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Abstract—By employing Mawhin’s continuation theorem, the existence of periodic

solutions of the p-Laplacian generalized Liénard equation with deviating argument

(op(a' (@) + f(t,2(0)2"(t) + B(t)g(z(t — 7(1))) = e(t)

under various assumptions are obtained.
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1. INTRODUCTION

Consider the p-Laplacian generalized Liénard equation with a deviating argument
(op(2'(1))) + [t 2()2'(t) + B(t)g(x(t — 7(1))) = e(t), (1.1)

where p > 1 is a constant; ¢, : R — R, ¢,(u) = |u[P72u is a one-dimensional p-Laplacian;
f = f(t,u) € C(R% R) is a periodic function with regard to ¢ with period T' > 0; and f3,g,e,T €
C(R,R), where (3, 7, e are periodic functions with period T, e(t) # 0, fOT e(s)ds =0, B(t) > 0 and
7(t) >0 for t € [0,T).
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There has been a great deal of work in the literature on such an equation which is used to
describe fluid mechanical and nonlinear elastic mechanical phenomena. For example, in [1-3, 6,
10], by using the time maps and the phase plane analysis, the existence of periodic solutions to
Eq.(1.1) for p # 2 and 7(¢) = 0 was studied. On the other hand, for p = 2, 7(¢) # 0 and f(t, z(t))
being replaced by f(z(t)), the existence of T'—periodic solutions to several second order scalar
differential equations were also studied in [5, 7-9]. In [9], S. Ma, Z. Wang and J. Yu studied delay

Duffing equations of the type

o (t) + mx(t) + g(a(t — 7)) = p(t). (1.2)
By assuming that
Sup l9()] < oo, (1.3)

several sufficient conditions for the existence of periodic solutions of Eq.(1.2) were established.
Recently, S. Lu and W. Ge in [7] discussed the existence of periodic solutions for the second order

differential equation with multiple deviating arguments
() + f(@(0)2'(8) + > Bi(H)g(x(t —v; (1) = p(t). (1.4)
j=1

In their work, some linear growth condition imposed on g(z) such as

o o)
|z|—+o0 |J}|

=7 € [0,+00). (1.5)

was needed.

The main technique of these works [5, 7-9] is to convert the problem into the abstract form
Lz = Nz, with L being a non-invertible linear operator. Thus the existence of solutions of the
problem can be given by Mawhin’s continuation theorem [4]. But as far as we are aware of, the
corresponding problem of Eq.(1.1) with p # 2 and 7(¢) # 0 has never been studied. This is mainly
due to the facts that in this situation, on the one hand Mawhin’s continuation theorem is not
applicable directly since the p-Laplacian ¢,(u) = |u|P~2u is not linear with respect to u except
when p = 2, and on the other hand, the crucial step fOT f(z(t)2'(t)dt = 0 which is needed to
obtain an a priori bound of periodic solutions for Eq.(1.1) is no longer valid.

In this paper, we get around with these difficulties by using some new techniques and translating
Eq.(1.1) into a two-dimensional system on which Mawhin’s continuation theorem applies. This

method can also be used to solve problems for other equations with p-Laplacian.

2. PRELIMINARIES

Let X and Y be real Banach Spaces and let L : D(L) C X — Y be a Fredholm operator
with index zero, here D(L) denotes the domain of L. This means that I'm L is closed in Y and
dim Ker L = dim(Y/Im L) < 4o00. Consider the supplementary subspaces X; and Y7 such that
X=KerLdXyandY =Im L®Y; andlet P: X — Ker L and Q : Y — Y7 be the natural



projections. Clearly, Ker LN(D(L)NX1) = {0}, thus the restriction Lp := L|p(r)nx, is invertible.
Denote by K the inverse of Lp.

Let © be an open bounded subset of X with D(L)NQ # ¢. A map N : Q — Y is said to be

L-compact in Q if QN(Q) is bounded and the operator K(I — Q)N : Q — X is compact. We first
recall the famous Mawhin’s continuation theorem.

THEOREM 2.1[4] Suppose that X and Y are Banach spaces, and L : D(L) C X — Y is a

Fredholm operator with index zero. Furthermore, Q C X is an open bounded set and N : Q — Y
is L— compact on . If

(1)Lz # ANz,Yx € 90N D(L), A € (0,1)
(2)Nz ¢ Im L,Yx € 00N Ker L; and
(3)deg{JQN,QN Ker L,0} # 0, where J : Im Q — Ker L is an isomorphism,

then the equation Lz = Nz has a solution in QN D(L).

