QUASI-ISOMETRY OF METRICS ON TEICHMULLER SPACES

SAI-KEE YEUNG

Abstract The purpose of this paper is to provide a coherent study of the quasi-
isometries among various invarient metrics on the Teichmiiller space of a finite
hyperbolic Riemann surface. In particular, we prove the quasi-isometry of the Te-
ichmiiller metric, the Kobayashi metric, the Caratheodory metric, the Bergman
metric, the Kdhler-FEinstein metric with o fized constant negative scalar curvature
and the metrics constructed by McMullen.

81 Introduction

In this paper, we produce a simple proof of the quasi-isometry of the following
metrics on a Teichmiiller space of a compact Riemann surface of genus g with n
punctures. The metrics include Teichmiiller metric g7, the Kobayashi metric gg,
the Caratheodory metric go, the Bergman metric gg, the Kéhler-Einstein metric
gx g of constant negative scalar curvature —2(3g — 2 + n), and the metrics gas
constructed by McMullen. This is done through Bers Embedding, Schwarz Lemma
and L>*-estimates with the construction of appropriate plurisubharmonic functions.

Theorem 1. Let T, ,, be the a Teichmiiller space of a compact hyperbolic Riemann
surface of genus g with n punctures. Then gr,9K,9c,98,9xE ond gy are all
quasi-isometric on Ty.

Remarks

1. Tn [Ya], page 141, Yau proposed the problem of comparing gg, g, 9o and gxg.
Theorem 1 provides a satisfactory answer to the problem.

2. In contrast, the Weil-Petersson metric gy p is incomplete following from a well-
known result of Wolpert (c¢f. [W]). From Theorem 1 and the results of [Mc], it is
strictly smaller up to a positive constant to any of the above metrics.

Let us first recall some well-known results together with some recent develop-
ments. It is a well-known result of Royden that gr = gx (cf. [G]). McMullen
proved in [Mc] that gpr and g are quasi-isometric. It follows from the result of
Look [L] and later on by Hahn [Ha] that gg > g¢ (cf. [Ye]). Very recently, there
appear on the preprint archive the results of [LSY] on the quasi-isometry of gx g
and gas on the moduli space of compact Riemann surface M, with no punctures
(n = 0), and the results of Chen [C] on the quasi-isometry of gas and gg.

Our method is simple and direct. For the classical invariant metrics gx, 9c, 9B
and gk g, the quasi-isometry follows essentially from Bers Embedding Theorem and
Schwarz type lemma. The quasi-isometry involving gas requires estimates of short
geodesics on the moduli space, similar to the discussions in [Mc] and [Ye]. There
was already a proof in [Mc] for this latter fact. To give a coherent treatment of the
results, we give two alternate simpler proofs for results involving gsr. One of the
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proofs follows from a general criterion for the quasi-isometry of the Bergman met-
ric with a complete Kihler metric on a complex manifold (Theorem 3), which has
independent interest. This aspect of the paper can be considered as a continuation
of the study in [Ye] and also in [C] for the geometric consequences of L2-estimates
via construction of appropriate plurisubharmonic functions in terms of geometric
length functions. Relating to the theme of this paper, the construction of bounded
plurisubharmonic exhaustion functions in [Ye] enables one to construct lots of holo-
morphic forms of top degree, which leads to gg > g¢ from the observation of Look
[L] and Hahn [Ha] in terms of peak functions.

As a notation, we use ¢M to denote a metric on a manifold M, where the
superscript would be dropped when there is no danger of confusion. Quasi-isometry
between two metrics g1 and g» is denoted by gi ~ g, in the sense that 1g; (v, ) <
g2(v,0) < cg1(v,v) for some positive constant ¢ > 0 and all holomorphic tangent
vector v on the manifold.

It is a pleasure of the author to thank Ngaiming Mok and the referee for their
very helpful comments and their generosity in sharing ideas on the content and
the structure of the paper. In particular, they point out an error in the first
draft of the paper and the suggestions of Ngaiming lead to a vast simplification
in the proof of Theorem 1. The author would also like to thank Wing-Keung
To for helpful comments and suggestions. Furthermore, the author is grateful to
Mohan Ramachandran for informing the two preprints [LSY] and [C] at the Spring
Workshop 2004 Conference on Complex and Symplectic Geometry at University of
Miami in March, 2004.

