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1. Introduction

In 1922 Blumberg1 showed that every separable completely metrizable
space X has the following surprising property:
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B: for each real-valued function f : X → R there is a dense subset D of
X such that the restriction f |D is continuous.

Since then B has been called the Blumberg property and spaces having
it have been called Blumberg spaces. The theory of Blumberg spaces is
well-developed. For example, in 1960 Bradford and Goffman 2 showed that
every Blumberg space is a Baire space and that the converse is true if the
Baire space is metrizable. In 1977 Weiss 5 showed that there are compact
Hausdorff spaces that are not Blumberg.

In this paper we consider spaces that need not be metrizable and develop
a theory for them analogous to that developed in 1. We define weak Blum-
berg spaces, show that every separable T1 Baire space is weak Blumberg,
and provide examples of non-metrizable weak Blumberg spaces.

2. The Weak Blumberg Property

Throughout let (X, τ) be a topological space (often denoted by X alone),
let R be the real numbers with the usual topology, let Q be the rational
numbers and N be the natural numbers. For each p ∈ X, the set of open
neighborhoods of p will be denoted by Np.

Definition 2.1. Let R be a binary relation between open sets and ele-
ments, i.e., R ⊆ τ × X. For U a member of τ and p an element of X,
URp means that the open set U has the relation R to the element p, i.e.,
(U, p) ∈ R. We say that the relation R is closed if for every subset A of
X and every U ∈ τ , URs for all s ∈ A imply URp for all p ∈ A.

Definition 2.2. A partial neighborhood of p, often denoted by N<, is
an open set with p in its closure.

Lemma 2.1. If a subset T of X has the property that each p ∈ T has a
partial neighborhood V p

< such that V p
< ∩ T = ∅, then T is nowhere dense in

X.

Proof. Let V =
⋃{V p

< : p ∈ T}. Then for each p ∈ T we have p ∈ V p
< ⊆ V

which implies that T ⊆ V . But T ∩V = ∅, so T ⊆ V \V , which is nowhere
dense.

Lemma 2.2. For each f : X −→ R and each pair of real numbers r1 and
r2 with r1 < r2 the relation Rf

r1r2
⊆ τ ×X given by:

U<f
r1r2

p if and only if p ∈ U and there exists some q ∈ U such that r1 6
f(q) < r2

is a closed relation.
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Proof. Suppose that A ⊆ X and U ∈ τ such that U<f
r1r2

s for all s ∈ A.
Then for each such s we have s ∈ U and there is some q ∈ U such that
r1 6 f(q) < r2. Suppose that p ∈ A. Since A ⊆ U , we have A ⊆ U ; thus
p ∈ U . Also p ∈ A implies that A 6= ∅. Hence there is some q ∈ U with
r1 6 f(q) < r2. Consequently U<f

r1r2
p.

Lemma 2.3. If f : X → R, then for every pair of real numbers r1, r2, the
set of elements p of X that satisfy both
(a) NRf

r1r2
p for every open neighborhood N of p and

(b) N<Rf
r1r2

p is false for some partial neighborhood N< of p

constitute a nowhere dense set (denoted by T f
r1r2

).

Proof. let T f
r1r2

be the set of points satisfying both (a) and (b). If p ∈ T f
r1r2

then by (b) there is a partial neighborhood N< of p such that N<Rf
r1r2

p

does not hold. Suppose that
(∗) every neighborhood W of p contains some qW such that N<Rf

r1r2
qW .

Consider the set A = {qW : W ∈ Np}. Then for each qW ∈ A we have
N<Rf

r1r2
qW . By Lemma 2.2 Rf

r1r2
is closed. Thus since p ∈ A we have

N<Rf
r1r2

p, which is a contradiction. So (∗) is false. Hence there exists some
neighborhood K of p that contains no member that is related to N<. So
for each q ∈ K ∩N< we know that N<Rf

r1r2
q is false. Hence, because N<

is an open neighborhood of each such q, condition (a) implies that no such
q can be in T f

r1r2
. Thus K ∩ N< ∩ T f

r1r2
= ∅. Hence K ∩ N< is a partial

neighborhood of p that misses T f
r1r2

. From Lemma 2.1 it follows that T f
r1r2

must be nowhere dense.

Corollary 2.1. Under the conditions of Lemma 2.3, T f :≡ ⋃{T f
r1r2

:
(r1, r2) ∈ Q×Q} is a subset of X of the first category.

