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Abstract—By employing Mawhin’s continuation theorem, the existence of periodic

solutions of the p-Laplacian Liénard equation with a deviating argument

(ϕp(x′(t)))′ + f(x(t))x′(t) + g(x(t− τ(t))) = e(t)

under various assumptions are obtained.
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1. INTRODUCTION

As it is well known, the existence of periodic solutions for Duffing equation and Liénard equation

was extensively studied (see [1, 4-6, 9] and the references therein). In recent years, the existence of

T−periodic solutions to several types of second order scalar differential equations with deviating

arguments were studied in [10, 12-14]. For example, In [10], Huang and Xiang studied the following

type of Duffing equation with a single constant deviating argument

x′′(t) + g(x(t− τ)) = p(t). (1.1)
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Under a one-sided boundedness condition imposed on g(x) such as

|g(x)| < R0 for |x| > M, (1.2)

and a signal condition xg(x) > 0 for |x| > M , where M > 0, R0 > 0 are constants, the authors

obtained a periodic solution for Eq.(1.1). In [14], Ma, Wang and Yu studied delay Duffing equations

of the type

x′′(t) + m2x(t) + g(x(t− τ)) = p(t). (1.3)

They established several criteria to guarantee the existence of periodic solutions of Eq.(1.3) by

assuming

M = sup
x∈R

|g(x)| < ∞. (1.4)

In [12], Lu and Ge discussed the existence of periodic solutions for the second order differential

equation with multiple deviating arguments

x′′(t) + f(x(t))x′(t) +
n∑

j=1

βj(t)g(x(t− γj(t))) = p(t).

In their work, some linear growth condition imposed on g(x) such as

lim
|x|→+∞

|g(x)|
|x| = r ∈ [0,+∞) (1.5)

was required.

In this paper, we study the existence of periodic solutions for a p-Laplacian Liénard equation

with a deviating argument

(ϕp(x′(t)))′ + f(x(t))x′(t) + g(x(t− τ(t))) = e(t), (1.6)

where p > 1 is a constant, ϕp : R → R, ϕp(u) = |u|p−2u, f, g, e, τ ∈ C(R,R), e, τ are periodic

with period T , and
∫ T

0
e(s)ds = 0. By using the time maps and the phase plane analysis, some

researchers discussed the existence of periodic solutions to Eq.(1.6) for τ(t) ≡ 0 in [2, 3, 7, 11, 15].

But the corresponding problem of Eq.(1.6) for p 6= 2 and τ(t) 6≡ 0, as far as we know, has not

been studied. The purpose of this paper is to establish some criteria to guarantee the existence

of T -periodic solutions to Eq.(1.6). The methods used to estimate a priori bound of periodic

solutions are different from the corresponding ones in [10, 12-14]. Furthermore, the significance of

this paper is that Theorem 3.1 does not require any one-sided growth condition on g but instead,

it is related to the deviating argument τ(t), and the one-sided growth condition imposed on g(x)

in Theorem 3.2 is weaker than the corresponding ones, namely, (1.2), (1.4) and (1.5) in [10], [14]

and [12].
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2. MAIN LEMMAS

First, we recall Mawhin’s continuation theorem which our study is based upon.

Let X and Y be real Banach Spaces and let L : D(L) ⊂ X → Y be a Fredholm operator

with index zero, here D(L) denotes the domain of L. This means that Im L is closed in Y and

dim Ker L = dim(Y/Im L) < +∞. Consider the supplementary subspaces X1 and Y1 such that

X = Ker L ⊕ X1 and Y = Im L ⊕ Y1 and let P : X → Ker L and Q : Y → Y1 be the natural

projections. Clearly, Ker L∩(D(L)∩X1) = {0}, thus the restriction LP := L|D(L)∩X1 is invertible.

Denote by K the inverse of LP .

Let Ω be an open bounded subset of X with D(L) ∩ Ω 6= φ. A map N : Ω → Y is said to be

L− compact in Ω, if QN(Ω) is bounded and the operator K(I −Q)N : Ω → X is compact.

LEMMA 2.1[8] Suppose that X and Y are two Banach spaces, and L : D(L) ⊂ X → Y is a

Fredholm operator with index zero. Furthermore, Ω ⊂ X is an open bounded set and N : Ω → Y

is L− compact on Ω. If

(1)Lx 6= λNx, ∀x ∈ ∂Ω ∩D(L), λ ∈ (0, 1);

(2)Nx /∈ Im L, ∀x ∈ ∂Ω ∩Ker L; and

(3)deg{JQN, Ω ∩Ker L, 0} 6= 0, where J : Im Q → Ker L is an isomorphism,

then the equation Lx = Nx has a solution in Ω
⋂

D(L).

