streckerblumberg

ON A WEAK FORM OF THE BLUMBERG PROPERTY

WING-SUM CHEUNG

Department of Mathematics University of Hong Kong Pokfulam Road, Hong Kong email: wscheung@hkucc.hku.hk

YU-TING LIN AND SHIOJENN TSENG*

Department of Mathematics Tamkang University Tamsui, Taipei, Taiwan, 25137, R.O.C. email: tseng@math.tku.edu.tw

GEORGE E. STRECKER

Department of Mathematics Kansas State University Manhattan, KS 66506 USA email: strecker@math.ksu.edu

In this paper we modify and extend the techniques used by Blumberg in his classic paper of 1922. In particular, we formulate a weakening of the Blumberg property and show that a wide class of not necessarily metrizable spaces has this property.

Mathematics Subject Classifications (2000): 26A15, 26A21, 54C08, 54C30, 54C50, 54E52

 $Keywords\colon$ real-valued function, (weak) Blumberg property, (weak) Blumberg space, separable T_1 Baire space, dense approach, exhaustible approach

1. Introduction

In 1922 Blumberg¹ showed that every separable completely metrizable space X has the following surprising property:

^{*}This work is partially financially supported by the National Science Council of the Republic of China under the project NSC87-2115-M032-004

 $\mathbf{2}$

B: for each real-valued function $f : X \to \mathbb{R}$ there is a dense subset D of X such that the restriction f | D is continuous.

Since then B has been called the *Blumberg property* and spaces having it have been called Blumberg spaces. The theory of Blumberg spaces is well-developed. For example, in 1960 Bradford and Goffman ² showed that every Blumberg space is a Baire space and that the converse is true if the Baire space is metrizable. In 1977 Weiss ⁵ showed that there are compact Hausdorff spaces that are not Blumberg.

In this paper we consider spaces that need not be metrizable and develop a theory for them analogous to that developed in ¹. We define weak Blumberg spaces, show that every separable T_1 Baire space is weak Blumberg, and provide examples of non-metrizable weak Blumberg spaces.

2. The Weak Blumberg Property

Throughout let (X, τ) be a topological space (often denoted by X alone), let \mathbb{R} be the real numbers with the usual topology, let \mathbb{Q} be the rational numbers and \mathbb{N} be the natural numbers. For each $p \in X$, the set of open neighborhoods of p will be denoted by \mathcal{N}_p .

Definition 2.1. Let \mathfrak{R} be a binary relation between open sets and elements, i.e., $\mathfrak{R} \subseteq \tau \times X$. For U a member of τ and p an element of X, $U\mathfrak{R}p$ means that the open set U has the relation \mathfrak{R} to the element p, i.e., $(U,p) \in \mathfrak{R}$. We say that the relation \mathfrak{R} is **closed** if for every subset A of X and every $U \in \tau$, $U\mathfrak{R}s$ for all $s \in A$ imply $U\mathfrak{R}p$ for all $p \in \overline{A}$.

Definition 2.2. A **partial neighborhood of** p, often denoted by $N_{<}$, is an open set with p in its closure.

Lemma 2.1. If a subset T of X has the property that each $p \in T$ has a partial neighborhood V_{\leq}^p such that $V_{\leq}^p \cap T = \emptyset$, then T is nowhere dense in X.

Proof. Let $V = \bigcup \{V_{\leq}^p : p \in T\}$. Then for each $p \in T$ we have $p \in \overline{V_{\leq}^p} \subseteq \overline{V}$ which implies that $T \subseteq \overline{V}$. But $T \cap V = \emptyset$, so $T \subseteq \overline{V} \setminus V$, which is nowhere dense.

Lemma 2.2. For each $f : X \longrightarrow \mathbb{R}$ and each pair of real numbers r_1 and r_2 with $r_1 < r_2$ the relation $\mathfrak{R}^f_{r_1r_2} \subseteq \tau \times X$ given by:

 $U\Re^f_{r_1r_2}p$ if and only if $p\in\overline{U}$ and there exists some $q\in U$ such that $r_1\leqslant f(q)< r_2$

is a closed relation.

