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Abstract.

In this paper, we establish some new discrete Gronwall-Bellman-Ou-Iang type in-

equalities over 2-dimensional lattices. These on the one hand generalize some existing

results in the literature and on the other hand provide a handy tool for the study of qual-

itative properties of solutions of difference equations. We illustrate this by applying these

new results to certain boundary value problem for difference equations.
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1. Introduction

It is well-recognized that integral inequalities in general provide a very useful and

handy device for the study of qualitative as well as quantitative properties of solutions of

differential equations. Among varies types of integral inequalities, the Gronwall-Bellman

type (see, e.g. [3-8, 10-13, 16-18]) is particularly useful in that they provide explicit

bounds for the unknown functions. A specific branch of this type of integral inequalities

is originated by Ou-Iang. In [14], in order to study the boundedness behavior of the

solutions of certain 2nd order differential equations, Ou-Iang established the following

integral inequality which is now known as Ou-Iang’s inequality in the literature.

Theorem (Ou-Iang [14]). If u and f are non-negative functions on [0,∞) satisfying

u2(x) ≤ k2 + 2
∫ x

0

f(s)u(s)ds , x ∈ [0,∞) ,

for some constant k ≥ 0, then

u(x) ≤ k +
∫ x

0

f(s)ds , x ∈ [0,∞) .

While Ou-Iang’s inequality is having a neat form and is interesting in its own right as

an integral inequality, its importance lies equally heavily on its many beautiful applications

in differential equations (see, e.g., [2,3,9,12,13]). Over the years, many generalizations of

Ou-Iang’s inequality to various situations have been established. Among these, the dis-

cretization is an interesting direction because one naturally expects that discrete versions

of these inequalities should play an important role in the study of difference equations,

just as the continuous versions are playing a fundamental role in the study of differential

equations. Results in this direction can be found in e.g., [1,18,19] and the references cited

there.

The purpose of this paper is to establish some new discrete Gronwall-Bellman-Ou-

Iang-type inequalities with explicit bounds which on the one hand generalize some existing
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results and on the other hand give a handy tool for the study of qualitative properties

of solutions of difference equations. We illustrate this by applying these new inequalities

to study the boundedness, uniqueness, and continuous dependence of the solutions of a

boundary value problem for difference equations.

2. Discrete Gronwall-Bellman-Ou-Iang-type inequalities

Throughout this paper, I := [m0,M) ∩ Z and J := [n0, N) ∩ Z are two fixed lattices

of integral points in R, where m0, n0 ∈ Z, M, N ∈ Z ∪ {∞}. Let Ω := I × J ⊂ Z2,

R+ := [0,∞), and for any (s, t) ∈ Ω, the sub-lattice [m0, s] × [n0, t] ∩ Ω of Ω will be

denoted as Ω(s,t).

If U is a lattice in Z (resp. Z2), the collection of all R-valued functions on U is denoted

by F(U), and that of all R+-valued functions by F+(U). For the sake of convenience, we

extend the domain of definition of each function in F(U) and F+(U) trivially to the

ambient space Z (resp., Z2). So for example, a function in F(U) is regarded as a function

defined on Z (resp., Z2) with support in U . As usual, the collection of all continuous

functions of a topological space X into a topological space Y will be denoted by C(X, Y ).

If U is a lattice in Z, the difference operator ∆ on f ∈ F(Z) or F+(Z) is defined as

∆f(n) := f(n + 1)− f(n) , n ∈ U ,

and if V is a lattice in Z2, the partial difference operators ∆1 and ∆2 on u ∈ F(Z2) or

F+(Z2) are defined as

∆1u(m,n) := u(m + 1, n)− u(m,n) , (m, n) ∈ V ,

∆2u(m,n) := u(m,n + 1)− u(m,n) , (m, n) ∈ V .

