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Abstract. We study holomorphic immersions f : X → M from a complex mani-
fold X into a Kähler manifold of constant holomorphic sectional curvature M , i.e.,
a complex hyperbolic space form, a complex Euclidean space form, or the complex
projective space equipped with the Fubini-Study metric. For X compact we show
that the tangent sequence splits holomorphically if and only if f is a totally geodesic
immersion. For X not necessarily compact we relate an intrinsic cohomological invari-

ant p(X) on X , viz., the invariant defined by Gunning measuring the obstruction to
the existence of holomorphic projective connections, and an extrinsic cohomological

invariant ν(f) measuring the obstruction to the holomorphic splitting of the tangent

sequence. The two invariants p(X) and ν(f) are related by a linear map on cohomol-
ogy groups induced by the second fundamental form. In some cases, especially when
X is a complex surface and M is of complex dimension 4, under the assumption that
X admits a holomorphic projective connection we obtain a sufficient condition for
the holomorphic splitting of the tangent sequence in terms of the second fundamental
form.

The complex hyperbolic space is the complex unit ball Bn equipped with
the canonical Kähler-Einstein metric. By a complex hyperbolic space form we
mean Bn/Γ for some torsion-free discrete group Γ of holomorphic automorphisms.
By a complex Euclidean space form we mean Cn/Γ for some torsion-free discrete
group Γ of holomorphic rigid motions on the complex Euclidean space Cn. The
complex projective space Pn is always assumed to be equipped with the Fubini-
Study metric.

Let M be a complex hyperbolic space form, a complex Euclidean space form,
or the complex projective space. Such spaces M share the common geometric
property of carrying complete Kähler metrics of constant holomorphic sectional
curvature. On the other hand they carry holomorphic projective structures in
the sense of Gunning [G]. Any compact Kähler-Einstein manifold admitting a
holomorphic projective structure is either a complex hyperbolic space form, a
complex Euclidean space form or the complex projective space, and it is not known
whether these are the only examples which are compact and Kähler. Geometrically
the salient feature for manifolds M with holomorphic projective structures is the
existence of special local holomorphic curves corresponding under uniformization
to open subsets of projective lines on the ambient projective space Pn. This
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corresponds to a holomorphic foliation on the projectivized tangent bundle π :
PTM → M by tautological liftings of holomorphic curves. In general the existence
of such a holomorphic foliation is equivalent to the existence of a holomorphic
projective connection in the sense of Gunning [G].

In this article we study holomorphic immersions from a complex manifold
into a complex hyperbolic space form, a complex Euclidean space form or the
complex projective space M . From the holomorphic projective structure on M ,
for the holomorphic immersion f : X → M we have the projective second fun-
damental form σ : S2TX → Nf , where Nf = f∗TM/TX is the normal bundle
of the holomorphic immersion. σ is holomorphic, and it agrees with the second
fundamental form of the holomorphic immersion f : X → M into the Kähler
manifold M , with respect to a canonical Kähler-Einstein metric on M . Our study
will focus on the properties of the holomorphic immersion that can be captured by
the second fundamental form. Our first result concerns holomorphic immersions
of compact complex manifolds into M . For its formulation, by the tangent se-
quence associated to a holomorphic immersion we mean the short exact sequence
0 → TX → f∗TM → Nf → 0. We prove using methods of Complex Differential
Geometry the following splitting criterion on the tangent sequence.

Theorem 1. Let X be a compact complex manifold, M be a complex hyperbolic
space form, a complex Euclidean space form or the complex projective space. De-
note by T = TX the holomorphic tangent bundle of X, and by TM the holomorphic
tangent bundle of M . Let f : X → M be a holomorphic immersion, and de-
note by N = Nf := f∗TM/T its normal bundle. Then, the tangent sequence
0 → T → f∗TM → N → 0 for the holomorphic immersion splits holomorphically
if and only if f : X → M is totally geodesic.

Theorem 1 in the case where M is the complex projective space is a result
of Van de Ven [VdV, 1958] (cf. also Mustatǎ-Popa [MP, 1997]). Theorem 1 for
complex Euclidean space forms M is a special case of results recently established
by Jahnke [J,2004] on the splitting of the tangent sequence. All the known results
are based on methods of Algebraic Geometry. Our proof makes use of harmonic
forms, and relies on representing the obstruction class ν(f) ∈ H1(X, T ⊗ N∗) to
the splitting of the tangent sequence by means of the second fundamental form σ.

Our second result is relevant to the general situation of a holomorphic im-
mersion f : X → M of a (not necessarily compact) complex manifold X into
a Kähler manifold M of constant holomorphic sectional curvature, relating two
different cohomological classes associated to the complex manifold X resp. the
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holomorphic immersion f : X → M . Associated to any complex manifold X,
whose holomorphic tangent bundle we denote by T , there is a cohomology class
p(X) ∈ H1(X, S2T ∗ ⊗ T ) which is the obstruction to the existence of a holomor-
phic projective connection on X. For a holomorphic immersion f : X → M we
relate the cohomology class ν(f) ∈ H1(X, T ⊗N) to p(X) and obtain

Theorem 2 (simplified form). Let X be a complex manifold, and M be a com-
plex hyperbolic space form, a complex Euclidean space form or the complex projec-
tive space. Denote by T = TX the holomorphic tangent bundle of X, and by TM the
holomorphic tangent bundle of M . Let f : X → M be a holomorphic immersion,
N := Nf = f∗TM/TX be its normal bundle, σ ∈ Γ(X, S2T ∗⊗N) be the second fun-
damental form, and ν(f) ∈ H1(X, T ⊗N∗) be the obstruction to the holomorphic
splitting of the tangent sequence 0 → T → f∗TM/T → N → 0. There is a canon-
ically defined bundle homomorphism ϕ : T ⊗ N∗ → S2T ∗ ⊗ T completely deter-
mined by σ, such that X admits a holomorphic projective connection if and only if
ϕ∗(ν(f)) = 0 for the induced linear map ϕ∗ : H1(X,TX⊗N∗) → H1(X, S2T ∗⊗T )
on first cohomology groups.

Our third result is more special, pertaining to the case where dim(X) = 2
and dim(M) = 4, as follows.

Theorem 3. In the notations of Theorem 2 suppose dim(X) = 2, dim(M) = 4,
and X admits a holomorphic projective connection, i.e., p(X) = 0. Denote by
π : L → PTX the tautological line bundle over the projectivized tangent bundle
PTX , and by s ∈ Γ(PTX , L−2 ⊗ π∗N) the holomorphic section corresponding to
σ ∈ Γ(X,S2T ∗X ⊗ N). Suppose s is nowhere zero on PTX . Then, the tangent
sequence splits holomorphically, i.e., ν(f) = 0. When X is compact this can never
happen.

An analogue of Theorem 3 will also be formulated for dim(X) = n and
dim(M) = (n+1)(n+2)

2 − 2, i.e., when dim(M) is one less than the dimension
N in the Veronese embedding v : Pn → PN . The case where dim(X) = 2 and
dim(M) = 4, as in Theorem 3, is particularly interesting and it reveals already
the geometric features of the more general statement.

At the end of the article, we will discuss some problems in relation to holo-
morphic immersions between compact Kähler manifolds of constant holomorphic
section curvatures, in the case of domain dimension 2 and target dimension 4,
which was one of the original motivations for our study.
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his attention to the result of Van de Ven [VdV] and the article of Jahnke [J] in
relation to Theorem 1 of the article.
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§1 A splitting criterion for the tangent sequence

1.1 Holomorphicity of the second fundamental form

We start with the study of holomorphic immersions into Kähler manifolds of
constant holomorphic curvature in the context of Kähler geometry. The following
lemma concerns the second fundamental form, a fundamental geometric entity for
our study, in terms of Kähler metrics. In §2 the second fundamental form will be
related to holomorphic projective connections.

For a holomorphic immersion f : X → M between complex manifolds X resp.
M , with holomorphic tangent bundles T resp. TM , we write N = Nf := f∗TM/T

for its normal bundle. We have the short exact sequence 0 → T → f∗TM →
N → 0, called the tangent sequence (associated to the holomorphic immersion
f). The obstruction to the holomorphic splitting of the tangent sequence is given
by a cohomology class ν(f) ∈ H1(X, T ⊗ N∗), which is related to the second
fundamental form σ. To start with we note the following well-known statement.

Lemma 1. Let X be a compact complex manifold, M be a complex hyperbolic
space form, a complex Euclidean space form or the complex projective space. Let f :
X → M be a holomorphic immersion, and denote by σ the (1,0)-part of the second
fundamental form of the holomorphic immersion f . Then, σ is holomorphic.