82 Metrics on Teichmiiller space

In this section, we recall briefly different notions of metrics on 7, 5. First of all,
we mention that we denote by |f(x)| the pointwise norm and ||f|| the L?-norm of
a function over an appropriate space.

The notion of Kobayashi pseudometric gx and Caratheodory pseudometric go
are well-known for complex manifolds. For a unit tangent vector v € T, M on a
complex manifold M, the regpective length functions are

1
gk (z,0) = inf{;]EIf : Bl — M holomorphic, £(0) = z, '(0) = v}.
1
go(z,v) = sup{;|§|h : M — B! holomorphic, h(z) = 0, |dh(v)| = 1},

where we use B? = B(0) to denote a ball of radius r centered at 0 in C”. From
Bers Embedding Theorem (cf [G]), we know that 7, ,, can be realized as a bounded
pseudoconvex domain in CNV, N = 3¢ — 3 + n. Hence both gx and go are non-
degenerate Finsler metrics.

Consider now Kéhler-Einstein metric of constant negative scalar curvature. We
normalize the curvature so that gx g satisfies Ric(gxr) = —2(3g — 2 + n), where
wx g is the Kihler form associated to gxg. We choose the normalization so that
it agrees with the one for the hyperbolic metric on Bév of constant holomorphic
sectional curvature —4. It is well-known from the work of Cheng-Yau [CY] and
Mok-Yau [MY] on bounded psudoconvex domains that a complete K&hler-Einstein
metric of negative Ricci curvature exists on a bounded domain in CV, hence on 7,
from Bers Embedding Theorem again.
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The Bergman pseudometric gg on a general complex manifold M of complex
dimension NN is a Kéhler pseudometric with local potential given by the coeflicients
of the Bergman kernel K (z,z). It is clearly non-degenerate for 7,. Since our proof
depends on the estimates of gg, we recall the following interpretation of gp.

Let f be a L2-holomorphic N-form on A, where dime M = N. In terms of local
coordinates (21, - - , zx) on a coordinate chart U, let ex,, = dz'A---Adz" be alocal
basis of the canonical line bundle K s on U. We can write f as fyex,, on U. Let
fi,i € N be an orthonormal basis of L2-sections in H(Oz)(M, K). Note that from
conformality, the choice is independent of the metric on A/. The Bergman kernel
is given by K(z,z) =>, fi A fi. Let ky(z, ) = >, fui A fu,i be the coefficient of
K (z,z) in terms of the local coordinates. The Bergman metric is given by a Kéhler
form

wp =V —180log ky(x, ) = \/Tlm Z(fz‘afj — fi0F) A (fidf; = F;010),

i<j

which is clearly independent of the choice of a basis and U. As the Bergman kernel
is independent of basis, for each fixed point © € M,

ky(z,z) = sup | fu ()|
feH(Og)(MvKM)VH.f“:l
We may assume that SUD fe 9, (M,K ) | fu ()] is realized by f, € H(Oz)(M, K) with
| fz|l = 1 so that ky(z,z) = |fzu(z)|>. Using the fact that the Bergman kernel is
independent of the choice of a basis again and letting V € T, M,

_ 1
wp(V,V) = ——> sup IV (fu)l®.
[fo 0 (@) penp, (M Ku)l flI=1.f(2)=0
Congider in particular V. = % We may also assume that the supremum for

|2+ (fu)|? among all f € H(Oz)(M,KM),HfH = 1, f(z) = 0 is achieved by g;» €
H?Q)(M, K ) of L?>-norm 1. Hence SUP e H, (M, Kar), | l1=1 |52 ful? = |52 giev (@) 2

To simplify our notation, we may simply write
0217027 L@ jemy, (s sl=100)=0 07 [fa(x)?

since the expression is clearly independent of the choice of U and metric on e.

wB(

We now consider more specifically Teichmiiller spaces which are also complex
manifolds. We refer the readers to [G], [N] or [W] for standard facts on Teichmiiller
spaces including the notions of the Teichmiiller metric g7 and the Weil-Petersson
metric gw p respectively. It is well-known that gr is complete but gw p is incom-
plete.

