On the Existence of Periodic Solutions for p-Laplacian

Generalized Liénard Equation

Wing-Sum Cheung*
Department of Mathematics, The University of Hong Kong
Pokfulam, Hong Kong
wscheung@hkucc.hku.hk
and
Jingli Ren
Institute of Systems Science, Chinese Academy of Sciences
Beijing 100080, P.R. China
renj1@mx.amss.ac.cn

Abstract

By employing Mawhin's continuation theorem, the existence of periodic solutions of the p-Laplacian generalized Liénard equation with deviating argument

$$
\left(\varphi_{p}\left(x^{\prime}(t)\right)\right)^{\prime}+f(t, x(t)) x^{\prime}(t)+\beta(t) g(x(t-\tau(t)))=e(t)
$$

under various assumptions are obtained.
Keywords-periodic solution, Mawhin's continuation theorem, deviating argument.

1. INTRODUCTION

Consider the p-Laplacian generalized Liénard equation with a deviating argument

$$
\begin{equation*}
\left(\varphi_{p}\left(x^{\prime}(t)\right)\right)^{\prime}+f(t, x(t)) x^{\prime}(t)+\beta(t) g(x(t-\tau(t)))=e(t) \tag{1.1}
\end{equation*}
$$

where $p>1$ is a constant; $\varphi_{p}: \mathbb{R} \rightarrow \mathbb{R}, \quad \varphi_{p}(u)=|u|^{p-2} u$ is a one-dimensional p-Laplacian; $f=f(t, u) \in C\left(\mathbb{R}^{2}, \mathbb{R}\right)$ is a periodic function with regard to t with period $T>0$; and $\beta, g, e, \tau \in$ $C(\mathbb{R}, \mathbb{R})$, where β, τ, e are periodic functions with period $T, e(t) \not \equiv 0, \int_{0}^{T} e(s) d s=0, \beta(t)>0$ and $\tau(t) \geq 0$ for $t \in[0, T]$.

[^0]There has been a great deal of work in the literature on such an equation which is used to describe fluid mechanical and nonlinear elastic mechanical phenomena. For example, in $[1-3,6$, 10], by using the time maps and the phase plane analysis, the existence of periodic solutions to Eq.(1.1) for $p \neq 2$ and $\tau(t) \equiv 0$ was studied. On the other hand, for $p=2, \tau(t) \not \equiv 0$ and $f(t, x(t))$ being replaced by $f(x(t))$, the existence of T-periodic solutions to several second order scalar differential equations were also studied in [5, 7-9]. In [9], S. Ma, Z. Wang and J. Yu studied delay Duffing equations of the type

$$
\begin{equation*}
x^{\prime \prime}(t)+m^{2} x(t)+g(x(t-\tau))=p(t) . \tag{1.2}
\end{equation*}
$$

By assuming that

$$
\begin{equation*}
\sup _{x \in \mathbb{R}}|g(x)|<\infty, \tag{1.3}
\end{equation*}
$$

several sufficient conditions for the existence of periodic solutions of Eq.(1.2) were established. Recently, S. Lu and W. Ge in [7] discussed the existence of periodic solutions for the second order differential equation with multiple deviating arguments

$$
\begin{equation*}
x^{\prime \prime}(t)+f(x(t)) x^{\prime}(t)+\sum_{j=1}^{n} \beta_{j}(t) g\left(x\left(t-\gamma_{j}(t)\right)\right)=p(t) . \tag{1.4}
\end{equation*}
$$

In their work, some linear growth condition imposed on $g(x)$ such as

$$
\begin{equation*}
\lim _{|x| \rightarrow+\infty} \frac{|g(x)|}{|x|}=r \in[0,+\infty) \tag{1.5}
\end{equation*}
$$

was needed.
The main technique of these works [5, 7-9] is to convert the problem into the abstract form $L x=N x$, with L being a non-invertible linear operator. Thus the existence of solutions of the problem can be given by Mawhin's continuation theorem [4]. But as far as we are aware of, the corresponding problem of Eq.(1.1) with $p \neq 2$ and $\tau(t) \not \equiv 0$ has never been studied. This is mainly due to the facts that in this situation, on the one hand Mawhin's continuation theorem is not applicable directly since the p-Laplacian $\varphi_{p}(u)=|u|^{p-2} u$ is not linear with respect to u except when $p=2$, and on the other hand, the crucial step $\int_{0}^{T} f(x(t)) x^{\prime}(t) d t=0$ which is needed to obtain an a priori bound of periodic solutions for Eq.(1.1) is no longer valid.

In this paper, we get around with these difficulties by using some new techniques and translating Eq.(1.1) into a two-dimensional system on which Mawhin's continuation theorem applies. This method can also be used to solve problems for other equations with p-Laplacian.