Proof. By abuse of terminology in the sequel we will simply call σ the second
fundamental form (of the immersion f). Denote by g = 2Re

( ∑
gijdzi ⊗ dzj

)
a

canonical Kähler-Einstein metric on M , of constant negative holomorphic sectional
curvature when M is a complex hyperbolic space form, of zero curvature when M

is a complex Euclidean space form, and of constant positive holomorphic sectional
curvature when M is the complex projective space. We denote by ∇ covariant
differentiation on the Kähler manifold (M, g) and by R its curvature tensor. Let
ξ, µ, ν be holomorphic vector fields defined on some open subset U of X. Then,

σ(µ, ν) = ∇µν mod TX . (1)
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∇ξ

(∇µν
)

= ∇µ

(∇ξν
)−∇[µ,ξ]ν −R(µ, ξ)ν. (2)

Since ν is a holomorphic vector field we have ∇ξν = 0. Since µ and ξ are holomor-
phic vector fields we have [µ, ξ] = 0. For the curvature tensor R of (M, g), which
is a complex hyperbolic space form resp. a complex Euclidean space form, resp.
the complex projective space equipped with the Fubini-Study metric, denoting by
< ·, · > the Hermitian inner product on TM we have the curvature formula

R(µ, ξ; ν, ζ) = c
(

< µ, ξ >< ν, ζ > + < µ, ζ >< ν, ξ >
)

(3)

for some constant c which is negative resp. zero resp. positive. Taking ζ to be
orthogonal to TX we see that R(µ, ξ; ν, ζ) = 0. It follows that in Eqn.(2) the
curvature term is tangent to X. Projecting to the normal bundle we conclude
that

∇ξ

(
σ(µ, ν)

)
= 0.

In other words, σ is holomorphic, σ ∈ Γ(X, S2T ∗X ⊗N), as desired. ¤

1.2 Proof of the splitting criterion using harmonic forms

Our first result is a splitting criterion for the tangent sequence of a holo-
morphic immersion of a compact complex manifold X into a Kähler manifold of
constant holomorphic sectional curvature, which we recall here. The proof involves
the use of the second fundamental form to represent the extension class of a short
exact sequence of Hermitian holomorphic vector bundles, as in Griffiths [Gr].

Theorem 1. Let X be a compact complex manifold, M be a complex hyperbolic
space form, a complex Euclidean space form or the complex projective space. De-
note by T = TX the holomorphic tangent bundle of X, and by TM the holomorphic
tangent bundle of M . Let f : X → M be a holomorphic immersion and de-
note by N = Nf := f∗TM/T its normal bundle. Then, the tangent sequence
0 → T → f∗TM → N → 0 for the holomorphic immersion splits holomorphically
if and only if f : X → M is totally geodesic.

Proof. We denote by g a canonical Kähler-Einstein metric on M and by h the
Hermitian metric on the normal bundle N induced from g as a quotient metric.
From the second fundamental form σ ∈ Γ(X, S2T ∗ ⊗ N) taking conjugates we
may inteprete σ as a T ∗ ⊗ N -valued smooth (0,1)-form on X. Denote by η the
T ⊗ N∗-valued smooth (0,1)-form of X induced by σ by means of the canoni-
cal isomorphism T ∗x ∼= Tx and Nx

∼= N∗
x at each point x ∈ X induced by the

Hermitian metric g and the Hermitian metric h on N . Write m for the complex
dimension of M and n < m for the complex dimension on X. At x ∈ X identify

5



a sufficiently small coordinate neighborhood U of x on X with a locally closed
complex submanifold of X by means of the holomorphic immersion f . Choose a
system of local holomorphic coordinates (z1, · · · , zn) on U and extend the latter
to a holomorphic coordinate system (z1, · · · , zm) of X at x. For 1 ≤ γ ≤ m−n we
write eγ for ∂

∂zγ
mod Tx. {e1, · · · , em−n} constitutes a holomorphic basis of the

normal bundle N over U . In terms of the chosen coordinates the Kähler metric g is
represented on U by (gij)1≤i,j≤m and the Hermitian metric h on N is represented
by

(
hαγ

)
1≤α,γ≤m−n

on U . We have

σ =
∑

i,k,γ

σγ
ikdzi ⊗ dzk ⊗ eγ ; (1)

η =
∑

i,k,α

ηi
αk

∂

∂zi
⊗ eα ⊗ dzk, where (2)

ηi
αk

=
∑

j,γ

gijhαγσγ
jk. (3)

Here (gij) denotes the conjugate inverse of (gij). We denote now by ∇ covariant
differentiation on X of various vector bundles with respect to connections induced
from (M, g). By the Codazzi equation σ satisfies

∇ ∂
∂zj

σγ
ik = ∇ ∂

∂zk

σγ
ij , (4)

which translates into
∇ ∂

∂zj

ηi
αk

= ∇ ∂
∂zk

ηi
αj

, (5)

Denote by
(
Γ`

jk

)
1≤`,j,k≤m

the Riemann-Christoffel symbols of the Kähler metric
g for the (1,0)-part of the Riemannian connection ∇. Then, Γ`

jk = Γ`
kj since

∇ is torsion-free. Taking conjugates Γ`
jk

= Γ`
kj

, and, observing that T ⊗ N∗ is a
holomorphic vector bundle hence parallel with respect to the (0,1)-part of covariant
differentiation, we conclude from Eqn.(5) that

∂

∂zj
ηi

αk
=

∂

∂zk
ηi

αj
. (6)

In other words, η is a ∂-closed T⊗N∗-valued (0,1)-form, i.e., ∂η = 0. We note that
the latter statement is established for all Kähler submanifolds of Kähler manifolds.
To prove Theorem 1 we have now to make use of the hypothesis that the ambient
Kähler manifold (M, g) is a Kähler space form of constant holomorphic sectional
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curvature. By Lemma 1, the second fundamental form σ is holomorphic. This
translates into the equation

∇ ∂
∂zj

ηi
αk

= 0 (7)

for 1 ≤ i, j, k ≤ m, 1 ≤ α ≤ m − n. Recall that for the compact Kähler manifold
(X, f∗g) and for the holomorphic vector bundle T ⊗ N∗ equipped with the Her-
mitian metric induced from g, the adjoint of the Cauchy-Riemann operator ∂ on
T ⊗N -valued (0,1)-forms is given by

∂
∗
η =

∑

i,j,k,α

gjk∇ ∂
∂zj

ηi
αk

∂

∂zi
⊗ eα. (8)

In particular, it follows from Eqn.(7) that ∂
∗
η = 0. Thus, η is both ∂-closed and

∂
∗
-closed. In other words, η is a harmonic form. It follows that the cohomology

class [η] ∈ H1(X, T ⊗ N∗) represented by η vanishes if and only if η vanishes.
Since [η] is precisely the obstruction to the splitting of the tangent sequence 0 →
T → f∗TM → N → 0, we conclude that the tangent sequence splits if and only
if η ≡ 0, i.e., if and only if σ ≡ 0. In other words, the tangent sequence splits
holomorphically if and only if f : X → M is a totally-geodesic immersion. ¤

§2 Holomorphic projective connections

2.1 Local expressions of holomorphic projective connections

For the description of holomorphic projective connections, we follow essen-
tially Gunning [G]. A holomorphic projective connection Π on an n-dimensional
complex manifold X, n > 1, consists of a covering U = {Uα} of coordinate open
sets, with holomorphic coordinates (z(α)

1 , · · · , z
(α)
n ), together with holomorphic

functions
(
αΦk

ij

)
1≤i,j,k≤n

on Uα symmetric in i, j satisfying the trace condition∑
k

αΦk
ik = 0 for all i and satisfying furthermore on Uαβ := Uα ∩ Uβ the transfor-

mation rule (†)

βΦ`
pq =

∑

i,j,k

αΦk
ij

∂z
(α)
i

∂z
(β)
p

∂z
(α)
j

∂z
(β)
q

∂z
(β)
`

∂z
(α)
k

+
[ ∑

`

∂z
(β)
`

∂z
(α)
k

∂2z
(α)
k

∂z
(β)
p ∂z

(β)
q

− δk
pσ(αβ)

q − δk
q σ(αβ)

p

]
,

where the expression in square brackets defines the Schwarzian derivative S(fαβ) of
the holomorphic transformation given by the change of variables z(α) = fαβ(z(β)),
in which

σ(αβ)
p =

1
n + 1

∂

∂z
(β)
p

logJ(fαβ),
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J(fαβ) = det
(

∂z
(α)
i

∂z
(β)
p

)
being the Jacobian determinant of the holomorphic change

of variables fαβ . The Schwarzian derivatives vanishes identically if and only if fαβ

is a projective linear transformation.

Given a holomorphic projective connection Π on X with a given open covering
U = {Uα} and local expressions

(
αΦk

ij

)
with respect to holomorphic coordinate

systems
(
z
(α)
1 , · · · , z

(α)
n

)
on Uα, the local expressions of Π with respect to another

choice of holomorphic coordinate systems
(
w

(α)
1 , · · · , w

(α)
n ) on Uα can be obtained

from the same transformation rule (†) in the above by considering
(
z
(α)
1 , · · · , z

(α)
n

)

as a holomorphic change of variables from
(
w

(α)
1 , · · · , w

(α)
n ). From this, given two

sets of data defining holomorphic projective connections Π and Π′, we can intro-
duce the notion of equivalence between them. Π and Π′ are said to be equivalent
if and only if there exists a common refinement W = {Wγ} of the respective open
coverings U and U ′, such that for each Wγ the local expressions of Π and Π′ with
respect to a fixed choice of holomorphic coordinate system

(
u

(γ)
1 , · · · , u

(γ)
n

)
agree

with each other. In place of using local expressions and introducing equivalence,
one can alternatively define holomorphic projective connections in an intrinsic
manner in analogy to the axiomatic definition of affine connections, as done in
Molzon-Mortensen [MM,§4], but we will not do so here.

