if v̂ is another representative of G, then v̂ = hvv̇ for some hv ∈ H,
where H is the Cartan subgroup of G with Lie algebra h. It is easy to see that (m,m′) ∈ Rv̂

if and only if (m, h−1
v m′hv) ∈ Rv̇. It follows that if Theorem 3.9 holds for a particular set

{v̇ : v ∈ W T }, then it holds for every such set.

We will present the main induction step in the proof of Theorem 3.9 in a lemma. To this
end, recall that every w ∈ SW T gives rise to the generalized BD-triple (Sw, Tw, wd) in S given
in (3.4). For each w ∈ SW T , fix a representative ẇ in G, and set

NS
Sw

= NSw ∩MS , and NS,−
Tw

= N−
Tw
∩MS .

Define

RS
ẇ = {(m,m′) ∈ MSw ×MTw : θd(jS(m)) = jT (ẇ−1m′ẇ)}

(
NS

Sw
×NS,−

Tw

)
(3.10)

= ((MSw ×MTw) ∩ ((id×Adẇ)R))
(
NS

Sw
×NS,−

Tw

)
.(3.11)
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Note that RS
ẇ is an (Sw, Tw, wd)-admissible subgroup of MS ×MS defined by the subgroup CS

of ZSw , the subgroup w(CT ) of ZTw and the group isomorphism

γẇd
def= Adẇθd : MSw/CS −→ MTw/w(CT ).

Lemma 3.11. 1) Every (G∆, R)-double coset in (G×G) is of the form [m,m′ẇ] for a unique
w ∈ SW T and some m ∈ MS.

2) [m1,m
′
1ẇ] = [m2, m

′
2ẇ], where w ∈ SW T and (m1, m

′
1), (m2, m

′
2) ∈ MS ×MS, if and only

if (m1,m
′
1) and (m2,m

′
2) are in the same ((MS)∆, RS

ẇ)-double coset in MS ×MS.

Proof. Consider the right action of PS × P−
T on G∆\(G × G) by right translations. By the

Bruhat decomposition G =
⋃

w∈SW T PSwP−
T , the (PS × P−

T )-orbits are parameterized by the
set {G∆(e, ẇ) : w ∈ SW T }. Let w ∈ SW T . The stabilizer subgroup of PS × P−

T at G∆(e, ẇ) is
PS ∩ (ẇP−

T ẇ−1) considered as a subgroup of PS × P−
T via the embedding

(3.12) PS ∩ (ẇP−
T ẇ−1) −→ PS × P−

T : pS 7−→ (pS , ẇ−1pSẇ).

Thus the set of R-orbits in G∆\(G×G) can be identified with the disjoint union over w ∈ SW T

of the spaces of R-orbits in PS ∩ (ẇP−
T ẇ−1)\(PS × P−

T ). Thus we get an injective map

(3.13) (PS ∩ ẇP−
T ẇ−1)\PS × P−

T /R −→ G∆\G×G/R

given by (PS ∩ ẇP−
T ẇ−1)(pS , p−T )R → [pS , ẇp−T ].

We will complete the proof by identifying

(3.14) (PS ∩ (ẇP−
T ẇ−1)\PS × P−

T /R ∼= (MS)∆\MS ×MS/RS
ẇ

through a series of steps. Let πS : PS → MS be the projection with respect to the decomposition
PS = MSNS . Similarly, we have the projection πT : P−

T → MT . Then the projection πS × πT :
PS × P−

T → MS ×MT gives an identification

(3.15) PS ∩ (ẇP−
T ẇ−1)\PS × P−

T /R −→ R1\MS ×MT /R2,

where
R1 = (πS × πT )(PS ∩ (ẇP−

T ẇ−1)), R2 = (MS ×MT ) ∩R.

Now since the projection from (MS ×MT ) ∩R to MT is onto with kernel (CS × {e}), the map

φw : (MS ×MT )/R2 −→ (MS ×MS)/(MS)∆(CS × {e})
that maps (mS ,mT )R2 to (m′

S ,mS)((MS)∆(CS × {e})) is a well-defined bijection, where for
mT ∈ MT , m′

S is any element in MS such that (m′
S ,mT ) ∈ R2. Thus φw induces an identification

(3.16) ψw : R1\MS ×MT /R2 −→ R3\MS ×MS/((MS)∆(CS × {e})),
where

R3
def= {(m′

S , mS) ∈ MS ×MS : ∃mT ∈ MT such that (mS ,mT ) ∈ R1, (m′
S ,mT ) ∈ R2}.

By Theorem 2.8.7 of [C], we have the decomposition of PS ∩ (ẇP−
T ẇ−1) as

(3.17) PS ∩ (ẇP−
T ẇ−1) = MS ∩Adẇ(MT )(MS ∩Adẇ(N−

T ))(NS ∩Adẇ(MT ))(NS ∩Adẇ(N−
T )).

We note that MS ∩ Adẇ(MT ) = MS∩w(T ), MS ∩ Adẇ(N−
T ) = NS,−

S∩w(T ) = MS ∩ N−
S∩w(T ), and

NS ∩Adẇ(MT ) = NT
T∩w−1(S) = MT ∩NT∩w−1(S). These identities are easily verified at the level
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of Lie algebras using the identity [S] ∩ [w(T )] = [S ∩w(T )] and follow for groups since all these
groups are connected. Thus

R1 =
{
(m,Adẇ−1(m)) : m ∈ MS∩w(T )

}(
NS,−

S∩w(T ) ×NT
T∩w−1(S)

)
.

Therefore (m′
S , mS) ∈ R3 if and only if there exist n ∈ NS,−

S∩w(T ), n1 ∈ NT
T∩w−1(S), and m ∈

MS∩w(T ) such that
mS = mn, (m′

S , Adẇ−1(m)n1) ∈ R2.

Recall that Tw = S ∩ w(T ) and Sw = d−1(T ∩ w−1(S). It follows now from the definition
of R that (m′

S ,mS) ∈ R3 if and only if there exist m′ ∈ MSw ,m ∈ MTw , n ∈ NS,−
Tw

, and
n′ ∈ NS

Sw
= MS ∩NSw such that

mS = mn, m′
S = m′n′, (m′, Ad−1

ẇ (m)) ∈ R.

Thus R3 is precisely the group RS
ẇ as given in (3.10). Moreover, since CS lies is the center of

MS and since CS ×{e} ⊂ RS
ẇ, the (right) action of CS ×{e} on RS

ẇ\(MS ×MS) is trivial. Thus
we have

R3\MS ×MS/((MS)∆(CS × {e})) ∼= RS
ẇ\MS ×MS/((MS)∆(CS × {e}))

∼= RS
ẇ\MS ×MS/(MS)∆

∼= (MS)∆\MS ×MS/RS
ẇ,

where the last identification is induced by the inverse map of MS ×MS .

Combining the above identification with the identifications in (3.15)-(3.16) and with the
inclusion of (3.13), we get a well-defined injective map

(MS)∆\MS ×MS/RS
ẇ −→ G∆\G×G/R

which is given by

(MS)∆(m,m′)RS
ẇ → [((m′)−1, ẇθd(m−1))] = [(m′)−1m, ẇ] = [m,m′ẇ].

This finishes the proof of Lemma 3.11.

Q.E.D.

Proof of Theorem 3.9. By Lemma 3.11, each (G∆, R) double coset in G×G determines some
w ∈ SW T and a double coset [m,m′]1 ∈ (MS)∆\MS ×MS/RS

ẇ. Let S0 = Γ, S1 = S, T1 = T ,
w1 = w, and d1 = d. By successively applying Lemma 3.11 to a sequence of smaller subgroups,
we obtain a sequence of quadruples (Si, Ti, di, wi) as in Notation 3.5, as well as a double coset
in

(MSi)∆\MSi ×MSi/Ri,

where Ri is the subgroup of MSi ×MSi defined analogously to RS
ẇ.

Let k be minimal such that Sk+1 = Sk. It follows that Sk+1(WSk
)Tk+1 is the trivial group, so

wk+1 = e is the identity. As in Notation 3.5, let v = wk · · ·w1 ∈ W T . By Proposition 3.6, Sk+1 =
S(v, d), and it follows that each double coset is of the form [m, m′v̇] for m ∈ MS(v,d). It follows
from definitions that Rk+1 = Rv̇, and thus double cosets in (MSk+1

)∆\MSk+1
× MSk+1

/Rk+1

coincide with double cosets in (MS(v,d))∆\MS(v,d) ×MS(v,d)/Rv̇. It is easy to see that the map

(MS(v,d))∆\MS(v,d) ×MS(v,d)/Rv̇ −→ MS(v,d)/Rv̇ : [m,m′] 7−→ [m′−1
m]
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is a bijection. This proves Theorem 3.9.

Q.E.D.

3.3. G∆-orbits in L. Recall from Theorem 2.18 that every (G×G)-orbit in L passes through
exactly one point of the form lS,T,d,V given in (2.4), where (S, T, d) is a generalized BD-triple,
and V ∈ Lspace(zS⊕ zT ). Recall also from Proposition 2.19 that the stabilizer subgroup of G×G
at lS,T,d,V is RS,T,d given in (2.6). Thus to describe the space of G-orbits in L, it is enough to
describe the space of G∆-orbits in (G × G) · lS,T,d,V

∼= (G × G)/RS,T,d, which are the same as
(G∆, RS,T,d)-double cosets in G×G.