Theorem 2.1. Suppose u ∈ F+(Ω). If c ≥ 0 is a constant and b ∈ F+(Ω), w ∈

C(R+,R+) are functions satisfying
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(i) w is non-decreasing with w(r) > 0 for r > 0; and

(ii) for any (m,n) ∈ Ω,

u(m,n) ≤ c +
m−1∑
s=m0

n−1∑
t=n0

b(s, t)w
(
u(s, t)

)
, (1)

then

u(m,n) ≤ Φ−1
[
Φ(c) + B(m,n)

]
(2)

for all (m, n) ∈ Ω(m1,n1), where

B(m,n) :=
m−1∑
s=m0

n−1∑
t=n0

b(s, t) ,

Φ(r) :=
∫ r

1

ds

w(s)
, r > 0 ,

Φ(0) := lim
r→0+

Φ(r) ,

Φ−1 is the inverse of Φ, and (m1, n1) ∈ Ω is chosen such that Φ(c)+B(m,n) ∈ Dom(Φ−1)

for all (m, n) ∈ Ω(m1,n1).

Proof. It suffices to consider the case c > 0, for then the case c = 0 can be arrived at by

continuity argument. Denote by p(m,n) the right hand side of (1). Then p > 0, u ≤ p on

Ω, and p is non-decreasing in each variable. Hence for any (m,n) ∈ Ω,

∆1p(m,n) = p(m + 1, n)− p(m,n)

=
n−1∑
t=n0

b(m, t)w
(
u(m, t)

)

≤
n−1∑
t=n0

b(m, t)w
(
p(m, t)

)

≤ w
(
p(m,n− 1)

) n−1∑
t=n0

b(m, t) .

Therefore, by the Mean-Value Theorem for integrals, for each (m,n) ∈ Ω, there exists
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p(m, n) ≤ ξ ≤ p(m + 1, n) such that

∆1(Φ ◦ p)(m, n) = Φ
(
p(m + 1, n)

)− Φ
(
p(m,n)

)

=
∫ p(m+1,n)

p(m,n)

ds

w(s)

=
1

w(ξ)
∆1p(m,n) .

Since w is non-decreasing, w(ξ) ≥ w
(
p(m, n)

)
and so

∆1(Φ ◦ p)(m,n) ≤ 1
w

(
p(m,n)

)∆1p(m,n)

≤ w
(
p(m,n− 1)

)

w
(
p(m,n)

)
n−1∑
t=n0

b(m, t)

≤
n−1∑
t=n0

b(m, t)

for all (m,n) ∈ Ω. Therefore,
m−1∑
s=m0

∆1(Φ ◦ p)(s, n) ≤
m−1∑
s=m0

n−1∑
t=n0

b(s, t) = B(m,n) .

On the other hand, it is elementary to check that
m−1∑
s=m0

∆1(Φ ◦ p)(s, n) = Φ ◦ p(m,n)− Φ ◦ p(m0, n) ,

thus

Φ ◦ p(m,n) ≤ Φ ◦ p(m0, n) + B(m,n)

= Φ(c) + B(m, n) .

Since Φ−1 is increasing on Dom Φ−1, this yields

p(m,n) ≤ Φ−1
[
Φ(c) + B(m,n)

]

for all (m,n) ∈ Ω(m1,n1). ¥

Remark. In many cases the non-decreasng function w satisfies
∫∞
1

ds
w(s) = ∞. For

example, w = constant > 0, w(s) = s, w(s) =
√

s, etc., are such functions. In such cases

Φ(∞) = ∞ and so we may take m1 = M , n1 = N . In particular, inequality (2) holds for

all (m,n) ∈ Ω.
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Theorem 2.2. Suppose u ∈ F+(Ω). If k ≥ 0 is a constant and a, b ∈ F+(Ω), w ∈

C(R+,R+) are functions satisfying

(i) w is non-decreasing with w(r) > 0 for r > 0; and

(ii) for any (m,n) ∈ Ω,

u2(m,n) ≤ k2 +
m−1∑
s=m0

n−1∑
t=n0

a(s, t)u(s, t) +
m−1∑
s=m0

n−1∑
t=n0

b(s, t)u(s, t)w
(
u(s, t)