2. PRELIMINARIES

Let X and Y be real Banach Spaces and let $L: D(L) \subset X \rightarrow Y$ be a Fredholm operator with index zero, here $D(L)$ denotes the domain of L. This means that $\operatorname{Im} L$ is closed in Y and $\operatorname{dim} \operatorname{Ker} L=\operatorname{dim}(Y / \operatorname{Im} L)<+\infty$. Consider the supplementary subspaces X_{1} and Y_{1} such that $X=\operatorname{Ker} L \oplus X_{1}$ and $Y=\operatorname{Im} L \oplus Y_{1}$ and let $P: X \rightarrow \operatorname{Ker} L$ and $Q: Y \rightarrow Y_{1}$ be the natural
projections. Clearly, Ker $L \cap\left(D(L) \cap X_{1}\right)=\{0\}$, thus the restriction $L_{P}:=\left.L\right|_{D(L) \cap X_{1}}$ is invertible. Denote by K the inverse of L_{P}.

Let Ω be an open bounded subset of X with $D(L) \cap \Omega \neq \phi$. A map $N: \bar{\Omega} \rightarrow Y$ is said to be L-compact in $\bar{\Omega}$ if $Q N(\bar{\Omega})$ is bounded and the operator $K(I-Q) N: \bar{\Omega} \rightarrow X$ is compact. We first recall the famous Mawhin's continuation theorem.

THEOREM 2.1[4] Suppose that X and Y are Banach spaces, and $L: D(L) \subset X \rightarrow Y$ is a Fredholm operator with index zero. Furthermore, $\Omega \subset X$ is an open bounded set and $N: \bar{\Omega} \rightarrow Y$ is L - compact on $\bar{\Omega}$. If
(1) $L x \neq \lambda N x, \forall x \in \partial \Omega \cap D(L), \lambda \in(0,1)$;
(2) $N x \notin \operatorname{Im} L, \forall x \in \partial \Omega \cap \operatorname{Ker} L$; and
(3) $\operatorname{deg}\{J Q N, \Omega \cap \operatorname{Ker} L, 0\} \neq 0$, where $J: \operatorname{Im} Q \rightarrow \operatorname{Ker} L$ is an isomorphism, then the equation $L x=N x$ has a solution in $\bar{\Omega} \cap D(L)$.

The next result is useful in obtaining an a priori bound of periodic solutions.
THEOREM 2.2[7] Let $0 \leq \alpha \leq T$ be a constant, $s \in C(\mathbb{R}, \mathbb{R})$ be periodic with period T, and $\max _{t \in[0, T]}|s(t)| \leq \alpha$. Then for any $u \in C^{1}(\mathbb{R}, \mathbb{R})$ which is periodic with period T, we have

$$
\int_{0}^{T}|u(t)-u(t-s(t))|^{2} d t \leq 2 \alpha^{2} \int_{0}^{T}\left|u^{\prime}(t)\right|^{2} d t
$$

3. MAIN RESULTS

In order to use Mawhin's continuation theorem to study the existence of T-periodic solutions for Eq.(1.1), we rewrite Eq.(1.1) in the following form

$$
\left\{\begin{align*}
x_{1}^{\prime}(t) & =\varphi_{q}\left(x_{2}(t)\right)=\left|x_{2}(t)\right|^{q-2} x_{2}(t) \tag{3.1}\\
x_{2}^{\prime}(t) & =-f\left(t, x_{1}(t)\right) \varphi_{q}\left(x_{2}(t)\right)-\beta(t) g\left(x_{1}(t-\tau(t))\right)+e(t)
\end{align*}\right.
$$

where $q>1$ is a constant with $\frac{1}{p}+\frac{1}{q}=1$. Clearly, if $x(t)=\left(x_{1}(t), x_{2}(t)\right)^{\top}$ is a T-periodic solution to Eq.(3.1), then $x(t)$ must be a T-periodic solution to Eq.(1.1). Thus, the problem of finding a T-periodic solution for Eq. (1.1) reduces to finding one for Eq. (3.1).

Now, we set $C_{T}=\{\phi \in C(\mathbb{R}, \mathbb{R}): \phi(t+T) \equiv \phi(t)\}$ with norm $|\phi|_{0}=\max _{t \in[0, T]}|\phi(t)|$. It is obvious that $\beta, \tau, e \in C_{T}$. Set $X=Y=\left\{x=\left(x_{1}(\cdot), x_{2}(\cdot)\right) \in C\left(\mathbb{R}, \mathbb{R}^{2}\right): x(t) \equiv x(t+T)\right\}$ with norm $\|x\|=\max \left\{\left|x_{1}\right|_{0},\left|x_{2}\right|_{0}\right\}$. Clearly, X and Y are Banach spaces. Define

$$
L: D(L)=\left\{x=\left(x_{1}(\cdot), x_{2}(\cdot)\right) \in C^{1}\left(\mathbb{R}, \mathbb{R}^{2}\right): x(t) \equiv x(t+T)\right\} \subset X \rightarrow Y
$$

by

$$
L x:=x^{\prime}=\binom{x_{1}^{\prime}}{x_{2}^{\prime}}
$$

and

$$
N: X \rightarrow Y
$$

by

$$
N x:=\binom{\varphi_{q}\left(x_{2}\right)}{-f\left(t, x_{1}(t)\right) \varphi_{q}\left(x_{2}(t)\right)-\beta(t) g\left(x_{1}(t-\tau(t))\right)+e(t)} .
$$