2.2 Cohomological interpretation and tautological foliations
Holomorphic projective connections on a complex manifold X can be inter-

preted in cohomological terms as in Gunning [G,§6] (which deals with general
pseudogroups), as follows. The Schwarzian derivatives S(fαβ) constitutes a Čech
1-cocycle with values in S2T ∗ ⊗ T with respect to the open covering U = {Uα},
where T = TX denotes the holomorphic tangent bundle on X. The transforma-
tion rule (†) on

(
αΦk

ij

)
says that

∑α Φk
ijdz

(α)
i ⊗ dz

(α)
j ⊗ ∂

∂zk
is a 0-cochain whose

boundary is precisely −S(fαβ) = S(fβα). We write p(X) =
[
S(fβα)

]
, as an ele-

ment of H1(X,S2T ∗⊗T ). p(X) is the cohomological obstruction to the existence
of holomorphic projective connections on X.

Let V be an n-dimensional complex vector space. Then, the natural action
of GL(V ) on V induces an action on S2V ∗ ⊗ V . Representing elements of the
latter by

(
Ak

ij

)
in terms of a basis, we have Ak

ij = Ak
ji. There is a GL(V )-invariant

subspace P consisting of those elements satisfying the trace condition
∑

j Aj
ij = 0.

An element of P will be called a trace-free element. We have a decomposition
S2V ∗ ⊗ V = P ⊕Q as where both P and Q are irreducible GL(V )-representation
spaces (cf. Mok-Yeung [MY,§3]), and Q is isomorphic to V ∗. An element of
Q is called a trace element. Given A ∈ S2V ∗ ⊗ V , we have the decomposition
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A = AP +AQ with AP ∈ P and AQ ∈ Q. We call AP ∈ P the trace-free part of A,
and AQ ∈ Q the trace of A. The decomposition A = P +Q induces on any complex
manifold X a canonical direct sum decomposition S2T ∗ ⊗ T = E ⊕ F , F ∼= T ∗,
as holomorphic vector bundles. From the description of holomorphic projective
connections we have p(X) ∈ H1(X,E). Note that rank(E) = n(n+2)(n−1)

2 . In
particular, for n = 2, E is of rank 4.

We return to the local expressions of holomorphic projective connections
and proceed to relate them to affine connections. Let

(
αΓ

k

ij

)
be the Riemann-

Christoffel symbols of any (smooth) affine connection on X. Then, we can define
a torsion-free affine connection ∇ on X (cf. Molzon-Mortensen [MM,§4]) with
Riemann-Christoffel symbols

αΓk
ij = αΦk

ij +
1

n + 1

∑

`

δk
i

αΓ
`

`j +
1

n + 1

∑

`

δk
j

αΓ
`

i` (])

We say that ∇ is an affine connection associated to Π. Two affine connections
∇ and ∇′ on a complex manifold X are said to be projectively equivalent (cf.
Molzon-Mortensen [MM, §4]) if and only if there exists a smooth (1,0)-form ω

such that ∇ξζ −∇′ξζ = ω(ξ)ζ + ω(ζ)ξ for any smooth (1,0)-vector fields ξ and ζ

on an open set of X. It is clear that any two affine connections ∇ defined as in
(]) are projectively equivalent. For any complex submanifold S of X, the second
fundamental form of S in X is the same for two projectively equivalent affine
connections. (Here and henceforth by complex submanifold S ⊂ X we mean the
images of an injective holomorphic immersion such that S is locally closed in X.)
In particular, the class of complex geodesic submanifiolds S are the same. (A
1-dimensional complex geodesic submanifold will be called a complex geodesic.)
We will say that a complex submanifold S ⊂ X is geodesic with respect to the
holomorphic projective connection Π to mean that it is geodesic with respect to
any (torsion-free) affine connection ∇ associated to Π.

For an arbitrary affine connection one does not expect to find complex geodesic
submanifolds, even locally. In the case of a holomorphic projective connection Π
on X, given any coordinate open subset U ⊂ X, there is the flat affine connection
on U ; i.e., the Riemann-Christoffel symbols are Γ

k

ij = 0 in the given holomorphic
coordinate system; and hence we can associate a holomorphic torsion-free affine
connection ∇U to Π|U . Since ∇U is holomorphic, for every x ∈ U and any non-
zero (1,0)-vector η ∈ TxU there is a complex geodesic Λ ⊂ U passing through x

such that Tx(Λ) = Cη. Associated to X we have the projectivized holomorphic
tangent bundle π : PTX → X. Given any holomorphic curve C on X there is a
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tautological lifting of C to Ĉ ⊂ PTX by lifting x ∈ C to [Tx(C)] ∈ PTx(X). Thus,
given a holomorphic projective connection Π, by this tautological lifting we obtain
a holomorphic foliation F on PTX with 1-dimensional leaves, with the property
that dπ(F[η]) = Cη for every non-zero η ∈ Tx(X).

Suppose Π and Π′ are equivalent holomorphic projective connections. Let ∇
resp. ∇′ be an affine connection associated to Π resp. Π′ according to (]) with
respect to the same background affine connection. By passing to some common
refinement W of open coverings U resp. U ′ for Π resp. Π′, it follows readily from
the definition of equivalence of holomorphic projective connections that ∇ and ∇′
are the same. In particular, complex geodesics and hence the foliations F on PTX

are the same for equivalent holomorphic projective connections. We have in fact

Proposition 1. Let X be a complex manifold and π : PTX → X be its pro-
jectivized holomorphic tangent bundle. Then, there is a canonoical one-to-one
correspondence between the set of equivalence classes of holomorphic projective
connections on X and the set of holomorphic foliations F on PTX by tautological
liftings of holomorphic curves.

Proof. In the sequel we will sometimes refer to holomorphic foliations F on PTX

as in Proposition 1 simply as tautological holomorphic foliations on PTX (of leaf
dimension 1). We have seen how an equivalence class of holomorphic projective
connections on X defines a holomorphic foliation F on PTX by tautological liftings
of complex geodesics. Starting with a tautological holomorphic foliation on PTX ,
we are going to define an equivalence class of holomorphic projective connections.
Let U ⊂ X be an open subset and F1, F2 be holomorphic foliations on PTU

by tautological liftings of holomorphic curves. For any non-zero η ∈ TU we have
dπ(F i

[η]) = Cη, for 1 = 1, 2. F1 can be compared to F2, as follows. Let x ∈ U and
η be a nonzero vector in Tx(U). Then dπ(F1

[η]) = dπ(F2
[η]) = Cη. We can associate

to η ∈ Tx(U) two vectors τ1 ∈ F1
[η] and τ2 ∈ F2

[η], uniquely determined, such that
dπ(τ1) = dπ(τ2) = η, so that dπ(τ1− τ2) = 0, and v(η) := τ1− τ2 ∈ T[η]

(
(PTx(X)

)

is a ‘vertical’ tangent vector with respect to the projection π : PTX → X. Denoting
by L the tautological line bundle over PTX , we have obtained by the assignment of
v(η) to η an element t in Γ(PTU , L∗ ⊗ Tπ), where Tπ denotes the relative tangent
bundle of π : PTX → X. By Mok-Yeung [MY, §3] we have π∗(L∗⊗Tπ) ⊂ π∗(L∗)⊗
π∗(Tπ) ∼= T ∗ ⊗Endo(T ), where T = TX . Here π∗(L∗ ⊗ Tπ)x corresponds precisely
to

(
S2T ∗x ⊗ Tx

) ∩ (
Tx ⊗ Endo(Tx)

)
:= Ex. Thus, t ∈ Γ(U,L∗ ⊗ Tπ) corresponds

to a holomorphic tensor s ∈ Γ(U,E) ⊂ Γ(U, S2T ∗ ⊗ T ). With respect to local
holomorphic coordinates (z1, · · · zn) the holomorphic tensor s is represented by
holomorphic functions

(
Φk

ij

)
1≤i,j,k≤n

which are symmetric in i, j and which satisfy
10



furthermore the trace condition
∑

j Φj
ij = 0. We write s := δ(F1,F2), which is a

difference between tautological foliations.

Fix now a covering U = {Uα} of X by coordinate open sets Uα with holo-
morphic coordinates

(
z
(α)
1 , · · · , z

(α)
n

)
. The flat projective connection on each Uα

with respect to
(
z
(α)
i

)
defines a holomorphic foliation Fα on PTUα

by tautological
liftings of open subsets of affine lines in the complex Euclidean space with coor-
dinates

(
z
(α)
i

)
. Define sα := δ(F|Uα

,Fα). In terms of the coordinates
(
z
(α)
i

)
we

write sα =
∑

i,j,k
αΦk

ijdz
(α)
i ⊗dz

(α)
j ⊗ ∂

∂z
(α)
k

. We claim that
(
αΦk

ij

)
1≤i,j,k≤n

are the

local expressions of a holomorphic projective connection Π on X. It suffices to

check that the transformation rule (†) βΦ`
pq =

∑
i,j,k

αΦk
ij

∂z
(α)
i

∂z
(β)
p

∂z
(α)
j

∂z
(β)
q

∂z
(β)
`

∂z
(α)
k

+S(fαβ)

is satisfied. The first term on the right-hand side consists precisely of the local
coefficients of the holomorphic tensor sα in terms of the holomorphic coordinates(
z
(β)
i

)
. From sα := δ(F|Uα ,Fα) it follows that on Uαβ = Uα ∩ Uβ we have

sβ − sα = δ(F|Uβ
,Fβ)− δ(F|Uα ,Fα) = δ(Fα|Uαβ

,Fβ |Uαβ
), which in terms of the

holomorphic coordinate system
(
z
(β)
i

)
is nothing other than the Schwarzian deriv-

ative S(fαβ). The construction of the holomorphic projective connection Π from
the holomorphic foliation F depends on the choice of an atlas U , but from its defi-
nition it follows readily that a change of atlas results in an equivalent holomorphic
projective connection.