The following Lemma is important for us to estimate a priori bound of periodic solutions in

Section 3.

LEMMA 2.2[12] Let 0 ≤ α ≤ T be a constant, s ∈ C(R,R) be periodic with period T , and

max
t∈[0,T ]

|s(t)| ≤ α. Then for any u ∈ C1(R,R) which is periodic with period T , we have

∫ T

0

|u(t)− u(t− s(t))|2dt ≤ 2α2

∫ T

0

|u′(t)|2dt.

In order to use Mawhin’s continuation theorem to study the existence of T−periodic solutions

for Eq.(1.6), we rewrite Eq.(1.6) in the following form




x′1(t) = ϕq(x2(t)) = |x2(t)|q−2x2(t)

x′2(t) = −g(x1(t− τ(t)))− f(x1(t))ϕq(x2(t)) + e(t),
(2.1)

where q > 1 is a constant with 1
p + 1

q = 1. Clearly, if x(t) = (x1(t), x2(t))> is a T−periodic solution

to Eqs.(2.1), then x1(t) must be a T−periodic solution to Eq.(1.6). Thus, the problem of finding

a T−periodic solution for Eq. (1.6) reduces to finding one for Eq. (2.1).

Now, we set CT = {φ ∈ C(R,R) : φ(t + T ) ≡ φ(t)} with norm |φ|0 = max
t∈[0,T ]

|φ(t)|, X = Y =

{x = (x1(·), x2(·)) ∈ C(R,R2) : x(t) ≡ x(t + T )} with norm ||x|| = max{|x1|0, |x2|0}. Clearly, X

and Y are Banach spaces. Meanwhile, let

L : D(L) ⊂ X → Y, Lx = x′ =


 x′1

x′2
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N : X → Y, Nx =


 ϕq(x2)

−g(x1(t− τ(t)))− f(x1(t))ϕq(x2(t)) + e(t).




It is easy to see that Ker L = R2, Im L = {y ∈ Y :
∫ T

0
y(s)ds = 0}. So L is a Fredholm operator

with index zero. Let P : X → Ker L and Q : Y → Im Q ⊂ R2 be defined by

Px =
1
T

∫ T

0

x(s)ds; Qy =
1
T

∫ T

0

y(s)ds,

and let K denote the inverse of L|KerP∩D(L). Obviously, Ker L = Im Q = R2 and

[Ky](t) =
∫ T

0

G(t, s)y(s)ds (2.2)

where

G(t, s) =





s

T
, 0 ≤ s < t ≤ T.

s− T

T
, 0 ≤ t ≤ s ≤ T.

From (2.2), one can easily see that N is L−compact on Ω, where Ω is an open, bounded subset of

X.

For the sake of convenience, we list the following assumptions which will be used for us to study

the existence of T−periodic solutions to Eq.(1.6) in Section 3.

[H1] There exists an integer m such that δ := |τ(t)−mT |0 ≤ T .

[H2] There is a constant d > 0 such that ug(u) does not change sign for |u| > d.

[H3] There is a constant l > 0 such that

|g(u1)− g(u2)| ≤ l|u1 − u2| ∀u1, u2 ∈ R.

[H4] There is a constant r ∈ [0,+∞) such that lim
u→−∞

|g(u)|
|u|p−1 = r.

3. MAIN RESULTS

THEOREM 3.1 If [H1] − [H3] hold, and there is a constant σ > 0 such that |f(s)| ≥ σ for

all s ∈ R, then Eq.(1.6) has at least one T−periodic solution if 21/2lδ < σ.

Proof: Consider the following operator equation

Lx = λNx, λ ∈ (0, 1). (3.1)

Let Ω1 = {x ∈ X : Lx = λNx, λ ∈ (0, 1)}. If x(t) =


 x1(t)

x2(t)


 ∈ Ω1, then from (3.1)we have





x′1(t) = λϕq(x2(t)) = λ|x2(t)|q−2x2(t)

x′2(t) = −λg(x1(t− τ(t)))− λf(x1(t))ϕq(x2(t)) + λe(t).
(3.2)

From the first equation of (3.2), we have x2(t) = ϕp( 1
λx′1(t)), which together with the second

equation of (3.2) yields

[
ϕp

( 1
λ

x′1(t)
)]′

+ f(x1(t))x′1(t) + λg(x1(t− τ(t))) = λe(t),
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i.e.,
[
ϕp

(
x′1(t)

)]′ + λp−1f(x1(t))x′1(t) + λpg(x1(t− τ(t))) = λpe(t), (3.3)

Integrating both sides of (3.3) over [0, T ], we get

∫ T

0

g(x1(t− τ(t)))dt = 0. (3.4)

So there is a constant ξ ∈ [0, T ] such that

g(x1(ξ − τ(ξ))) = 0.

