
On exponential sum over primes and application in Waring-Goldbach problem

REN Xiumin

Department of Mathematics, The university of Hong Kong, Pokfulam road, Hong Kong (email: xmren@maths.hku.hk)

Abstract In this paper, we prove the following estimate on exponential sums over primes: Let k ≥ 1,

βk = 1/2 + log k/ log 2, x ≥ 1 and α = a/q + λ subject to (a, q) = 1, 1 ≤ a ≤ q, and λ ∈ R. Then

∑

x<m≤2x

Λ(m)e(αmk) ¿ (d(q))βk (log x)c

(
x1/2

√
q(1 + |λ|xk) + x4/5 +

x√
q(1 + |λ|xk)

)
.

As an application, we prove that with at most O(N7/8+ε) exceptions, all positive integers up to N satisfying

some necessary congruence conditions are the sum of three squares of primes. This result is as strong as what

has previously been established under the generalized Riemann hypothesis.

Keywords: exponential sums over primes, Waring-Goldbach problem, circle method.

1. Introduction

In this paper, we are concerned with estimates of the exponential sums

Sk(α) =
∑

x<m≤2x

Λ(m)e(mkα),

where k is a positive integer, x a big parameter, α a real number, Λ(m) the von Mangoldt function,
and e(z) = e2πiz. These sums arise naturally and play important roles when solving the Waring-
Goldbach type problems by the circle method.

Estimates for Sk(α) usually depends on the rational approximation of α. Let

α = a/q + λ, 1 ≤ a ≤ q, (a, q) = 1. (1.1)

The main result of this paper is the following

Theorem 1.1. Fix k ≥ 1, and let βk = 1/2 + log k/ log 2. We have

Sk(α) ¿ (d(q))βk(log x)c

(
x1/2

√
q(1 + |λ|xk) + x4/5 +

x√
q(1 + |λ|xk)

)
, (1.2)

where d(n) is the divisor function and c is an absolute positive constant.
When k = 1, Theorem 1.1 gives

Corollary 1.2. Suppose α satisfies (1.1) with |λ| ≤ q−2. Then we have
∑

x<m≤2x

Λ(m)e(mα) ¿ (d(q))1/2(log x)c{x1/2q1/2 + x4/5 + xq−1/2}.

This is essentially the well-known result of Vinogradov in [1]. It is reproved by Vaughan [2] via
an elementary identity now named after him. Actually Vaughan’s estimate is slightly stronger, i.e.
there is no d(q) on the right, and the c = 5.
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In the nonlinear cases k ≥ 2, Theorem 1.1 partially improves the estimates of Ghosh [3] or
Harman [4], and this improvement will be important in many applications. For example, Theorem

1.1 with k = 2 implies that, for |λ| ≤ 1/(qx7/5),

S2(α) ¿ (d(q))3/2(log x)c

(
x1/2q1/2 + x4/5 +

x

q1/2

)
. (1.3)

This can be compared with Ghosh’s estimate [3] that,

S2(α) ¿ x1+ε

(
1
q

+
1

x1/2
+

q

x2

)1/4

. (1.4)

It is easily seen that (1.3) is sharper than (1.4) when q ≤ x3/4. This will be crucial in our proof of
Theorem 1.3 in §4.

Theorem 1.1 can be applied to a wide circle of problems of Waring-Goldbach type. Most of these
problems can be studied by the circle method, and the quality of the arithmetic results obtained
usually depends on the following key issues: (i) An asymptotic formula for the contribution from
the major arcs M, with M as large as possible; (ii) An upper bound, as small as possible, for
the exponential sum Sk(α) on m. Several authors (see e.g. ref. [5], [6], [7], [8]) have successfully
introduced a method to fulfill (i), which does not depend on the Deuring-Hilbronn phenomenon.
Therefore, the quality of the arithmetic results obtained relies more heavily on (ii). Our Theorem
1.1 makes an effort in this direction. It can be applied, together with the estimates of Ghosh [3]
and Harman [4] on m, to make a number of improvements. The idea is, roughly speaking, that we
split m into k ∪ n, where k is a subset such that our Theorem 1.1 gives a better bound than those
of Ghosh or Harman. On n, Ghosh [3] or Harman [4] also gives a better bound since n is much
smaller than m. Therefore, a better bound of Sk(α) on m follows, and hence a better arithmetic
result.