Notation 3.12. For a generalized BD-triple (S, T, d), V ∈ Lspace(zS⊕zT ), m ∈ MS(v,d), v ∈ W T ,
and v̇ ∈ G a fixed representative of v in G, set

(3.18) lS,T,d,V,v̇,m = Ad(m,v̇)lS,T,d,V ,

where lS,T,d,V is given in (2.4). Define

(3.19) Rv̇ = {(m1, m
′
1) ∈ MS(v,d) ×MS(v,d) : γd(χS(m1)) = χT (v̇−1m′

1v̇)},
and let Rv̇ act on MS(v,d) (from the right) by

(3.20) m · (m1,m
′
1) = (m′

1)
−1mm1, m ∈ MS(v,d), (m1,m

′
1) ∈ Rv̇.

As an immediate corollary of Theorem 3.9, we have

Corollary 3.13. Every G ∼= G∆-orbit in L passes through an lS,T,d,V,v̇,m for a unique generalized
BD-triple (S, T, d), a unique V ∈ Lspace(zS ⊕ zT ), a unique v ∈ W T , and some m ∈ MS(v,d);
Two such Lagrangian subalgebras lS,T,d,V,v,m1 and lS,T,d,V,v,m2 are in the same G∆-orbit if and
only if m1 and m2 are in the same Rv̇-orbits in MS(v,d).

3.4. Normalizer subalgebras of g∆ at l ∈ L. For a Lagrangian subalgebra l = lS,T,d,V,v̇,m in
Corollary 3.13, we now compute its normalizer subalgebra n(l) ⊂ g ∼= g∆ = {(x, x) : x ∈ g}.
Introduce the map

φ := Adv̇γdχSAd−1
m : pS −→ g.

Consider the standard parabolic subalgebra pS(v,d) and its decomposition pS(v,d) = zS(v,d) +
gS(v,d) + nS(v,d) (see Notation 2.12).

Lemma 3.14. The map φ = Adv̇γdχSAd−1
m leaves each of zS(v,d), gS(v,d), and nS(v,d) invariant.

Moreover, φ : nS(v,d) → nS(v,d) is nilpotent.

Proof. Let x ∈ zS(v,d). Then φ(x) = Adv̇γdχS(x) ∈ h. For every α ∈ S(v, d), since (vd)−1α ∈
S(v, d), we have

α(φ(x)) = ((vd)−1α)(χS(x)) = ((vd)−1α)(x) = 0.

Thus φ(x) ∈ zS(v,d), so zS(v,d) is φ-invariant. Since both Adv̇γd and Ad−1
m leave gS(v,d) invariant,

we see that φ|gS(v,d)
= Adv̇γdAd−1

m leaves gS(v,d) invariant.

It remains to show that nS(v,d) is φ-invariant and that φ : nS(v,d) → nS(v,d) is nilpotent.
Decompose nS(v,d) as nS(v,d) = nS + nS

S(v,d), where nS
S(v,d) = ⊕α∈[S]−[S(v,d)]gα. Then φ(nS) = 0

and φ|nS
S(v,d)

= Adv̇γdAd−1
m , and Adv̇γdAd−1

m (nS
S(v,d)) ⊂ nS(v,d). Indeed, Ad−1

m (nS
S(v,d)) ⊂ nS

S(v,d)

and Adv̇γd(nS
S(v,d)) ⊂ nS(v,d) since v ∈ W T . Thus nS(v,d) is φ-invariant.
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To show that φ : nS(v,d) → nS(v,d) is nilpotent, set Σ+
0 = Σ+ − [S], and for j ≥ 1, set

Σ+
j = {α ∈ Σ+ : α ∈ [S], · · · , (vd)j−1(α) ∈ [S], (vd)j(α) /∈ [S]}

= {α ∈ [S] ∩ Σ+ : vd(α) ∈ Σ+
j−1}

Then Σ+ − [S(v, d)] =
⋃

j≥0 Σ+
j is a finite disjoint union. Let K ≥ 0 be an integer such that

Σ+
j = ∅ for j > K. For 0 ≤ j ≤ K, set

nj = ⊕α∈Σ+
j
gα.

Then n0 = nS , and
nS(v,d) = n0 + n1 + · · ·+ nK

is a direct sum. We claim that [mS(v,d), nj ] ⊂ nj each j ≥ 0. Indeed, for α ∈ Σ+
j , since

α /∈ [S(v, d)], α + β 6= 0 for any β ∈ [S(v, d)]. Thus to prove the claim, it is enough to show the
following statement for every j ≥ 0:

(3.21) α ∈ Σ+
j , β ∈ [S(v, d)], α + β ∈ Σ =⇒ α + β ∈ Σ+

j .

We prove (3.21) by induction on j. When j = 0, since β ∈ [S] and α ∈ Σ+−[S], α+β ∈ Σ+−[S] =
Σ+

0 . Now let j ≥ 1 and assume that (3.21) holds for j− 1. Let α ∈ Σ+
j and β ∈ [S(v, d)] be such

that α + β is a root. Then vd(α) ∈ Σ+
j−1, vd(β) ∈ [S(v, d)] and vd(α) + vd(β) = vd(α + β) is a

root. Thus vd(α + β) ∈ Σ+
j−1. It follows that α + β ∈ Σ+

j . We therefore have proved the claim
that [mS(v,d), nj ] ⊂ nj for each j ≥ 0. It follows that

Admnj = nj , ∀j ≥ 0.

By setting n−1 = 0, we also see from the definitions that Adv̇γdχS(nj) ⊂ nj−1 for every j ≥ 0.
Thus we have

φ(nj) ⊂ nj−1, ∀j ≥ 0.

It thus follows that nS(v,d) is φ-invariant and that φ : nS(v,d) → nS(v,d) is nilpotent.

Q.E.D.

Let again φ = Adv̇γdχSAd−1
m and note that φ(pS(v,d)) ⊂ pS(v,d) by Lemma 3.14. Since

φ : nS(v,d) → nS(v,d) is nilpotent, we can define

ψ := (1− φ)−1 = 1 + φ + φ2 + φ3 + · · · : nS(v,d) −→ nS(v,d).

Let Σ+
v = {α ∈ Σ+ : v−1α ∈ Σ−}. Since v([T ] ∩ Σ+) ⊂ Σ+, it follows that Σ+

v ⊂ Σ+ − [S(v, d)].
Let

nv = ⊕α∈Σ+
v
gα = n ∩Adv̇(n−).

Then nv ⊂ nS(v,d).

Theorem 3.15. The normalizer subalgebra n(l) in g∆
∼= g of l = lS,T,d,V,v̇,m in (3.18) is

n(l) = z′S(v,d) + g
φ
S(v,d) + ψ(nv),

where g
φ
S(v,d) is the fixed point set of φ|gS(v,d)

= Adv̇γdAd−1
m in gS(v,d), and

z′S(v,d) = {z ∈ zS(v,d) : z − φ(z) ∈ Adv̇zT } = {z ∈ zS(v,d) : γdχS(z) = χT (Ad−1
v̇ z)}.
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Proof. Set n(l)∆ = {(x, x) : x ∈ n(l)}. Since the normalizer subgroup of lS,T,d,v in G × G is
RS,T,d, we have

n(l)∆ = g∆ ∩Ad(m,v̇)rS,T,d,

where
rS,T,d = (zS ⊕ zT ) + (nS ⊕ n−T ) + {(x, γd(x)) : x ∈ gS}

is the Lie algebra of RS,T,d. Thus

n(l) = {x ∈ g : (Ad−1
m x, Ad−1

v̇ x) ∈ rS,T,d}.
It follows that x ∈ n(l) if and only if x ∈ pS ∩ Adv̇p

−
T and γdχS(Ad−1

m (x)) = χT (Ad−1
v̇ x), which

is equivalent to Ad−1
v̇ x− γdχS(Ad−1

m (x)) ∈ zT + n−T , or

(3.22) x−Adv̇γdχS(Ad−1
m (x)) ∈ Adv̇(zT + n−T ).

Recall that the map χS is the projection from pS → gS with respect to the decomposition
pS = zS + gS + nS . We will also use χS to denote the projection g → gS with respect to the
decomposition g = n−S + zS + gS + nS , so Adv̇γdχS(Ad−1

m x) is defined for all x ∈ g. Let c be the
set of all x ∈ g satisfying (3.22). We will first determine c and then determine c∩ (

pS ∩Adv̇p
−
T

)
.

Set again φ = Adv̇γdχSAd−1
m : g → g, and consider the decomposition

(3.23) g = n−S(v,d) + mS(v,d) + nS(v,d).

By Lemma 3.14, both mS(v,d) and nS(v,d) are invariant under φ and φ : nS(v,d) → nS(v,d) is
nilpotent. Arguments similar to those in the proof of Lemma 3.14 show that n−S(v,d) is also
invariant under φ and that φ : n−S(v,d) → n−S(v,d) is nilpotent. Note that since v−1α /∈ [T ] implies
that α /∈ S(v, d), we have

Adv̇n
−
T =

(
Adv̇n

−
T

) ∩ n− +
(
Adv̇n

−
T

) ∩ n ⊂ n−S(v,d) + nS(v,d).