From assumption [H2], we see |x1(ξ − τ(ξ))| ≤ d. Write ξ − τ(ξ) = kT + t0, where k ∈ Z and

t0 ∈ [0, T ). Thus |x1(t0)| = |x1(ξ − τ(ξ))| ≤ d, which implies

|x1|0 ≤ d +
∫ T

0

|x′1(s)|ds. (3.5)

On the other hand, multiplying both sides of Eq.(3.3) by x′1(t) and integrating over [0, T ], we

have

∫ T

0

[ϕp(x′1(t))]
′x′1(t)dt + λp−1

∫ T

0

f(x1(t))[x′1(t)]
2dt + λp

∫ T

0

g(x1(t− τ(t)))x′1(t)dt

= λp

∫ T

0

e(t)x′1(t)dt.

(3.6)

If we write w(t) = ϕp(x′1(t)), then

∫ T

0

[ϕp(x′1(t))]
′x′1(t)dt =

∫ T

0

ϕq(w(t))dw(t) = 0,

which together with (3.6) yields

∣∣∣
∫ T

0

f(x1(t))[x′1(t)]
2dt

∣∣∣ <
∣∣∣
∫ T

0

g(x1(t− τ(t)))x′1(t)dt
∣∣∣ +

∣∣∣
∫ T

0

e(t)x′1(t)dt
∣∣∣. (3.7)

Furthermore, from condition |f(s)| ≥ σ for all s ∈ R and |f | ≥ σ everywhere, we see that

σ

∫ T

0

|x′1(t)|2dt ≤
∫ T

0

|f(x1(t))||x′1(t)|2dt =
∣∣∣
∫ T

0

f(x1(t))[x′1(t)]
2dt

∣∣∣.

So we have from (3.7) that

σ

∫ T

0

|x′1(t)|2dt ≤
∣∣∣
∫ T

0

g(x1(t− τ(t)))x′1(t)dt
∣∣∣ +

∣∣∣
∫ T

0

e(t)x′1(t)dt
∣∣∣. (3.8)
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In view of
∫ T

0
g(x1(t))x′(t)dt = 0, we find from (3.8) that

σ

∫ T

0

|x′1(t)|2dt

≤
∣∣∣
∫ T

0

[g(x1(t))− g(x1(t− τ(t)))]x′1(t)dt
∣∣∣ +

∣∣∣
∫ T

0

e(t)x′1(t)dt
∣∣∣

≤
∫ T

0

|g(x1(t))− g(x1(t− τ(t)))||x′1(t)|dt +
∫ T

0

|e(t)||x′1(t)|dt

≤ l

∫ T

0

|x′1(t)||x1(t)− x1(t− τ(t))|dt +
∫ T

0

|e(t)||x′1(t)|dt

≤ l(
∫ T

0

|x′1(t)|2dt)1/2(
∫ T

0

∣∣x1(t)− x1(t− τ(t))
∣∣2dt)1/2 +

(
∫ T

0

|e(s)|2ds)1/2(
∫ T

0

|x′1(t)|2dt)1/2

= l(
∫ T

0

|x′1(t)|2dt)1/2(
∫ T

0

∣∣x1(t)− x1(t− τ(t) + mT )
∣∣2dt)1/2 +

(
∫ T

0

|e(s)|2ds)1/2(
∫ T

0

|x′1(t)|2dt)1/2.

(3.9)

By Lemma 2.2, we have

( ∫ T

0

∣∣x1(t)− x1(t− τ(t) + mT )
∣∣2dt

)1/2

≤ 21/2δ
( ∫ T

0

|x′1(t)|2dt
)1/2

.

Substituting this into (3.9), we obtain

σ

∫ T

0

|x′1(t)|2dt

≤ 21/2lδ

∫ T

0

|x′1(t)|2dt +
(∫ T

0

|e(s)|2ds
)1/2( ∫ T

0

|x′1(t)|2dt
)1/2

,

and so ( ∫ T

0

|x′1(t)|2dt
)1/2

≤ (
∫ T

0
|e(s)|2ds)1/2

σ − 21/2lδ
=: R0.