We illustrate the application of Theorem 1.1 by making the improvement in Theorem 1.3 on the
exceptional set in the representation of certain positive integers n by the sum of three squares of
primes,

n = p2
1 + p2

3 + p2
3. (1.5)

Necessary conditions for this representation are

n ≡ 3(mod24), n 6≡ 0(mod5). (1.6)

Now let E(N) be the number of positive n ≤ N satisfying (1.6) but cannot be written as (1.5).

Hua [9] was the first to prove that E(N) ¿ N log−A N for some positive A. Later Schwarz [10]
showed that Hua’s bound holds for any A > 0, and this was further improved by Leung and Liu
[11] to N1−δ for some computable but small δ depending on the constants in Deuring-Heilbronn
phenomenon. An approach free of the Deuring-Heilbronn phenomenon was introduced in Bauer,
Liu, and Zhan [12], where it was proved that E(N) ¿ N151/160+ε. The exponent 151/160 has
subsequently reduced to 47/50 and then to 11/12 by Liu and Zhan [7][8] respectively. Under the
Generalized Riemann Hypothesis, it was proved in ref. [12] that 1 the exponent can be further
reduced to 7/8.

1Note that the displayed formula in Theorem 2 of ref. [12] should read E2(x) ¿ x7/8+ε.
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Using our Theorem 1.1, we are able to establish unconditionally the above conditional result.

Theorem 1.3. Unconditionally, we have

E(N) ¿ N7/8+ε.

In finishing this paper, we learn that Kumchev [13] proves new estimates on Sk(α). But we
remark that his results and methods are different from ours.

Notation. As usual, ϕ(n) stands for the Euler function. We use χ mod q and χ0 mod q to
denote a Dirichlet character and the principal character modulo q. Also L(s, χ) is the Dirichlet
L-function. The symbol r ∼ R means R < r ≤ 2R. The letter ε denotes positive constant which is
arbitrarily small. The letter c is written for an absolute positive constant which may not necessarily
the same at each occurrence.

2. Mean-Value estimate of a Dirichlet polynomial

Let M ≥ 2 be a real number. For j = 1, ..., 10, let Mj be positive integers such that

2−9M < M1 · · ·M10 ≤ M, and 2M6, ..., 2M10 ≤ (2M)1/5. (2.1)

Let

aj(m) =





log m, if j = 1,
1, if j = 2, ..., 5,
µ(m), if j = 6, ..., 10.

(2.2)

We define the following functions of a complex variable s:

fj(s, χ) =
∑

m∼Mj

aj(m)χ(m)
ms

, F (s, χ) = f1(s, χ) · · · f10(s, χ). (2.3)

Then we have the following mean-value estimate.
Lemma 2.1. Let β ≥ 1, 2 ≤ T ≤ Mβ and 2 < q ≤ M2β. Then we have

∑

χ mod q

∫ T

−T

∣∣∣∣F
(

1
2

+ it, χ

)∣∣∣∣ dt ¿ (d(q))1/2(log M)c{qT + (qT )1/2M3/10 + M1/2}, (2.4)

where c is an absolute positive constant.
To prove Lemma 2.1, we quote the following two well-known results (see for example ref. [14],

Theorems 2.5, 3.10, 3.11 and 3.17).
Lemma 2.2. Let T,N0, q ≥ 1 and N ≥ 0. Let an, n ∈ N be any complex numbers. Then we

have

∑

χ mod q

∫ T

−T

∣∣∣∣∣
N0+N∑

n=N0

anχ(n)
nit

∣∣∣∣∣
2

dt ¿
N0+N∑

n=N0

(qT + n) |an|2.

Lemma 2.3. Let T ≥ 1, b0 = 4 and b1 = 8. Then for k = 0, 1, we have
∫ T

−T

∣∣∣∣ζ(k)

(
1
2

+ it

)∣∣∣∣
4

dt ¿ T logbk(T + 2);
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and for q > 2,

∑

χ mod q

∫ T

−T

∣∣∣∣L(k)

(
1
2

+ it, χ

)∣∣∣∣
4

dt ¿ qT log(bk+1) q(T + 2).