Moreover, it is easy to see that
(
Adv̇n

−
T

) ∩ n =
(
Adv̇n

−
T

) ∩ nS(v,d) = nv, so

(3.24) Adv̇n
−
T = nv +

(
Adv̇n

−
T

) ∩ n−S(v,d).

Now let x ∈ g and write x = x− + x0 + x+, where x− ∈ n−S(v,d), x0 ∈ mS(v,d), and x+ ∈ nS(v,d).
Then it follows from (3.24) that x ∈ c, i.e., x satisfies (3.22), if and only if

(3.25)





x0 − φ(x0) ∈ Adv̇zT

x+ − φ(x+) ∈ nv

x− − φ(x−) ∈ (
Adv̇n

−
T

) ∩ n−S(v,d).

For x0 ∈ mS(v,d), write x0 = z0 + y0, where z0 ∈ zS(v,d) and y0 ∈ gS(v,d). Since both zS(v,d) and
gS(v,d) are φ-invariant, and since Adv̇zT ⊂ zS(v,d), x0−φ(x0) ∈ Adv̇zT if and only if z0− φ(z0) ∈
Adv̇zT and y0−φ(y0) = 0, which implies that x0 ∈ z′S(v,d) +g

φ
S(v,d). Recall that ψ = (1−φ)−1 on

nS(v,d), and note that the same formula defines ψ on n−S(v,d). Thus, x+ − φ(x+) ∈ nv if and only
if x+ ∈ ψ(nv). Similarly, x− − φ(x−) ∈ Adv̇n

−
T ∩ n−S(v,d) if and only if x− ∈ ψ(Adv̇n

−
T ∩ n−S(v,d)).

Thus,
c = z′S(v,d) + g

φ
S(v,d) + ψ(nv) + ψ

((
Adv̇n

−
T

) ∩ n−S(v,d)

)

as a direct sum.
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We now determine c∩ (
pS ∩Adv̇p

−
T

)
. Since S(v, d) ⊂ S ∩ v(T ) and mS(v,d) ⊂ pS ∩Adv̇p

−
T , we

have
z′S(v,d) + g

φ
S(v,d) ⊂ pS ∩Adv̇p

−
T .

On the other hand, it follows from definitions that ψ(nv) ⊂ nS(v,d) ⊂ n ⊂ pS and

ψ(nv) ⊂ (nv + φ(nS(v,d))) ⊂ Adv̇(n− + mT ) = Adv̇p
−
T ,

so ψ(nv) ⊂ pS ∩Adv̇p
−
T . Thus

c ∩ (
pS ∩Adv̇p

−
T

)
= z′S(v,d) + g

φ
S(v,d) + ψ(nv) + c1,

where c1 = ψ
((

Adv̇n
−
T

) ∩ n−S(v,d)

)
∩ pS ∩Adv̇p

−
T . The theorem follows once we show c1 = 0.

For notational simplicity, we set n′ =
(
Adv̇n

−
T

)∩n−S(v,d). It suffices to show that ψ(n′)∩pS = 0.

Since ψ(n′) ⊂ n−S(v,d), it suffices to show that ψ(n′) ∩ n
S,−
S(v,d) = 0, where n

S,−
S(v,d) = mS ∩ n−S(v,d).

Since

ψ(n′) ∩ n
S,−
S(v,d) = ψ

(
n′ ∩ (1− φ)

(
n

S,−
S(v,d)

))
= ψ

(
Adv̇n

−
T ∩ (1− φ)

(
n

S,−
S(v,d)

))
,

we only need to show that Adv̇n
−
T ∩ (1− φ)

(
n

S,−
S(v,d)

)
= 0. Let

A1 = {α ∈ Σ− : α 6∈ vd[S]},
and for i ≥ 1,

Ai+1 = vd(Ai ∩ [S]).
It is easy to see inductively that Ai ⊂ Σ− for i ≥ 1. Set si =

∑
α∈Ai

gα ⊂ n− for i ≥ 1. It is
easy to see that Ai ∩ Aj = ∅ if i 6= j and it follows that si ∩ sj = 0 if i 6= j. Moreover, since
[S]− [S(v, d)] = ∪i≥1(Ai ∩ [S]), we have

n
S,−
S(v,d) = ⊕i(sj ∩ gS).

A proof similar to that of (3.21) in the proof of Lemma 3.14 shows that MS(v,d) preserves si for
each i ≥ 1. It follows easily that φ maps si ∩ gS injectively into si+1 for all i ≥ 1. If x ∈ n

S,−
S(v,d),

x nonzero, write
x = x1 + . . . xk, xj ∈ sj ∩ gS , with xk 6= 0.

Then
(1− φ)(x) = x1 + (x2 − φ(x1)) + · · ·+ (xk − φ(xk−1))− φ(xk).

Here x1 ∈ s1, xi−φ(xi−1) ∈ si, and φ(xk) ∈ sk+1. Note that φ(xk) 6= 0 since φ is injective on sk.
Since Adv̇n

−
T is a sum of its root spaces and the si’s have trivial intersections, (1−φ)(x) ∈ Adv̇n

−
T

implies φ(xk) ∈ Adv̇n
−
T . But φ(xk) ∈ Adv̇(gT ) and Adv̇(gT ) ∩ Adv̇n

−
T = 0, so φ(xk) = 0. Thus,

xk = 0, so x = 0 and it follows that (Adv̇n
−
T ) ∩ (1− φ)n−(Sv) = 0. This proves that c1 = 0, and

the Theorem follows.

Q.E.D.

Remark 3.16. Theorem 3.15 implies that n(l) ⊂ pS(v,d) ∩Adv̇p
−
T . Since v ∈ S(v,d)W T and since

S(v, d) ⊂ v(T ) we have the direct sum decomposition

(3.26) pS(v,d) ∩Adv̇p
−
T = mS(v,d) + nv + nS(v,d) ∩Adv̇mT .
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Note that nv + nS(v,d) ∩Adv̇mT is a subalgebra with nv as an ideal. Note also that φ(nS(v,d)) ⊂
nS(v,d) ∩Adv̇mT . If we define

ψ̃ = ψ − 1 = φψ = φ + φ2 + · · · : nS(v,d) → nS(v,d) ∩Adv̇mT ,

then ψ(nv) = {x + ψ̃(x) : x ∈ nv}. The fact that ψ(nv) is a Lie subalgebra of g implies that

[x, y]new := [x, y] + [x, ψ̃(y)] + [ψ̃(x), y], ∀x, y ∈ nv,

is a new Lie bracket on nv, and that ψ̃ : (nv, [ , ]new) → (nv, [ , ]) is a Lie algebra homomorphism.

3.5. Intersections of g∆ with an arbitrary l ∈ L. In this section, we compute the intersec-
tion of g∆ with an arbitrary Lagrangian subalgebra l of g ⊕ g. By Corollary 3.13, it is enough
to assume that l = lS,T,d,V,v̇,m as given in (3.18).

Proposition 3.17. For the Lagrangian subalgebra l = lS,T,d,V,v̇,m as given in (3.18), let the
notation be as in Theorem 3.15. Then we have

g∆ ∩ lS,T,d,V,v̇,m = Ad(m,v̇)V
′ +

(
g

φ
S(v,d) + ψ(nv)

)
∆

,

where
V ′ = {(z, v−1z) : z ∈ z′S(v,d)} ∩ (V + {(x, γd(x)) : x ∈ hS}) .

Proof. By Theorem 3.15,

g∆ ∩ l ⊂ n(l) =
(
z′S(v,d) + g

φ
S(v,d) + ψ(nv)

)
∆

.

Since
(
g

φ
S(v,d) + ψ(nv)

)
∆
⊂ l, we see that

g∆ ∩ l =
(
(z′S(v,d))∆ ∩ l

)
+

(
g

φ
S(v,d) + ψ(nv)

)
∆

,

and (
z′S(v,d)

)
∆
∩ l =

(
z′S(v,d)

)
∆
∩ l ∩ (h⊕ h) = Ad(m,v̇)V

′.

Q.E.D.

Recall that a Belavin-Drinfeld triple [B-Dr] for g is a triple (S, T, d), where S, T ⊂ Γ, d ∈
I(S, T ), and S(1, d) = ∅, where 1 is the identity element in the Weyl group W .

Definition 3.18. By a Belavin-Drinfeld system we mean a quadruple (S, T, d, V ), where (S, T, d)
is a Belavin-Drinfeld triple, and V is a Lagrangian subspace of zS ⊕ zT such that

h∆ ∩ (V + {(x, γd(x)) : x ∈ hS}) = 0.

We now show that a theorem of Belavin and Drinfeld [B-Dr] follows easily from Proposition
3.17.