Proof. Suppose that $A \subseteq X$ and $U \in \tau$ such that $U\Re_{r_1r_2}^f s$ for all $s \in A$. Then for each such s we have $s \in \overline{U}$ and there is some $q \in U$ such that $r_1 \leq f(q) < r_2$. Suppose that $p \in \overline{A}$. Since $A \subseteq \overline{U}$, we have $\overline{A} \subseteq \overline{U}$; thus $p \in \overline{U}$. Also $p \in \overline{A}$ implies that $A \neq \emptyset$. Hence there is some $q \in U$ with $r_1 \leq f(q) < r_2$. Consequently $U\Re_{r_1r_2}^f p$.

Lemma 2.3. If $f : X \to \mathbb{R}$, then for every pair of real numbers r_1, r_2 , the set of elements p of X that satisfy both

(a) $N\mathfrak{R}_{r_1r_2}^f p$ for every open neighborhood N of p and (b) $N_{\leq}\mathfrak{R}_{r_1r_2}^f p$ is false for some partial neighborhood N_{\leq} of p constitute a nowhere dense set (denoted by $T_{r_1r_2}^f$).

Proof. let $T_{r_1r_2}^f$ be the set of points satisfying both (a) and (b). If $p \in T_{r_1r_2}^f$ then by (b) there is a partial neighborhood $N_{<}$ of p such that $N_{<}\mathfrak{R}_{r_1r_2}^f p$ does not hold. Suppose that

(*) every neighborhood W of p contains some q_W such that $N_< \mathfrak{R}^f_{r_1r_2}q_W$. Consider the set $A = \{q_W : W \in \mathcal{N}_p\}$. Then for each $q_W \in A$ we have $N_< \mathfrak{R}^f_{r_1r_2}q_W$. By Lemma 2.2 $\mathfrak{R}^f_{r_1r_2}$ is closed. Thus since $p \in \overline{A}$ we have $N_< \mathfrak{R}^f_{r_1r_2}p$, which is a contradiction. So (*) is false. Hence there exists some neighborhood K of p that contains no member that is related to $N_<$. So for each $q \in K \cap N_<$ we know that $N_< \mathfrak{R}^f_{r_1r_2}q$ is false. Hence, because $N_<$ is an open neighborhood of each such q, condition (a) implies that no such q can be in $T^f_{r_1r_2}$. Thus $K \cap N_< \cap T^f_{r_1r_2} = \emptyset$. Hence $K \cap N_<$ is a partial neighborhood of p that misses $T^f_{r_1r_2}$. From Lemma 2.1 it follows that $T^f_{r_1r_2}$ must be nowhere dense.

Corollary 2.1. Under the conditions of Lemma 2.3, $T^f := \bigcup \{T^f_{r_1r_2} : (r_1, r_2) \in \mathbb{Q} \times \mathbb{Q}\}$ is a subset of X of the first category.

Definition 2.3.

(a) A function $f: (X, \tau) \to \mathbb{R}$ is said to be **densely approached** at a point p of X if and only if for each $\epsilon > 0$ there exists an open neighborhood N_{ϵ} of p such that the set of all elements q of N_{ϵ} for which $|f(q) - f(p)| < \epsilon$ is dense in N_{ϵ} .

(b) A subset of a topological space is called **residual** if and only if its complement is of the first category.

Theorem 2.1. For each topological space X a subset R of X is precisely the set of all elements of X that are densely approached by some real-valued function $f: X \longrightarrow \mathbb{R}$ if and only if R is a residual subset of X.