Lemma 2.4. Let an, n ∈ N be complex numbers and let the series F (s) =
∑∞

n=1
an
ns be absolutely

convergent for σ = Re(s) > σa. Let

A(x) = max
x/2≤n≤2x

|an|, x ≥ 1; B(σ) =
∞∑

n=1

|an|
nσ

, σ > σa.

Then for T ≥ 1 and for any s0 = σ0 + it0 and b > 0 with σ0 + b > σa, one has

∑

n≤x

an

ns0
=

1
2πi

∫ b+iT

b−iT
F (s0 + s)

xs

s
ds + R(x, T ),

where, on writing ‖x‖ for the distance from x to the nearest integer N ,

R(x, T ) ¿ xbB(b + σ0)
T

+ x1−σ0A(x) min
{

1,
log x

T

}

+x−σ0 |aN |min
{

1,
x

T‖x‖
}

. (2.5)

This is Perron’s formula, a proof can be found, for example, in ref. [15].

Lemma 2.5. If there exist Mi, Mj with 1 ≤ i < j ≤ 5 such that MiMj > M2/5, then Lemma
2.1 is true.

Proof. Without loss of generality, we may assume that i = 1 and j = 2. By applying Lemma
2.4 with T = Mβ, s0 = 1/2 + it and b = 1/2 + 1/ log M , we get

f1

(
1
2

+ it, χ

)

= − 1
2πi

∫ 1/2+1/L+iMβ

1/2+1/L−iMβ

L′
(

1
2

+ it + w, χ

)
(2M1)w −Mw

1

w
dw + O(1), (2.6)

where we have written L = log M . Now we move the integral leftward along the rectangular contour
with vertices ±iMβ, 1/2 + 1/L ± iMβ to the line Re(w) = 0. Note that the integrand is regular
inside the contour except for the simple pole at w = 1/2− it when χ = χ0. We have

L(s, χ0) = ζ(s)
∏

p|q
(1− p−s), (2.7)

and

L′(s, χ0) = ζ ′(s)
∏

p|q
(1− p−s) + ζ(s)

∑

p1|q

log p1

p1
s

∏
p|q

p6=p1

(
1− p−s

)
. (2.8)

So the residue at the simple pole is
{∑

p1|q

log p1

p1

∏
p|q

p6=p1

(
1− p−1

)
}

(2M1)1/2−it −M
1/2−it
1

1/2− it
,
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which can be estimated as

¿
{∑

p|q

log p

p

}{∏

p|q
(1− p−1)

}
M

1/2
1

1 + |t| ¿
M

1/2
1 (log log q)2

1 + |t| ,

by elementary estimates
∑

p|q

log p

p
¿ log log q,

∏

p|q
(1− p−1) ¿ log log q.

Thus (2.6) becomes

f1

(
1
2

+ it, χ

)
= − 1

2πi

{∫ −iMβ

1/2+1/L−iMβ

+
∫ iMβ

−iMβ

+
∫ 1/2+1/L+iMβ

iMβ

}

+O

(
δχM

1/2
1 L

1 + |t|

)
+ O(1), (2.9)

where δχ = 1 or 0 according as χ = χ0 or not.
Now we recall the following bound: For σ ≥ 1/2 and |t| ≥ 2,

L(k)(σ + it, χ) ¿ (logk+2 q(|t|+ 2))max{1, q(1−σ)/2(|t|+ 2)1−σ}. (2.10)

When χ 6= χ0, this can be found, for example, in ref. [15], p.269, (13) and p.271, Exercise 6. When
χ = χ0, the above inequality can be derived from (2.7) and (2.8), by applying the well-known
bound (see for example ref. [15], p.140, Theorem 2):

ζ(k)(σ + it) ¿ (logk+1 |t|) max{1, |t|1−σ}, for σ ≥ 1/2 and |t| ≥ 2,

and the elementary estimates: For 0 < σ < 1,
∏

p|q
(1− p−s) ¿

∑

d|q
d−σ ≤

∑

r≤d(q)

r−σ ¿ (d(q))1−σ, (2.11)

and
∑

p1|q

log p1

p1
s

∏
p|q

p6=p1

(
1− p−s

)