It is easy to see that $\operatorname{Ker} L=\mathbb{R}^{2}$ and $\operatorname{Im} L=\left\{y \in Y: \int_{0}^{T} y(s) d s=0\right\}$. So L is a Fredholm operator with index zero. Let $P: X \rightarrow \operatorname{Ker} L$ and $Q: Y \rightarrow \operatorname{Im} Q \subset \mathbb{R}^{2}$ be defined by

$$
P x=\frac{1}{T} \int_{0}^{T} x(s) d s ; \quad Q y=\frac{1}{T} \int_{0}^{T} y(s) d s
$$

and let K denote the inverse of $\left.L\right|_{\operatorname{KerP} \cap D(L)}$. Obviously, $\operatorname{Ker} L=\operatorname{Im} Q=\mathbb{R}^{2}$ and

$$
\begin{equation*}
[K y](t)=\int_{0}^{T} G(t, s) y(s) d s \tag{3.2}
\end{equation*}
$$

where

$$
G(t, s):= \begin{cases}\frac{s}{T}, & 0 \leq s<t \leq T \\ \frac{s-T}{T}, & 0 \leq t \leq s \leq T\end{cases}
$$

From (3.2), one can easily see that N is L-compact on $\bar{\Omega}$, where Ω is an open, bounded subset of X.

For the sake of convenience, we denote by $\beta_{1}=\max _{t \in[0, T]} \beta(t), \beta_{0}=\min _{t \in[0, T]} \beta(t)$. Obviously $\beta_{1} \geq$ $\beta_{0}>0$. Moreover, we list the following assumptions which will be used repeatedly in the sequel.
[H1] There is a constant $r \geq 0$ such that $\lim _{|x| \rightarrow+\infty} \sup \left|\frac{g(x)}{x}\right| \leq r$.
[H2] There is a constant $A>0$ such that $\operatorname{sgn}(x) g(x)>\frac{|e|_{0}}{\beta_{0}}$ for $|x|>A$.
[H3] There is a constant $\sigma>0$ such that $\inf _{(t, u) \in[0, T] \times \mathbb{R}}|f(t, u)| \geq \sigma>0$.
[H4] There exist an integer m and a constant $\delta \geq 0$ such that $\max _{t \in[0, T]}\left|\tau_{1}(t)-m T\right| \leq \delta$.
[H5] There exists a constant $l>0$ such that $|g(u)-g(v)| \leq l|u-v|$.
THEOREM 3.1 If [H1]-[H3] hold, then Eq.(1.1) has at least a non-constant T-periodic solution if $r<\frac{\sigma}{\beta_{1} T}$.

PROOF. Consider the operator equation

$$
\begin{equation*}
L x=\lambda N x, \quad \lambda \in(0,1) . \tag{3.3}
\end{equation*}
$$

Let $\Omega_{1} \in\{x \in X: L x=\lambda N x, \lambda \in(0,1)\}$. If $x(t)=\binom{x_{1}(t)}{x_{2}(t)} \in \Omega_{1}$, then from (3.3), we have

$$
\left\{\begin{array}{l}
x_{1}^{\prime}(t)=\lambda \varphi_{q}\left(x_{1}(t)\right)=\lambda\left|x_{1}(t)\right|^{q-2} x_{1}(t) \tag{3.4}\\
x_{2}^{\prime}(t)=-\lambda f\left(t, x_{1}(t)\right) \varphi_{q}\left(x_{2}(t)\right)-\lambda \beta(t) g\left(x_{1}\left(t-\tau_{1}(t)\right)\right)+\lambda e(t)
\end{array}\right.
$$

We first claim that there is a constant $\xi \in R$ such that

$$
\begin{equation*}
|x(\xi)| \leq A . \tag{3.5}
\end{equation*}
$$

In view of $\int_{0}^{T} x_{1}^{\prime}(t) d t=0$, we know that there exist two constants $t_{1}, t_{2} \in[0, T]$ such that

$$
\begin{equation*}
x_{1}^{\prime}\left(t_{1}\right) \geq 0, \quad x_{1}^{\prime}\left(t_{2}\right) \leq 0 . \tag{3.6}
\end{equation*}
$$

From the first equation of (3.4), we have $x_{2}(t)=\varphi_{p}\left(\frac{1}{\lambda} x_{1}^{\prime}(t)\right)$. So

$$
\begin{aligned}
& x_{2}\left(t_{1}\right)=\frac{1}{\lambda^{p-1}}\left|x_{1}^{\prime}\left(t_{1}\right)\right|^{p-2} x_{1}^{\prime}\left(t_{1}\right) \geq 0, \\
& x_{2}\left(t_{2}\right)=\frac{1}{\lambda^{p-1}}\left|x_{1}^{\prime}\left(t_{2}\right)\right|^{p-2} x_{1}^{\prime}\left(t_{2}\right) \leq 0 .
\end{aligned}
$$