 $\mathbf{3}$

streckerblumberg

4

Proof. Let $f: X \longrightarrow \mathbb{R}$. To show that $R = \{p \in X : f \text{ is densely approached at } p\}$ is residual, we will show that the complement $X \setminus R$ is a set of the first category. If $p \in X \setminus R$ then there is an $\epsilon > 0$ such that for each open neighborhood N of p the set $\{q \in N : |f(q) - f(p)| < \epsilon\}$ is not dense in N. Thus for each such neighborhood N of p we can choose an open set U_N such that $U_N \cap N \neq \emptyset$ and $|f(q_N) - f(p)| \ge \epsilon$ for all $q_N \in U_N \cap N$. Let $U = \bigcup \{U_N \cap N : N \in \mathcal{N}_p\}$. Then $p \in \overline{U}$ and $|f(q) - f(p)| \ge \epsilon$ for all $q \in U$. Let $r_1, r_2 \in \mathbb{Q}$ such that $f(p) - \epsilon < r_1 < f(p) < r_2 < f(p) + \epsilon$. Then $U\mathfrak{R}_{r_1r_2}^f p$ is false and $M\mathfrak{R}_{r_1r_2}^f p$ for each $M \in \mathcal{N}_p$. Thus $p \in T_{r_1r_2}^f$ (as defined in Lemma 2.3), so that $X \setminus R \subseteq T^f$ (as defined in Corollary 2.1) which is a set of the first category. Hence R is residual. To see the converse, if R is residual, then $X \setminus R$ is of the first category. So there is a countable family $\mathcal{G} = \{G_n : n \in \mathbb{N}\}$ of pairwise disjoint nowhere dense sets such that $X \setminus R = \bigcup \mathcal{G}$. Define $f : X \longrightarrow \mathbb{R}$ by

$$f(p) = \begin{cases} \frac{1}{n} & \text{if } p \in G_n, \\ 2 & \text{if } p \in R. \end{cases}$$

Then f is densely approached at p if and only if $p \in R$.

1

Definition 2.4. A function $f : X \to \mathbb{R}$ is said to be **exhaustibly approached** at a point p of X if and only if an open neighborhood N of p and an $\epsilon > 0$ exist such that the set of elements q of N where $|f(q) - f(p)| < \epsilon$ is of the first category. If f is not exhaustibly approached at p then we say that f is **inexhaustibly approached** at p.

Theorem 2.2. For every separable space X and every real-valued function $f : X \to \mathbb{R}$ the set consisting of those elements x of X at which f is exhaustibly approached is of the first category.

Proof. For each $r \in \mathbb{Q}$ and $n \in \mathbb{N}$ let $S_{rn} = (r - \frac{1}{n}, r + \frac{1}{n})$. If f is exhaustibly approached at q, then there exist a positive number ϵ and an open neighborhood N_q of q, such that $f^{-1}[(f(q) - \epsilon, f(q) + \epsilon)] \cap N_q$ is of the first category. Let's pick the set S_{rn} such that $f(q) \in S_{rn} \subseteq$ $(f(q) - \epsilon, f(q) + \epsilon)$. Then $f^{-1}[S_{rn}] \cap N_q$ is of the first category. Let

$$E_{rn} = \{x \in f^{-1}[S_{rn}] : \text{a neighborhood } N_x \text{ of } x \text{ exists such that} \\ f^{-1}[S_{rn}] \cap N_x \text{ is of the first category} \}$$

Then $E = \bigcup \{E_{rn} : r \in \mathbb{Q}, n \in \mathbb{N}\}$ is the set of all elements at which f is exhaustibly approached. Now, it is sufficient to prove that every E_{rn} is of the first category since E is a countable union of such sets.

Fix E_{rn} . X is separable, i.e., X has a countable dense subset, say $P = \{p_i : i \in \mathbb{N}\}$. For each x in E_{rn} pick and fix an open neighborhood N_x of x such that $f^{-1}[S_{rn}] \cap N_x$ is of the first category. P is dense. So, for each such N_x , we can pick and fix an element p_i of P such that p_i belongs to N_x . Let $\mathcal{E}_i = \{N_x : p_i \in N_x\}$. Take a member M_i from each nonempty family \mathcal{E}_i . If $\mathcal{E}_i = \emptyset$, let $M_i = \emptyset$. Let $M = \bigcup \{M_i : i \in \mathbb{N}\}$. we claim that $E_{rn} \setminus M$ is nowhere dense. Suppose that the claim is not true. Then $\overline{E_{rn} \setminus M}$ contains a nonempty open subset U. Pick an element y from the set $U \cap (E_{rn} \setminus M)$. Then $N_y \cap U$ is an open neighborhood of y. This implies that there exists an element p_k of P such that $p_k \in N_y \cap U$. Thus $p_k \in M_k \in \mathcal{E}_k$, so that p_k belongs to M. Thus, p_k belongs to $U \cap M$. Since M is open, $X \setminus M$ is closed. $U \subseteq \overline{E_{rn} \setminus M} \subseteq \overline{X \setminus M} = X \setminus M$. Thus, $U \cap M$ is empty, which contradicts that p_k belongs to $U \cap M$. Hence, the claim is true, so that $(E_{rn} \setminus M) \cup \{f^{-1}[S_{rn}] \cap M_i : i \in \mathbb{N}\}$ is of the first category. Also