Recently, McMullen [Mc] constructed complete metrics with bounded sectional
curvature in his proof of the Kihler hyperbolicity of Teichmiiller space. Up to
quasi-isometry the metric is of the form

ot
1=
gwp+C >V ol

¥l <€

ot
ZW

for all € > 0 sufficiently small and an appropriate positive constant C, where the
summation is taken over all primitive closed geodesics of length less than €. Let
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us fix a pair of constants € and C and denote by gp; such a metric. gp; can be
considered either as a metric on 7, or on M.

§3 Equivalence of invariant metrics

Theorem 2. Let T, , be the Teichmiller space of a compact hyperbolic Riemann
surface of genus g with n punctures. Then gk, g9c,9p ond gx g of constant Ricci
curvature —2(3g — 2 + n) are quasi-isometric on M with estimates given by

gk < go <99k
gk < g < 16*7*(6*N)gk
1 92N—1NN—1
—grk & YKkE S ——v—9K

9N 4N
For the proof of the Theorem, let us recall the following well-known result (cf.
[G], page 101 and [Mc], page 336)).

Proposition 1. (Bers Embedding Theorem). Let S be a Riemann surface of genus
g representing a point x € T,.,. There exists an embedding ® : Ts — CV, so that
BN CTs C Bév, where CV is identified with the space of holomorphic quadratic

dzﬁ”erentmls based at S equipped with L norm, and ®(x) = 0.

Since we are going to give some explicit estimates, we recall here several versions
of Schwarz Lemma to be used.

Proposition 2. Let f : M — N be a holomorphic mapping of rank N from a com-
plete Kihler manifold (M, g) of complex dimension N to another Kihler manifold
(N, h) of the same dimension.

(a). (Mok-Yau [MY]). Suppose that the scalar curvature of M is bounded from be-
low by —a1 and the Ricci form of N is negative and satisfies |Ric(h)|™ > by det(h).

Then det(f*h) < NNb det g.
(b). (Royden [Ro]) Suppose that the Ricci curvature of M is bounded from below by

—ao and the holomorphic sectional curvature of N is bounded from above by —bs.

Then f*h < J\Q,fl 29

(¢). (Chen-Cheng-Lu [CCL]) Syppose that the sectional curvature of M is bounded
from below and in particular that the holomorphic sectional curvature of M is
bounded from below by —as. Suppose also that holomorphic sectional curvature of

N is bounded from above by —bs. Then f*h < ‘;—:g.

Proof of Theorem 2

(1). go ~ gr : It follows from Ahlfors Schwarz Lemma that go < gx. Tor
the other direction, Let v € T,M identified with a vector in CV by the Bers
Embedding ®. Then from definition of gx and g¢, we conclude that \/gx (z,v) < 2
and \/gc(z,v) > % Hence gx < 9gc.

(2). gB ~ gk : We recall from section 2 that

o T e
P02 0 L@
where f; is a function with ||f,|| = 1 realizing the supremum of |f(z)| among

L?-holomorphic functions f € H{,\(T),||fll = 1 on 7, and gi¢ is a holomorphic

function realizing supremum of |52 (f)|? among all f € HY(T),1fll =1, f(z) =
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N(w), where B (x)
denotes a complex ball of radius r centered at x identified Wlth 0 in CV. Let vol,
denotes the Euclidean volume on CV. Clearly from Mean Value Inequality

S 1fal 1

)" < G BT @) < ol (BY @) ~ (Dol (BY)

From Proposition 1 again, we may regard BN( )CTCB

3
[17][* = volo(T) < volo(BY') = ()" volo(BY")

with respect to the Bers Embedding. Hence |f,(z)| > L . We con-

= [(4)2Nvol,(BN)]
clude that,
22N 22N

[W} > |fu(z)] > [W] .