Corollary 3.19. [Belavin-Drinfeld] A Lagrangian subalgebra l of g ⊕ g has trivial intersection
with g∆ if and only if l is G∆-conjugate to a Lagrangian subalgebra of the form lS,T,d,V , where
(S, T, d, V ) is a Belavin-Drinfeld system.
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Proof. With the same notation as that in Theorem 3.15 and Proposition 3.17, it is enough
to determine those lS,T,d,V,v̇,m such that g∆ ∩ lS,T,d,V,v̇,m = 0. Suppose that lS,T,d,V,v̇,m has this
property. Since dimψ(nv) = l(v), the length of v, and since every automorphism of a semi-simple
Lie algebra has fixed point set of dimension at least one [Wi], v = 1 and S(1, d) = ∅. In this
case, V ′ as in Proposition 3.17 is given by

V ′ = h∆ ∩ (V + {(x, γd(x)) : x ∈ hS}) ,

so h∆ ∩ (V + {(x, γd(x)) : x ∈ hS}) = 0, and we have

lS,T,d,V,v̇,m = Ad(m,v̇)lS,T,d,V

for some m ∈ H and v̇ ∈ H. Note that in this case

Rv̇ = {(h1, h2) ∈ H ×H : γd(χS(h1)) = χT (h2)}
and Rv̇ acts on H from the right by h · (h1, h2) = hh1h

−1
2 , where h ∈ H and (h1, h2) ∈ Rv̇.

Consider the map
m : Rv̇ −→ H : (h1, h2) 7−→ h1h

−1
2 .

The assumption that V ′ = 0 implies that the dimension of the kernel of the differential of m is
less than or equal to dim(zT ). It follows easily that the differential of m is onto, thus m is onto.
Thus, by Corollary 3.13, lS,T,d,V,v̇,m is in the G∆-orbit of lS,T,d,V .

Q.E.D.

3.6. Examples of smooth G∆-orbit closures in L. The closure of a G∆-orbit in L is in
general not necessarily smooth. In this section, we look at two cases for which such a closure is
smooth.

Proposition 3.20. If l is a Lagrangian subalgebra of g⊕g such that g∆∩ l = 0, then the closure
of the G∆-orbit G∆ · l is the same as the closure of the (G×G)-orbit (G×G) · l which is smooth.

Proof. We only need to show that G∆ · l and (G × G) · l have the same dimension. By the
Belavin-Drinfeld theorem, we may assume that l = lS,T,d,V , where (S, T, d, V ) is a Belavin-
Drinfeld system. In particular,

g∆ ∩ rS,T,d = h∆ ∩ ((zS ⊕ zT ) + VS)),

where VS = {(x, γd(x)) : x ∈ hS}. For a subspace A of h⊕ h, let

A⊥ = {(x, y) ∈ h⊕ h : 〈(x, y), (x1, y1)〉 = 0∀(x1, y1) ∈ A}.
Then

(h∆ ∩ ((zS ⊕ zT ) + VS)))⊥ = h∆ + VS .

Since h∆ ∩ VS = 0, we see that dim(h∆ + VS) = dim h + dim hS , so

dim(h∆ ∩ ((zS ⊕ zT ) + VS))) = dim zS .

Thus dim(G∆ · l) = dim g− dim zS = dim((G×G) · l) by Proposition 2.19.

Q.E.D.
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We now show that the De Concini-Procesi compactifications of complex symmetric spaces of
G can be embedded into L as closures of some G∆-orbits in L.

Let σ : g → g be an involution with lift σ to G, and let gσ and Gσ be the fixed subalgebra and
subgroup of σ. Let again lσ ∈ L be the graph of σ. The orbit G∆ · lσ may be identified with the
complex symmetric space G/Gσ. Let G∆ · lσ be the closure of G∆ · lσ in L. We will show that
G∆ · lσ may be identified with the De Concini-Procesi compactification of G/Gσ, which may be
defined as follows. Let dim(gσ) = m, so gσ ∈ Gr(m, g). Then G ·gσ ∼= G/Gσ, and Xσ := G · gσ is
the De Concini–Procesi compactification. It is known to be smooth with finitely many G-orbits
[D-P].

We recall some basic results about involutions. Choose a σ-stable maximal split Cartan
subalgebra hs of g, i.e., a σ-stable Cartan subalgebra hs such that h−σ

s has maximal dimension.
There is an induced action of σ on the roots of hs in g, and there is a positive root system
Σ+(hs) for hs with the property that if α ∈ Σ+(hs), then either σ(α) = α and σ|gα

= id, or
σ(α) 6∈ Σ+(hs). A weight λ ∈ h∗s is called a regular special dominant weight if λ is nonnegative
on roots in Σ+(hs), σ(λ) = −λ, and λ(Hα) = 0 for α simple implies that σ(α) = α. If λ and µ
are weights, we say λ ≥ µ if λ−µ =

∑
α∈Σ+(hs),nα≥0

nαα. For a weight µ, let µ = 1
2(µ−σ(µ)).

Lemma 3.21. [De Concini-Procesi, [D-P], Lemmas 4.1 and 6.1] Let V be a representation of
G, and suppose there exists a vector v ∈ V such that Gσ is the stabilizer of the line through v.
Suppose that when we decompose v into a sum of weight vectors for hs, v = vλ +

∑
vi where vλ

has regular special dominant weight λ and each vi has weight µi where λ ≥ µi. Let [v] be class
of v in Proj(V) and let X ′ be the closure of G · [v] in Proj(V). Then X ′ ∼= Xσ.

Proposition 3.22. There is a G-equivariant isomorphism G∆ · lσ ∼= Xσ.

Proof. To apply the Lemma 3.21, let n = dim(g) and consider the diagonal action of G on
V = ∧n(g⊕ g) and the vector vσ = ∧n(lσ). In order to represent vσ as a sum of weight vectors
in ∧n(g ⊕ g), we choose a basis. Let U1, . . . , Ul be a basis of hs. Let β1, . . . , βs be the roots of
Σ+(hs) such that σ(βi) = βi, and let α1, . . . , αt be the other roots in Σ+(hs). For each root α,
choose a root vector Xα. Then

{(Ui, σ(Ui))|i = 1, . . . , l} ∪ {(X±βi
, X±βi

)|i = 1, · · · , s} ∪ {(X±αj , σ(X±αj ))|i = 1, · · · t}
is clearly a basis of lσ. Now vσ is the wedge of the vectors (Yi, σ(Yi)) as Yi runs through the
above basis, and vσ contains the summand

u :
∧

i=1,...,l

(Ui, σ(Ui))
∧

i=1,...,s

(Xβi , 0) ∧ (X−βi , 0)
∧

j=1,...,t

(Xαi , 0) ∧ (0, σ(X−αi)).

It is easy to see that u is a weight vector for the diagonal Cartan subalgebra with weight
ν :=

∑
i=1,...,t αi−σ(αi), and ν = 2

∑
i=1,...,t αi on the subspace h−σ

s . Thus, ν is a regular special
dominant weight by Lemma 6.1 in [D-P]. Moreover, the other weight vectors appearing in vσ

have weights ψ such that ψ is of the form ν − ∑
nα≥0,α∈Σ+(hs)

nαα. Thus, by Lemma 3.21,

G · vσ
∼= Xσ.

Note that using the Plucker embedding of Gr(n, g ⊕ g) ↪→ Proj(V), we can identify G · vσ

with G∆ · lσ. Thus, G∆ · lσ ∼= Xσ.

Q.E.D.
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Remark 3.23. Let d be the automorphism of the Dynkin diagram of g such that σ = γdAdg0

for some g0. Consider the embedding

G/Gσ −→ G : gGσ 7−→ γ−1
d (g)g0g

−1,

which in turn gives an embedding of G/Gσ into the De Concini-Procesi compactification Zd of
G. Proposition 3.22 then says that the closure of G/Gσ in Zd is isomorphic to the De Concini-
Procesi compactification of G/Gσ.

4. The Poisson structure Π0 on L

By a Lagrangian splitting of g ⊕ g we mean a decomposition g ⊕ g = l1 + l2, where l1 and l2
are Lagrangian subalgebras of g⊕ g. In this section, we will recall the definition of the Poisson
structure Πl1,l2 on L associated to a Lagrangian splitting of g⊕ g. For the Poisson structure Π0

determined by the so-called standard splitting (see Definition 4.4), we will study its symplectic
leaf decomposition in terms of intersections of G∆ and (B × B−)-orbits. We will also point
out some interesting Poisson submanifold/varieties of L with respect to the Poisson structures
defined by the Belavin-Drinfeld splittings (Definition 4.4). A review of some basic facts on
Poisson Lie groups is given in Section 4.1. Details of most of these facts can be found in [K-S].

4.1. Poisson Lie groups and Lagrangian splittings. Recall that a Poisson bi-vector field
πL on a Lie group L is said to be multiplicative if the map m : L × L → L : (l1, l2) 7→ l1l2 is a
Poisson map with respect to πL. A Poisson Lie group is a pair (L, πL), where L is a Lie group
and πL is a multiplicative Poisson bi-vector field on L. An action σ : L×P → P of a Poisson Lie
group (L, πL) on a Poisson manifold (P, πP ) is said to be Poisson if σ is a Poisson map, where
L× P is equipped with the product Poisson structure πL ⊕ πP . A Poisson homogeneous space
of (L, πL) is a Poisson manifold (P, πP ) with a transitive Poisson action by (L, πL). We now
recall the relations between Poisson Lie groups and Lagrangian splittings (or Manin triples).

Assume that d is a 2n-dimensional Lie algebra over a field of characteristic 0, and assume
that 〈 , 〉 is a symmetric, non-degenerate, and ad-invariant bilinear form on d. By a Lagrangian
subalgebra of d we mean an n-dimensional Lie subalgebra of d that is also isotropic with respect
to 〈 , 〉. By a Lagrangian splitting of d we mean a decomposition d = l1 + l2, where l1 and l2 are
Lagrangian subalgebras of d. The triple (d, l1, l2) is also called a Manin triple.