)
, (3)

then

u(m,n) ≤ Φ−1
[
Φ

(
k + A(m,n)

)
+ B(m,n)

]
(4)

for all (m, n) ∈ Ω(m1,n1), where

A(m,n) :=
m−1∑
s=m0

n−1∑
t=n0

a(s, t) ,

B(m,n) :=
m−1∑
s=m0

n−1∑
t=n0

b(s, t) ,

Φ is defined as in Theorem 2.1, and (m1, n1) ∈ Ω is chosen such that Φ
(
k + A(m,n)

)
+

B(m,n) ∈ Dom Φ−1 for all (m,n) ∈ Ω(m1,n1).

Proof. Similar to the proof of Theorem 2.1, it suffices to consider the case k > 0. Denote

by q(s, t) the right hand side of (3). Then q > 0, u ≤ √
q on Ω, and q is non-decreasing in

each variable. Hence for any (m, n) ∈ Ω,

∆1q(m,n) = q(m + 1, n)− q(m,n)

=
n−1∑
t=n0

a(m, t)u(m, t) +
n−1∑
t=n0

b(m, t)u(m, t)w
(
u(m, t)

)

≤
n−1∑
t=n0

a(m, t)
√

q(m, t) +
n−1∑
t=n0

b(m, t)
√

q(m, t)w
(√

q(m, t)
)

≤
√

q(m,n− 1)

[
n−1∑
t=n0

a(m, t) +
n−1∑
t=n0

b(m, t)w
(√

q(m, t)
)]

,

or
∆1q(m,n)√
q(m,n− 1)

≤
n−1∑
t=n0

a(m, t) +
n−1∑
t=n0

b(m, t)w
(√

q(m, t)
)

.
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Therefore, for any (m,n) ∈ Ω,

m−1∑
s=m0

∆1q(s, n)√
q(s, n− 1)

≤
m−1∑
s=m0

n−1∑
t=n0

a(s, t) +
m−1∑
s=m0

n−1∑
t=n0

b(s, t)w
(√

q(s, t)
)

= A(m,n) +
m−1∑
s=m0

n−1∑
t=n0

b(s, t)w
(√

q(s, t)
)

.

On the other hand, by the non-decreasing property of q in each variable, it is easy to check

that

m−1∑
s=m0

∆1q(s, n)√
q(s, n− 1)

=
q(m,n)√

q(m− 1, n− 1)
− q(m− 1, n)√

q(m− 1, n− 1)
+

q(m− 1, n)√
q(m− 2, n− 1)

− q(m− 2, n)√
q(m− 2, n− 1)

+ · · ·

+
q(m0 + 1, n)√
q(m0, n− 1)

− q(m0, n)√
q(m0, n− 1)

=
q(m,n)√

q(m− 1, n− 1)
+

m−m0−1∑
s=1

q(m− s, n)
[ 1√

q(m− s− 1, n− 1)
− 1√

q(m− s, n− 1)

]

− q(m0, n)√
q(m0, n− 1)

≥ q(m,n)√
q(m,n)

− q(m0, n)√
q(m0, n− 1)

=
√

q(m,n)− k

for all (m,n) ∈ Ω. Hence we have

√
q(m,n) ≤ k + A(m,n) +

m−1∑
s=m0

n−1∑
t=n0

b(s, t)w
(√

q(s, t)
)

for all (m,n) ∈ Ω. In particular, since A is non-decreasing in each variable, for any fixed

(m,n) ∈ Ω(m1,n1),

√
q(m, n) ≤ (

k + A(m,n)
)

+
m−1∑
s=m0

n−1∑
t=n0

b(s, t)w
(√

q(s, t)
)

for all (m,n) ∈ Ω(m,n). Now by applying Theorem 2.1 to the function
√

q(m,n), we have

u(m,n) ≤
√

q(m,n) ≤ Φ−1
[
Φ

(
k + A(m,n)

)
+ B(m,n)

]
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for all (m,n) ∈ Ω(m,n). In particular, this gives

u(m, n) ≤ Φ−1
[
Φ

(
k + A(m,n)

)
+ B(m,n)

]
.