Let $t_{3}, t_{4} \in[0, T]$ be, respectively, the maximum point and minimum point of $x_{2}(t)$. Clearly, we have

$$
\begin{align*}
& x_{2}\left(t_{3}\right) \geq 0, \quad x_{2}^{\prime}\left(t_{3}\right)=0 \tag{3.7}\\
& x_{2}\left(t_{4}\right) \leq 0, \quad x_{2}^{\prime}\left(t_{4}\right)=0 . \tag{3.8}
\end{align*}
$$

From $[\mathrm{H} 3]$ and by continuity, f will not change sign for $(t, u) \in[0, T] \times \mathbb{R}$. Without loss of generality, suppose $f(t, u)>0$ for $(t, u) \in[0, T] \times \mathbb{R}$ and upon substitution of (3.7) into the second equation of (3.4), we have

$$
-\lambda \beta\left(t_{3}\right) g\left(x_{1}\left(t_{3}-\tau\left(t_{3}\right)\right)+\lambda e(t)=\lambda f\left(t, x_{1}\left(t_{3}\right)\right) \varphi_{q}\left(x_{2}\left(t_{3}\right)\right) \geq 0\right.
$$

i.e.,

$$
\begin{equation*}
g\left(x_{1}\left(t_{3}, \tau\left(t_{3}\right)\right)\right) \leq \frac{e\left(t_{3}\right)}{\beta\left(t_{3}\right)} \leq \frac{|e|_{0}}{\beta_{0}} . \tag{3.9}
\end{equation*}
$$

From (H2) we see that

$$
\begin{equation*}
x_{1}\left(t_{3}-\tau\left(t_{3}\right)\right)<A \tag{3.10}
\end{equation*}
$$

Similarly, from (3.8) we have

$$
\begin{equation*}
g\left(x_{1}\left(t_{4}-\tau\left(t_{4}\right)\right)\right) \geq \frac{e\left(t_{4}\right)}{\beta\left(t_{4}\right)} \geq-\frac{|e|_{0}}{\beta_{0}} \tag{3.11}
\end{equation*}
$$

and again by (H2),

$$
\begin{equation*}
x_{1}\left(t_{4}-\tau\left(t_{4}\right)\right)>-A . \tag{3.12}
\end{equation*}
$$

Case (1) If $x_{1}\left(t_{3}-\tau\left(t_{3}\right)\right) \in(-A, A)$, define $\xi=t_{3}-\tau\left(t_{3}\right)$. Obviously $|x(\xi)| \leq A$.
Case (2) If $x_{1}\left(t_{3}-\tau\left(t_{3}\right)\right)<-A$, from (3.12) and the fact that $x(t)$ is a continuous function in \mathbb{R}, there exists a constant ξ between $x_{1}\left(t_{3}-\tau\left(t_{3}\right)\right)$ and $x_{1}\left(t_{4}-\tau\left(t_{4}\right)\right)$ such that $\left|x_{1}(\xi)\right|=A$.

This proves (3.5).
Next, in view of $\xi \in \mathbb{R}$, there is an integer k and a constant $t_{5} \in[0, T]$ such that $\xi=k T+t_{5}$, hence $\left|x_{1}(\xi)\right|=\left|x_{1}\left(t_{5}\right)\right| \leq A$. So

$$
\begin{equation*}
\left|x_{1}\right|_{0} \leq A+\int_{0}^{T}\left|x_{1}(s)\right| d s \tag{3.13}
\end{equation*}
$$

Substituting $x_{2}(t)=\varphi_{p}\left(\frac{1}{\lambda} x_{1}^{\prime}(t)\right)$ into the second equation of (3.4),

$$
\left[\varphi_{p}\left(\frac{1}{\lambda} x_{1}^{\prime}(t)\right)\right]^{\prime}+\lambda f\left(t, x_{1}(t)\right)\left[\varphi_{q}\left(\varphi_{p}\left(\frac{1}{\lambda} x_{1}^{\prime}(t)\right)\right)\right]+\lambda \beta(t) g\left(x_{1}\left(t-\tau_{1}(t)\right)\right)=\lambda e(t)
$$

i.e.,

$$
\begin{equation*}
\left[\varphi_{p}\left(x_{1}^{\prime}(t)\right)\right]^{\prime}+\lambda^{p-1} f\left(t, x_{1}(t)\right) x_{1}^{\prime}(t)+\lambda^{p} \beta(t) g\left(x_{1}\left(t-\tau_{1}(t)\right)\right)=\lambda^{p} e(t) \tag{3.14}
\end{equation*}
$$

Multiplying both sides of Eq.(3.14) by $x_{1}^{\prime}(t)$ and integrating over $[0, T]$, we have

$$
\begin{equation*}
\int_{0}^{T} f\left(t, x_{1}(t)\right)\left[x_{1}^{\prime}(t)\right]^{2} d t=-\lambda \int_{0}^{T} \beta(t) g\left(x_{1}\left(t-\tau_{1}(t)\right)\right) x_{1}^{\prime}(t) d t+\lambda \int_{0}^{T} e(t) x_{1}^{\prime}(t) d t \tag{3.15}
\end{equation*}
$$