Assume that (d, l1, l2) is a Manin triple. Define

(4.1) δ1 : l1 −→ ∧2l1 : 〈δ1(x1), y2 ∧ z2〉 = 〈x1, [y2, z2]〉, ∀x1 ∈ l1, y2, z2 ∈ l2.

Let D be the adjoint group of d, and let L1 be the connected subgroup of D with Lie algebra
l1. Then there is a unique multiplicative Poisson bivector field πL1 on L1 whose linearization at
the identity element e of L1 is δ1, i.e.,

(Lx̃πL1)(e) = δ1(x), x1 ∈ l1,

where for x1 ∈ l1, x̃1 is any vector field on L1 with x̃1(e) = x1, and Lx̃1 denotes the Lie derivative
by x̃1. By changing the roles of l1 and l2, we also have a multiplicative Poisson bi-vector field
πL2 on the connected subgroup L2 of D whose Lie algebra is l2.

Denote by L(d) the set of all Lagrangian subalgebras of d. Then L(d) is an algebraic subvariety
of the Grassmannian Gr(n, d) of n-dimensional subspaces of d. It is shown in [E-L2] that every
Lagrangian splitting d = l1 + l2 of d defines a Poisson structure Πl1,l2 on L(d). Indeed, if {xj}
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is a basis for l1, and if {ξj} is the basis for l2 such that 〈xj , ξk〉 = δjk for 1 ≤ j, k ≤ n = dim g,
we set

(4.2) R =
1
2

n∑

j=1

(ξj ∧ xj) ∈ ∧2(g⊕ g).

The action of D on the Grassmannian Gr(n, d) through the adjoint action defines a Lie algebra
anti-homomorphism κ from d to the space of vector fields on Gr(n, d). We will also use κ to
denote the induced map from ∧2d to the space of bi-vector fields on Gr(n, d). Set

Πl1,l2 = κ(R) =
1
2

n∑

j=1

(κ(ξj) ∧ κ(xj)).

Note that L(d) ⊂ Gr(n, d) is D-invariant, so Πl1,l2 restricts to a bi-vector field on L(d). Let L1

and L2 act on L(d) as subgroups of D.

Proposition 4.1. [E-L2] For any Lagrangian splitting d = l1 + l2, the bi-vector field Πl1,l2 is a
Poisson structure on L(d) with the properties that

1) the actions of (L1, πL1) and (L2, πL2) on (L(d), Πl1,l2) are Poisson;

2) all L1 and L2-orbits in L are Poisson submanifolds with respect to Πl1,l2, and are thus
Poisson homogeneous spaces of (L1, πL1) and (L2, πL2) respectively. Moreover, their Zariski
closures are Poisson subvarieties.

Remark 4.2. It is clear from the definition of Πl1,l2 that Πl1,l2 is tangent to every D-orbit in
L(d). Thus every D-orbit in L(d) is a Poisson submanifold of (L,Πl1,l2), and the closure of
every D-orbit in L(d) is a Poisson subvariety of (L, Πl1,l2). This property also follows from 2) of
Proposition 4.1.

The rank of the Poisson structure Πl1,l2 can be computed as in the following Lemma 4.3. A
version of Lemma 4.3 first appeared in [E-L2], and a generalization of Lemma 4.3 can be found
in [Lu-Y2].

Lemma 4.3. Let d = l1 + l2 be a Lagrangian splitting. For l ∈ L(d), let n(l) be the normalizer
subalgebra of l in d, and let n1(l) = n(l) ∩ l1. Let n(l)⊥ = {x ∈ d : 〈x, y〉 = 0 ∀y ∈ n(l)}. Set

T (l) = n1(l) + n(l)⊥ ⊂ d.

Then T (l) is a Lagrangian subalgebra of d, and the rank of Πl1,l2 at l is equal to dim(L1 · l) −
dim(l2 ∩ T (l)), where L1 · l is the L1-orbit in L through l.

Proof. In Theorem 2.21 of [E-L2], we showed that T1(l) := n1(l) + n1(l)⊥ ∩ l is a Lagrangian
subalgebra (in fact, it is the Lagrangian subalgebra associated to the Poisson homogeneous space
(L1 · l, Πl1,l2) at l by Drinfeld [Dr]). We show T (l) = T1(l). Clearly, T1(l) ⊂ n(l), so since T1(l)
is Lagrangian, n(l)⊥ ⊂ T1(l). Thus, T (l) ⊂ T1(l). Since n(l) is co-isotropic and l1 is Lagrangian,
it follows easily that T (l) is co-isotropic, so T (l) = T1(l).

To compute the rank of the symplectic leaf El at l, we identify Tl(L1 · l) ∼= l1/n1(l), Tl(D · l) ∼=
d/n(l), and T ∗l (D · l) ∼= n(l)⊥. The Poisson tensor Πl1,l2(l) ∈ ∧2(Tl(D · l)) induces a linear map
Ã : T ∗l (D · l) → Tl(D · l) via Ã(λ)(µ) = Πl1,l2(λ, µ) for λ, µ ∈ T ∗l (D · l). Under the above
identifications, Ã corresponds to a linear map A : n(l)⊥ → d/n(l). In the proof of Theorem 2.18
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in [E-L2], we show that A(X1 + X2) = X1 + n(l) for X1 + X2 ∈ n(l)⊥, X1 ∈ l1, X2 ∈ l2. Thus,
A factors through l1/n1(l) ⊂ d/n(l). By construction, TlEl is the image of A, so it follows that

(4.3) TlEl = q ◦ p(n(l)⊥) = q ◦ p(T (l)).

The dimension formula follows easily.

Q.E.D.

4.2. The standard Lagrangian splitting and the Belavin-Drinfeld splittings. We now
return to the semi-simple Lie algebra g⊕g with the bilinear form 〈 , 〉 given in (2.1). Lagrangian
splittings of g ⊕ g up to conjugation by elements in G × G have been classified by P. Delorme
[De].

A study of the Poisson structures Πl1,l2 defined by arbitrary Lagrangian splittings g⊕g = l1+l2
will be carried out in [Lu-Y2]. More precisely, let N(l1) and N(l2) be respectively the normalizer
subgroups of l1 and l2 in G×G. Then both N(l1) and N(l2) are conjugate to subgroups of G×G
of the type RS,T,d in (2.6). By Proposition 4.1, all N(l1)-orbits and N(l2)-orbits in L are Poisson
submanifolds with respect to Πl1,l2 . It will be shown in [Lu-Y2] that every non-empty intersection
of an N(l1)-orbit and an N(l2)-orbit in L is a regular Poisson manifold with respect to Πl1,l2 .
Thus the study of the symplectic leaves of Πl1,l2 is reduced to the study of intersections of N(l1)
and N(l2)-orbits in L. To classify N(l1) and N(l2)-orbits in L, we need first to classify double
cosets in G×G by two groups of the type RS,T,d. Such a classification will be given in [Lu-Y1].
Using the classification of N(l1) and N(l2)-orbits in L, the rank of Πl1,l2 at every point in L will
be computed in [Lu-Y2].

Definition 4.4. By the standard Lagrangian splitting of g ⊕ g we mean the splitting g ⊕ g =
g∆ + g∗st, where

g∗st = h−∆ + (n⊕ n−).

We will denote by Π0 the Poisson structure on L determined by the standard Lagrangian split-
ting. The multiplicative Poisson structure on G defined by the standard splitting will be de-
noted by π0. By a Belavin-Drinfeld splitting of g ⊕ g we will mean a splitting of the form
g ⊕ g = g∆ + lS,T,d,V , where (S, T, d, V ) is a Belavin-Drinfeld system (Definition 3.18). When
a Belavin-Drinfeld splitting g ⊕ g = g∆ + lS,T,d,V is fixed, we will set lBD = lS,T,d,V , the Pois-
son structure on L defined by the splitting will be denoted by ΠBD, and the corresponding
multiplicative Poisson structure on the group G ∼= G∆ will be denoted by πBD.

Note that when S = T = ∅ and V = h−∆ = {(x− x) : x ∈ h}, the Belavin-Drinfeld splitting
becomes the standard Lagrangian splitting g ⊕ g = g∆ + g∗st. In Section 4.3, we will compute
the rank of Π0. As a consequence, we will see that every non-empty intersection of a G∆-orbit
and a (B × B−)-orbit in L is a regular Poisson submanifold with respect to Π0, and the group
H∆ = {(h, h) : h ∈ H} acts transitively on the set of symplectic leaves in any such intersection.
Thus the study of symplectic leaves of Π0 becomes the study of the G∆ and the (B×B−)-orbits
in L as H∆-varieties.

We will now point out some interesting Poisson submanifolds of (L,ΠBD). We first state a
consequence of Remark 4.2 and Proposition 2.27, which holds for any Lagrangian splitting of
g⊕ g.
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Proposition 4.5. Every (G × G)-orbit in L is a Poisson submanifold of (L, Πl1,l2) for any
Lagrangian splitting g⊕ g = l1 + l2. Consequently, every (G×G)-orbit closure in L is a smooth
Poisson subvariety of (L, Πl1,l2).

Example 4.6. Fix a diagram automorphism d and consider the embedding of G into L as the
(G×G)-orbit through lγd

:

(4.4) G ↪→ L : g 7−→ {(x, γdAdg(x)) : x ∈ g}.