Definition 2.3.
(a) A function f : (X, τ) → R is said to be densely approached at a
point p of X if and only if for each ε > 0 there exists an open neighborhood
Nε of p such that the set of all elements q of Nε for which |f(q)− f(p)| < ε

is dense in Nε.
(b) A subset of a topological space is called residual if and only if its
complement is of the first category.

Theorem 2.1. For each topological space X a subset R of X is precisely
the set of all elements of X that are densely approached by some real-valued
function f : X −→ R if and only if R is a residual subset of X.
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Proof. Let f : X −→ R. To show that R = {p ∈ X :
f is densely approached at p} is residual, we will show that the complement
X \R is a set of the first category. If p ∈ X \R then there is an ε > 0 such
that for each open neighborhood N of p the set {q ∈ N : |f(q)− f(p)| < ε}
is not dense in N. Thus for each such neighborhood N of p we can choose
an open set UN such that UN ∩N 6= ∅ and |f(qN )− f(p)| > ε for all qN ∈
UN ∩N. Let U =

⋃{UN ∩N : N ∈ Np}. Then p ∈ U and |f(q)− f(p)| > ε

for all q ∈ U. Let r1, r2 ∈ Q such that f(p)−ε < r1 < f(p) < r2 < f(p)+ε.

Then URf
r1r2

p is false and MRf
r1r2

p for each M ∈ Np. Thus p ∈ T f
r1r2

(as
defined in Lemma 2.3), so that X \ R ⊆ T f (as defined in Corollary 2.1)
which is a set of the first category. Hence R is residual. To see the converse,
if R is residual, then X \R is of the first category. So there is a countable
family G = {Gn : n ∈ N} of pairwise disjoint nowhere dense sets such that
X \R =

⋃G. Define f : X −→ R by

f(p) =

{
1
n if p ∈ Gn,

2 if p ∈ R.

Then f is densely approached at p if and only if p ∈ R.

Definition 2.4. A function f : X → R is said to be exhaustibly ap-
proached at a point p of X if and only if an open neighborhood N of p and
an ε > 0 exist such that the set of elements q of N where |f(q)− f(p)| < ε

is of the first category. If f is not exhaustibly approached at p then we say
that f is inexhaustibly approached at p.

Theorem 2.2. For every separable space X and every real-valued function
f : X → R the set consisting of those elements x of X at which f is
exhaustibly approached is of the first category.

Proof. For each r ∈ Q and n ∈ N let Srn = (r − 1
n , r + 1

n ). If f is
exhaustibly approached at q, then there exist a positive number ε and
an open neighborhood Nq of q, such that f−1[(f(q) − ε, f(q) + ε)] ∩ Nq

is of the first category. Let’s pick the set Srn such that f(q) ∈ Srn ⊆
(f(q)− ε, f(q) + ε). Then f−1[Srn] ∩Nq is of the first category. Let

Ern = {x ∈ f−1[Srn] : a neighborhood Nx of x exists such that

f−1[Srn] ∩Nx is of the first category}
Then E =

⋃{Ern : r ∈ Q, n ∈ N} is the set of all elements at which f is
exhaustibly approached. Now, it is sufficient to prove that every Ern is of
the first category since E is a countable union of such sets.
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Fix Ern. X is separable, i.e., X has a countable dense subset, say
P = {pi : i ∈ N}. For each x in Ern pick and fix an open neighborhood
Nx of x such that f−1[Srn] ∩ Nx is of the first category. P is dense. So,
for each such Nx, we can pick and fix an element pi of P such that pi

belongs to Nx. Let Ei = {Nx : pi ∈ Nx}. Take a member Mi from each
nonempty family Ei. If Ei = ∅, let Mi = ∅. Let M =

⋃{Mi : i ∈ N}. we
claim that Ern\M is nowhere dense. Suppose that the claim is not true.
Then Ern\M contains a nonempty open subset U . Pick an element y from
the set U ∩ (Ern\M). Then Ny ∩ U is an open neighborhood of y. This
implies that there exists an element pk of P such that pk ∈ Ny ∩ U . Thus
pk ∈ Mk ∈ Ek, so that pk belongs to M . Thus, pk belongs to U ∩M . Since
M is open, X\M is closed. U ⊆ Ern\M ⊆ X\M = X\M . Thus, U ∩M

is empty, which contradicts that pk belongs to U ∩M . Hence, the claim is
true, so that (Ern\M) ∪ {f−1[Srn] ∩ Mi : i ∈ N} is of the first category.
Also

Ern = (Ern ∩M) ∪ (Ern\M)

⊆ (f−1[Srn] ∩M) ∪ (Ern\M)

=
⋃
{f−1[Srn] ∩Mi : i ∈ N} ∪ (Ern\M).