It follows from (3.5) that

|x1|0 ≤ d + T 1/2R0 =: M1. (3.10)

By the first equation of (3.2), we have
∫ T

0

|x2(s)|q−2x2(s)ds = 0,

which implies that there is a constant t2 ∈ [0, T ] such that x2(t2) = 0. So

|x2|0 ≤
∫ T

0

|x′2(s)|ds.

Then by the second equation of (3.2), we obtain
∫ T

0

|x′2(s)|ds ≤ λgM1T + λ

∫ T

0

|f(x1(s))||x2(s)|q−1ds + λ|e|1

= λgM1T +
∫ T

0

|f(x1(s))||x′1(s)|ds + λ|e|1
≤ gM1T + |f |0T 1/2R0 + |e|1,
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where gM1 = max
|s|≤M1

|g(s)| and |e|1 =
∫ T

0
|e(s)|ds. So we have

|x2|0 ≤ gM1T + |f |0T 1/2R0 + |e|1 =: M2. (3.11)

Let Ω2 = {x ∈ Ker L : Nx ∈ Im L}. If x ∈ Ω2, then x ∈ Ker L and QNx = 0. By the

assumption on e, we see that 


|x2|q−2x2 = 0,

g(x1) = 0.

So

|x1| ≤ d ≤ M1, x2 = 0 ≤ M2.

Let Ω = {x = (x1, x2)> ∈ X : |x1|0 < N1, |x2|0 < N2}, where N1 and N2 are constants with

N1 > M1, N2 > M2 and (N2)q > dgd, where gd = max
|u|≤d

|g(u)|. Then Ω1 ⊂ Ω, Ω2 ⊂ Ω. From (3.10),

(3.11) and the above, it is easy to see that conditions (1) and (2) of Lemma 2.1 are satisfied.

Next, we claim that condition (3) of Lemma 2.1 is also satisfied. For this, define the isomorphism

J : Im Q → Ker L by

J(x1, x2) =





(x2, x1), if ug(u) < 0 for |u| > d,

(−x2, x1), if ug(u) > 0 for |u| > d,

and let H(v, µ) := µv + 1−µ
T JQNv, (v, µ) ∈ Ω × [0, 1]. By simple calculation, we obtain, for

(x, µ) ∈ ∂(Ω ∩KerL)× [0, 1],

x>H(x, µ) =





µ(x2
1 + x2

2) + 1−µ
T (−x1g(x1) + |x2|q) > 0, if ug(u) < 0 for |u| > d,

µ(x2
1 + x2

2) + 1−µ
T (x1g(x1) + |x2|q) > 0, if ug(u) > 0 for |u| > d.

Hence

deg{JQN, Ω ∩KerL, 0} = deg{H(x, 0), Ω ∩KerL, 0}

= deg{H(x, 1), Ω ∩KerL, 0} = deg{I, Ω ∩KerL, 0}

6= 0,

and so condition (3) of Lemma 2.1 is satisfied.

Therefore, by Lemma 2.1, we conclude that equation

Lx = Nx

has a solution x(t) = (x1(t), x2(t))> on Ω, i.e., Eq.(1.6) has a T−periodic solution x1(t) with

|x1|0 ≤ M1. This completes the proof of Theorem 3.1.

Observe that if τ(t) ≡ kT , where k is an integer, then we may take m = k and δ = 0, and so
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in this case assumption [H3] in Theorem 3.1 can be removed. In fact, from (3.8) we see that

σ

∫ T

0

|x′1(t)|2dt

≤
∣∣∣
∫ T

0

g(x1(t− τ(t)))x′1(t)dt
∣∣∣ +

∣∣∣
∫ T

0

e(t)x′1(t)dt
∣∣∣

=
∣∣∣
∫ T

0

g(x1(t− kT ))x′1(t)dt
∣∣∣ +

∣∣∣
∫ T

0

e(t)x′1(t)dt
∣∣∣

=
∣∣∣
∫ T

0

g(x1(t))x′1(t)dt
∣∣∣ +

∣∣∣
∫ T

0

e(t)x′1(t)dt
∣∣∣

=
∣∣∣
∫ T

0

e(t)x′1(t)dt
∣∣∣

≤
( ∫ T

0

|e(s)|2ds
)1/2(∫ T

0

|x′1(s)|2ds
)1/2

,

which implies
( ∫ T

0

|x′1(s)|2ds
)1/2

≤ (
∫ T

0
|e(s)|2ds)1/2

σ
.