$$E_{rn} = (E_{rn} \cap M) \cup (E_{rn} \setminus M)$$
$$\subseteq (f^{-1}[S_{rn}] \cap M) \cup (E_{rn} \setminus M)$$
$$= \bigcup \{ f^{-1}[S_{rn}] \cap M_i : i \in \mathbb{N} \} \cup (E_{rn} \setminus M).$$

Thus E_{rn} is of the first category.

If M is a subset of X, we shall use, in connection with approach, the expression "via M" to indicate that the range of p is restricted to M.

Definition 2.5. For any set $M \subseteq X$ a function $f : X \to \mathbb{R}$ is said to be **exhaustibly approached at** p **via** M if and only if an open neighborhood N of p and a positive number ϵ exist such that the set of elements q of $N \cap M$ where $|f(q) - f(p)| < \epsilon$ is of the first category; otherwise, f is called **inexhaustibly approached at** p **via** M.

We know that if A is of the first category, then every subset of A is also of the first category. Thus, if f is exhaustibly approached at p, then f is exhaustibly approached at p via M for each subset M of X. On the other hand, for any $M \subseteq X$, if f is inexhaustibly approached at p via M, then f is inexhaustibly approached at p.

Definition 2.6. A function f is said to be **densely approached at** p via M if and only if for each $\epsilon > 0$ there exists an open neighborhood N_{ϵ} of p such that the elements q of $M \cap N_{\epsilon}$ for which $|f(p) - f(q)| < \epsilon$ form a dense subset of $M \cap N_{\epsilon}$.

5

 $\mathbf{6}$

Lemma 2.4. If M is a subset of X such that p is a limit point of M, the following statements are equivalent.

(1) $f: X \to \mathbb{R}$ is densely approached at p via M.

(2) For every partial neighborhood N_{\leq} of p such that $N_{\leq} \cap M$ has p as a limit point, $f[N_{\leq} \cap M]$ has f(p) as a limit point.

Proof. Assume that (1) holds, but (2) does not. Then there is some partial neighborhood N_{\leq} of p having p as a limit point, but for which f(p) is not a limit point of $f[N_{\leq} \cap M]$. Then there is some $\epsilon > 0$ and $U \in \mathcal{N}_p$ such that $U \cap N_{\leq} \cap M \neq \emptyset$ and $|f(p) - f(q)| \ge \epsilon$ for all $q \in U \cap N_{\leq} \cap M$ with $q \neq p$. By (1) there is some $N_{\epsilon} \in \mathcal{N}_p$ such that $\{q^* \in M \cap N_{\epsilon} : |f(q^*) - f(p)| < \epsilon\}$ is dense in $M \cap N_{\epsilon}$. Now $W = (U \cap M \cap N_{\leq}) \cap (M \cap N_{\epsilon})$ is nonempty and open in $M \cap N_{\epsilon}$. Also $|f(r) - f(p)| \ge \epsilon$ for all $r \in W$ with $r \neq p$, which contradicts (1). Thus (1) \Rightarrow (2).

Now suppose that (1) does not hold; i.e., there is some $\epsilon > 0$ such that for each $N \in \mathcal{N}_p$ we can pick an open U_N such that $U_N \cap M \cap N \neq \emptyset$ and $|f(p) - f(z)| \ge \epsilon$ for all $z \in U_N \cap M \cap N$. Let $U = \bigcup \{U_N : N \in \mathcal{N}_p\}$. Then U is a partial neighborhood of p and $|f(p) - f(x)| \ge \epsilon$ for each $x \in U \cap M$. Thus f(p) is not a limit point of $f[U \cap M]$. Since p is a limit point of $U \cap M$, we have that (2) does not hold. Thus $(2) \Rightarrow (1)$.