Since (m,n) ∈ Ω(m1,n1) is arbitrary, this concludes the proof of the theorem. ¥

Remark. Similar to the previous remark, in many cases Φ(∞) = ∞ and so in these

situations, inequality (4) holds for all (m,n) ∈ Ω.

In case Ω degenerates into a 1-dimensional lattice, Theorem 2.2 takes the following

simpler form which is equivalent to a result of Pachpatte in [18].

Corollary 2.3. Suppose u ∈ F+(I). If k ≥ 0 is a constant and a, b ∈ F+(I), w ∈

C(R+,R+) are functions satisfying

(i) w is non-decreasing with w(r) > 0 for r > 0; and

(ii) for any m ∈ I,

u2(m) ≤ k2 +
m−1∑
s=m0

a(s)u(s) +
m−1∑
s=m0

b(s)u(s)w
(
u(s)

)
,

then

u(m) ≤ Φ−1

[
Φ

(
k +

m−1∑
s=m0

a(s)
)

+
m−1∑
s=m0

b(s)

]

for all m ∈ [m0,m1] ∩ I, where Φ is defined in Theorem 2.1, and m1 ∈ I is chosen such

that Φ
(
k +

m−1∑
s=m0

a(s)
)
∈ Dom Φ−1 for all m ∈ [m0,m1] ∩ I.

Proof. It follows immediately from Theorem 2.2 by setting Ω = I×{n0} for some n0 ∈ Z,

and extending the functions a(s), b(s), u(s) to a(s, n0), b(s, n0) and u(s, n0) respectively

in the obvious way. ¥

A useful special case of Theorem 2.2 is the following

Corollary 2.4. Suppose u ∈ F+(Ω). If k ≥ 0 is a constant and a, b ∈ F+(Ω) are functions

such that for any (m,n) ∈ Ω,

u2(m, n) ≤ k2 +
m−1∑
s=m0

n−1∑
t=n0

a(s, t)u(s, t) +
m−1∑
s=m0

n−1∑
t=n0

b(s, t)u2(s, t) ,
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then

u(m,n) ≤ [
k + A(m,n)

]
exp B(m,n)

for all (m, n) ∈ Ω, where A(m,n) and B(m,n) are as defined in Theorem 2.2.

Proof. Assume first that k > 0. Let w be the identity mapping of R+ onto itself. Then all

conditions of Theorem 2.2 are satisfied. Note that in this cases Φ = ln and so Φ−1 = exp.

In particular, Φ−1 is defined everywhere on R. By Theorem 2.2, we have

u(m,n) ≤ exp
[
ln

(
k + A(m,n)

)
+ B(m,n)

]
=

[
k + A(m,n)

]
exp B(m,n)

for all (m,n) ∈ Ω. Finally, as this is true for all k > 0, by continuity, this should also hold

for the case k = 0. ¥

In case Ω degenerates into a 1-dimensional lattice, Corollary 2.4 takes the following

simpler form which is equivalent to another result of Pachpatte in [18].

Corollary 2.5. Suppose u ∈ F+(I). If k ≥ 0 is a constant and a, b ∈ F+(I) are functions

such that for any m ∈ I,

u2(m) ≤ k2 +
m−1∑
s=m0

a(s)u(s) +
m−1∑
s=m0

b(s)u2(s) ,

then

u(m) ≤
[
k +

m−1∑
s=m0

a(s)
] m−1∏

s=m0

exp b(s)

for all m ∈ I.

Proof. Analogous to that of Corollary 2.3 and apply Corollary 2.4. ¥

Another special situation of Corollary 2.4 is the following 2-dimensional discrete ver-

sion of Ou-Iang’s inequality.

Corollary 2.6. Suppose u ∈ F+(Ω). If k ≥ 0 is a constant and b ∈ F+(Ω) is a function

such that for any (m,n) ∈ Ω,

u2(m, n) ≤ k2 +
m−1∑
s=m0

n−1∑
t=n0

b(s, t)u2(s, t) ,
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then

u(m,n) ≤ k exp B(m,n)

for all (m, n) ∈ Ω, where B(m,n) is as defined in Theorem 2.2.