The next result is useful in obtaining an a priori bound of periodic solutions.
THEOREM 2.2[7]

Let 0 < a < T be a constant, s € C(R,R) be periodic with period T', and
rrfgué] |s(t)] < . Then for any u € C'(R,R) which is periodic with period T', we have
te(o,

/0 |u(t)—u(t—s(t))|2dt§2a2/0 o (4)|2t.

3. MAIN RESULTS

In order to use Mawhin’s continuation theorem to study the existence of T—periodic solutions
for Eq.(1.1), we rewrite Eq.(1.1) in the following form

' (t)
5(t)

= pq(@a(t)) = |22(t)|17222(2)

(3.1)
—f(t,z1(t)pq(w2(t)) — B(t)g(wa(t — 7(t))) + (),

where ¢ > 1 is a constant with %+é = 1. Clearly, if #(t) = (z1(t),z2(¢)) " is a T—periodic solution

to Eq.(3.1), then z(t) must be a T—periodic solution to Eq.(1.1). Thus, the problem of finding a
T—periodic solution for Eq. (1.1) reduces to finding one for Eq. (3.1).

Now, we set Cr = {¢p € C(R,R) : ¢(t+T) = ¢(¢)} with norm |p|p = max |p(t)]. It is obvious

t€[0,T)
that 3,7,e € Cp. Set X =Y = {z = (21(-),22(-)) € C(R,R?) : z(t) = z(t + T)} with norm
[|z]| = max{|z1]o, |x2|o}. Clearly, X and Y are Banach spaces. Define

L:D(L) =4z = (21(-),x

2() € CYR,R?) : z(t) =z(t+T)}Cc X =Y
by
Lz =2 = =
)
and
N:X—-Y



Pq(22)
—f(t, x1(t))pg(x2(t) — B(t)g(w1(t — 7(t))) + e(t)

It is easy to see that Ker L = R? and Im L = {y € Y : fo s)ds = 0}. So L is a Fredholm

Nx =

operator with index zero. Let P: X — Ker L and Q : Y — Im Q C R? be defined by

1 (7 1 (7
:T/o z(s)ds; Qy=T/O y(s)ds

and let K denote the inverse of L|kc,pnp(r). Obviously, KerL = ImQ = R2 and

T
:/ G(t,s)y(s)ds , (3.2)
0
where
S
—, 0<s<t<T.
G(t,s) = g_ T
, 0<t<s<T.
T

From (3.2), one can easily see that N is L—compact on €2, where € is an open, bounded subset of
X.
For the sake of convenience, we denote by 81 = max (), B0 = min §(¢). Obviously 8; >
te[0,T] te[0,T]

)

Bo > 0. Moreover, we list the following assumptions which will be used repeatedly in the sequel.

[H1] There is a constant 7 > 0 such that lim sup \@| <r.

|| —+o00
H2] There is a constant A > 0 such that sgn(z)g(x) > |;—|0° for |z| > A.
H3] There is a constant o > 0 such that inf |f(t,u)] >0 >0.
(t,u)€[0,T]xR

[

[

[H4] There exist an integer m and a constant § > 0 such that H%SD}] |71(t) — mT| < 6.
te(o,

[

H5] There exists a constant [ > 0 such that |g(u) — g(v)| < l|u — v].

THEOREM 3.1 If [H1]-[H3] hold, then Eq.(1.1) has at least a non-constant T-periodic solution
ifr < 57.
PROOF. Consider the operator equation

Lz = ANz, Ae(0,1). (3.3)

z1(t
Let 9y e {r € X : Ly = ANz, A€ (0,1)}. If z(¢) = 1(¢) € Qy, then from (3.3), we have

T2 (t)

1 (t) = Apg(21(t) = Al ()12 (t)

(3.4)
25(t) = =Af(t, 21(t))pq(22(t)) = AB(E)g(z1(t — 71(2))) + Ae(?) -
We first claim that there is a constant £ € R such that
[z(§)] < A. (3.5)

In view of fOT x} (t)dt = 0, we know that there exist two constants t1, to € [0,7] such that

2y (t)) >0,  2(t2) <0. (3.6)



From the first equation of (3.4), we have z5(t) = ¢,(324(t)). So

1
Ta(ty) = F|x/1(t1)|p72$'1(t1) >0,

1
Ta(t2) = F|$/1(t2)|p72$'1(t2) <0.

Let t3, t4 € [0,T] be, respectively, the maximum point and minimum point of z5(t). Clearly, we

have

Ig(tg) Z O7 l‘/2(t3) =0 5 (37)
1‘2(t4) S 07 1'/2(t4) =0. (38)

From [H3] and by continuity, f will not change sign for (t,u) € [0, T]xR. Without loss of generality,
suppose f(t,u) > 0 for (¢t,u) € [0,7] x R and upon substitution of (3.7) into the second equation
of (3.4), we have

—AB(t3)g(w1(ts — 7(t3)) + Ae(t) = Af(t, 21(t3))pq(22(t3)) > 0,

ie.,
g(@1(ts, 7(t3))) < ;((2)) < % : (3.9)
From (H2) we see that
z1(ts — 7(t3)) <A (3.10)
Similarly, from (3.8) we have
9(x1(ts — 7(ts))) 2 ;((Z)) > *'Z*'OO , (3.11)
and again by (H2),
z1(ts — 7(ta)) > —A. (3.12)

Case (1) If z1(t3 — 7(t3)) € (—A, A), define £ = t3 — 7(t3). Obviously |z(§)| < A.