¿
∣∣∣∣∣∣


∏

p|q
(1− p−s)





∑

p|q

log p

pσ




∣∣∣∣∣∣
¿ (d(q))1−σ(log q)

∑

r≤log q

r−σ

¿ (d(q))1−σ(log q)2−σ. (2.12)

Applying (2.10) with σ = 1/2 + u, we see that the contribution from the two horizontal segments
in (2.9) is

¿ L3 max
0≤u≤1/2+1/L

q(1−(1/2+u))/2Mβ(1−(1/2+u)) M
u
1

Mβ
¿ Mu(1−2β)L3 ¿ 1,

since q ≤ M2β and β ≥ 1. Moreover, on the vertical segment from −iMβ to iMβ, one has

(2M1)iv −M iv
1

iv
¿ 1

1 + |v| .
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Therefore on writing

g1 (t, χ) =
∫ Mβ

−Mβ

∣∣∣∣L′
(

1
2

+ it + iv, χ

)∣∣∣∣
dv

1 + |v| + 1, (2.13)

we have

f1

(
1
2

+ it, χ

)
¿ g1 (t, χ) +

δχM
1/2
1 L

1 + |t| . (2.14)

Similarly we have

f2

(
1
2

+ it, χ

)
¿ g2 (t, χ) +

δχM
1/2
2 L

1 + |t| , (2.15)

where

g2 (t, χ) =
∫ Mβ

−Mβ

∣∣∣∣L
(

1
2

+ it + iv, χ

)∣∣∣∣
dv

1 + |v| + 1.

Write

g3 (t, χ) =
10∏

j=3

fj

(
1
2

+ it, χ

)
=

∑

M3···M10<m≤28M3···M10

b(m)χ(m)
m1/2+it

, (2.16)

where |b(m)| ≤ d8(m) and dk(m) denotes the number of ways of expressing m as a product of k

factors. Then we have

F

(
1
2

+ it

)
= f1

(
1
2

+ it, χ

)
f2

(
1
2

+ it, χ

)
g3 (t, χ) .

Therefore by (2.14) and (2.15), we get

∑

χ mod q

∫ T

−T

∣∣∣∣F
(

1
2

+ it, χ

)∣∣∣∣ dt

¿
∑

χ mod q

∫ T

−T
|g1 (t, χ) g2 (t, χ) g3 (t, χ)| dt + M

1/2
1 L

∫ T

−T

∣∣g2

(
t, χ0

)
g3

(
t, χ0

)∣∣
1 + |t| dt

+M
1/2
2 L

∫ T

−T

∣∣g1

(
t, χ0

)
g3

(
t, χ0

)∣∣
1 + |t| dt + M

1/2
1 M

1/2
2 L2

∫ T

−T

∣∣g3

(
t, χ0

)∣∣
(1 + |t|)2 dt

:= H1 + H2 + H3 + H4, (2.17)

say. By (2.16), one has

∣∣g3

(
t, χ0

)∣∣ ¿
∑

M3···M10<m≤28M3···M10

d8(m)
m1/2

¿ (M3...M10)1/2L7, (2.18)

by making use of (12.1.3) and (12.1.4) in ref. [16]. So we get

H4 ¿ M1/2L9. (2.19)

Again by (2.18), we have

H3 ¿ (M2M3...M10)1/2L8

∫ T

−T

∣∣g1

(
t, χ0

)∣∣
1 + |t| dt.
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By (2.14), we have
∫ T

−T

∣∣g1

(
t, χ0

)∣∣
1 + |t| dt ¿

∫ T

−T

∫ Mβ

−Mβ

∣∣L′ (1
2 + i(t + v), χ0

)∣∣
(1 + |t|)(1 + |v|) dvdt + L

¿
∫ 2Mβ

−2Mβ

∣∣∣∣L′
(

1
2

+ iw, χ0

)∣∣∣∣
∫ T

−T

dtdw

(1 + |t|)(1 + |w − t|) + L.