So

|x1|0 ≤ d + T 1/2 (
∫ T

0
|e(s)|2ds)1/2

σ
.

Therefore, we have

COROLLARY 3.1 Suppose [H2] holds and there is a constant σ > 0 such that |f(s)| ≥ σ for

all s ∈ R. Furthermore, assume τ(t) ≡ kT , where k is an integer. Then Eq.(1.6) has at least one

T−periodic solution.

THEOREM 3.2 If [H2] and [H4] hold, then Eq.(1.6) has at least one T−periodic solution if

2rT p < 1.

PROOF: Let Ω1 be defined as in Theorem 3.1. If x(t) =
( x1(t)

x2(t)

)
∈ Ω1, then from the proof

of Theorem 3.1 we see that

[ϕp(x′1(t))]
′ + λp−1f(x1(t))x′1(t) + λpg(x1(t− τ(t))) = λpe(t), (3.12)

∫ T

0

g(x1(t− τ(t)))dt = 0. (3.13)

and

|x1|0 ≤ d +
∫ T

0

|x′1(s)|ds. (3.14)

Multiplying both sides of Eq.(3.12) by x1(t) and integrating over [0, T ], we have

∫ T

0

[
ϕp(x′1(t))

]′
x1(t)dt + λp−1

∫ T

0
x1(t)f(x1(t))x′1(t)dt + λp

∫ T

0
g
(
x1(t− τ(t))

)
x1(t)dt

= λp
∫ T

0
x1(t)e(t)dt.

(3.15)

In view of
∫ T

0
x1(t)f(x1(t))x′1(t)dt = 0 and

∫ T

0
[ϕp(x′1(t))]

′x1(t)dt =
∫ T

0
|x′1(t)|pdt, it follows from

(3.15) that

∫ T

0
|x′1(t)|pdt <

∫ T

0

∣∣g(
x1(t− τ(t))

)∣∣|x1(t)|dt +
∫ T

0
|x1(t)||e(t)|dt

≤ |x1|0
∫ T

0

∣∣g(
x1(t− τ(t))

)∣∣dt + |x1|0|e|1,
(3.16)
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where |e|1 =
∫ T

0
|e(s)|ds. From 2rT p < 1, we easily see that there is a constant ε > 0 (independent

of λ) such that

2T p(r + ε) < 1. (3.17)

For such a constant ε > 0, we have from assumption [H4] that there is a constant ρ > d (indepen-

dent of λ) such that

|g(u)| ≤ (r + ε)|u|p−1, for u < −ρ. (3.18)

Let E1 = {t ∈ [0, T ] : |x1(t− τ(t))| ≤ ρ}, E2 = {t ∈ [0, T ] : x1(t− τ(t)) > ρ} and E3 = {t ∈ [0, T ] :

x1(t− τ(t)) < −ρ}. From (3.13), we have

( ∫

E1

+
∫

E2

+
∫

E3

)
g
(
x1(t− τ(t))

)
dt = 0.

It follows from assumption [H2] that
∫

E2

∣∣g(
x1(t− τ(t))

)∣∣dt =
∣∣∣
∫

E2

g
(
x1(t− τ(t))

)
dt

∣∣∣ ≤
∫

E1

∣∣g(
x1(t− τ(t))

)∣∣dt+
∫

E3

∣∣g(
x1(t− τ(t))

)∣∣dt,

and then by (3.18), we have
∫ T

0

∣∣g(
x1(t− τ(t))

)∣∣dt

=
( ∫

E1

+
∫

E2

+
∫

E3

)∣∣g(
x1(t− τ(t))

)∣∣dt

≤ 2
∫

E1

∣∣g(
x1(t− τ(t))

)∣∣dt + 2
∫

E3

∣∣g(
x1(t− τ(t))

)∣∣dt

≤ 2gρT + 2(r + ε)T |x1|p−1
0 ,

(3.19)

where gρ = max
|s|≤ρ

|g(s)|. Substituting (3.19) and (3.14) into (3.16), we get

∫ T

0

|x′1(t)|pdt

≤ 2(r + ε)T |x1|p0 + [2gρT + |e|1]|x1|0
≤ 2(r + ε)T

(
d +

∫ T

0

|x′1(s)|ds
)p

+
(
2gρT + |e|1

) ∫ T

0

|x′1(s)|ds +
(
2gρT + |e|1

)
d.

(3.20)

We claim that there exists a constant M1 > 0 such that

|x1|0 ≤ M1. (3.21)

Case 1. If
∫ T

0
|x′1(s)|ds = 0, then by (3.14), |x1|0 ≤ d.