Let V; be the complex line generated by % in CV. Then from Generalized
Cauchy Inequality and Mean Value Inequality,

W=
S

9 fa(Bfl"(z))ﬂV e () dy [fa(Bff(w))ﬁVi |g,-,x(y)|2dy]%[27ri]%
|5 79i0(@)] < : ‘ < : ‘
0 BF B
oty @, 4 sz, 1193, (w) Pdvol, (w)] 2 [5]2
< i .
(%) [vol,(BY)]2
fa (BY (2))nV; dy fT |gz z )|2dV010(w)]%[%]% P
< : < 2

(3)?[vol (BY )%

On the other hand the function h;, = 2z satisfies %hm =1 and h; ,(0) = 0. As

fB{V |2i]* = g vol(BYY), we know that
. 3. . 1 .3
hi |2 = i2:_2N+1/ 12 < 2N+1 01 (BN,
Il = [V = QPN Il € g () vl (BY)
2
Hence the function k; , := “h =7 satisfies | 2ok | = AL ,kiz(0)=0

‘ [(3)2vr1vol, (BN )]
and ||k; ;||* = 1. We conclude as before that

z 9 VN1

O 2ol (B > |5 9i0(@)] 2 O v (B

Combining the above estimates for f,(z) and g; . (x), we arrive at

p) 2N +2 1
Voo Dy B2
8767 >\ 98(z, 55) 2 3 3N

Since & < /g (z, 52) < £, we conclude that

2N +2
167 (67 \/gx \/gB( o) _3N+1\/ \/
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Clearly, the same estimates hold for any holomorphic tangent vector v. We can
however have a better lower bound. We present the lower bound estimate above
because a corresponding technique would be used in the proof Theorem 3 in the
next section. In fact, from the estimates of Hahn [H] and Look [L] mentioned
earlier, we conclude that gg > g0 > gk-

(3). gxE ~ gk : Consider the Poincare metric on a ball of radius r in CV. Since the
metric is invariant under the automorphism group and the metric is homogeneous,
it suffices for us to understand the metric at the origin 0. We normalized the
Poincare metric so that the potential is log(r? — |z|?) and the metric and curvature
tensors at the origin are obtained by taking the Taylor expansion of the above
function and evaluating the respective derivatives at the origin. Let gr7 denote

the resulting metric, which is a Kéhler-Einstein metric of Ricci curvature —23F2

2
with constant holomorphic sectional curvature —4 < 0. gRp(v,7) = L= g% (z,v).

The explicit metric implies that each holomorphic tangent vector v € T, B, spans a
totally geodesic disk with constant holomorphic sectional curvature —4. It follows

from definition that on B, gﬁ"(O,v) < % and \/gg"(O,v) > % g% > ggr from

Ahlfors Schwarz Lemma. Hence g (0,v) = g57(0,v) = [2]* = gi%(v, 7). From

Proposition 3, BY C Ts C BY. Applying Schwarz Lemma of Mok-Yau [MY] to
2 2
BY
the first inclusion with respect to the Kéhler-Einstein metrics g, % and gJ , on BY
2N+2 :
(3)?

and 7 of Ricci curvature — and —(2N + 2) respectively, we get

T Lin, o BY Liv, o B3
vol(gxp) < (Z) vol(gy ) = (Z) vol(gg” )
B

= (P Nvollgeh) < () Vvol(g)

Applying Schwarz Lemma of [R] to g} ;; which has constant Ricci curvature — (2N +
BN

o 2

3
2) and gg 7 which has constant holomorphic sectional curvature —4, we conclude
that

wkoZ

BY B BY
3 1 S L7 T

1
T 2
> g t= > —g4T.
IxE Z NgKE‘ N!}K Z 9N9K Z gNgK
Let p; > 0,5 =1,..., N be the eigenvalues of g/, with respect to g%. We conclude
from the second estimate that p; > ;& for all 7, and from the first statement that

Hﬁ\;l i < ()N, Tt follows that (ON)N-L()N > 4, > - Hence

92N—1

- _ 1
(v PNINNgp > gkp > oN K

This concludes the proof of Theorem 2

Tt is already proved by McMullen in [Mc] that gs is quasi-isometric to gg, but
the proof is rather long and complicated. To make the arguments in this article
more consistent and self-content, we would give two proofs different from the one
in [Mc]. The first proof is more in line with the arguments in Theorem 2 and the
second one follows from some general results on the quasi-isometry of Bergman
metric and the underlying Kahler metric of a complete Kéhler manifold treated in
the next section.
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Proposition 3. gp; is quasi-isometric to any of the metrics in Theorem 2.