Let I = [w/2, 3w/2] ∩ [−T, T ]. Then for t /∈ I, one has |w − t| ≥ |w|/2; while for t ∈ I, one has
|t| ≥ |w|/2. Therefore

∫ T

−T

dt

(1 + |t|)(1 + |w − t|)

¿ 1
1 + |w|

∫

I

dt

1 + |w − t| +
1

1 + |w|
∫

[−T,T ]\I

dt

1 + |t| ¿
L

1 + |w| .

Thus we get
∫ T

−T

∣∣g1

(
t, χ0

)∣∣
1 + |t| dt ¿ L

∫ 2Mβ

−2Mβ

∣∣∣∣L′
(

1
2

+ iw, χ0

)∣∣∣∣
dw

1 + |w| + L

¿ L2 max
1≤X≤Mβ

1
X

∫ 2X

−2X

∣∣∣∣L′
(

1
2

+ iw, χ0

)∣∣∣∣ dw + L.

By (2.8), (2.11), (2.12) and Hölder’s inequality, one easily obtains
{∫ 2X

−2X

∣∣∣∣L′
(

1
2

+ iw, χ0

)∣∣∣∣ dw

}4

¿ d2(q)X3

∫ 2X

−2X

∣∣∣∣ζ ′
(

1
2

+ iw

)∣∣∣∣
4

dw + d2(q)L6X3

∫ 2X

−2X

∣∣∣∣ζ
(

1
2

+ iw

)∣∣∣∣
4

dw

¿ d2(q)X4L10,

by Lemma 2.3. Hence we get
∫ T

−T

∣∣g1

(
t, χ0

)∣∣
1 + |t| dt ¿ d1/2(q)L5.

This establishes

H3 ¿ (M2...M10)1/2d1/2(q)L13 ¿ M1/2d1/2(q)L13. (2.20)

Similarly one can prove that

H2 ¿ M1/2d1/2(q)L12. (2.21)

To bound H1, we write

Gk =
∑

χ mod q

∫ T

−T
|gk(t, χ)|4dt, k = 1, 2; G3 =

∑

χ mod q

∫ T

−T
|g3 (t, χ)|2 dt.

Then by Hölder’s inequality, we have

H1 ¿ G
1/4
1 G

1/4
2 G

1/2
3 . (2.22)
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By Lemma 2.2 and (2.16), we have

G3 ¿
∑

M3···M10<m≤28M3···M10

(qT + m)
d2

8(m)
m

¿ (qT + M3 · · ·M10)Lc ¿ (qT + M3/5)Lc. (2.23)

since M3 · · ·M10 ¿ M/(M1M2) < M3/5.

Now it remains to bound G1 and G2. By (2.13) and Hölder’s inequality, we have

G1 ¿ L3
∑

χ mod q

∫ T

−T

∫ Mβ

−Mβ

∣∣∣∣L′
(

1
2

+ it + iv, χ

)∣∣∣∣
4 dvdt

1 + |v| + qT.

Wtite
∫ Mβ

−Mβ =
∫ 2T
−2T +

∫
2T<|v|≤Mβ . Then the first term on the right splits accordingly into two

quantities which we denote by G11 and G12, respectively. We have

G11 = L3
∑

χ mod q

∫ 2T

−2T

dv

1 + |v|
∫ T+v

−T+v

∣∣∣∣L′
(

1
2

+ iw, χ

)∣∣∣∣
4

dw

¿ L4
∑

χ mod q

∫ 3T

−3T

∣∣∣∣L′
(

1
2

+ iw, χ

)∣∣∣∣
4

dw ¿ qTL13,

by Lemma 2.3. To bound G12, we let w = t + v. We observe that 2T < |v| ≤ Mβ and |t| ≤ T

imply |v| ≥ |w|/2 and T < |w| ≤ 2Mβ. So it follows that

G12 ¿ TL3
∑

χ mod q

∫ 2Mβ

T

∣∣∣∣L′
(

1
2

+ iw, χ

)∣∣∣∣
4 dw

1 + |w|

¿ TL4 max
T≤X≤Mβ

1
X

∑

χ mod q

∫ 2X

−2X

∣∣∣∣L′
(

1
2

+ iw, χ

)∣∣∣∣
4

dw ¿ qTL13.

This proves

G1 ¿ qTL16. (2.24)

Similar argument also leads to

G2 ¿ qTL12. (2.25)

Putting (2.23)-(2.25) into (2.22), we get

H1 ¿ (qT )1/2 (qT + M3/5)1/2Lc ¿
(
qT + (qT )1/2M3/10

)
Lc.