Theorem 2.3. For every real-valued function f defined on a separable T_1 space X, there exists a residual subset S of X such that if p is an element of S then the function f is both inexhaustibly and densely approached at p via S.

Proof. Let E_1 be the set of elements at which f is exhaustibly approached, and let $S_1 = X \setminus E_1$. By Theorem 2.2, we know that E_1 is of the first category. Then S_1 is residual and f is inexhaustibly approached at the elements of S_1 . That is, if q is an element of S_1 , then for each $\epsilon > 0$ and for each open neighborhood N of q, there exists a subset M of N such that M is of the second category and $|f(x) - f(q)| < \epsilon$ for all x in M. $M \cap S_1 = M \setminus E_1$ is of the second category since $M \cap E_1$ is of the first category and M is of the second category. Thus, f is inexhaustibly approached at the elements of S_1 via S_1 .

Case 1. Suppose that f is bounded. Then there exists a real number k such that $k > \sup f[X]$. Now define $g: X \to \mathbb{R}$ by:

$$g(x) = \begin{cases} f(x) & \text{if } x \in S_1. \\ k & \text{if } x \in E_1. \end{cases}$$

Then, by Theorem 2.1 the elements of X at which g is densely approached constitute a residual set, say, S_q . For every element r in E_1 and for every s in $S_1, g(r) - g(s) \ge k - \sup f[X] > 0$. Each of g and f is densely approached at the elements of $S_1 \cap S_g$ via S_1 . Furthermore, if $K = X - S_g$, then $S_q \cap S_1 = X \setminus (K \cup E_1)$ is a residual set since K and E_1 are each of the first category. It follows that the elements of S_1 at which f is densely approached via S_1 constitute a residual set, say, S. Let $E_2 = S_1 \setminus S$. Then $X = E_1 \cup E_2 \cup S$. This implies that E_2 is of the first category. For every element p of S, f is inexhaustibly approached at p via S since E_2 is of the first category and f is inexhaustibly approached at the elements of S_1 via S_1 . Also, f is densely approached at each such p via S_1 . For every partial neighborhood N_{\leq} of p, if p is a limit point of $N_{\leq} \cap S$ then p is a limit point of $N_{\leq} \cap S_1$. By Lemma 2.4 this implies that f(p) is a limit point of $f[N_{\leq} \cap S_1]$. That is, every open neighborhood of f(p) intersects $f[N_{\leq} \cap S_1]$ in some element other than f(p) itself. For each $\epsilon > 0$ and for each open neighborhood N of p, there exists an element which is distinct from p, say, p^* such that p^* belongs to $N \cap (N_{\leq} \cap S_1)$ and $|f(p^*) - f(p)| < \epsilon/2$. It follows that f is inexhaustibly approached at each such p^* via S since p^* belongs to S_1 and $S_1 \setminus S = E_2$ is of the first category. X is a T_1 space so $\{p\}$ is closed. It follows that $(N \cap N_{\leq}) \setminus \{p\}$ is an open neighborhood of p^* . Thus, a subset M of $(N \cap N_{\leq} \cap S) \setminus \{p\}$ exists such that M is of the second category and for every element q^* of M, $|f(q^*) - f(p^*)| < \epsilon/2$. By the triangle inequality, we have that $|f(q^*) - f(p)| < \epsilon$ for all q^* in M. We can pick an element q from M such that q is distinct from $p, q \in N \cap N_{\leq} \cap S$ and $|f(q) - f(p)| < \epsilon$. This implies that p is a limit point of $N_{\leq} \cap S$. Hence f is densely approached at p via S.

Case 2. Suppose that f is unbounded. We define $\overline{f} : X \to \mathbb{R}$ by $\overline{f}(x) = f(x)/(1+|f(x)|)$. Then \overline{f} is bounded and the properties of dense approach, exhaustible approach and inexhaustible approach of f are preserved by \overline{f} . So we can proceed as in Case 1.