Then by Proposition 4.5, every Lagrangian splitting of g ⊕ g gives rise to a Poisson structure
Πl1,l2 on G which extends to the closure Zd(G) of G in L. Recall from Section 2.7 that Zd(G)
is a De Concini-Procesi compactification of G. Under the embedding (4.4), the G∆-action on L
becomes the following action of G on itself

(4.5) G×G −→ G : (h, g) 7−→ γ−1
d (h)gh−1.

We will refer to the action in (4.5) as the d-twisted conjugation action of G on itself and refer
to its orbits as the d-twisted conjugacy classes of G.

For a Belavin-Drinfeld splitting g ⊕ g = g∆ + lBD and a diagram automorphism d, the
restriction of ΠBD to G ↪→ L (via (4.4)) has the following properties by Proposition 4.1.

Proposition 4.7. For a Belavin-Drinfeld splitting g⊕g = g∆+lBD and a diagram automorphism
d, embed G into L via (4.4) and regard ΠBD as a Poisson structure on G and on Zd(G). Then

1) the d-twisted conjugation action of (G, πBD) on (G,ΠBD) in (4.5) is Poisson;

2) every d-twisted conjugacy class in G is a Poisson submanifold of (G, ΠBD) and is thus a
Poisson homogeneous space of (G, πBD), and the closure of a d-twisted conjugacy class in G is
a Poisson subvariety of (Zd(G), ΠBD).

Example 4.8. Let σ be an involutive automorphism of g. Write σ = γd ◦ Adg for a diagram
automorphism d and g ∈ G. By results from Section 3.6, the De Concini-Procesi compactification
Xσ of the complex symmetric space G/Gσ is isomorphic to the closure of the G∆-orbit in L
through the point g = {(x, σ(x)) : x ∈ g} of L. Consequently, for every Belavin-Drinfeld splitting
g ⊕ g = g∆ + lBD, the restriction of ΠBD to G/Gσ ↪→ L is a Poisson structure on G/Gσ that
extends smoothly to Xσ. Moreover, the action of G on (Xσ,ΠBD), which is the extension of
the action of G on G/Gσ by left translations, is Poisson for the Poisson Lie group (G, πBD)
determined by the given Belavin-Drinfeld splitting.

Remark 4.9. Let LBD be the connected Lie subgroup of G × G with Lie algebra lBD. By
Section 4.1, the splitting g ⊕ g = g∆ + lBD induces a multiplicative Poisson structure πLBD

on
LBD. The pair (LBD, πLBD

) is called a dual Poisson Lie group [K-S] of (G, πG). The restriction
to LBD of the map F : G×G → G : (g1, g2) → g2g

−1
1 is a local diffeomorphism from LBD to an

open subset U of G containing the identity element. The Poisson structure ΠBD on G can be
regarded as an extension of πLBD

on U to G. Symplectic leaves of (G, πBD) and (LBD, πLBD
)

have been classified by Yakimov [Y] and Kogan and Zelevinsky [K-Z].
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4.3. The rank of the Poisson structure Π0. Recall from Definition 4.4 that Π0 is the Poisson
structure on L defined by the standard Lagrangian splitting g ⊕ g = g∆ + g∗st, where g∗st =
h−∆ + (n⊕ n−). In this section, we will compute the rank of Π0 on L.

Let O be a G∆-orbit in L and O′ a (B × B−)-orbit in L such that O ∩ O′ 6= ∅. Since
(b ⊕ b−) + g∆ = g ⊕ g, O and O′ intersect transversally in their (G × G)-orbit. Moreover,
since both O and O′ are Poisson submanifolds for Π0, the intersection O ∩ O′ is a Poisson
submanifold of (L, Π0). Thus, it is enough to compute the rank of Π0 as a Poisson structure
in the intersection O ∩ O′. By Theorem 2.18, there exists a generalized Belavin-Drinfeld triple
(S, T, d) and V ∈ Lspace(zS ⊕ zT ) such that O,O′ ⊂ (G×G) · lS,T,d,V with lS,T,d,V given in (2.4).
By Corollaries 2.23 and 3.13, there exist w ∈ W , v, v1 ∈ W T , and m ∈ MS(v,d) such that

O = G∆ ·Ad(m,v̇)lS,T,d,V(4.6)

O′ = (B ×B−) ·Ad(ẇ,v̇1)lS,T,d,V(4.7)

where ẇ, v̇ and v̇1 are representatives of w, v, and v1 in G respectively. Set

(4.8) XS,T,d,v = {(z, v−1z) : z ∈ zS(v,d), γd(χS(z)) = χT (v−1z)}+ VS ⊂ h⊕ h

with VS = {(x, γd(x)) : x ∈ hS}. One can show directly that XS,T,d,v is a Lagrangian subspace
of h⊕ h.

Theorem 4.10. Let O and O′ be as in (4.6) and (4.7), and suppose that O∩O′ 6= ∅. The rank
of Π0 at every l ∈ O ∩O′ is equal to

dim(O ∩O′)− dim(h−∆ ∩ (w, v1)XS,T,d,v),

where XS,T,d,v is given in (4.8). In particular, the intersection O ∩ O′ is a regular Poisson
submanifold of Π0

Proof. Let l be an arbitrary point in L. Let ng⊕g(l) be the normalizer of l in g⊕ g, and let

ng⊕g(l)⊥ = {(y, z) ∈ g⊕ g : 〈(y, z), ng⊕g(l)〉 = 0}.
Set

(4.9) T (l) = n(l)∆ + ng⊕g(l)⊥.

By Lemma 4.3, the rank of Π0 at l is equal to dim(G∆ · l)− dim(g∗st ∩ T (l)).

Let now l = Ad(g,g)Ad(m,v̇)lS,T,d,V ∈ O, where g ∈ G. It is easy to see from (4.9) that
T (l) = Ad(g,g)T (Ad(m,v̇)lS,T,d,V ). Let r′S,T,d = (nS ⊕ n−T ) + {(x, γd(x)) : x ∈ gS}, and let

(4.10) lS,T,d,v = XS,T,d,v + r′S,T,d.

By (4.9) and Theorem 3.15,

T (Ad(m,v̇)lS,T,d,V ) = g∆ ∩Ad(m,v̇)rS,T,d + Ad(m,v̇)r
′
S,T,d

= (z′S(v,d))∆ +
(
g

φ
S(v,d) + ψ(nv)

)
∆

+ Ad(m,v̇)r
′
S,T,d.

Since Ad−1
(m,v̇)

(
g

φ
S(v,d) + ψ(nv)

)
∆
⊂ r′S,T,d, we have

T (Ad(m,v̇)lS,T,d,V ) = Ad(m,v̇)

(
Ad−1

(m,v̇)(z
′
S(v,d))∆ + r′S,T,d

)

= Ad(m,v̇)(lS,T,d,v) ⊂ Ad(m,v̇)rS,T,d.
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Thus the rank of Π0 at l is equal to

RankΠ0(l) = dimO − dim(g∗st ∩Ad(gm,gv̇)lS,T,d,v).

Let
δ = dim((b⊕ b−) ∩Ad(gm,gv̇)rS,T,d)− dim(g∗st ∩Ad(gm,gv̇)lS,T,d,v).

Then
RankΠ0(l) = dimO + δ − dim((b⊕ b−) ∩Ad(gm,gv̇)rS,T,d).

Since
dimO′ = dim(b⊕ b−)− dim((b⊕ b−) ∩Ad(gm,gv̇)rS,T,d),

we have

RankΠ0(l) = dimO + dimO′ + δ − dim(b⊕ b−) = dimO + dimO′ + δ − 2 dim b.

Since O and O′ intersect transversally at l inside the (G×G)-orbit through l, and since dim(G×
G) · l = dim g− dim zS by Proposition 2.19, we have

RankΠ0(l) = dim(O ∩O′) + dim((G×G) · l) + δ − 2 dim b

= dim(O ∩O′)− (dim zS + dim h) + δ.

It remains to compute δ. Since l ∈ O ∩ O′, there exist r ∈ RS,T,d and (b, b−) ∈ B × B− such
that (gm, gv̇) = (b, b−)(ẇ, v̇1)r. Thus, using Ad(b,b−)(b ⊕ b−) = b ⊕ b− and Ad(b,b−)gst∗ = gst∗ ,
we have

δ = dim((b⊕ b−) ∩Ad(ẇ,v̇1)rS,T,d)− dim(g∗st ∩Ad(ẇ,v̇1)lS,T,d,v).
Set

Y = (n⊕ n−) ∩Ad(ẇ,v̇1)

(
(nS ⊕ n−T ) + spanC{(Eα, γd(Eα)) : α ∈ [S]}) .

Then
(b⊕ b−) ∩Ad(ẇ,v̇1)rS,T,d = (w, v1)(zS ⊕ zT + VS) + Y.

Since Y ⊂ g∗st ∩Ad(ẇ,v̇1)lS,T,d,v, we have

g∗st ∩Ad(ẇ,v̇1)lS,T,d,v = Y + h−∆ ∩ (w, v1)XS,T,d,v.

Thus

δ = dim(zS ⊕ zT + VS)− dim(h−∆ ∩ (w, v1)XS,T,d,v)
= dim zS + dim h− dim(h−∆ ∩ (w, v1)XS,T,d,v).