This together with (2.17) and (2.19)-(2.21) prove that

∑

χ mod q

∫ 2T

T

∣∣∣∣F
(

1
2

+ it, χ

)∣∣∣∣ dt ¿
(
qT + (qT )1/2M3/10 + M1/2

)
d1/2(q)Lc.

This proves Lemma 2.5. ¤
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Lemma 2.6. If there is a partition {J1, J2} of the set {1, ..., 10} such that
∏

j∈J1

Mj +
∏

j∈J2

Mj ¿ M3/5,

then Lemma 2.1 is true.
Proof. For ν = 1, 2, define

Fν(s, χ) :=
∏

j∈Jν

fj(s, χ) =
∑

n≤Nν

bν(n)χ(n)
ns

,

where Nν =
∏

j∈Jν
(2Mj) and bν(n) ¿ Ld10(n). By Lemma 2.2, we have

∑

χ mod q

∫ T

−T

∣∣∣∣F1

(
1
2

+ it, χ

)∣∣∣∣
2

dt ¿ L2
∑

n≤N1

(qT + n)
d2

10(n)
n

¿ (qT + N1)Lc,

Similarly

∑

χ mod q

∫ T

−T

∣∣∣∣F2

(
1
2

+ it, χ

)∣∣∣∣
2

dt ¿ (qT + N2)Lc,

Therefore by Cauchy’s inequality we get

∑

χ mod q

∫ T

−T

∣∣∣∣F
(

1
2

+ it, χ

)∣∣∣∣ dt ¿ (qT + N1)
1/2 (qT + N2)

1/2 Lc

¿ (qT + (qT )1/2M3/10 + M1/2)Lc,

since N1 + N2 ¿ M3/5 and N1N2 ¿ M. This proves Lemma 2.6. ¤

Proof of Lemma 2.1. In view of Lemma 2.5, we may assume that MiMj ≤ M2/5 holds for
all i, j with 1 ≤ i < j ≤ 5. Then it follows that there is at most one of Mj with j ≤ 5 such that

Mj > M1/5. Without loss of generality, we may assume that this possible exceptional Mj is M1.

Then we have Mj ≤ M1/5 for j = 2, ..., 5, and also for j = 6, ..., 10, by assumption. Let l ≥ 2 be
the integer such that

M1 · · ·Ml ≤ M2/5, but M1 · · ·Ml+1 > M2/5.

Let J1 = {1, 2, ..., l + 1}, and J2 = {l + 2, ..., 10}. Then it is easy to check that

M2/5 ¿
∏

j∈J1

Mj ¿ M3/5.

This means that the assumption of Lemma 2.6 is satisfied. And the assertion of Lemma 2.1 thus
follows. ¤

3. The proof of Theorem 1.1

Lemma 3.1. Under conditions of Theorem 1, we assume further that

2 < q ≤ x, q|λ| < x1−k. (3.1)
9



Then we have

∑

χ mod q

∣∣∣∣∣∣
∑

x<m≤2x

Λ(m)χ(m)e(λmk)

∣∣∣∣∣∣

¿ d1/2(q) logc x

{
qx1/2

√
1 + |λ|xk + q1/2x4/5 +

x√
1 + |λ|xk

}
.

Proof. By integration by parts, we have

∑

x<m≤2x

Λ(m)χ(m)e(λmk) =
∫ 2x

x
e(λuk)d

∑

x<m≤u

Λ(m)χ(m). (3.2)

Now we apply Heath-Brown’s identity (see ref. [17], Lemma 1 ) with k = 5 which reveals that for
m ≤ 2x,

Λ(m) =
5∑

j=1

(−1)j−1

(
5
j

) ∑
m1···m2j=m

mj+1,...,m2j≤(2x)1/5

(log m1)µ(mj+1) · · ·µ(m2j).

On putting this in (3.2), we find that the sum over m becomes a linear combination of O(L10)
terms of the form

Σ(u;M) =
∑

m1∼M1

· · ·
∑

m10∼M10

x<m1···m10≤u

a1(m1)χ(m1) · · · a10(m10)χ(m10),

where aj(m), j = 1, 2, ..., 10 are defined by (2.2), and Mj are positive integers such that (2.1) holds
with M = x. Here M is written for the vector (M1,M2, ..., M10).