It follows from [H3] that

$$
\begin{align*}
& \sigma \int_{0}^{T}\left|x_{1}^{\prime}(t)\right|^{2} d t \\
& \leq \int_{0}^{T}\left|f\left(t, x_{1}(t)\right)\right|\left[x_{1}^{\prime}(t)\right]^{2} d t \\
& =\left|\int_{0}^{T} f\left(t, x_{1}(t)\right)\left[x_{1}^{\prime}(t)\right]^{2} d t\right| \tag{3.16}\\
& \leq\left|\int_{0}^{T} \beta(t) g\left(x_{1}\left(t-\tau_{1}(t)\right)\right) x_{1}^{\prime}(t) d t\right|+\left|\int_{0}^{T} e(t) x_{1}^{\prime}(t) d t\right| \\
& \leq \int_{0}^{T}\left|\beta(t) g\left(x_{1}\left(t-\tau_{1}(t)\right)\right) x_{1}^{\prime}(t)\right| d t+\int_{0}^{T}\left|e(t) x_{1}^{\prime}(t)\right| d t \\
& \leq \beta_{1} \int_{0}^{T}\left|g\left(x_{1}\left(t-\tau_{1}(t)\right)\right)\right|\left|x_{1}^{\prime}(t)\right| d t+|e|_{0} \int_{0}^{T}\left|x_{1}^{\prime}(t)\right| d t .
\end{align*}
$$

For $\varepsilon=\frac{1}{2}\left(\frac{\sigma}{\beta_{1} T}-r\right)$, by $[\mathrm{H} 1]$ there is a constant $A_{1}>0$ such that

$$
\begin{equation*}
g\left(x_{1}\left(t-\tau_{1}(t)\right)\right) \leq(r+\varepsilon)\left|x_{1}(t-\tau(t))\right| \quad \text { for } \quad\left|x_{1}(t-\tau(t))\right| \geq A_{1} \tag{3.17}
\end{equation*}
$$

Define

$$
E_{1}=\left\{t \in[0, T]| | x_{1}(t-\tau(t)) \mid<A_{1}\right\}, \quad E_{2}=\left\{t \in[0, T]| | x_{1}(t-\tau(t)) \mid \geq A_{1}\right\}
$$

Then (3.16) can be transformed into

$$
\begin{aligned}
& \sigma \int_{0}^{T}\left|x_{1}^{\prime}(t)\right|^{2} d t \\
& \leq \beta_{1} \int_{E_{1}}\left|g\left(x_{1}\left(t-\tau_{1}(t)\right)\right)\right|\left|x_{1}^{\prime}(t)\right| d t+\beta_{1} \int_{E_{2}}\left|g\left(x_{1}\left(t-\tau_{1}(t)\right)\right)\right|\left|x_{1}^{\prime}(t)\right| d t+|e|_{0} \int_{0}^{T}\left|x_{1}^{\prime}(t)\right| d t \\
& \leq\left[\beta_{1} g_{A_{2}}+|e|_{0}\right] \int_{0}^{T}\left|x_{1}^{\prime}(t)\right| d t+\beta_{1}(r+\varepsilon)|x|_{0} \int_{0}^{T}\left|x_{1}^{\prime}(t)\right| d t \\
& =\left[\beta_{1} g_{A_{1}}+|e|_{0}\right] \int_{0}^{T}\left|x_{1}^{\prime}(t)\right| d t+\beta_{1}(r+\varepsilon)\left[A+\int_{0}^{T}\left|x_{1}^{\prime}(t)\right| d t\right] \int_{0}^{T}\left|x_{1}^{\prime}(t)\right| d t \\
& \leq T^{\frac{1}{2}}\left[\beta_{1} g_{A_{2}}+|e|_{0}+\beta_{1}(r+\varepsilon) A\right]\left(\int_{0}^{T}\left|x_{1}^{\prime}(t)\right|^{2} d t\right)^{\frac{1}{2}}+\beta_{1}(r+\varepsilon) T \int_{0}^{T}\left|x_{1}^{\prime}(t)\right|^{2} d t,
\end{aligned}
$$

i.e.,

$$
\begin{equation*}
\left[\sigma-\beta_{1}(r+\varepsilon) T\right] \int_{0}^{T}\left|x_{1}^{\prime}(t)\right|^{2} d t \leq c_{3}\left(\int_{0}^{T}\left|x_{1}^{\prime}(t)\right|^{2} d t\right)^{\frac{1}{2}} \tag{3.18}
\end{equation*}
$$

where $g_{A_{1}}:=\max _{|u| \leq A_{1}}|g(u)|$ and $c_{3}:=T^{\frac{1}{2}}\left[\beta_{1} g_{A_{1}}+|e|_{0}+\beta_{1}(r+\varepsilon) A\right]$. In view of $r<\frac{\sigma}{\beta_{1} T}$ and $\varepsilon=\frac{1}{2}\left(\frac{\sigma}{\beta_{1} T}-r\right)$, it is easy to see that $\sigma-\beta_{1}(r+\varepsilon) T=\frac{1}{2}\left(\sigma-\beta_{1} T r\right)>0$. So from (3.18) we have

$$
\int_{0}^{T}\left|x_{1}^{\prime}(t)\right|^{2} d t \leq\left(\frac{2 c_{3}}{\sigma-\beta_{1} T r}\right)^{2}
$$

and so

$$
\begin{equation*}
\int_{0}^{T}\left|x_{1}^{\prime}(t)\right| d t \leq T^{\frac{1}{2}}\left(\int_{0}^{T}\left|x_{1}^{\prime}(t)\right|^{2} d t\right)^{\frac{1}{2}}=\frac{2 T^{\frac{1}{2}} c_{3}}{\sigma-\beta_{1} T r}:=A_{2} . \tag{3.19}
\end{equation*}
$$