Proof Recall that up to quasi-isometry, the metric gps is of the form

8€ 8€
gwp +C Z V-

é
v, by <€ v

for some € > 0 and C > 0. We note the following three facts which have already
been used in [Mc], (a) the sectional curvature of gas is bounded, (b) gwp < cyx,
and (c)||dlogly||lgx < 2. (a) follows essentially from Bers Embedding and Mean
Value Inequality (cf. page 343-344 of [Mc]). For (b), we note that for a holomor-
phic quadratic differential ¢ on Riemann surface representing a cotangent vector in
T*,]TS’

o= [t < [ 15 gl ot 90k = il

where gg is the hyperbolic metric on S and c is a topological number. Hence by
duality, gwp < cgr = ¢gx on tangent vectors to the moduli, following the results
of Royden. (c) follows from the computations of Theorem 3.1 of Wolpert [W] (cf.
[M, page 341).

Utilizing Bers Embedding and (a), we apply the Schwarz Lemma of [CCL] to

BN 0)
(T, gm) and (BY(0),gx* ) to conclude that
2
B3 (0) B1(0) T
gM 2 cgx’  ~ et 2 Ck-
On the other hand, (b) and (c¢) implies that ga < dgr = 'gi following the
resnlts of Royden as mentioned before (cf. [G]). Hence gar ~ gk

oo 2
Tt

In section 5, we would give another proof of the proposition, using a rather
different general approach.

Proof of Theorem 1 Theorem 1 now follows from Theorem 2 and Proposition 3,
and the results of Royden mentioned before.

§4 L2-estimates and Bergman metric

The following result is a direct consequence of L*-estimates (cf. [Ho], [GW]).

Theorem 3. Let (M, g) be a complete Kahler manifold with Kdhler form w. As-
sume that there exist positive constants r,d, ¢, c1,co independent of x satisfying the
following conditions.

(i) There exist a coordinate chart (U, \,) of T such that A\, (U,) = BN (0), the Eu-
clidean ball of radius v in CN, N\, (x) =0, ||% ¢(0) =1 and ||% g > & under the
identification by the biholomorphic map A,.

(i1) There exists a strictly plurisubharmonic function 1, satisfying v, < c¢1 on M,
and /=100, > cw, g > ¢o on U,.

Then the Bergman metric gg on M and g are quasi-isometric.

Proof The idea of proof is similar to the proof of the part of Theorem 1 involving
9B, except that it is formulated in a more general setting for which L?-estimate
is needed. We use the notation in the last section and let f, be the function in
HEy (M, K), || f|l = 1 realizing SUP e 17, (M, K, fll=1 |f(z)|. Let g, be the Eu-

clidean metric on U, = BN (0).
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To prove the statement that gg < ¢1g, it suffices to show that

1 0
sup -
[fe (@) pems, (v ka0l fl1=1,7 (2)=0 07

f@ < e

for each z;. Let € M. Consider the neighborhood U, = BN (0) of = satisfying
condition (i). Let Cz; be the complex line through x generated by %. It follows
easily from Generalized Cauchy Integral Formula and Mean Value Theorem that

0 .
|30l < e / 1912 ()]"]
0zt 8BY (z)NCxz;

2

< o / PR
BN

P

< cllgigl]” = ca.

We now resort to standard L*-estimates to show that |f,(z)|? > ¢5 for some con-
stant ¢; > 0 independent of c;. We use Bﬁfg to denote a geodesic ball of radius r
with respect to the metric g. Condition (i) also implies g > §%g, and hence that
B3, € BY, (0) = BN(0) = BY(z) = U,, where we identify « with 0 by the

coordinate map A, . Letting |z|* = 3~ |2/ in terms Euclidean coordinates on B,
then |V|z|?|, < ¢ for some constant ¢ on B,(z) independent of 2 on M. Let x, be

a cut-off bumping function supported on Bs, 4(x) and identically one on B 5 ,(@).
Let 1, = (log Zf\il |2i1%) Xz Let p = C4p, + N7, with constant C large enough such
that

V—=109p(y) > cs(y)w(y)

for some positive function ¢g(y) > 0 on M. Furthermore, {from our hypothesis, there
exists a constant ¢; > 0 such that ¢s(y) > ¢7 on U,. Let h = J[yek]. Standard
L?-estimates allow us to solve for df = h with

1
/|f|267”dVg < /—|h|26_pdVg
M M

Cg
1., 9 _
= —[h[*e™¢dV,
BY. (z) €6
1
< = |h[*e=7dV,
€1 JBY, ,(2)
< A,

where A is a positive constant independent of z. Here we use assumptions in (i)
and (ii). Let f; = f — xex. Since —p is bounded from below by a constant on
M by construction, ||f1||? < cs independent of z, and |f;(x)] = 1. It follows that
fo = mfl satisfies ||f2]|> = 1 and |f2(z)| > ¢o independent of x € M. Hence
|fz(z)] > ¢y and we conclude that gp(z) < c29{x).