Let fj(s, χ) and F (s, χ) be defined by (2.3). Then by Lemma 2.4, we have

Σ(u;M) =
1

2πi

∫ 1+1/L+iT

1+1/L−iT
F (s, χ)

us − xs

s
ds + O

(
uL2

T
+ Lmin{1,

u

T‖u‖}
)

,

where L = log x and T ≥ 2 is a parameter. We now move the integral along the rectangular contour
with vertices 1/2± iT , 1+1/L± iT to the line Re s = 1/2. Then the integral on the two horizontal
segments is

¿ |F (σ ± iT, χ)|x
σ

T
¿




10∏

j=1

M1−σ
j


 xσL

T
¿ xL

T
.

Therefore we get

Σ(u;M) =
1
2π

∫ T

−T
F

(
1
2

+ it, χ

)
u1/2+it − x1/2+it

1/2 + it
dt + R(u),

where

R(u) ¿ xL2

T
+ Lmin

{
1,

u

T‖u‖
}

. (3.3)

10



Hence the right-hand side of (3.2) becomes a linear combination of O(L10) terms of the form

1
2πi

∫ 2x

x
e(λuk)dΣ(u;M)

=
1
2π

∫ T

−T
F

(
1
2

+ it, χ

)∫ 2x

x
u−1/2+ite(λuk)dudt + O

(∣∣∣∣
∫ 2x

x
e(λuk)dR(u)

∣∣∣∣
)

. (3.4)

Without loss of generality, we assume that ‖x‖ = 1/4. Then by (3.3) we have

∫ 2x

x
e(λuk)dR(u) ¿ (1 + |λ|xk)

xL2

T
+ |λ|xk−1L

∫ 2x

x
min

{
1,

u

T‖u‖
}

du.

But

∫ 2x

x
min

{
1,

u

T‖u‖
}

du ¿
∑

x<m≤2x

∫ 1/2

0
min

{
1,

m + t

T t

}
dt ¿ x2L

T
.

Thus on taking T = T0 = (1+|λ|xk)3/2qL2, we see that the error term in (3.4) is O
(
xq−1/

√
1 + |λ|xk

)
.

On the other hand, we have

∫ 2x

x
u−1/2+ite(λuk)du =

1
k

∫ (2x)k

xk

v−1+1/(2k)e

(
t

2kπ
log v + λv

)
dv. (3.5)

Here by Lemmas 4.3 and 4.5 in ref. [16], the right integral is

¿ x1/2 min

{
1,

1
min

xk<v≤(2x)k
|t + 2kπλv| ,

1√
|t|

}
. (3.6)

Note that

min
xk<v≤(2x)k

|t + 2kπλv| À
{ |λ|xk, if |t| < kπ|λ|xk,
|t|, if |t| ≥ 4kπ|λ|(2x)k.

(3.7)

Hence we deduce from (3.4)-(3.7) that

∫ 2x

x
e(λuk)dΣ(u;M)

¿ x1/2

√
1 + |λ|xk

∫

|t|≤4kπ|λ|(2x)k

∣∣∣∣F
(

1
2

+ it, χ

)∣∣∣∣ dt

+x1/2

∫

4kπ|λ|(2x)k<|t|≤T0

∣∣∣∣F
(

1
2

+ it, χ

)∣∣∣∣
dt

1 + |t| +
xq−1

√
1 + |λ|xk

.
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Accordingly we have

∑

χ mod q

∣∣∣∣∣∣
∑

x<m≤2x

Λ(m)χ(m)e(λmk)

∣∣∣∣∣∣

¿ x1/2

√
1 + |λ|xk

∑

M

∑

χ mod q

∫

|t|≤4kπ|λ|(2x)k

∣∣∣∣F
(

1
2

+ it, χ

)∣∣∣∣ dt

+x1/2L max
4kπ|λ|(2x)k<T≤T0

1
1 + T

∑

M

∑

χ mod q

∫

T<|t|≤2T

∣∣∣∣F
(

1
2

+ it, χ

)∣∣∣∣ dt +
xL10

√
1 + |λ|xk

.