Hence

$$
\begin{equation*}
\left|x_{1}\right|_{0} \leq A+\int_{0}^{T}\left|x_{1}^{\prime}(t)\right| d t \leq A+A_{2}:=M_{1} \tag{3.20}
\end{equation*}
$$

By the first equation of (3.4), we have

$$
\begin{equation*}
\int_{0}^{T}\left|x_{2}(s)\right|^{q-2} x_{2}(s) d s=0 \tag{3.21}
\end{equation*}
$$

which implies that there is a constant $t_{2} \in[0, T]$ such that $x_{2}\left(t_{2}\right)=0$. So

$$
\begin{equation*}
\left|x_{2}\right|_{0} \leq \int_{0}^{T}\left|x_{2}^{\prime}(s)\right| d s \tag{3.22}
\end{equation*}
$$

On the other hand, taking absolute value and integrating over $[0, T]$ on both sides of the second equation of (3.4), we obtain

$$
\begin{aligned}
\int_{0}^{T}\left|x_{2}^{\prime}(s)\right| d s & \leq \int_{0}^{T}\left|f\left(t, x_{1}(t)\right)\right|\left|x_{1}^{\prime}(t)\right| d t+\lambda \int_{0}^{T}\left|\beta(t) g\left(x_{1}\left(t-\tau_{1}(t)\right)\right)\right| d t+\lambda \int_{0}^{T}|e(t)| d t \\
& \leq f_{M_{1}} A_{2} T+\beta_{1}\left(g_{M_{1}} T\right)+|e|_{1},
\end{aligned}
$$

where $f_{M_{1}}:=\max _{t \in[0, T],|u| \leq M_{1}} f(t, u), g_{M_{1}}:=\max _{|u| \leq M_{1}}|g(u)|$ and $|e|_{1}:=\int_{0}^{T}|e(t)| d t$. So from (3.22), we have

$$
\begin{equation*}
\left|x_{2}\right|_{0} \leq f_{M_{1}} A_{2} T+\beta_{1}\left(g_{M_{1}} T\right)+|e|_{1}:=M_{2} . \tag{3.23}
\end{equation*}
$$

Let $\Omega_{2}:=\{x \in \operatorname{Ker} L: N x \in \operatorname{Im} L\}$. If $x \in \Omega_{2}$, then $x \in \operatorname{Ker} L$ and $Q N x=0$. From assumption $\int_{0}^{T} e(t) d t=0$ we see that

$$
\left\{\begin{array}{l}
\left|x_{2}\right|^{q-2} x_{2}=0 \tag{3.24}\\
g\left(x_{1}\right)=0
\end{array}\right.
$$

So

$$
\begin{equation*}
\left|x_{1}\right| \leq A \leq M_{1}, \quad x_{2}=0 \leq M_{2} . \tag{3.25}
\end{equation*}
$$

Let $\Omega=\left\{x=\left(x_{1}, x_{2}\right)^{\top} \in X:\left|x_{1}\right|_{0}<N_{1},\left|x_{2}\right|_{0}<N_{2}\right\}$, where N_{1} and N_{2} are constants with $N_{1}>M_{1}, N_{2}>M_{2}$ and $\left(N_{2}\right)^{q}>A \bar{\beta} g_{A}$, where $g_{A}:=\max _{|u| \leq A}|g(u)|$ and $\bar{\beta}:=\frac{1}{T} \int_{0}^{T} \beta(t) d t$. Then $\overline{\Omega_{1}} \subset \Omega, \overline{\Omega_{2}} \subset \Omega$. From (3.20), (3.22) and (3.25), it is obvious that conditions (1) and (2) of Theorem 2.1 are satisfied.