Thus the rank of Π0 at l is equal to

dim(O ∩O′)− dim(h−∆ ∩ (w, v1)XS,T,d,v).

In particular, O ∩O′ is a regular Poisson manifold for Π0.

Q.E.D.

Corollary 4.11. Equip G with the Poisson structure Π0 via the embedding of G into L in (4.4)
for d = 1. Let C be a conjugacy class of in G and let w ∈ W be such that C ∩ (B−wB) 6= ∅.
Then the rank of Π0 at every point in C ∩ (B−wB) is

dimC − l(w)− dim(h−w),

where l(w) is the length of w, and h−w = {x ∈ h : w(x) = −x}. In particular, C ∩ B−B is an
open dense leaf for C, and Π0 is degenerate on the complement of B−B ∩ C in C.
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Proof. By Proposition 4.7, each conjugacy class of G is a Poisson submanifold of (G,Π0). By
the Bruhat decomposition

C = ∪w∈W (C ∩ (B−wB)).
Since B−B is open in G and C ∩ B 6= ∅ (Theorem 1 on P. 69 of [St]), it follows that C ∩ B−B
is open and dense in C. The rank formula follows from Theorem 4.10, and it follows easily that
C ∩B−B is a symplectic leaf and Π0 is degenerate on C ∩ (B−wB) if w 6= e.

Q.E.D.

Remark 4.12. Let d = 1 in Corollary 4.11. Then any unipotent conjugacy class (and its
closure in Z1(G)) has an induced Poisson structure Π0 with an open symplectic leaf, although
the structure is not symplectic unless the orbit is a single point. Since the unipotent variety
is isomorphic to the nilpotent cone in g∗, it follows that every nilpotent orbit in g∗ has an
induced Poisson structure with the same properties. It would be quite interesting to compare
this structure with the Kirillov-Kostant symplectic structure.

Remark 4.13. Let σ be an involutive automorphism as in Example 4.8. Then the G∆ orbit
through σ does not have an open symplectic leaf if σ is not inner. The leaves of maximal rank
have dimension dim(G/Gσ)− dim(h−γd).

Example 4.14. Consider the closed (G×G)-orbit through a Lagrangian subalgebra of the form
V + (n ⊕ n−), where V is any Lagrangian subspace of h ⊕ h. Such an orbit can be identified
with G/B × G/B−, so we can regard Π0 as a Poisson structure on G/B × G/B−. Let O be a
G∆-orbit and let O′ be a (B×B−)-orbit in G/B×G/B− such that O∩O′ 6= ∅. By the Bruhat
decomposition of G, there are elements w, u, v ∈ W such that

O = G∆ · (B, wB−), O′ = (B ×B−) · (uB, vB−).

The stabilizer subgroup of G∆
∼= G at the point (B, ẇB−) ∈ G/B × G/B− is B ∩ w(B−).

Identify O ∼= G/(B ∩ w(B−)), and let

p : G −→ O ∼= G/(B ∩ w(B−))

be the projection. It is then easy to see that O ∩O′ = p(Gu,v
w ) ⊂ O, where

Gu,v
w = (BuB) ∩ (B−vB−w−1).

We will refer to Gu,v
w as the shifted double Bruhat cell in G determined by u, v and w. Note that

B ∩ w(B−) acts freely on Gu,v
w by right multiplications, so

O ∩O′ ∼= Gu,v
w /(B ∩ w(B−)).

Since dimO = dim g− dim h− l(w) and dimO′ = l(u) + l(v), we have

dim(O ∩O′) = dimO + dimO′ − dim(G/B ×G/B−) = l(u) + l(v)− l(w),

and
dimGu,v

w = l(u) + l(v) + dim h.

By Theorem 4.10, the rank of Π0 at every point of O ∩O′ is equal to

l(u) + l(v)− l(w)− dim h−u−1vw−1
,

where h−u−1vw−1
= {x ∈ h : u−1vw−1x = −x}. When w = 1, we have O ∼= G/H, and

O ∩ O′ ∼= Gu,v/H, where Gu,v = Gu,v
1 is the double Bruhat cell in G determined by u and v.

The set Gu,v/H is called a reduced double Bruhat cell in [Z]. In [K-Z], Kogan and Zelevinsky
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constructed toric charts on symplectic leaves of Π0 in O∩O′ (for the case when w = 1) by using
the so-called twisted minors that are developed in [Fm-Z], and they also constructed integrable
systems on the symplectic leaves. It would very interesting to generalize Kogan-Zelevinsky
construction to all symplectic leaves of Π0 in G/B ×G/B−.

4.4. The action of H∆ on the set of symplectic leaves of the Poisson structure Π0.

Proposition 4.15. Let D be a connected complex algebraic group with connected algebraic
subgroups A and C. Suppose there exists a connected algebraic subgroup C1 ⊂ C such that the
multiplication morphism A×C1 → D is an isomorphism to a connected open set U of D. Let X
be a homogeneous space for D such that the stabilizer in D of a point in X is connected. Then
any nonempty intersection of an A-orbit in X with a C-orbit in X is smooth and connected.

Proof. Let A ·x∩C ·x be a nonempty intersection of orbits in X, and note that this intersection
is smooth since the hypotheses imply that the orbits intersect transversely. We show there is a
fiber bundle π : V → U , with fiber π−1(e) ∼= A · x ∩ C · x over the identity and V connected,
that is trivial in the Zariski topology. This implies the connectedness of the intersection, and
hence the proposition. The proof is inspired by the proof of Kleiman’s transversality theorem.

Let Y = C · x and Z = A · x. Let h : D × Y → X be the action map and let i : Z → X be
the obvious embedding. Let

W = (D × Y )×XZ

be the fiber product. Then h is a smooth fiber bundle (see the proof of 10.8 in [Ha]) and the
fibers h−1(x) are connected. For the second claim, note that h−1(x) = {(d, c ·x) : dc ·x = x} and
ψ : h−1(x) → Dx ·C given by ψ(d, c · x) = d is an isomorphism. Since Dx and C are connected,
the claim follows. Thus, the induced morphism from W → Z also has connected fibers. Since
Z is connected, it follows that W is connected. Moreover, W is smooth (again by the proof of
10.8 in [Ha]), so W is irreducible.

Let π : W → D×Y → D be the composition of the induced fiber product map with projection
to the first factor. Since π−1(U) is open in W , it is smooth and irreducible, and thus connected.
Note also that π−1(e) ∼= Y ∩Z. It remains to show that π : π−1(U) → U is a trivial fiber bundle.
We define a free left A action and a free right C1 action on W by the formulas

a · (d, y, z) = (ad, y, a · z)
c · (d, y, z) = (dc, c−1 · y, z)

a ∈ A, c ∈ C, d ∈ D, y ∈ Y, z ∈ Z

A and C1 have the obvious free left and right multiplication actions on U , and π : π−1(U) → U
is equivariant for these actions. It follows that the morphism

φ : A× C1 × (A · x ∩ C · x) → π−1(U), (a, c, v) 7→ (ac, c−1 · v, a · v), a ∈ A, c ∈ C1, v ∈ Y ∩ Z

is a bijection, and hence is an isomorphism since π−1(U) is smooth. This implies the fiber bundle
is trivial.

Q.E.D.

Remark 4.16. We thank Michel Brion for suggesting this approach. We also remark that the
Proposition 4.15 is false as stated if we only assume that A · C is open in D. For example, let
A = G∆, and let

C = {(nh, h−1n−) : n ∈ N, h ∈ H,n− ∈ N−}
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be the connected subgroup of D = G × G corresponding to g∗st. Let X = D and let D act on
X by left translation. Then the intersection of the A-orbit and the C-orbit through the identity
element of D is A ∩ C which is disconnected.

Proposition 4.17. The intersection of any G∆-orbit and any (B × B−)-orbit in L is either
empty or a smooth connected subvariety of L.

Proof. This is a consequence of Proposition 4.15. Indeed, we take A = G∆, C = B × B−,
D = G×G, and C1 = B ×N−. The fact that the stabilizer of a point in L is connected follows
from Lemma 2.21.

Q.E.D.

Let now H be the Cartan subgroup of G with Lie algebra h, and let H∆ = {(h, h) : h ∈ H}.
For every G∆-orbit O and every (B×B−)-orbit O′ such that O∩O′ 6= ∅, H∆ clearly leaves O∩O′
invariant. It is easy to show that the element R ∈ ∧2(g ⊕ g) given in (4.2) is invariant under
Ad(h,h) for every h ∈ H. Thus the Poisson structure Π0 on L is H∆-invariant. In particular, for
every h ∈ H, Ad(h,h)E is a symplectic leaf of Π0 in O ∩O′ if E is.

Lemma 4.18. Let O be a G∆-orbit and O′ a (B ×B−)-orbit in L such that O∩O′ 6= ∅. Let E
be any symplectic leaf of Π0 in O ∩O′. Then the map

σ : H × E −→ O ∩O′ : (h, l) 7−→ Ad(h,h)l

is a submersion.

Proof. Let e be the identity element of H and let l ∈ E . It is enough to show that

dimkerσ∗(e, l) = dim h + dim El − dimO ∩O′,
where σ∗(e, l) : h× TlE → Tl(O ∩O′) is the differential of σ at (e, l).