The proof for gg > ¢1g is similar. Note that |f,(z)|? < ciol|f2||? = 10 for some
positive constant ¢;g by Cauchy Integral Formula or Mean Value Inequality. By
letting p = 2C¢ + (N + 1)1, and h = 9[z*xek], we can solve Jf = g similar to the
above discussion by L?-estimates with [, |f|?e™" < 2 fBé\’ () |h|?e=? < B < 00,

g

T
where B is a constant independent of z. Let fo = f — zixek. Clearly, || f2[|? < ci2
independent of x, and |52: f2(z)| = 1. It follows that f5 = mfg satisfies || f2||? = 1
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and |22 fo(z)| > c13 = \f% independent of z € M. Hence g > --g, the metric
12 v
associated to w. This concludes the proof of Theorem 3.

85 Plurisubharmonic function for the equivalence of gg and g,,.

Tn this section, we construct a special plurisubharmonic function and use it to
apply Theorem 3 to prove the equivalence of g and g,s, providing a conceptually
different proof of Proposition 3. Here is one of the key steps for our construction,
which involves structure of the moduli space or Teichmiiller space. We denote by
A and A* the unit disk and the punctured unit disk respectively.

Lemma 1. There ezist a finite covering ./\/l;n corresponding to a torsion free

subgroup of the mapping class group, a positive number € and a relatively compact
subset V of My, ,, satisfying the following properties. My, , —V is covered by a finite
number of open sets U;,i = 1,...,1 each of form (A*)* x AN~k for some k > 0.
Denote by A, = A;(S;) the finite set of primitive closed geodesics on Riemann
surface S, represented by x € U; consisting of geodesics on S, which contracts to a
node on the limiting noded Riemann surface corresponding to the Deligne- Mumford
compactification. Then a primitive closed geodesic loop v of length less than € exists
on a Riemann surface Sy for x € Mg, if and only if € U; and v € A;, for some
I >1>1.

Proof Note that the mapping class group acts as a group of biholomorphisms
and isometries with respect to the metrics considered in Theorem 1. The moduli
space M, , is the quotient of the Teichmiiller space by the mapping class group.
Consider first the case of n = 0. We recall that a finite covering M of the moduli
space of curves M, corresponding to a subgroup of the mapping class group with
finite index admits a compactification, Deligne-Mumford compactification [DM], in
which the boundary components D;,i = 1--- , k, consist of noded Riemann surfaces
obtained by contracting a finite number of geodesics to nodes on S. Suppose that
a boundary component D; is obtained by contracting i1, - - - ¥in; from a Riemann
surface in M. Let A = Uk, U;il 7vij. D;i can be broken into subsets E; in terms
of strata which are mutually disjoint, in the forms of D; — U;;D;, Dy N D —
Ugi,; DiND;N Dy, and in general N, D;, — Uszi, .5, [NE_, D;,] N Dy. For a generic
point on N&_, Dy, — Ureyy .3, [N Dy, ] N Dy, there exists a neighbourhood of the
form (A*)® x AN-¢,