Starting with an equivalence class of holomorphic projective connections {Π},
giving rise to a tautological holomorphic foliation F on PTX , it follows from the
second-order holomorphic differential equation satisfied by complex geodesics that
from sα := δ(F|Uα ,Fα) we recuperate precisely {Π}. The same calculation implies
that the process can be reversed, starting with a tautological holomorphic folia-
tion of leaf dimension 1 on PTX , and we have established a canoncial one-to-one
correspondence between equivalence classes of holomorphic projective connections
on X and tautological holomorphic foliations of leaf dimension 1 on PTX . ¤

From now on we will not make any distinction between a holomorphic pro-
jective connection and an equivalence class of holomorphic projective connections.

Let M be a complex manifold equipped with a holomorphic projective con-
nection Π, and X ⊂ M be a complex submanifold. As implicit in the discussion
preceding the statement of Proposition 1, where the notion of complex geodesics,
the second fundamental form σ of X in M with respect to any affine connection
∇ associated to the projective connection Π by means of (]) is independent of the
choice of the background affine connection. We call σ the projective second funda-
mental form of X ⊂ M with respect to Π. Since locally we can always choose the
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flat background affine connection it follows that the projective second fundamental
form is holomorphic.

2.3 Holomorphic projective connections on Kähler manifolds of constant
holomorphic sectional curvature

Consider now the situation where M is a complex hyperbolic space form, a
complex Euclidean space form, or the complex projective space. M is equipped
with a canonical Kähler metric g of constant negative resp. zero resp. posi-
tive holomorphic sectional curvature. The universal covering space of M is the
complex unit ball Bn resp. the complex Euclidean space Cn resp. the complex
projective space Pn (itself), equipped with the Bergman metric resp. the Eu-
clidean metric resp. the Fubini-Study metric. We say that X is of noncompact
resp. Euclidean resp. compact type. For Cn the family of affine lines leads to
a tautological foliation Fo on the projective tangent bundle, and g is associated
to the flat holomorphic projective connection. In the case of Pn the projective
lines, which are closures of the affine lines in Cn ⊂ Pn, are totally-geodesic with
the Fubini-Study metric g. In the case of Bn ⊂ Cn, the intersections of affine
lines with Bn give precisely the minimal disks which are totally-geodesic with re-
spect to the Bergman metric g. As a consequence, the tautological foliation F
on PTPn defined by the tautological liftings of projective lines, which is invariant
under the projective linear group Aut(Pn) ∼= PGL(n + 1), restricts to tautological
foliations on Cn resp. Bn, and they descend to quotients X of Cn resp. Bn by
torsion-free discrete groups of holomorphic isometries of Cn resp. Bn, which are
in particular projective linear transformations. The holomorphic projective con-
nection on Pn corresponding to F by means of Proposition 1 will be called the
canonical holomorphic projective connection. The same term will apply to holo-
morphic projective connections induced by the restriction of F to Cn and to Bn

and to the tautological foliations induced on their quotient manifolds X as in the
above. Relating the canonical holomorphic projective structures to the canonical
Kähler metric g, we have the following result which in particular gives another
proof of the holomorphicity of the second fundamental form σ defined in terms of
Kähler geometry in (1.1), Lemma 1.

Lemma 2. Let (M, g) be a complex hyperbolic space form, a complex Euclidean
form, or the complex projective space equipped with the Fubini-Study metric. Then,
the affine connection of the Kähler metric g is associated to the canonical holo-
morphic projective connection on M . As a consequence, given any complex sub-
manifold X ⊂ M , the second fundamental form on X as a Kähler submanifold of

12



(M, g) agrees with the projective second fundamental form of X in M with respect
to the canonical holomorphic projective connection.

Proof. The complex geodesics on M with respect to the canonical holomorphic
projective connection are also complex geodesics with respect to the canonical
metric g. On a sufficiently small open subset U ⊂ M choose holomorphic coordi-
nates obtained by identifying M locally with open subset of the complex projective
space by means of the universal covering map. In terms of these local holomor-
phic coordinates let

(
Γk

ij

)
be the (1,0)-part of the Riemann-Christoffel symbols.

Regard Γk
ij as components of a tensor Γ belonging to S2T ∗U ⊗ TU , noting that this

tensor depends on the choice of local coordinates. Then, from total geodesy of
(open subsets of) affine lines we conclude that at every x ∈ U , β∗(Γ(α, α)) = 0 for
every α ∈ Tx(U), and for every β∗ ∈ T ∗x such that β∗(α) = 0. Recall the canonical
decomposition S2T ∗U ⊗ TU = E ⊕F as explained in (2.2). Note that α⊗α⊗ β∗ is
trace-free, hence belonging to Ex. From the irreducibility of Ex under the natural
action of GL(V ) we conclude that Γ takes values in F . This means that there exist
smooth functions vj such that Γk

ij = δk
i vj + δk

j vi. By comparing with the equation
(]) relating holomorphic projective connections to Riemann-Christoffel symbols it
follows that the affine connection of (M, g) is associated to the canonical holomor-
phic projective connection on M , as asserted. The last statement follows from
our definition of the projective second fundamental form in the last paragraph of
(2.2). ¤

Using Proposition 1 in (2.2) it is possible to define the projective second
fundamental form by means of the tautological foliation, without any reference to
affine connections. Let M be a complex manifold equipped with a holomorphic
projective connection, i.e., equivalently, a tautological foliation F , by Proposition
1. Let X ⊂ M be a complex submanifold, and denote by N the normal bundle
of the embedding. Let x ∈ X and α ∈ Tx(M) be a nonzero tangent vector. Let
Cα be a local holomorphic curve on M passing through x such that Tx(Cα) = Cα

and such that the tautological lifting Ĉα to PTM is a local leaf of the tautological
foliation. Let now Dα be any local holomorphic curve on X ⊂ M passing through
x such that Tx(Dα) = Cα, and denote by D̂α the tautological lifting of Dα. Denote
by π : PTM → M the canonical projection, and by L the tautological line bundle
over PTM . Let ξ ∈ T[α](Ĉ[α]) ⊂ T[α](PTx(M)) be such that dπ(ξ) = α. Let
η ∈ T[α](Ĉ[α]) ⊂ T[α](PTx(M) be such that dπ(η) = α. Then dπ(ξ − η) = 0, so
that ξ− η ∈ T[α]

(
PTx(M)

)
, which is canonically isomorphic to L∗[α]⊗Tx(M)/L[α].

Composing with the canonical projection ρ = idL[α] ⊗ ρo, ρo := Tx(M)/L[α] →
13



Tx(M)/Tx(X) = π∗Nx, the assignment of [α] to ρ(ξ − η) is independent of the
choice of D[α]. Furthermore this assignment is holomorpic in [α], leading therefore
to a section s ∈ Γ

(
PTX , L−2⊗π∗N

)
, which is equivalent to a holomorphic section

σ ∈ Γ
(
X, S2T ∗X⊗N

)
. As can be easily verified, σ agrees with the projective second

fundamental form of X in M with respect to the given holomorphic projective
connection.

An n-dimensional complex manifold X is said to admit a holomorphic pro-
jective structure if its universal covering space X̃ admits a local biholomorphism
ρ : X̃ → Pn, which is called a developing map. The holomorphic projective
connection on Pn then induces a holomorphic projective connection on X. A holo-
morphic projective connection on a complex manifold is said to be integrable if it
is induced by a holomorphic projective structure, i.e., by a developing map into the
complex projective space. Integrability of holomorphic projective connections do
not concern us here. We note however that the canonical holomorphic projective
connections on Pn and on compact complex hyperbolic space forms are the unique
holomorphic projective connections on these manifolds (cf. Mok-Yeung [MY], for
the latter case).

§3 Linking second fundamental forms to holomorphic projective con-
nections

3.1 A homomorphism between first cohomology groups defined by the
second fundamental form

We restate Theorem 2 in the following more precise form. For its formulation
recall as in (2.1) that on a complex manifold X, writing T = TX , we have a direct
sum decomposition S2T ∗ ⊗ T = E ⊕F , where F ∼= T ∗ and E consists of elements
(Ak

ij) satisfying the trace condition
∑

j Aj
ij = 0. Denote by πE : S2T ∗ ⊗ T → E

the canonical holomorphic bundle epimorphsm. We have

Theorem 2 (precise form). Let X be a complex manifold, and M be a com-
plex hyperbolic space form, a complex Euclidean space form or the complex pro-
jective space. Let p(X) ∈ H1(X, E) be the obstruction class to the existence
of holomorphic projective connections on X. Denote by T = TX the holomor-
phic tangent bundle of X, and by TM the holomorphic tangent bundle of M .
Let f : X → M be a holomorphic immersion, and N := Nf = f∗TM/T be
its normal bundle, σ ∈ Γ(X,S2T ∗ ⊗ N) be the second fundamental form, and
ν(f) ∈ H1(X, T ⊗N∗) be the obstruction class to the holomorphic splitting of the
tangent sequence 0 → T → f∗TM/T → N → 0. Let ψ : T ⊗ N∗ → S2T ∗ ⊗ T
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be defined by
(
ψ(ξ ⊗ θ∗)

)
(λ ⊗ µ) = θ∗(σ(λ, µ))ξ for any x ∈ X; ξ, λ, µ ∈ Tx;

θ∗ ∈ N∗
x , and ϕ : T ⊗N∗ → E be defined by ϕ = πE ◦ ψ. Then, ϕ∗

(
ν(f)

)
= p(X)

for the induced linear map ϕ∗ : H1(X, T ⊗N∗) → H1(X, E) on first cohomology
groups. In particular, X admits a holomorphic projective connection if and only
if ϕ∗(ν(f)) = 0.