Case 2. If
∫ T

0
|x′1(s)|ds > 0, then

[
d +

∫ T

0

|x′1(s)|ds
]p

=
( ∫ T

0

|x′1(s)|ds
)p[

1 +
d∫ T

0
|x′1(s)|ds

]p

. (3.22)

From elementary analysis, there is a constant h > 0 (independent of λ) such that

(1 + x)p < 1 + (1 + p)x ∀x ∈ (0, h]. (3.23)
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If dR T
0 |x′1(s)|ds

≥ h, then
∫ T

0

|x′1(s)|ds ≤ d/h,

which implies that

|x1|0 ≤ d + d/h. (3.24)

If dR T
0 |x′1(s)|ds

< h, then from (3.22) we have

[
d +

∫ T

0

|x′1(s)|ds
]p

≤
( ∫ T

0

|x′1(s)|ds
)p[

1 +
(p + 1)d∫ T

0
|x′1(s)|ds

]

=
( ∫ T

0

|x′1(s)|ds
)p

+ (p + 1)d
( ∫ T

0

|x′1(s)|ds
)p−1

≤ T p/q

∫ T

0

|x′1(s)|pds + (p + 1)dT (p−1)/q
( ∫ T

0

|x′1(s)|pds
)1/q

.

Substituting this into (3.20), we obtain
∫ T

0

|x′1(t)|pdt

≤ 2(r + ε)T 1+p/q

∫ T

0

|x′1(s)|pds + 2(r + ε)(p + 1)dT (p+q−1)/q
( ∫ T

0

|x′1(s)|pds
)1/q

+

[
2gρT + |e|1

]
T 1/q

(∫ T

0

|x′1(s)|pds
)1/p

+
[
2gρT + |e|1

]
d

= 2(r + ε)T p

∫ T

0

|x′1(s)|pds + 2(r + ε)(p + 1)dT (p+q−1)/q
( ∫ T

0

|x′1(s)|pds
)1/q

+

[
2gρT + |e|1

]
T 1/q

(∫ T

0

|x′1(s)|pds
)1/p

+
[
2gρT + |e|1

]
d.

In view of 1/q < 1, 1/p < 1 and 2(r + ε)T p < 1, it follows that there is a constant M0 > 0

(independent of λ) such that
∫ T

0
|x′1(t)|pdt ≤ M0, which together with (3.14) yields that

|x1|0 ≤ d + T 1/q(M0)1/p. (3.25)

This proves the claim and the rest of the proof of the theorem is identical to that of Theorem 3.1.

REMARK 3.1 From the proof of Theorem 3.2, it is easy to see that if assumption [H4] is

replaced by

[H ′
4] lim

u→+∞
|g(u)|
|up−1| = r ∈ [0, +∞),

the conclusion of Theorem 3.2 is still true.

REMARK 3.2 The one-sided linear growth condition [H4] imposed on g(x) in Theorem 3.2 is

weaker than the corresponding ones in [12] and [14].

Example 3.1. Let us consider the following equation

x′′(t) + f(x(t))x′(t) + g(x(t− sin t)) = cos t, (3.26)

where f(x) is an arbitrary continuous function,

g(x) =





x
8π2+1 , x < 0

x expx3, x ≥ 0.
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Corresponding to Eq.(1.6), we have p = 2, T = 2π and r = limx→−∞
|g(x)|
|x|p−1 = 1

8π2+1 . Since

2T pr = 8π2

1+8π2 < 1, by Theorem 3.2, we conclude that Eq.(3.26) has at least one 2π−periodic

solution.

Remark 3.3: In example 3.1, one can easily see that g(x) does not satisfy conditions (1.2),

(1.4) or (1.5). So the above result cannot be obtained by [10, 12, 14].

Example 3.2. Let us consider the following equation

[ϕp(x′(t))]′ + (1 + x2(t))x′(t) + x(t− θ cos t) = sin t, (3.27)

where p > 1 is an arbitrary constant, and θ ∈ (0, 1) is a parameter. Corresponding to Eq.(1.6), we

have T = 2π, f(x) = 1 + x2, g(x) = x and τ(t) = θ cos t. So we can choose σ = 1, δ = θ, d = L = 1

such that assumptions [H1]− [H3] hold. If θ ∈ (0,
√

2/2), then
√

2Lδ < σ. By using Theorem 3.1,

Eq.(1.6) has a 2π−periodic solution.
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