Next, we claim that condition (3) of Theorem A is also satisfied. For this, define the isomorphism $J: \operatorname{Im} Q \rightarrow \operatorname{Ker} L$ by $J\left(x_{1}, x_{2}\right):=\left(-x_{2}, x_{1}\right)$ and let $H(v, \mu):=\mu v+(1-\mu) J Q N v, \quad(v, \mu) \in$ $\Omega \times[0,1]$. By simple calculation, we obtain, for $(x, \mu) \in \partial(\Omega \cap \operatorname{Ker} L) \times[0,1]$,

$$
x^{\top} H(x, \mu)=\mu\left(x_{1}^{2}+x_{2}^{2}\right)+(1-\mu)\left(\bar{\beta} x_{1} g\left(x_{1}\right)+\left|x_{2}\right|^{q}\right)>0 .
$$

Hence

$$
\begin{aligned}
& \operatorname{deg}\{J Q N, \Omega \cap \operatorname{Ker} L, 0\}=\operatorname{deg}\{H(x, 0), \Omega \cap \operatorname{Ker} L, 0\} \\
= & \operatorname{deg}\{H(x, 1), \Omega \cap \operatorname{Ker} L, 0\}=\operatorname{deg}\{I, \Omega \cap \operatorname{Ker} L, 0\} \\
\neq & 0,
\end{aligned}
$$

and so condition (3) of Theorem 2.1 is satisfied.
Therefore, by Theorem 2.1, we conclude that equation

$$
L x=N x
$$

has a solution $x(t)=\left(x_{1}(t), x_{2}(t)\right)^{\top}$ on $\bar{\Omega}$, i.e., Eq.(1.1) has a T-periodic solution $x_{1}(t)$ with $\left|x_{1}\right|_{0} \leq M_{1}$.

Finally, observe that $x_{1}(t)$ is not a constant. For if not, it follows from (3.14) that $e(t)=c \beta(t) \geq$ c which will contradict to $e(t) \not \equiv 0$ and $\int_{0}^{T} e(s) d s=0$. This completes the proof of Theorem 3.1.

THEOREM 3.2 If (H2)-(H5) hold, then equation (1.1) has a non-constant T-periodic solution if $\sqrt{2} \beta_{1} l \delta<\sigma$.

PROOF. Let Ω_{1} be defined as in Theorem 3.1. If $x(t)=\binom{x_{1}(t)}{x_{2}(t)} \in \Omega_{1}$, then from the proof of Theorem 3.1 we see that

$$
\begin{equation*}
\left[\varphi_{p}\left(x_{1}^{\prime}(t)\right)\right]^{\prime}+\lambda^{p-1} f\left(t, x_{1}(t)\right) x_{1}^{\prime}(t)+\lambda^{p} \beta(t) g\left(x_{1}\left(t-\tau_{1}(t)\right)\right)=\lambda^{p} e(t) \tag{3.26}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|x_{1}\right|_{0} \leq A+\int_{0}^{T}\left|x_{1}^{\prime}(s)\right| d s \tag{3.27}
\end{equation*}
$$

We claim that $\left|x_{1}\right|_{0}$ is bounded.
Multiplying both sides of Eq.(3.26) by $x_{1}^{\prime}(t)$ and integrating over [$0, T$], we have

$$
\begin{equation*}
\int_{0}^{T} f\left(t, x_{1}(t)\right)\left(x_{1}^{\prime}(t)\right)^{2} d t+\lambda \int_{0}^{T} \beta(t) g\left(x_{1}\left(t-\tau_{1}(t)\right)\right) x_{1}^{\prime}(t) d t=\lambda \int_{0}^{T} e(t) x_{1}^{\prime}(t) d t \tag{3.28}
\end{equation*}
$$

By (3.28) and (H3),

$$
\begin{align*}
& \sigma \int_{0}^{T}\left|x_{1}(t)\right|^{2} d t \\
& \leq \int_{0}^{T}\left|f\left(t, x_{1}(t)\right)\right|\left(x_{1}^{\prime}(t)\right)^{2} d t \\
& =\left|\int_{0}^{T} f\left(t, x_{1}(t)\right)\left(x_{1}^{\prime}(t)\right)^{2} d t\right| \tag{3.29}\\
& \leq \int_{0}^{T} \beta(t)\left|g\left(x_{1}\left(t-\tau_{1}(t)\right)\right) x_{1}^{\prime}(t)\right| d t+\left|\int_{0}^{T} e(t) x_{1}^{\prime}(t) d t\right| \\
& \leq \beta_{1}\left|\int_{0}^{T}\left[g\left(x_{1}\left(t-\tau_{1}(t)\right)\right)-g\left(x_{1}(t)\right)\right] x_{1}^{\prime}(t) d t+\int_{0}^{T} g\left(x_{1}(t)\right) x_{1}^{\prime}(t) d t\right|+\left|\int_{0}^{T} e(t) x_{1}^{\prime}(t) d t\right| .
\end{align*}
$$

Considering $\int_{0}^{T} g\left(x_{1}(t)\right) x_{1}^{\prime}(t) d t=0$ and by assumption (H5), we have from (3.29) that

$$
\begin{align*}
& \sigma \int_{0}^{T}\left|x_{1}(t)\right|^{2} d t \\
& \leq \beta_{1}\left|\int_{0}^{T}\left[g\left(x_{1}\left(t-\tau_{1}(t)\right)\right)-g\left(x_{1}(t)\right)\right] x_{1}^{\prime}(t) d t\right|+\left|\int_{0}^{T} e(t) x_{1}^{\prime}(t) d t\right| \tag{3.30}\\
& \leq \beta_{1} l \int_{0}^{T}\left|x_{1}\left(t-\tau_{1}(t)\right)-x_{1}(t)\right|\left|x_{1}^{\prime}(t)\right| d t+\left|\int_{0}^{T} e(t) x_{1}^{\prime}(t) d t\right| \\
& \leq \beta_{1} l\left(\int_{0}^{T}\left|x_{1}\left(t-\tau_{1}(t)\right)-x_{1}(t)\right|^{2} d t\right)^{\frac{1}{2}}\left(\int_{0}^{T}\left|x_{1}(t)\right|^{2} d t\right)^{\frac{1}{2}}+\left(\int_{0}^{T}\left|x_{1}(t)\right|^{2} d t\right)^{\frac{1}{2}}\left(\int_{0}^{T}|e(t)|^{2} d t\right)^{\frac{1}{2}} .
\end{align*}
$$