Proof. By the proof of Theorem 1, ν(f) is represented by the T ⊗ N∗-valued
(0,1)-form η. Recall that

η =
∑

i,j,k,α,γ

gijhαγσγ
jk

∂

∂zi
⊗ eα ⊗ dzk. (1)

In what follows the notation ϕ∗, etc. for a bundle homorphism ϕ will denote both
the induced map on differential forms and an cohomology classes, as is clear from
the context. For the homomorphism ψ∗ : H1(X,T ⊗ N∗) → H1(X, S2T ∗ ⊗ T )
on first cohomology groups, the cohomology class ψ∗(ν(f)) is represented by the
S2T ∗ ⊗ T -valued (0,1)-form

ψ∗(η) :=
∑

i,j,k,p,q,α,γ

gijhαγσα
pqσ

γ
jk

∂

∂zi
⊗ dzp ⊗ dzq ⊗ dzk. (2)

Composing with the canonical projecting πE of S2T ∗ ⊗ T onto E we obtain

ϕ∗(η) :=
∑

i,k,p,q

Ai
pqk

∂

∂zi
⊗ dzp ⊗ dzq ⊗ dzk;

Ai
pqk

=
∑

j,α,γ

(
gijhαγσα

pqσ
γ
jk −

1
n + 1

∑

`

(
δi
pg

`jhαγσα
`qσ

γ
jk + δi

qg
`jhαγσα

p`σ
γ
jk

))
. (3)

To prove Theorem 2 assume first of all that X admits a holomorphic projective
connection, i.e., p(X) = 0. We are going to prove in this case that ϕ∗(η) is ∂-
exact. The main point is to make use of the holomorphic projective connections
to lift the second fundamental form locally to a holomorphic section with values
in S2T ∗ ⊗ TM . The liftings will not be unique, but will be unique modulo trace
elements of S2T ∗ ⊗ T . This will allow us to solve the equation ∂τ = ϕ∗(η) by
means of orthogonal projections.

Denote by E the tautological foliation on PTM corresponding to the holomorphic
projective structure on M , and by F the tautological foliation on PTX corre-
sponding to the given holomorphic projective connection on X. Let x ∈ X and
α ∈ Tx(X) be a nonzero tangent vector. Let Cα resp. Dα be local holomorphic
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curves on M resp. X passing through x and tangent to α such that their tautologi-
cal liftings Ĉα to PTM resp. D̂α to PTX are integral curves of E resp. F . Denote by
π : PTM → M the canonical projection, by L the tautological line bundle over PTM

and by Tπ the relative tangent bundle of π. To simplify notations we will write as if
X were embedded in M , so that PTX ⊂ PTM , L

∣∣
PTX

is the tautological line bundle

over PTX , etc. Let ξ ∈ T[α](Ĉα) and η ∈ T[α](D̂α) be such that dπ(ξ) = dπ(η) = α.
Then, dπ(ξ−η) = 0, and the assignment of α to ξ−η ∈ Tπ,[α] ⊂ T[α]

(
PTM

)
defines

a holomorphic section s[ in Γ(PTX , L∗ ⊗ Tπ). Note that here Tπ is the relative
tangent bundle of π : PTM → M , restricted to PTX . From Tπ

∼= L∗ ⊗ π∗TM/L

we have s[ ∈ Γ(PTX , L−2 ⊗ π∗TM/L). On a Stein open neighborhood U of x ∈ X

consider the exact sequence 0 → L∗ → L−2 ⊗ π∗TM → L−2 ⊗ π∗TM/L → 0 over
PTU . Since H1(PTx, L∗) = H1

(
PTx,O(1)

)
= 0 we obtain by taking direct images

a short exact sequence

0 → π∗L∗ → π∗(L−2 ⊗ π∗TM ) → π∗(L−2 ⊗ π∗TM/L) → 0 (\)

Since U is Stein, H1(U, π∗L∗) = 0, and s[ ∈ Γ(PTU , L−2⊗π∗TM/L) lifts by (\) to
some s̃ ∈ Γ(PTU , L−2 ⊗ π∗TM ), which corresponds to some σ̃ ∈ Γ(U, S2T ∗ ⊗ TM ).
Any two liftings σ̃ of σ ∈ Γ(U, S2T ∗ ⊗ N) obtained this way differ by a section
ζ ∈ Γ(U,F ), where F ∼= T ∗ is the vector bundle of trace elements in S2T ∗ ⊗ T .

Define now a smooth E-valued (0,1)-form τ from σ̃, as follows. Let ρo : TM → T

be the orthogonal projection and ρ : S2T ∗ ⊗ TM → S2T ∗ ⊗ T be given by ρ =
idS2T∗ ⊗ ρ0. Define τ to be the trace-free part of ρ∗σ̃, so that τ is independent of
the choice of lifting σ̃ and is globally defined on X. We assert that ∂τ = ϕ∗(η).
In the following equations i, p, q range from 1 to n, while ` ranges from 1 to m. In
terms of local holomorphic coordiantes write

σ̃ =
∑

p,q,`

σ̃`
pqdzp ⊗ dzq ⊗ ∂

∂z`
. (4)

Writing

ρo =
∑

i,`

ρi
`dz` ⊗ ∂

∂zi
, (5)

we have
ρ∗σ̃ =

∑

i,p,q,`

ρi
`σ̃

`
pqdzp ⊗ dzq ⊗ ∂

∂zi
(6)

Now ρo

∣∣
T

is the identity map, so that ∂ρo as a Hom(TM , T )-valued (0,1)-form
vanishes on T , inducing thus a T ⊗N∗-valued (0,1)-form. As is well-known, this
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is nothing other than η in the notation of Theorem 1 in (1.2). At the same time,
when ∂ρo acts on σ̃, only σ̃(λ, µ) mod T matters, which gives precisely σ. Thus

∂(ρ∗σ̃) =
∑

i,k,p,q,α

ηi
αk

σα
pq

∂

∂zi
⊗ dzp ⊗ dzq ⊗ dzk; (7)

where i, k, p, q range from 1 to n; and α ranges from 1 to n−m. By the definition
of ψ the right-hand side of Eqn.(7) gives precisely ψ∗(η), which is written out more
explicitly in Eqn.(2). If we take the trace-free part of both sides, we get

∂τ = ϕ∗(η), (8)

where ϕ∗(η) is written out more explicitly in Eqn.(3). This proves Theorem 3
assuming that X admits a holomorphic projective connection, i.e., p(X) = 0.

In the general case we cover X by an atlas U = {Uα} of Stein open sets Uα where
each Uα is equipped with a holomorphic projective connection whose associated
tautological foliation will be denoted by Fα. Over each Uα we have no difficulty
lifting σ ∈ Γ(Uα, S2T ∗ ⊗ N) to σ̃(α) ∈ Γ(Uα, S2T ∗ ⊗ TM ). From this we obtain
smooth E-valued (0,1)-form τ (α) on Uα such that ∂τα = ϕ∗(η) on Uα. Define now
λαβ := τ (α) − τ (β). Then, ∂λαβ = 0 on the overlaps Uαβ = Uα ∩ Uβ , so that
(λαβ) defines a Čech 1-cocycle with values in E. But this 1-cocycle is obtained
because we use possibly distinct background holomorphic projective connections
on Uαβ , and λαβ is nothing other than the difference δ(Fβ ,Fα) of the tautological
foliations. In other words, (λαβ) represents precisely p(X) ∈ H1(X, E). But by
construction (λαβ) represents the same cohomology class as that of ϕ∗(η), under
the canonical isomorphism between Čech and Dolbeault-Grothendieck cohomolo-
gies. Thus, ϕ∗

(
ν(f)

)
= p(X), desired. ¤.

3.2 Holomorphic splitting of the tangent sequence via the second fun-
damental form – the case of surfaces

Using Theorem 2 we proceed to examine the criterion for the holomorphic
splitting of the tangent sequence in terms of holomorphic projective connections
and in terms of properties of the second fundamental form. To start with we
consider the case where the domain manifold is of dimension 2 and the target
manifold is of dimension 4, as follows.

Theorem 3. In the notations of Theorem 2 suppose dim(X) = 2, dim(M) = 4,
and X admits a holomorphic projective connection, i.e., p(X) = 0. Denote by
π : L → PTX the tautological line bundle over the projectivized tangent bundle
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PTX , and by s ∈ Γ
(
PTX , L−2 ⊗ π∗N

)
the holomorphic section corresponding to

σ ∈ Γ
(
X, S2T ∗X ⊗ N

)
. Suppose s is nowhere zero on PTX . Then, the tangent

sequence splits holomorphically, i.e., ν(f) = 0. When X is compact this can never
happen.

For the proof of Theorem 3 we need first of all to examine the pointwise
condition under which the induced bundle homomorphism ϕ as in the statement
of Theorem 2 will be an ismorphism, in the special case of domain dimension 2
and target dimension 4. It is a completely algebraic statement, as follows.