Proof. This follows immediately from Corollary 2.4 by setting a ≡ 0. ¥

In case Ω degenerates into a 1-dimensional lattice, Corollary 2.6 takes the following

simpler form which is the 1-dimensional discrete analogue of Ou-Iang’s inequality.

Corollary 2.7. Suppose u ∈ F+(I). If k ≥ 0 is a constant and b ∈ F+(I) is a function

such that for any m ∈ I,

u2(m) ≤ k2 +
m−1∑
s=m0

b(s)u2(s) ,

then

u(m) ≤ k

m−1∏
s=m0

exp b(s)

for all m ∈ I.

Proof. It follows from Corollary 2.5 by setting a ≡ 0, or by immitating the Proof of

Corollary 2.3 and applying Corollary 2.6. ¥

Remark. It is evident that the results above can be generalized to obtain explicit bounds

for functions satisfying certain discrete sum inequalities involving more retarded argu-

ments. It is also clear that these results can be extended to functions on higher dimen-

sional lattices in the obvious way. As details of these are rather algorithmic, they will not

be carried out here.

3. Applications to boundary value problems

In this section, we shall illustrate how the results obtained in §2 can be applied to

study the boundedness, uniqueness, and continuous dependence of the solutions of certain
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boundary value problems for difference equations involving 2 independent variables. We

consider the following:

Boundary Value Problem (BVP):

∆12z
2(m,n) = f

(
m,n, z(m,n)

)

satisfying

z(m,n0) = p(m) , z(m0, n) = q(n) , p(m0) = q(n0) = 0 ,

where f ∈ F(Ω× R), p ∈ F(I), and q ∈ F(J) are given.

Our first result deals with the boundedness of solutions.

Theorem 3.1. Consider (BVP). If

∣∣f(m, n, v)
∣∣ ≤ b(m,n)|v|2 (5)

and

p2(m) + q2(n) ≤ k2 (6)

for some k ≥ 0, where b ∈ F+(Ω), then all solutions of (BVP) satisfy

|z(m,n)| ≤ k exp B(m,n) , (m, n) ∈ Ω ,

where B(m,n) is defined as in Theorem 2.1. In particular, if B(m, n) is bounded on Ω,

then every solution of (BVP) is bounded on Ω.

Proof. Observe first that z = z(m,n) solves (BVP) if and only if it satisfies the sum-

difference equation

z2(m,n) = p2(m) + q2(n) +
m−1∑
s=m0

n−1∑
t=n0

f
(
s, t, z(s, t)

)
. (7)

Hence by (5) and (6),

z2(m,n) ≤ k2 +
m−1∑
s=m0

n−1∑
t=n0

b(s, t)z2(s, t)

for all (m,n) ∈ Ω. An application of Corollary 2.6 to the function
∣∣z(m, n)

∣∣ gives the

assertion immediately. ¥

The next result is about uniqueness.
12



Theorem 3.2. Consider (BVP). If

∣∣f(m,n, v1)− f(m,n, v2)
∣∣ ≤ b(m,n)

∣∣v2
1 − v2

2

∣∣

for some b ∈ F+(Ω), then (BVP) has at most one solution on Ω.

Proof. Let z(m,n) and z(m,n) be two solutions of (BVP) on Ω. By (7), we have

∣∣z2(m,n)− z2(m,n)
∣∣ ≤

m−1∑
s=m0

n−1∑
t=n0

∣∣∣f
(
s, t, z(s, t)

)− f
(
s, t, z(s, t)

)∣∣∣

≤
m−1∑
s=m0

n−1∑
t=n0

b(s, t)
∣∣z2(s, t)− z2(s, t)

∣∣ .

An application of Corollary 2.6 to the function
√
|z2(s, t)− z2(s, t)| shows that

√
|z2(s, t)− z2(s, t)| ≤ 0 for all (s, t) ∈ Ω .