Case (2) If z1(t5 — 7(t3)) < —A, from (3.12) and the fact that 2(t) is a continuous function in
R, there exists a constant £ between x1(t3 — 7(¢3)) and x1(t4 — 7(t4)) such that |z1(£)| = A.

This proves (3.5).

Next, in view of £ € R, there is an integer k and a constant ¢5 € [0, 7] such that £ = kT + t5,
hence |z1(§)| = |x1(t5)| < A. So

T
|z1]o < A —|—/O |z1(s)|ds . (3.13)
Substituting 3 (t) = ¢, (52} (t)) into the second equation of (3.4),
(en (2O + A (621 ey oy (525 ()] + AB(Dg (¢ = 7a(6))) = Ael)

ie.,

[op (@ (E)] + AP TLF(E 21 ()21 (1) + N B(t)g(w1(t — Ta(t))) = APe(t) - (3.14)



Multiplying both sides of Eq.(3.14) by 2/ (¢) and integrating over [0, 7], we have

T T T
/ £t 0 (8)) [ (1)) 2dt = — A / B(B)g(aa (t — (1)), (1) + A / ety (dt . (3.15)
0 0 0
It follows from [H3] that

o fy |24 ()[dt
= NCENONEAGIR
=1Jo f m(t))x QIR

(3.16)
< |y B)g(aa(t —ma(8)ah (dt| + | [ e(t)a ()t
<Jy Iﬂ(t)g xl(t*ﬁ(t)))x’l(t)ldﬂrfo le(t)a% (£)]dt
< By [y lg(aa(t = ma ()l (8)]dt + lelo [ [ (8)]dt
For € = 3(5% — ), by [H1] there is a constant A; > 0 such that
glor(t— (1) < (r+e)|ar(t— ()] for |w(t—r(t)] > Ay . (3.17)

Define
By = {te 0, T]loi(t— 7)) < A}, Ea = {t € [0,T]l|ei(t — ()] > Ar} .
Then (3.16) can be transformed into

o fy |24 (t)[dt

< By [, lg(wa(t — m@)||25 (Ddt + By [, gl (t = mo(D))]|24 (D)]dt + |elo fy |24 (1)]dt
< [Brga, + lelo) fy 124 (B)]dt + Ba(r + €)llo fy [] (8)]dt

= [Biga, + lelo] [ |2\ (0)|dt + Bi(r + ) A+ [ |24 ()]dd] [ |2} (t)|dt

< T3[Biga, + lelo + Bi(r +¢)A] fo FAGIRIOE +51(7”+5Tf0 |2 ()2t

[0 — By (r + )] / |xa<t>|2dts(:3</o 2 (1) de) b (3.18)

where g4, = lrr‘lax lg(w)] and ¢35 := T=[Biga, + lelo + Bi(r + €)A]. In view of r < 77 and

e =1(4% — 1), it is easy to see that o — 31 (r +¢)T = 2(0 — 31Tr) > 0. So from (3.18) we have

2\B.T
203
dt < (
[ topas 2y

and so
T T 1
1 1 2T2¢c3
"|dt < T ")|Pdt)z = = A, . 1
| <[ mopa - 220 g, (319)
Hence
T
0

By the first equation of (3.4), we have

T
/0 (2a(8)|7 2 (s)ds = 0 , (3.21)



which implies that there is a constant to € [0,T] such that z2(t2) = 0. So

T
|:1c2|0§/0 12 (s)|ds - (3.22)

On the other hand, taking absolute value and integrating over [0,7] on both sides of the second

equation of (3.4), we obtain

foT\x/z(SNdS < foT|f(t7331(t))\|33/1(t)|dt+)‘foT|ﬁ(t)g(331(t—Tl(t)))|dt+/\foT|€(t)|dt
< fan AT + Bi(gan, T) + lelr

where fy, = ft,u), g, = max lg(w)| and |e|y := fOT le(t)|dt. So from (3.22), we
1

max
te[0,T],|u| <My [ul<
have

|z2lo < fan, AT + B1(gar, T) + le|y == My . (3.23)

Let Qo := {x € Ker L : Nx € Im L}. If x € g, then 2 € Ker L and QNz = 0. From

assumption fOT e(t)dt = 0 we see that

|$2|q_2.’172 =0

g(x1) =0.