Thus Ern is of the first category.

If M is a subset of X, we shall use, in connection with approach, the
expression “via M” to indicate that the range of p is restricted to M .

Definition 2.5. For any set M ⊆ X a function f : X → R is said to be
exhaustibly approached at p via M if and only if an open neighborhood
N of p and a positive number ε exist such that the set of elements q of
N ∩M where |f(q)−f(p)| < ε is of the first category; otherwise, f is called
inexhaustibly approached at p via M .

We know that if A is of the first category, then every subset of A is also
of the first category. Thus, if f is exhaustibly approached at p, then f is
exhaustibly approached at p via M for each subset M of X. On the other
hand, for any M ⊆ X, if f is inexhaustibly approached at p via M , then f

is inexhaustibly approached at p.

Definition 2.6. A function f is said to be densely approached at p via
M if and only if for each ε > 0 there exists an open neighborhood Nε of
p such that the elements q of M ∩ Nε for which |f(p) − f(q)| < ε form a
dense subset of M ∩Nε.
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Lemma 2.4. If M is a subset of X such that p is a limit point of M , the
following statements are equivalent.
(1) f : X → R is densely approached at p via M .
(2) For every partial neighborhood N< of p such that N< ∩M has p as a
limit point, f [N< ∩M ] has f(p) as a limit point.

Proof. Assume that (1) holds, but (2) does not. Then there is some partial
neighborhood N< of p having p as a limit point, but for which f(p) is not a
limit point of f [N< ∩M ]. Then there is some ε > 0 and U ∈ Np such that
U ∩N< ∩M 6= ∅ and |f(p)− f(q)| ≥ ε for all q ∈ U ∩N< ∩M with q 6= p.
By (1) there is some Nε ∈ Np such that {q∗ ∈ M ∩Nε : |f(q∗)− f(p)| < ε}
is dense in M ∩Nε. Now W = (U ∩M ∩N<)∩ (M ∩Nε) is nonempty and
open in M ∩ Nε. Also |f(r) − f(p)| ≥ ε for all r ∈ W with r 6= p, which
contradicts (1). Thus (1)⇒(2).

Now suppose that (1) does not hold; i.e., there is some ε > 0 such that
for each N ∈ Np we can pick an open UN such that UN ∩M ∩N 6= ∅ and
|f(p)− f(z)| ≥ ε for all z ∈ UN ∩M ∩N . Let U =

⋃{UN : N ∈ Np}. Then
U is a partial neighborhood of p and |f(p)− f(x)| ≥ ε for each x ∈ U ∩M .
Thus f(p) is not a limit point of f [U ∩M ]. Since p is a limit point of U ∩M ,
we have that (2) does not hold. Thus (2)⇒(1).

Theorem 2.3. For every real-valued function f defined on a separable T1

space X, there exists a residual subset S of X such that if p is an element
of S then the function f is both inexhaustibly and densely approached at p

via S.

Proof. Let E1 be the set of elements at which f is exhaustibly approached,
and let S1 = X\E1. By Theorem 2.2, we know that E1 is of the first
category. Then S1 is residual and f is inexhaustibly approached at the
elements of S1. That is, if q is an element of S1, then for each ε > 0 and for
each open neighborhood N of q, there exists a subset M of N such that M is
of the second category and |f(x)−f(q)| < ε for all x in M . M∩S1 = M\E1

is of the second category since M ∩ E1 is of the first category and M is of
the second category. Thus, f is inexhaustibly approached at the elements
of S1 via S1.

Case 1. Suppose that f is bounded. Then there exists a real number k

such that k > sup f [X]. Now define g : X → R by:

g(x) =

{
f(x) if x ∈ S1.