Now Lemma 3.1 follows by appealing to Lemma 2.1. ¤
Proof of Theorem 1.1. Since (1.2) is trivial for q > x or q|λ| ≥ x1−k, we may assume (3.1).

For Dirichlet character χ mod q, we define

Ck(χ, a) =
q∑

h=1

χ(h)e
(

ahk

q

)
.

Then Vinogradov’s bound (see e.g. ref. [18]) gives

|Ck(χ, a)| ≤ 2(d(q))αkq1/2, where αk = log k/ log 2. (3.8)

Let α = a/q + λ with (a, q) = 1 and λ ∈ R. By orthognolity of Dirichlet characters, we have

Sk (α) =
∑

χ mod q

Ck(χ, a)
ϕ(q)

∑

x<m≤2x

Λ(m)χ(m)e(λmk) + O(L2)

¿ (d(q))αkq−1/2L
∑

χ mod q

∣∣∣∣∣∣
∑

x<m≤2x

χ(m)Λ(m)e(λmk)

∣∣∣∣∣∣
+ O(L2),

by (3.8). Now the assertion of Theorem 1.1 follows immediately by Lemma 3.1. ¤

4. Proof of Theorem 1.3

We will consider n with N/2 < n ≤ N. Let

R(n) =
∑

n=n2
1+n2

2+n2
3

Λ(n1)Λ(n2)Λ(n3).

Then R(n) is the number of weighted representations of n by (1.5). To apply the circle method,
we let

P = N1/6−ε, P ∗ = N1/4−ε, Q = N/(PL14), Q∗ = N/(P ∗L14).

Now define the major arcs M be the union of intervals [a/q − 1/qQ, a/q + 1/qQ] with 1 ≤ a ≤
q ≤ P, (a, q) = 1, and the minor arcs m by m = [1/Q, 1 + 1/Q]\M. Then

R(n) =
∫ 1+1/Q

1/Q
S3

2(α)e(−nα)dα =
∫

M
+

∫

m
. (4.1)
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The integral on the major arcs can be treated by Theorem 2 of ref. [8], which states that, for
N/2 < n ≤ N,

∫

M
= S(n, P )n1/2(1 + O(log−A N)) (4.2)

where

S(n, P ) À log−B N,

for all n satisfying (1.6) with at most O(N3/8+ε) exceptions.
Now we bound the contribution from the minor arcs. By Dirirchlet’s lemma on rational approx-

imations, every α ∈ m can be written as (1.1) with

1 ≤ q ≤ Q∗, |λ| ≤ 1/(qQ∗).

We let n be the set of α ∈ m satisfying (1.1) such that

P ∗ < q ≤ Q∗, |λ| ≤ 1/(qQ∗).

On n, Ghosh’s bound (1.4) with x = N1/2 gives

max
α∈n

|S2(α)| ¿ N7/16+ε. (4.3)

Let k be the complement of n in m, so that m = k ∪ n. For α ∈ k, we have either

P < q ≤ P ∗, |λ| ≤ 1/(qQ∗),

or

q ≤ P, 1/(qQ) < |λ| ≤ 1/(qQ∗).

In either case, we have, with x = N1/2,

N1/12−ε ¿
√

min
(

P,
x2

Q

)
¿

√
q(1 + |λ|x2) ¿

√
P ∗ +

x2

Q∗ ¿ N1/8+ε.

Therefore, Theorem 1.1 gives

max
α∈k

|S2(α)| ¿ N5/12+ε. (4.4)

Collecting (4.3) and (4.4), we have

max
α∈m

|S2(α)| ¿ N7/16+ε. (4.5)

Now we consider the mean square of the integral over m in (4.1), and get by Bessel’s inequality

∑

N/2<n≤N

∣∣∣∣
∫

m

∣∣∣∣
2

¿
∫

m
|S2(α)|6dα ¿ max

α∈m
|S2(α)|2

∫ 1

0
|S2(α)|4dα ¿ N15/8+ε, (4.6)

by (4.5) and Hua’s lemma. The assertion of Theorem 1.3 now follows from (4.2) and (4.6) via a
standard argument. ¤
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