(3.24)

So
le‘SASMl, JTQZOSMQ. (325)

Let Q = {z = (21,22)" € X : |z1]o < N1, |72lo < N2}, where Ny and Ny are constants with
Ny > My, Ny > My and (N2)9 > ABga, where ga = lrg‘lg)ﬂg(uﬂ and § = %foT B(t)dt. Then
Q C Q, O C Q. From (3.20), (3.22) and (3.25), it is obvious that conditions (1) and (2) of
Theorem 2.1 are satisfied.

Next, we claim that condition (3) of Theorem A is also satisfied. For this, define the isomor-
phism J : Im Q — Ker L by J(x1,x2) := (—x2,21) and let H(v, ) := po+(1—p)JQNv, (v,u) €
Q) x [0, 1]. By simple calculation, we obtain, for (z,u) € (2N KerL) x [0, 1],

o H(x, p) = p(a? + 23) + (1 — p)(Barrg(an) + |22]7) > 0.
Hence
deg{JQN,QN KerL,0} = deg{H (2,0),Q2N KerL,0}
= deg{H(z,1),QN KerL,0} = deg{I,2N KerL,0}

# 0,

and so condition (3) of Theorem 2.1 is satisfied.

Therefore, by Theorem 2.1, we conclude that equation
Lz =Nz

has a solution z(t) = (z1(t),z2(t))T on Q, i.e., Eq.(1.1) has a T—periodic solution z;(t) with

|z1]o < M.



Finally, observe that x;(¢) is not a constant. For if not, it follows from (3.14) that e(t) = ¢4(t) >

¢ which will contradict to e(t) £ 0 and fo s)ds = 0. This completes the proof of Theorem 3.1.

THEOREM 3.2 If (H2)-(H5) hold, then equation (1.1) has a non-constant T-periodic solution
if V206,16 < o.

z1(t
PROOF. Let Q; be defined as in Theorem 3.1. If z(t) = ( 1) ) € Q;, then from the proof
xg(t)
of Theorem 3.1 we see that
lop (@i (D)) + AP Lf(E 21 ()27 (1) + AP B(t)g(w1(t — 71 (1)) = APe(t) , (3.26)
and
T
|z1]o < A —|—/ |z (s)|ds . (3.27)
0

We claim that |z is bounded.

Multiplying both sides of Eq.(3.26) by 2/ (¢) and integrating over [0, T], we have

T T T
/ F(t,1(0) (2 (1)) dt + >\/ Bt)g(r (t — m1(8))x) (t)dt = A/ e(t)a) (t)dt . (3.28)
0 0 0
y (3.28) and (H3),

o [y lwa(t)|dt
< S (21 (1)) () ()2
=1y f(tma(8) (@) ()%dt| (3.29)
< Jo B®)lg(@a(t — o))y (@)]dt + | f; e(t)z] (t)dt]
< Bl fy lo(za(t = m1(1)) — glaa (0))2h (B)dt + [y glaa () (B)dt| + | f, e(t)z) (t)at] .

Considering fOT g(x1(t))z} (t)dt = 0 and by assumption (H5), we have from (3.29) that

o [ o (t)]2dt

< Bl Jo Lot (t = ma(8))) — glas ()] (£)d +|f0T e(t)z; (¢)dt] (3.30)
< Bul Jy laa(t = () = aa (Bl Ot + | f e(t)ah (1)
< 51l(foT lz1(t = 11(t) — 21 (2 2dt)% fo lz1(t) |2dt fo |21 (¢ |2d7j % fo le(t 2dt)% .

By (H4), and applying Theorem 2.2, we obtain

T T T
(/0 \x1<t—n<t>>—x1<t>|2dt>%=</0 1 (t — 71 (t) + mT) - (6) ) < V35 ( / e (1) 2dt) ¥

(3.31)
Substituting (3.31) into (3.29) yields
T T T
— V283,16 24 24t)2 2qt)s | 3.32
(o= vVaBn)([ () < ([ @R[ lewPay (3.32)
As V23,16 < o, we obtain
T \ f le(t)|2dt) 2
2 103 0
(/0 20 (4)|2d) o—\fﬂlza . (3.33)



Hence (3.27) can be transformed into

T3 ([T |e(t)[2dt)?
o — 2316

T T
lz1]o §A+/ |x’1(t)\dt§A+T%(/ 21 (8)]2dt)7 < A+
0 0

This proves the claim and the rest of the proof of the theorem is identical to that of Theorem 3.1.
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