Suppose that we have a sequence of primitive short geodesics which are sim-
ple loops ¢; on Riemann surfaces S; lying on M’ such that their lengths satisfy
lim;e0 £5; = 0. We may assume that S; approaches to a point S on some strata
E; as above. Since noded surfaces represented by E; are obtained by contracting a
finite number of primitive geodesic cycles Wfi’,i =1,...,n; on all Riemann surfaces
S' diffeomorphic to S on MY, and contracting no other geodesic cycles, we con-
clude that there exists 7,; such that the hyperbolic distance on Riemann surfaces
Sk, d(ok,w‘ff) — 0 as k — oo. However, by Collar Theorem of Keens (cf. [Ra]),
we know that there exists 7, > 0 such that the collar of any geodesic of length at
most 7, has width greater than any preassigned constant, we may assume that a
T, neighborhood of any 7;; does not intersect with any other geodesic of length at
most 7, which is not a multiple of ;. Tn particular, the contradiction establishes
d; > 0 such that any primitive geodesic cycle of length less than é; has to be one
of the ~;;. Since the cardinality of the set of D; and hence the set of E; is finite,
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and the complement of any neighborhood of the union of D; is relatively compact
on Mg, there obviously exists a constant § > 0, such that the conclusion of the
lemma is satisfied for My.

In the general case of n > 0, there is a holomorphic projection given by the
map forgetting the punctures. The compactification in this case has been discussed
by Knudsen-Mumford [KM] and Knudsen [K]. The boundary of My ,,, some finite
unramified covering of M, , with finite index as in the case of n = 0, is obtained
again by contracting some primitive geodesic cycles on a Riemann surface S to

nodes and the same argument applies. This concludes the proof of Lemma 1.

Recall that in [Ye], we use the sum Lp = ). . {y for a set B of geodesics which
are filling, in the sense that the complements of these geodesics in the Riemann
surface are either 2-cells or cylinders, to construct bounded plurisubharmonic ex-
haustion on 7, ,. Such a set of geodesics is fixed within the free homotopy class
of geodesics on the Riemann surfaces represented by 7g. The mapping class group
however conjugates geodesic cycles with respect to a base Riemann surface S. Hence
a short geodesic on a Riemann surface under the action of an element in the map-
ping class group maps to another closed geodesic which may be quite long on the
same Riemann surface and vice versa. Tn this case, the Riemann surface is fixed
but the marking is changed. There is in general no way of fixing a finite set B of
homotopy classes of closed geodesics to take care of all the geodesics of length less
than e.

The way that we handle the problem is to consider for each point z € 7y, a
connected component of some fixed open set of M;,n within which the action of
the mapping class group would not conjugate those short geodesics relevant in the
definition of the metric constructed by McMullen. The relevant fixed open sets are
actually neighbourhoods of points around the Deligne-Mumford compactification
of M ,, so that the monodromy around the compactifying divisor would not affect
a simple geodesic loop contracting to a point on the divisor.

Hence in this paper we use appropriate product of the length of a set of geodesics
which is not fixed within the free homotopy class of geodesics on a Riemann sur-
face represented by 2z € 7,. However, the image of the set of geodesics by the
uniformization map 7 : Ty, — ./\/l;m, on the family of Riemann surfaces regarded
as points on the moduli space M}, has only a finite number of choices. This is
one of the main differences between the approach here and the one in [C].

Here are the details. Let 7 : 7, , — M, be the universal covering map. For
r € n7 (UL, U;), choose an i such that x € #~1(U;). Let U; . be the connected
component of 771 (U;) containing . By adding non-empty intersections of those U;
to the set of open sets U; if necessary, we may assume that there exists a ball B,.(z)
of radius r uniformly bounded from below on 7, ,, such that B,(z) C U; s, here r
is measured with respect to the the Kobayashi metric. This can be seen easily by
considering the lifting of a finite number of open sets of the form (A*)?xAN-¢ C U,
where (AX)® consists of directions transversal to D in U;, 7 is sufficiently small, and
the union of these finite number of open sets covers U;U;. A Riemann surface S,
represented by y € U; , is biholomorphic to the Riemann surface represented by
m(y) € ./\/lzm. Fory € U, 4, we use A;; = A, .(y) to denote the set of closed
geodesics on S, corresponding to the set of geodesics A on the Riemann surface
7(y) on M} . Note that the lifting of the contracting geodesic loops v to U; , is
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well-defined since there is no monodromy around D for the contracting geodesic
loops.