Lemma 3. Let V and W be 2-dimensional complex vector spaces, and write
S2V ∗ ⊗ V = P + Q, where P consists of trace-free elements and Q consists of
trace elements. Let s ∈ S2V ∗ ⊗ W , and ψs : V ⊗ W ∗ → S2V ∗ ⊗ V be de-
fined by ψs(ξ ⊗ θ∗)(λ ⊗ µ) = θ∗(s(λ, µ))ξ for any ξ, λ, µ ∈ V ; θ∗ ∈ W ∗. Let
ϕs : V ⊗W ∗ → P, dim(V ⊗W ∗) = dim(P ) = 4, be defined by ϕs = πP ◦ψ, where
πP : S2V ∗ ⊗ V → P is the canonical projection. Then ϕs is an isomorphism if
and only if for every nonzero α ∈ V , we have s(α, α) 6= 0.

Proof. Regard also s ∈ S2V ∗ ⊗ W as an element of Hom(S2V, W ). We have at
the same time a homomorphism t ∈ Hom(W ∗, S2V ∗) defined by t(θ∗)(λ, µ) =
θ∗(s(λ, µ)) for any θ∗ ∈ W ∗λ, µ ∈ V , which is the transpose of s. Thus, t is
injective if and only if s is surjective. The homomorphism ψs : V ⊗W ∗ → S2V ∗⊗V

is nothing other than t ⊗ idV . Representing elements of S2V by 2-by-2 matrices
any nonzero element is either of rank 1 or rank 2. Those of rank 1 correspond by
projectivization to a smooth quadric Z ⊂ P(S2V ). If s fails to be surjective then
Ker(s) is at least 2-dimensional, so that P

(
Ker(s)

) ∩ Z 6= ∅. Thus, when s is not
surjective, on the one hand s(α, α) = 0 for some nonzero α, on the other hand ψs

and hence ϕs fails to be injective. To prove Lemma 3 it suffices therefore to restrict
to the case where s is surjective, in which case Ker(s) must be 1-dimensional.
Write Ker(s) = Cη. If 0 6= η ∈ S2V is of rank 2, then there exists linearly
independent vectors α, β ∈ V such that η = α ⊗ β + β ⊗ α, so that s(α, β) = 0.
Thus, in terms of the basis α, β for V and any basis for W ,

(
s1

ij

)
and

(
s2

ij

)
are

simultaneously diagonal matrices such that
(
s1
11, s

1
22) and

(
s2
11, s

2
22) are linearly

independent. (From this we also see that t and hence ψs is injective.) To show that
ϕs is an isomorphism it remains to verify that

(
Im(t)⊗ V

)∩Q = 0. Any element
A in Im(t) ⊗ V is of the form

(
Ak

ij

)
with Ak

ij = ak
1s1

ij + ak
2s2

ij for some constants
ak

` ; k, ` = 1, 2; which implies A1
12 = A2

12 = 0. From A ∈ Q we have A1
22 = A2

11 = 0.
When combined with A ∈ Im(t) ⊗ V we have A1

11 = 2A2
12 = 0, A2

22 = 2A1
21 = 0,

forcing A = 0. Thus, if s(α, α) 6= 0 for any nonzero α, we have proven that ϕs
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is an isomorphism. If on the other hand s(α, α) = 0 for some nonzero α then
choosing β independent of α and using α, β as an ordered basis of V we have
s1
11 = s2

11 = 0. Since t is injective choosing a suitable basis of W we may assume
s1
12 = s1

21 = 1, s1
22 = 0; s1

12 = s1
21 = 0, s1

22 = 1. Writing α = e1, β = e2; and writing
e1, e2 for a dual basis of e1, e2, we have Im(t) = Span

(
e1⊗ e2 + e2⊗ e1, e2⊗ e2

)
. It

follows that Imψs ⊃ Span
(
e1 ⊗ e2 ⊗ e1 + e2 ⊗ e1 ⊗ e1, e

2 ⊗ e2 ⊗ e2

)
. In particular,

B = e1⊗ e2⊗ e1 + e2⊗ e1⊗ e1 +2e2⊗ e2⊗ e2 lies on Im(ψs), where B ∈ Q. Thus,
Ker(ϕs) 6= 0. The proof of Lemma 3 is complete. ¤

By means of Lemma 3 we have immediately

Proof of Theorem 3. In the notations of the statement of Theorem 3, and applying
Lemma 3 to each point x ∈ X with V = Tx,W = Nx, s = σ(x), we obtain a
holomorphic bundle isomorphism ϕ : T ⊗ N∗ ∼= E. Thus, the induced map on
first cohomology groups ϕ∗ : H1(X, T ⊗ N∗) → H1(X,E) is an isomorphism. If
X admits a holomorphic projective connection, we have p(X) = 0. By Theorem 2
we have ϕ∗(ν(f)) = p(X), hence ν(f) = 0. In other words, the tangent sequence
0 → T → TM → N → 0 splits holomorphically. In the case where X is compact, by
Theorem 1 the tangent sequence splits holomorphically if and only if f : X → M is
totally geodesic. In this case σ ≡ 0, which means that the hypothesis of Theorem
3 can never be satisfied in the case where X is compact. ¤

Remarks

In the case of holomorphic immersions of compact complex surfaces X into 4-
dimensional Kähler space forms of constant holomorphic sectional curvature sat-
isfying some nondegeneracy assumptions (cf. §4, Questions 1 and 2), Theorem
3 says that outside of some nonempty algebraic curve determined by the holo-
morphic immersion, there exists a holomorphic splitting of the tangent sequence
determined by the second fundamental form and the given holomorphic projective
connection.

3.3 Holomorphic splitting of the tangent sequence via the second fun-
damental form – the higher-dimensional case

We examine now a generalization of Theorem 3 to the case of holomorphic
immersions of n-dimensional complex manifolds into Kähler space forms of con-
stant holomorphic sectional curvature. On an n-dimensional complex manifold
X a symmetric 2-vector, i.e., an element of S2T , where T denotes TX , can be
represented as a symmetric n-by-n matrix in terms of local coordinates. The de-
terminant of the matrix representative gives a well-defined bundle homomorphism
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δ : Sn(S2T ) → K−2, where K = KX is the canonical line bundle. We will write
det(η) for δ(η, · · · , η). A symmetric 2-vector η will be said to be generic if and
only if det(η) 6= 0.

When X is the complex projective space Pn, we have the Veronese embedding
v : Pn → P

(n+1)(n+2)
2 −1, e.g., v : P2 → P5 and v : P3 → P9, for which the second

fundamental form σ : S2T → N is a holomorphic bundle isomorphism. In general,
suppose f : X = Pn → P

(n+1)(n+2)
2 −1 is a holomorphic immersion such that the

second fundamental form σ : S2T → N is a bundle isomorphism, by computing
the determinant of σ it follows readily that f is of degree 2, i.e., f∗O(1) ∼= O(2).
Since dim

(
Γ(Pn,O(2)

)
= (n+1)(n+2)

2 it follows that f is congruent to the Veronese
embedding. On the other hand it is impossible for an n-dimensional compact
complex hyperbolic space form X to be holomorpically immersed into a compact
complex hyperbolic space form M of dimension (n+1)(n+2)

2 − 1 in such a way that
the second fundamental form σ : S2T → N is a bundle isomorphism, as can be
seen from a direct computation on the curvature of det(S2T ) and det(N). On
the totally geodesic case det(S2T ) is already more negative than det(N), and that
remains the case in general because of the curvature decreasing property on Her-
mitian holomorphic vector subbundles resulting from the Gauss equation. As a
generalization to Theorem 3 we will examine holomorphic immersions where the
target dimension is one short of the target dimension in the Veronese embedding.
One motivation for this, as is already in the case of Theorem 3, is to examine the
obstruction to the existence of holomorphic immersions between complex hyper-
bolic space form when the domain manifold is compact (cf. §4, Questions 1 and
2). As an algebraic preliminary we have the following analogue of Lemma 3.

Lemma 3’. Let V be an n-dimensional complex vector spaces, and write S2V ∗⊗
V = P + Q, where P consists of trace-free elements and Q consists of trace ele-
ments. Let W be a complex vector space of dimension (n+2)(n−1)

2 . Let s ∈ S2V ∗⊗
W and ψs : V ⊗W ∗ → S2V ∗ ⊗ V be defined by ψs(ξ ⊗ θ∗)(λ⊗ µ) = θ∗(s(λ, µ))ξ
for any ξ, λ, µ ∈ V ; θ∗ ∈ W ∗; and ϕs : V ⊗W ∗ → P , dim(V ⊗W ∗) = dim(P ) =
n(n+2)(n−1)

2 be defined by ϕs = πP ◦ψ, where πP : S2V ∗⊗V → P is the canonical
projection. Then, ϕs is an isomorphism if and only if for every nonzero generic
2-vector η ∈ S2V , we have s(η) 6= 0.

Proof. The proof is a generalization of the special case of n = 2, i.e., Lemma 3. s

and t carry similar meaning and interpretation as in the proof there. Representing
elements of S2V by 2-by-2 matrices any nonzero element is of rank 1, 2, · · · , or n.
Those of rank less than n correspond by projectivization to a hypersurface Z ⊂
P(S2V ) defined by the vanishing of the determinant. If s fails to be surjective
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then Ker(s) is at least 2-dimensional, so that P
(
Ker(s)

) ∩ Z 6= ∅. Thus, as in the
proof of Lemma 3 it suffices to restrict to the case where s ∈ Hom(S2V,W ∗) is
surjective, equivalently where t ∈ Hom(W ∗, S2V ∗) is injective.