Corollary 2.2. For every real-valued function f defined on a separable T_1 Baire space X, there exists a dense subset S of X such that if p is an element of S and $N_{<}$ is a partial neighborhood of p then f is inexhaustibly approached at p via $N_{<} \cap S$.

Proof. By Theorem 2.3, there exists a residual set S of X such that if p is an element of S then f is densely approached at p via S. Thus by Lemma 2.4 if M_{\leq} is a partial neighborhood of p such that p is a limit

7

8

point of $M_{\leq} \cap S$, then f(p) is a limit point of $f[M_{\leq} \cap S]$. Given a partial neighborhood N_{\leq} of p, $N_{\leq} \setminus \{p\}$ is open since X is T_1 . Since X is a Baire space S must be dense. So, p is a limit point of $N_{\leq} \cap S$. It follows that f(p) is a limit point of $f[N_{\leq} \cap S]$. So, for each open neighborhood N of p and for each $\epsilon > 0$, there exists an element p^* which is distinct from p such that p^* belongs to $N \cap N_{\leq} \cap S$ and $|f(p^*) - f(p)| < \epsilon/2$. Now p^* belongs to S, so that by Theorem 2.3, f is inexhaustibly approached at p^* via S. Since $N_{\leq} \cap N$ is an open neighborhood of p, there exists a subset M of $N_{\leq} \cap N \cap S$ such that M is of the second category and $|f(p^*) - f(q)| < \epsilon/2$ for all q in M. Thus $|f(q) - f(p)| < \epsilon$ for all q in M, so f is inexhaustibly approached at p via $N_{\leq} \cap S$.

Definition 2.7. We say that X is a **weak Blumberg space** or that X has the weak Blumberg property if and only if for each real-valued function f defined on X there exists a dense subset D of X such that f is densely approached at p via D for each $p \in D$.

Theorem 2.4. The family of weak Blumberg spaces contains both the family of Blumberg spaces and the family of separable T_1 Baire spaces.

Proof. The first containment is clear from the fact that every subset of a space is dense in itself. Also note that every residual subset of a Baire space is dense. Hence the second containment follows immediately from Theorem 2.3. \Box

Example 2.1. $[0,1]^{2^{\aleph_0}}$ is a non-metrizable weak Blumberg space.

Proof. $[0,1]^{2^{\aleph_0}}$ is a separable non-metrizable compact Hausdorff space, and every such space is T_1 and Baire. By Theorem 2.4 it is a weak Blumberg space.

Example 2.2. The set of real numbers with the cofinite topology, \mathbb{R}_{cf} , is a non-metrizable weak Blumberg space that is not a Blumberg space.

Proof. \mathbb{R}_{cf} is clearly T_1 and non-Hausdorff, thus non-metrizable. Since a subset of \mathbb{R}_{cf} is dense if and only if it is infinite, it follows easily that \mathbb{R}_{cf} is separable and Baire. By Theorem 2.4 it has the weak Blumberg property. Consider the identity function $f : \mathbb{R}_{cf} \longrightarrow \mathbb{R}$. If f|D were continuous for any dense subset D of \mathbb{R}_{cf} , then D would be an infinite Hausdorff subspace of \mathbb{R}_{cf} , which is impossible. Thus \mathbb{R}_{cf} does not have the Blumberg property.

References

- Henry Blumberg, New properties of all real functions. Trans. Amer. Math. Soc. 24 (1922), 113-128.
- J. C. Bradford and Casper Goffman, Metric spaces in which Blumberg's theorem holds. Proc. Amer. Math. Soc. 11 (1960), 667-670.
- 3. Murray Eisenberg, Topology. Holt, Rinehart and Winston, New York, 1974.
- 4. James R. Munkres, *Topology: a first course.* Prentice-Hall, Englewood Cliffs, N. J. , 1974.
- William A. R. Weiss, *The Blumberg Problem*. Trans. Amer. Math. Soc. 230 (1977), 71-85.
- H. E. White, Jr., Topological spaces in which Blumberg's theorem holds. Proc. Amer. Math. Soc. 44 (1974), 454-462.
- Albert Wilansky, *Topology for analysis*. Xerox College Publishing, Waltham, Mass., 1973.

9