Definition 1. For a point x € T, 5, choose an open set U; ; as above containing
By (z). Define for y € Uiz Paa(y) =11 e, .0 b

Lemma 2. (a). Let « = ﬁ, where N, is the cardinality of A;z. Then on Ui g,

V—-109(—P, %) > PAz Z V=1

v,dy <€ Z’Y
where the sum is taken over all primitive closed geodesics of length less than .
(b). Let y be a point on My ,, such that di(x,y) < r. Then 1< PA—”() ¢ for

=ly)
some constant ¢ > 0 depending only on r but independent of x,y.
Proof The lemma follows essentially from [Ye] and computations of Wolpert and
McMullen, as was used in [C]. For (a), we recall the following estimates of [Ye]

based on the result of [W]. Let v be a geodesic on S. Then on the Teichmiiller
space Ts, v/—1£,00L, > 24/=10L, A OL,,. We conclude that

V=108~ P12

oL,
= v-1lad[( Z 7 )P4
YEAi. T
= V=laP,%{ Y Y= z oL, — 8L, NOL,]}
YEAi,w ’Y
—a?P7%d Z s Z %
Az 66
YEA; & G€EA; »
1
> V-la(g - N.a)Prs V=1 47
YEA; &
where we have used the Cauchy-Schwartz inequality.
Choose now o = %. Note that
_aé 8€ 586 8&,
Z 7 é’r Z ’Y Z’Y

YEA; 2 (y) ’YCSW( )(y) £y <e

from our choice of 4; and A; .. (a) follows from these estimates.
For (b), we use the fact that

Py
|log ( / Z|dlog£ [lgx 895
xX

veA

> lldlog £yl g dic (2, )

vEA
< chK (.T, y)a
since ||dlogl,]|gx < 2 from the estimates of [W] and [Mc].

We now give a second proof of the equivalence of gp; and the classical metrics
stated in Theorem 2.



12 SAT-KEE YEUNG

Proposition 4. gg ~ gar.

Proof We are going to apply Theorem 3 to conclude the proof. Recall from the
proof of Lemma 1 that M;,n has a covering given by U,,i = 1,...,[ and V, which

is a relatively compact set on My . Let V=r'(V)and U = s L(U_,U; = V).
V and U gives rise to a covering of 7, .
Let us first consider a point z € UU. We recall from our construction that there

exists © € B,(x) C U;, for some i. Since the curvature of gy is bounded, the

Schwarz Lemma of [CCL] or [Ro] as stated in Proposition 2 when applied to Bers
BY BY
Embedding implies that gas > ch% = gK%. Ag in the proof of Theorem 2, gIT< ~

gféiv Clearly condition (i) of Theorem 3 is satisfied.

For conditions in (i), we define ¥, (y) = dp.wp(y)? — (%)a, where d, wp(y)
is the distance from y to z in terms of the Weil-Petersson metric gy p. Note that the
distance d, wp is also utilized in [C]. According to [W], the Weil-Petersson metric
on Ts has negative sectional curvature and the exponential map is a diffeomorphism
from a domain in T'(7s) to Tg. Moreover, standard comparison theorem (cf. [GW])

comparing Tg with Euclidean flat space implies that
vV _185d3¢,WP Z awp.

From Lemma 2(a),

VTio9(PAs®) 0y 5 Pas(@) PAM Zraz .,

PA,z(y) =y 7 Z’y

where the differentiation is taken with respect to y. It follows that /=180, > 0

on M. Trom Lemma 2(b), % < I;i“g; < c for y € BY. Hence

V=180, (y) > cownr(y)

for y € BN. Furthermore, d, wp(y) < cady ar(y) for some constant ¢y in terms of
the distance d, 3r measured with respect to g constructed by McMullen. Hence
d. wp(y) < cs for some constant c3 independent of x on B (). From Lemma 2b,
this implies that 1, > ¢4 for some constant ¢, on B (0). Note also that v, (y) is
bounded from above since d, wp(p) is a bounded function for y € 7, , according
to [Ma). Hence condition (i) of Theorem 3 is also satisfied for z € U.

Now consider # € V. Condition (i) is clearly satisfied since V is a relatively
compact set of M;,n and we may just pull-back neighbourhoods from Mlg,n‘ For
(ii), we simply choose 9, (y) = d2 1 p. Note that the second term involving geodesic
length functions in the metric constructed by McMullen is trivial by our choice of V
according to Lemma 1. As in the calculation above, we clearly have v/—198v, (y) >
cownr(y) on V and =100, (y) > 0 on Tq.n- Hence condition (ii) is satisfied for
z €V as well.

Proposition 3 now follows from Theorem 3.
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