We may assume that O and O′ are respectively given by (4.6) and (4.7), and that

l = Ad(gm,gv̇)lS,T,d,V = Ad(bẇ,b−v̇1)lS,T,d,V

for some g ∈ G and (b, b−) ∈ B ×B−. By Theorem 4.10, it is enough to show that

dim(kerσ∗(e, l)) = dim h− dim(h−∆ ∩ (w, v1)XS,T,d,v),

where XS,T,d,v is given in (4.8). Identify the tangent space of O at l as

TlO ∼= g∆/(g∆ ∩Ad(gm,gv̇)rS,T,d)

and let q : g∆ → g∆/(g∆ ∩ Ad(gm,gv̇)rS,T,d) be the projection. Let p : g ⊕ g → g∆ be the
projection with respect to the decomposition g ⊕ g = g∆ + g∗st. By (4.3) and the computation
of T (l) in the proof of Theorem 4.10, the tangent space of E at l is given by

TlE = (q ◦ p)
(
Ad(gm,gv̇)lS,T,d,v

)
,

where lS,T,d,v is given in (4.10). For x ∈ h, let κx be the vector field on O ∩ O′ that generates
the action of Ad(exp tx,exp tx). Then

kerσ∗(e, l) ∼= {x ∈ h : κx(l) ∈ TlE}.
Let x ∈ h. If κx(l) ∈ TlE , then there exists y ∈ g and (y1, y2) ∈ g∗st with (y + y1, y + y2) ∈
Ad(gm,gv̇)lS,T,d,v such that
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(x− y, x− y) ∈ g∆ ∩Ad(gm,gv̇)rS,T,d ⊂ g∆ ∩Ad(gm,gv̇)lS,T,d,v.

It follows that
(x + y1, x + y2) ∈ (b⊕ b−) ∩Ad(gm,gv̇)lS,T,d,v.

Let r ∈ RS,T,d be such that (gm, gv̇) = (bẇ, b−v̇1)r. Then

(b⊕ b−) ∩Ad(gm,gv̇)lS,T,d,v = Ad(b,b−)

(
(b⊕ b−) ∩Ad(ẇ,v̇1)lS,T,d,v

)
.

Thus there exists (y′1, y
′
2) ∈ g∗st such that

(x + y′1, x + y′2) ∈ (b⊕ b−) ∩Ad(ẇ,v̇1)lS,T,d,v.

If (y′,−y′) is the h−∆-component of (y′1, y
′
2) ∈ g∗st, we see that

(x + y′, x− y′) ∈ (w, v1)XS,T,d,v.

Thus (x, x) ∈ p((w, v1)XS,T,d,v), where we are also using p to denote the projection h⊕ h → h∆

with respect to the decomposition h⊕ h = h∆ + h−∆. Conversely, if x ∈ h is such that (x, x) ∈
p((w, v1)XS,T,d,v), then there exists y′ ∈ h such that

(x + y′, x− y′) ∈ (w, v1)XS,T,d,v ⊂ Ad(ẇ,v̇1)lS,T,d,v,

and thus
Ad(b,b−)(x + y′, x− y′) ∈ Ad(gm,gv̇)lS,T,d,v.

Since Ad(b,b−)(x + y′, x− y′) = (x + y′, x− y′)mod(n⊕ n−), we see that

p(Ad(b,b−)(x + y′, x− y′)) = (x, x),

so κx(l) ∈ TlE . Thus we have shown that

kerσ∗(e, l) ∼= {x ∈ h : (x, x) ∈ p((w, v1)XS,T,d,v)}.
Hence,

dim(kerσ∗(e, l)) = dim h− dim(h−∆ ∩ (w, v1)XS,T,d,v).

The lemma now follows from Theorem 4.10.

Q.E.D.

Theorem 4.19. For every G∆-orbit O and every (B×B−)-orbit O′ such that O∩O′ 6= ∅, H∆

acts transitively on the set of symplectic leaves of Π0 in O ∩O′.

Proof. For l ∈ O ∩O′, let El be the symplectic leaf of Π0 through l, and let

Fl =
⋃

h∈H

Ad(h,h)El ⊂ O ∩O′.

Then it is easy to see that either Fl ∩ Fl′ = ∅ or Fl = Fl′ for any l, l′ ∈ O ∩ O′. It follows from
Lemma 4.18 that Fl is open in O ∩ O′ for every l. Since O ∩ O′ is connected by Proposition
4.17, O ∩O′ = Fl for every l ∈ O ∩O′.

Q.E.D.
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Remark 4.20. When O and O′ are respectively given as in (4.6) and (4.7), we take any
subspace h1 of h such that (h1)∆ is transversal to p((w, v1)XS,v) in h∆ and such that the
connected subgroup H1 of H with Lie algebra h1 is closed in H. By the proofs of Lemma 4.18
and Theorem 4.19, the subtorus H1 already acts transitively on the set of symplectic leaves of
Π0 in O ∩O′.

5. Lagrangian subalgebras of g⊕ h

Let again g be a complex semi-simple Lie algebra with Killing form ¿ , À. Let h ⊂ g be a
Cartan subalgebra. In this section, we will consider the direct sum Lie algebra g ⊕ h, together
with the symmetric, non-degenerate, and ad-invariant bilinear form

(5.1) 〈(x1, y1), (x2, y2)〉 =¿ x1, x2 À −¿ y1, y2 À, x1, x2 ∈ g, y1, y2 ∈ h.

We wish to describe the variety L(g⊕h) of Lagrangian subalgebras of g⊕h with respect to 〈 , 〉.
We can describe all such Lagrangian subalgebras by using a theorem of Delorme [De].

Definition 5.1. [De] Let m be a complex reductive Lie algebra with simple factors mi, i ∈ I. A
complex linear involution σ of m is called an f -involution if σ does not preserve any mi.

Theorem 5.2. [De] Let u be a complex reductive Lie algebra with a symmetric, non-degenerate,
and ad-invariant bilinear form β.

1). Let p be a parabolic subalgebra of u with Levi decomposition p = m + n, and decompose m
into m = m + z, where m is its semisimple part and z its center. Let σ be an f-involution of m
such that mσ is a Lagrangian subalgebra of m with respect to the restriction of β, and let V be
a Lagrangian subspace of z with respect to the restriction of β. Then l(p, σ, V ) := mσ ⊕ V ⊕ n is
a Lagrangian subalgebra of u with respect to β.

2). Every Lagrangian subalgebra of u is l(p, σ, V ) for some p, σ, and V as in 1).

Proposition 5.3. Every Lagrangian subalgebra of g⊕ h with respect to 〈 , 〉 given in (5.1) is of
the form n+V , where n is the nilradical of a Borel subalgebra b of g, V is a Lagrangian subspace
of h⊕ h, and

n + V = {(x + y1, y2) : x ∈ n, (y1, y2) ∈ V }.

Proof. Applying Delorme’s theorem to our case of u = g ⊕ h and 〈 , 〉 as the bilinear form β,
every Lagrangian subalgebra of g⊕ h is of the form

l = {(x + y1, y2) : x ∈ mσ + n, (y1, y2) ∈ V }
for some parabolic subalgebra p of g with Levi decomposition p = m + n = m + z + n, an f -
involution σ on m, and a Lagrangian subspace V of z⊕ h. we will now show that if m 6= 0 and
if σ is an f -involution of m, then mσ is not an isotropic subspace of m for the restriction of the
Killing form ¿ , À of g to m. It follows that p must be Borel, which gives Proposition 5.3.

Assume that m 6= 0. Let mi be a simple factor of m. Then since mi is simple, it has a unique
nondegenerate invariant form up to scalar multiplications. Hence the Killing form ¿ , À of g
restricts to a scalar multiple of the Killing form of mi. Recall that the Killing form on a maximal
compact subalgebra of a semisimple Lie algebra is negative definite. It follows that the Killing
form of g restricts to a nonzero positive scalar multiple of the Killing form on mi. Suppose that
σ is an involution of m mapping mi to mj with i 6= j. Then σ is an isometry with respect to
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the Killing form of mi and the Killing form of mj . Thus, there exists a nonzero positive scalar
µ such that

(5.2) ¿ σ(x), σ(y) À= µ ¿ x, y À, ∀ x, y ∈ mi.

The fixed point set mσ contains the subspace {x + σ(x) : x ∈ mi}. Let x be a nonzero element
of a maximal compact subalgebra of mi. Then ¿ x + σ(x), x + σ(x) À= (1 + µ) ¿ x, x,À6= 0.
Thus mσ cannot be isotropic with respect to ¿ , À.

Q.E.D.

Now let G be the adjoint group of g, and let B be the Borel subgroup of G corresponding to
a Borel subalgebra b.

Theorem 5.4. The variety L(g⊕h) is isomorphic to the trivial fiber bundle over G/B with fibre
Lspace(h ⊕ h, 〈 , 〉). In particular, L(g ⊕ h) is smooth with two disjoint irreducible components,
corresponding to the two connected components of Lspace(h⊕ h, 〈 , 〉).

Proof. Identify G/B with the variety of all Borel subalgebras of g. We map L(g⊕h) to G/B by
mapping a Lagrangian algebra l = n + V to the unique Borel subalgebra with nilradical n. The
fiber over n may be identified with Lspace(h ⊕ h, 〈 , 〉). The claim about connected components
follows from the fact the bundle is trivial.

Q.E.D.
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