By (H4), and applying Theorem 2.2, we obtain

$$
\begin{equation*}
\left(\int_{0}^{T}\left|x_{1}\left(t-\tau_{1}(t)\right)-x_{1}(t)\right|^{2} d t\right)^{\frac{1}{2}}=\left(\int_{0}^{T}\left|x_{1}\left(t-\tau_{1}(t)+m T\right)-x_{1}(t)\right|^{2} d t\right)^{\frac{1}{2}} \leq \sqrt{2} \delta\left(\int_{0}^{T}\left|x_{1}(t)\right|^{2} d t\right)^{\frac{1}{2}} \tag{3.31}
\end{equation*}
$$

Substituting (3.31) into (3.29) yields

$$
\begin{equation*}
\left(\sigma-\sqrt{2} \beta_{1} l \delta\right)\left(\int_{0}^{T}\left|x_{1}(t)\right|^{2} d t\right) \leq\left(\int_{0}^{T}\left|x_{1}(t)\right|^{2} d t\right)^{\frac{1}{2}}\left(\int_{0}^{T}|e(t)|^{2} d t\right)^{\frac{1}{2}} . \tag{3.32}
\end{equation*}
$$

As $\sqrt{2} \beta_{1} l \delta<\sigma$, we obtain

$$
\begin{equation*}
\left(\int_{0}^{T}\left|x_{1}(t)\right|^{2} d t\right)^{\frac{1}{2}} \leq \frac{\left(\int_{0}^{T}|e(t)|^{2} d t\right)^{\frac{1}{2}}}{\sigma-\sqrt{2} \beta_{1} l \delta} . \tag{3.33}
\end{equation*}
$$

Hence (3.27) can be transformed into

$$
\left|x_{1}\right|_{0} \leq A+\int_{0}^{T}\left|x_{1}^{\prime}(t)\right| d t \leq A+T^{\frac{1}{2}}\left(\int_{0}^{T}\left|x_{1}(t)\right|^{2} d t\right)^{\frac{1}{2}} \leq A+\frac{T^{\frac{1}{2}}\left(\int_{0}^{T}|e(t)|^{2} d t\right)^{\frac{1}{2}}}{\sigma-\sqrt{2} \beta_{1} l \delta}
$$

This proves the claim and the rest of the proof of the theorem is identical to that of Theorem 3.1.

REFERENCES

[1] M.A. Del Pino and R.F. Manásevich, Multiple solutions for the p-Laplacian under global non-resonance, Proc. Amer. Math. Soc., 112(1991), 131-138.
[2] M.A. Del Pino, R.F. Manásevich and A. Murua, Existence and multiple of solutions with prescribed period for a second order quasi-linear ordinary differential equation, Nonlinear Analysis TMA., 18(1992), 79-92.
[3] C. Fabry and D. Fayyad, Periodic solutions of second order differential equations with a p-Laplacian and asymmetric nonlinearities, Rend. Ist. Univ. Trieste., 24(1992), 207-227.
[4] R.E. Gaines and J.L. Mawhin, Coincidence Degree and Nonlinear Differential Equations, Springer-Verlag, Berlin, 1977.
[5] X. Huang and Z. Xiang, On the existence of 2π-periodic solutions of Duffing type equation $x^{\prime \prime}(t)+g(x(t-\tau)=p(t)$, Chinese Science Bulletin., 39(1994), 201-203[in Chinese].
[6] B. Liu, Multiplicity results for periodic solutions of a second order quasi-linear ODE with asymmetric nonlinearities, Nonlinear Analysis TMA., 33(1998), 139-160.
[7] S. Lu and W. Ge, Periodic solutions for a kind of second order differential equations with multiple deviating arguments, Applied Mathematics and Computation., 146(2003),195-209.
[8] S. Ma, Z. Wang and J. Yu, An abstract theorem at resonance and its applications, J. Differential Equations., 145(1998), 274-294.
[9] S. Ma, Z. Wang and J. Yu, Coincidence degree and periodic solutions of Duffing equations, Nonlinear Analysis TMA., 34(1998), 443-460.
[10] R.F. Manásevich and J. Mawhin, Periodic solutions for nonlinear systems with p-Laplacian like operarors, J. Differential Equations., 145(1998), 367-393.

[^0]: ${ }^{*}$ Correspondence author. Research is supported in part by the Research Grants Council of the Hong Kong SAR, China (Project No. HKU7130/00P)