If 0 6= η ∈ S2V is of rank n, then there exists a basis e1, · · · , en of V ; with dual
basis e1, · · · , en; with respect to which η = e1 ⊗ e1 + · · ·+ en ⊗ en. (Note that we
are adopting a different choice of basis which is more convenient for n general.)
Since t is injective and ψs = t⊗ idV , Im(ψs) is of codimension n in S2V ∗⊗ V . To
show that ϕs is an isomorphism it remains to verify that

(
Im(t) ⊗ V

) ∩ Q = 0.
Choose any basis for W . Any element A in Im(t) ⊗ V is of the form

(
Ak

ij

)
with

Ak
ij =

∑
` ak

` s`
ij some constants ak

` ; 1 ≤ k ≤ n; 1 ≤ ` ≤ (n+2)(n−1)
2 . Together with

s(e1 ⊗ e1 + · · ·+ en ⊗ en) = 0, this implies Ak
11 + · · ·+ Ak

nn = 0. From A ∈ Q we
have Ak

ij = 0 whenever k 6= i, j. It remains to verify that Ai
ii = 0 and Ak

ik = 0 for
1 ≤ i, k ≤ n; i 6= k. It is enough to show A1

11 = A2
11 = 0. From A ∈ Im(t) ⊗ V

it follows that A1
11 + · · · + A1

nn = 0. From A ∈ Q we have A1
22 = · · · = A1

nn = 0,
which then forces A1

11 = 0. On the other hand from A ∈ Q we have A1
11 = 2A2

12,
which forces also A2

12 = 0, as desired. Thus, if Ker(s) is generated by a 2-vector η

of rank n we have proven that
(
Im(t)⊗ V

) ∩Q = 0, hence ϕs is an isomorphism.

If on the other hand Ker(s) is generated by some some nonzero η of rank k < n

we can choose a basis e1, · · · , en of V ; with dual basis e1, · · · , en; with respect to
which η = e1⊗e1+· · ·+ek⊗ek. We have Im(t) ⊃ Span

(
e1⊗en+en⊗e1, · · · , en−1⊗

en + en ⊗ en−1, en ⊗ en
)
. It follows that Imψs ⊃ Span

(
e1 ⊗ en ⊗ e1 + en ⊗ e1 ⊗

e1, · · · , en−1 ⊗ en ⊗ en−1 + en ⊗ en−1 ⊗ en−1, e
n ⊗ en ⊗ en

)
. In particular, B =(

e1⊗en⊗e1+en⊗e1⊗e1

)
+· · ·+(

en−1⊗en⊗en−1+en⊗en−1⊗en−1

)
+2

(
en⊗en⊗en

)

lies on Im(ψs), where B ∈ Q. Thus, Ker(ϕs) 6= 0. The proof of Lemma 3’ is
complete. ¤

Using Lemma 3’ in place of Lemma 3 by the same proof as that of Therorem
3 we have the following immediate generalization to the situataion of holomorphic
immersions of n-dimensional complex manifolds.

Theorem 3’. In the notations of Theorem 2 and 3 suppose dim(X) = n, dim(M) =
(n+1)(n+2)

2 −2, and, X admits a holomorphic projective connection, i.e., p(X) = 0.
Suppose the second fundamental form σ : S2T ∗ → N is a surjective bundle ho-
momorphism, and the 1-dimensional kernel Ker(σ) is generated at each point by
a generic symmetric 2-vector. Then, the tangent sequence splits holomorphically,
i.e., ν(f) = 0. When X is compact this can never happen.

§4 Some open problems
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4.1 Holomorphic immersions on compact Kähler manifolds of constant
holomorphic sectional curvature

One of our primary motivations is the study of holomorphic immersions be-
tween compact Kähler manifolds which are space forms of constant holomorphic
sectional curvature. We note that up to a finite unramified covering a compact
complex Euclidean space form is nothing other a compact complex torus. Be-
cause of the monotocity property on holomorphic sectional curvatures of complex
submanifolds of Kähler manifolds, a number of cases are obviously ruled out by
analogues of the Gauss-Bonnet Theorem. For instance, it is not possible to im-
merse a compact complex torus into a complex hyperbolic space form, and any
holomorphic immersion from a compact complex torus to a complex Euclidean
space form is necessarily totally-geodesic. On the more interesting side in the case
of holomorphic immersions between complex projective spaces, Feder [F] proved
that any holomorphic immersion from Pn into PN is necessarily linear provided
that N ≤ 2n−1. He did this by using the vanishing of the top Chern class cn(ν) for
the normal bundle ν of the holomorphic immersion and by a computation of cn(ν)
using the topological splitting of the tangent sequence of the immersion. The same
proof also shows that under the same dimension restriction an n-dimensional com-
pact hyperbolic space form or compact complex torus cannot be holomorphically
immersed into PN . The dual version of Feder’s result for holomorphic immer-
sions from an n-dimensional compact complex hyperbolic space form X = Bn/Γ
into a (not necessary compact) complex hyperbolic space form Y = BN/Γ′ for
N ≤ 2n − 1 was obtained by Cao-Mok [CM] using the Proportionality Principle,
an adaptation of Feder’s argument, and a study of holomorphic foliations associ-
ated to second fundamental forms. A simple computation of Chern classes also
shows that under the same dimension restriction an n-dimensional compact hy-
perbolic space form cannot be holomorphically immersed into a compact complex
torus. We can conclude that

Theorem 4. Given N ≤ 2n − 1, an n-dimensional compact Kähler manifold X

of constant holomorphic sectional curvature cannot be holomorphically immersed
into a Kähler manifold M of constant holomorphic sectional curvature, except in
the case of a totally-geodesic holomorphic immersion between Kähler space forms
of the same type.

4.2 Immersions of complex surfaces into 4-dimensional Kähler manifolds
of constant holomorphic sectional curvature

The first interesting case not accessible by the methods described above is in
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the case when n = 2 and N = 4. In this case we have the following question

Question 1. Let Σ ⊂ Ω be a germ of 2-dimensional complex submanifold of the 4-
dimensional complex Euclidean space C4. Let T be the holomorphic tangent bundle
TΣ of Σ, N be the normal bundle on Σ of the germ of holomorphic embedding
Σ ⊂ C4, and σ ∈ Γ(Σ, S2T 2 ⊗ T ) be the second fundamental form. Denote by
E ⊂ S2T ∗⊗T the 4-dimensional holomorphic vector subbundle consisting of trace-
free elements and ϕ : T ∗ ⊗ N → E be the holomorphic bundle map defined in
terms of the second fundamental form as in (2.3). Characterize those germs of
holomorphic embedding Σ ⊂ C4 for which ϕ has a nontrivial kernel everywhere.

Such germs of holomorphic embeddings Σ ⊂ C4 ought to be very special.
Locally if we take Σ to be a complex surface in complex Euclidean space ruled
by open subsets of complex affine lines which is not totally geodesic, then the
Ricci form with respect to the restricted Euclidean metric may or may not have
a nontrivial kernel (cf. Mok [M,§7]). In the case where the kernel is nontrivial,
then the second fundamental form σ has 1-dimensional image at a general point.
Otherwise, σ has two-dimensional images at a general point. In the latter case
σ(α, α) = 0 for every (1,0) vector α tangent to leaves of the foliation (ruling)
by open subsets of affine lines. If we take the ambient Euclidean space to be
4-dimensional this gives local examples of holomorphic embeddings Σ ⊂ C4 such
that at every point the bundle homomorphism ϕ : T ⊗ N∗ → E fail to be an
isomorphism.

When in place of a germ of holomorphic embedding we consider a global holo-
morphic immersion f : X → M from a compact 2-dimensional complex manifold
X into a 4-dimensional complex manifold M which is a complex hyperbolic space
form, a complex Euclidean space form or the projective space, further restrictions
for global reasons should exclude most of those characterized by an answer to
Question 1. Thus we have

Question 2. In the global situation let f : X → M be a holomorphic immersion
from a compact 2-dimensional complex manifold X into a 4-dimensional complex
hyperbolic space form, complex Euclidean space form or complex projective space
M . Is the induced holomorphic bundle map ϕ : T ⊗N∗ → E necessarily a bundle
isomorphism outide a complex-analytic curve on X, except in the case of a totally-
geodesic holomorphic immersion between Kähler space forms of the same type?

When M is of dimension 3 instead, by Theorem 4, the holomorphic immersion
f is necessarily a totally-geodesic immersion between Kähler space forms of the
same type. On the other hand, in the context of Question 2, and in the case
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when both X and M are complex projective spaces, there are certainly many
holomorphic immersions and even holomorphic embeddings. They all arise in
the following manner. Let W be a complex vector space and X ⊂ P(W ) be a
projective submanifold. Let Z ⊂ W be a complex vector subspace such that
P(Z) ∩ X = ∅. Consider the linear projection p : P(W ) − {

[η]
} → P(W/Cη).

Then, f := p|X : X → P(W/Z) is holomorphic. It is a holomorphic immersion
whenever P(Z) is disjoint from the tangent variety Tan(X) ⊂ P(W ), which is
the union of lines tangent to X at some point. Furthermore, f is a holomorphic
embedding whenever P(Z) is disjoint from the secant variety Sec(X), i.e., the
closure of the union of secant lines of X.