k if x ∈ E1.
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Then, by Theorem 2.1 the elements of X at which g is densely approached
constitute a residual set, say, Sg. For every element r in E1 and for every
s in S1, g(r) − g(s) ≥ k − sup f [X] > 0. Each of g and f is densely
approached at the elements of S1∩Sg via S1. Furthermore, if K = X−Sg,
then Sg ∩ S1 = X\(K ∪ E1) is a residual set since K and E1 are each of
the first category. It follows that the elements of S1 at which f is densely
approached via S1 constitute a residual set, say, S. Let E2 = S1\S. Then
X = E1 ∪ E2 ∪ S. This implies that E2 is of the first category. For every
element p of S, f is inexhaustibly approached at p via S since E2 is of the
first category and f is inexhaustibly approached at the elements of S1 via
S1. Also, f is densely approached at each such p via S1. For every partial
neighborhood N< of p, if p is a limit point of N< ∩ S then p is a limit
point of N< ∩ S1. By Lemma 2.4 this implies that f(p) is a limit point of
f [N<∩S1]. That is, every open neighborhood of f(p) intersects f [N<∩S1]
in some element other than f(p) itself. For each ε > 0 and for each open
neighborhood N of p, there exists an element which is distinct from p, say,
p∗ such that p∗ belongs to N ∩ (N< ∩ S1) and |f(p∗) − f(p)| < ε/2. It
follows that f is inexhaustibly approached at each such p∗ via S since p∗

belongs to S1 and S1\S = E2 is of the first category. X is a T1 space so
{p} is closed. It follows that (N ∩N<)\{p} is an open neighborhood of p∗.
Thus, a subset M of (N ∩N< ∩S)\{p} exists such that M is of the second
category and for every element q∗ of M , |f(q∗) − f(p∗)| < ε/2. By the
triangle inequality, we have that |f(q∗)− f(p)| < ε for all q∗ in M . We can
pick an element q from M such that q is distinct from p, q ∈ N ∩N< ∩ S

and |f(q)− f(p)| < ε. This implies that p is a limit point of N<∩S. Hence
f is densely approached at p via S.

Case 2. Suppose that f is unbounded. We define f : X → R by f(x) =
f(x)/(1+ |f(x)|). Then f is bounded and the properties of dense approach,
exhaustible approach and inexhaustible approach of f are preserved by f .
So we can proceed as in Case 1.

Corollary 2.2. For every real-valued function f defined on a separable T1

Baire space X, there exists a dense subset S of X such that if p is an
element of S and N< is a partial neighborhood of p then f is inexhaustibly
approached at p via N< ∩ S.

Proof. By Theorem 2.3, there exists a residual set S of X such that if
p is an element of S then f is densely approached at p via S. Thus by
Lemma 2.4 if M< is a partial neighborhood of p such that p is a limit
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point of M< ∩ S, then f(p) is a limit point of f [M< ∩ S]. Given a partial
neighborhood N< of p, N<\{p} is open since X is T1. Since X is a Baire
space S must be dense. So, p is a limit point of N< ∩ S. It follows that
f(p) is a limit point of f [N< ∩ S]. So, for each open neighborhood N of p

and for each ε > 0, there exists an element p∗ which is distinct from p such
that p∗ belongs to N ∩N< ∩ S and |f(p∗) − f(p)| < ε/2. Now p∗ belongs
to S, so that by Theorem 2.3, f is inexhaustibly approached at p∗ via S.
Since N< ∩ N is an open neighborhood of p, there exists a subset M of
N< ∩N ∩S such that M is of the second category and |f(p∗)− f(q)| < ε/2
for all q in M . Thus |f(q)− f(p)| < ε for all q in M , so f is inexhaustibly
approached at p via N< ∩ S.

Definition 2.7. We say that X is a weak Blumberg space or that X

has the weak Blumberg property if and only if for each real-valued
function f defined on X there exists a dense subset D of X such that f is
densely approached at p via D for each p ∈ D.

Theorem 2.4. The family of weak Blumberg spaces contains both the fam-
ily of Blumberg spaces and the family of separable T1 Baire spaces.

Proof. The first containment is clear from the fact that every subset of
a space is dense in itself. Also note that every residual subset of a Baire
space is dense. Hence the second containment follows immediately from
Theorem 2.3.

Example 2.1. [0, 1]2
ℵ0 is a non-metrizable weak Blumberg space.

Proof. [0, 1]2
ℵ0 is a separable non-metrizable compact Hausdorff space,

and every such space is T1 and Baire. By Theorem 2.4 it is a weak Blumberg
space.

Example 2.2. The set of real numbers with the cofinite topology, Rcf , is
a non-metrizable weak Blumberg space that is not a Blumberg space.

Proof. Rcf is clearly T1 and non-Hausdorff, thus non-metrizable. Since a
subset of Rcf is dense if and only if it is infinite, it follows easily that Rcf is
separable and Baire. By Theorem 2.4 it has the weak Blumberg property.
Consider the identity function f : Rcf −→ R. If f |D were continuous for
any dense subset D of Rcf , then D would be an infinite Hausdorff subspace
of Rcf , which is impossible. Thus Rcf does not have the Blumberg property.
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