Hence z = z on Ω. ¥

Finally, we investigate the continuous dependence of the solutions of (BVP) on the

function f and the boundary data p and q. For this we consider the following variation of

(BVP):

(BVP):

∆12z
2(m,n) = f

(
m,n, z(m,n)

)

with

z(m,n0) = p(m) , z(m0, n) = q(n) , p(m0) = q(n0) = 0 ,

where f ∈ F(Ω× R), p ∈ F(I), and q ∈ F(J) are given.

Theorem 3.3. Consider (BVP) and (BVP). If

(i) |f(m,n, v1)− f(m,n, v2)| ≤ b(m,n)|v2
1 − v2

2 | for some b ∈ F+(Ω);

(ii)
∣∣∣
(
p2(m)− p2(m)

)
+

(
q2(n)− q2(n)

)∣∣∣ ≤ ε
2 ; and

(iii) for all solutions z(m,n) of (BVP),

m−1∑
s=m0

n−1∑
t=n0

∣∣∣f
(
s, t, z(s, t)

)− f
(
s, t, z(s, t)

)∣∣∣ ≤ ε

2
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for all (m, n) ∈ Ω, v1, v2 ∈ R, then

∣∣z2(m, n)− z2(m,n)
∣∣ ≤ ε exp

(
2B(m,n)

)
,

where B(m,n) is as defined in Theorem 2.1. Hence z2 depends continuously on f, p, and

q. In particular, if z does not change sign, it depends continuously on f , p and q.

Proof. Let z(m,n) and z(m,n) be solutions of (BVP) and (BVP), respectively. Then z

satisfies (7) and z satisfies the corresponding equation

z2(m,n) = p2(m) + q2(n) +
m−1∑
s=m0

n−1∑
t=n0

f
(
s, t, z(s, t)

)
.

Hence

∣∣z2(m,n)− z2(m,n)
∣∣

≤
∣∣∣
(
p2(m)− p2(m)

)
+

(
q2(n)− q2(n)

)∣∣∣ +
m−1∑
s=m0

n−1∑
t=n0

∣∣∣f
(
s, t, z(s, t)

)− f
(
s, t, z(s, t)

)∣∣∣

≤ ε

2
+

m−1∑
s=m0

n−1∑
t=n0

∣∣∣f
(
s, t, z(s, t)

)− f
(
s, t, z(s, t)

)∣∣∣ +
m−1∑
s=m0

n−1∑
t=n0

∣∣∣f
(
s, t, z(s, t)

)− f
(
s, t, z(s, t)

)∣∣∣

≤ ε +
m−1∑
s=m0

n−1∑
t=n0

b(s, t)
∣∣z2(s, t)− z2(s, t)

∣∣

by assumptions (i), (ii) and (iii). Now by applying Corollary 2.6 to the function
√
|z2(m,n)− z2(m,n)|, we have

√
|z2(m, n)− z2(m,n)| ≤ √

ε expB(m,n)

for all (m,n) ∈ Ω, or

∣∣z2(m,n)− z2(m, n)
∣∣ ≤ ε exp

(
2B(m,n)

)
.

Now when restricted to any compact sub-lattice, B(m,n) is bounded, so

∣∣z2(m,n)− z2(m,n)
∣∣ ≤ ε ·K

14



for some K > 0 for all (m, n) in this compact sub-lattice. Hence z2 depends continuously

on f , p and q. ¥

Remark. The boundary value problem (BVP) is clearly not the only problem for which

the boundedness, uniqueness, and continuous dependence of its solutions can be studied

by using the results in §2. For example, one can arrive at similar results (with much more

complicated computations) for the following variation of the (BVP):

∆12z
2(m,n) = f

(
m,n, z(m,n) , z(m,n) · w(∣∣z(m, n)

∣∣)
)

with

z(m,n0) = p(m) , z(m0, n) = q(n) , p(m0) = q(n0) = 0 ,

where f ∈ F(Ω× R2), p ∈ F(I), q ∈ F(J), and w ∈ C(R+,R+) are given.
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