Let now k ≥ 2 and vk : P2 → P(Γ(P2,O(k))∗) ∼= PN(k) be the k-th Veronese
embedding, where N(k) = 3·4···(k+2)

k! − 1; N(2) = 5, N(3) = 9, etc. Let now
V ⊂ Γ(P2,O(k))∗ := Wk, dim(Wk) = N(k) + 1 be a linear subspace of dimension
N(k) − 4 ≥ 1 such that P(V ) ∩ vk(P2) = ∅. Composing vk on the left with the
linear projection p : P(Wk) − P(V ) → P(Wk/V ) ∼= P4 we obtain a holomorphic
mapping fk : X → P4. Let Sk ⊂ P(Wk) be the tangent variety of vk(P2), which
is 4-dimensional. Since dim(P(V )) = N(k) − 5, for a generic choice of V ⊂ Wk,
Sk ∩ P(V ) = ∅. For such a choice of V the holomorphic mapping fk : P2 → P4

is a holomorphic immersion. A positive answer to Question 2 would say that ϕ

is always a bundle isomorphism outside of an algebraic curve on P2. In place
of arguing by explicit computation there ought to be geometric arguments which
should allow us to answer Question 2 irrespective of the types of X and M .

4.3 The non-splitting locus

Let X be a compact 2-dimensional Kähler space form of constant holomor-
phic sectional curvature, and f : X → M be a holomorphic immersion into a
4-dimensional Kähler space form M of constant holomorphic sectional curvature.
Suppose the induced holomorphic bundle map ϕ : X → N is a bundle isomorphism
at a general point. Let Σf ⊂ X be the complex-analytic curve over which ϕ fails
to be a bundle isomorphism. We call Σf ⊂ X the non-splitting locus of the holo-
morphic immersion f : X → M . Obviously Σf ⊂ X can be endowed the structure
of a possibly reduced complex space as the zero divisor of the determinant of ϕ.
We have a holomorphic splitting of the tangent sequence over X − Σf , and the
holomorphic splitting can be determined in terms of the second fundamental form
of the holomorphic immersion and the canonical holomorphic projective structure
on X. It is tempting to believe that the answer to (4.2), Question 2 is positive,
in which case one can always associate to the holomorphic immersion f : X → M

its non-splitting locus S ⊂ X. In the case where X and M are complex projective
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spaces the non-splitting locus can be explicitly determined from the description
of all holomorphic immersions f : P2 → P4 as given in (4.2). We give here the
description of the simplest case.

The non-splitting locus arising from the Veronese embedding v2

Let V be an (n + 1)-dimensional complex vector space. The Veronese embedding
v : P(V ) → P(S2V ), v = v2, is defined by v([α]) = [α⊗ α]. For η ∈ S2V we define
its rank to be the rank of the symmetric matrix representing it (with respect to a
choice of basis). In this very special case the tangent variety Tan(v(P(V )) agrees
with the secant variety Sec

(
v(P(V )

)
, consisting precisely of projectivizations of

symmetric 2-tensors of rank 2. Let η ∈ S2V be a nonzero symmetric 2-tensor
of rank ≥ 3, then the projection p : P(S2V ) − {

[η]
} → P(S2V/Cη) induces a

holomorphic embedding f[η] := p ◦ v : P(V ) → P(S2V/Cη), where the target
projective space is of complex dimension (n+1)(n+2)

2 − 2, exactly the dimension
in which Theorem 3’ applies. Obviously the notion of the non-splitting locus
generalizes to this context.

GL(V ) acts naturally on S2(V ). Under this action it acts transitively on the
set of all elements (represented by symmetric matrices) of the same rank. Thus,
up to congruence the holomorphic embedddings f : P(V ) → P(S2V/Cη) obtained
from the Veronese embedding is determined by the rank of η.

We fix now η of rank k, 3 ≤ k ≤ n, and let f := f[η]. The seond fundamental
form σf of f is obtained from the second fundemantal form σv of the Veronese
embedding by projection. Note that σv is an isomorphism at every point. Write
X = f(P(V )) ⊂ P(S2V/Cη). Let x ∈ X,x = f([α]) = p(v([α]) = p([α ⊗ α]), and
let Wα ⊂ V be a vector subspace complementary to Cα. By Lemma 3 and Lemma
3’, the holomorphic bundle homomorphism ϕ : T ⊗ N∗ → E over X associated
to the holomorphic embedding f fails to be an isomorphism if and only if there
exists some λ ∈ C, β ∈ V , ξ ∈ S2Wα of rank < n, ξ 6= 0, such that λη + αβ = ξ,
where we write αβ for 1

2 (α⊗ β + β ⊗α). Since the equation is never satisfied for
λ = 0, we may assume λ = 1.

In what follows we specialize to the case where n = 2. In this case η is always
of rank 3 and all holomorphic embeddings f[η] are congruent. The equation which
determines the non-splitting locus of f amounts to finding all nonzero α ∈ V such
that ([) η + αβ = γ2 for some γ ∈ Wα. Fix a basis e1, e2, e3 of V ∼= C3. Without
loss of generality we may take η = e1 ⊗ e1 + e2 ⊗ e2 + e3 ⊗ e3 = e2

1 + e2
2 + e2

3. Let
α = ae1 + be2 + ce3. Suppose a 6= 0, in which case we may assume a = 1. Choose
Wα = Span(e2, e3). Write e1 = α−be2−ce3. Then, η = (α−be2−ce3)2+e2

2+e2
3 =
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(
α2− 2bαe2− 2cαe3

)
+

(
(1+ b2)e2

2 +2bce2e3 +(1+ c2)e2
3

)
. Thus ([) is satisfied for

α = e1+be2+ce3 if and only if the symmetric 2-tensor (1+b2)e2
2+2bce2e3+(1+c2)e2

3

is of rank 1. This is the case if and only if (1+b2)(1+c2) = (bc)2, i.e., 1+b2+c2 = 0.
Homogenizing we see that for α = ae1 + be2 + ce3, x = f([α]) = p(v([α])) lies on
the non-splitting if and only if a2 + b2 + c2 = 0. Thus, the non-splitting locus Σf

of the holomorphic embedding f : P2 → P4 is precisely a smooth quadric curve.

In invariant terms the non-splitting locus Σf can be described as follows. Let
V be a 3-dimensional complex vector space and η ∈ S2(V ) be a symmetric two-
tensor of rank 3. It determines a homogeneous quadratic polynomial Qη on the
dual vector space V ∗. The zero locus of Qη then corresponds to a smooth quadric
curve Γf on P(V ∗). Σf ⊂ P(V ) is then the dual variety of Γf when we identify P(V )
canonically as the dual projective space of P(V ∗) ∼= P2. It is straightforward to
check that this description for Σf is valid in the case of η = e1⊗e1+e2⊗e2+e3⊗e3

described above. Since any symmetric 2-tensor of rank 3 can expressed in this form
with respect to some choice of coordinates on V ∼= C3, the description of Σf in
projective-geometric terms as given holds true in general.

4.4 Rank-2 vector bundles associated to some holomorphic immersions

In relation to holomorphic immersions between Kähler manifolds of constant
holomorphic sectional curvature where the domain manifold is compact and of
dimension 2, the most remarkable example is the discovery by Mumford of an
embedding of some Abelian surface X into P4 as a surface of degree 10. Since the
determinant bundle of the normal bundle extends to P4, this leads to the existence
of a rank-2 holomorphic vectort bundle on P4, which is indecomposable since X is
not a globally a complete intersection. (See Okonek-Schneider-Spindler [OSS] for
the background on vector bundles on Pn.) This rank-2 indecomposable bundle was
constructed explicitly in Horrocks-Mumford [HM,1973], where it is shown that the
zero locus of a general section of F is nonsingular and isomorphic to an Abelian
surface. Furthermore, it was proven that up to congruence this accounts for all
holomorphic embeddings of Abelian surfaces into P4. Concerning the Horrocks-
Mumford bundle we have the following natural question in relation to the study
of holomorphic immersions in this article.

Question 3. Let f : X → P4 be a holomorphic embedding of an Abelian surface
into the 4-dimensional complex projective space. Is the associated bundle homo-
morphism ϕ : T ⊗N∗ → E an isomorphism at a general point? If this is the case,
describe the non-splitting locus Σf of f in terms of the geometry of the Horrocks-
Mumford bundle.
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There has so far not been any nontrivial example of holomorphic immersions
of 2-dimensional compact complex hyperbolic space forms into a 4-dimensional
complex hyperbolic space form. In this regard we have the following question in
part motivated by the case of holomorphic embeddings of Abelian surfaces in P4.

Question 4. Let f : X → M be a (hypothetical) holomorphic immersion of
a compact 2-dimensional complex hyperbolic space form X into a 4-dimensional
complex hyperbolic space form M which is not totally geodesic. Is the normal
bundle of X in M necessarily indecomposable?

It is tempting to believe that the answer to Question 4 is positive. An affir-
mative answer will introduce a new element into the study of obstructions to the
existence of such holomorphic immersions, viz., indecomposable rank-2 holomor-
phic vector bundles on 2-dimensional compact complex hyperbolic space forms.
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[MP] Mutsaţǎ, M.; Popa, M. A new proof of a theorem of A. Van de Ven, Bull.
Math. Soc. Sci. Math. Roum., Nouv. Ser. 40 (1997), 49-55.

[MY] Mok, N.; Yeung, S.-K. Geometric realizations of uniformization of con-
jugates of Hermitian locally symmetric manifolds, Complex Analysis and
Geometry, Plenum Press, New York, 1993, pp.253-270.

[OSS] Okonek, C.; Schneider, M.; Spindler, H. Vector Bundles on Complex Projec-
tive Spaces, Progress in Mathematics, Birkhäuser, Boston-Basel-Stuttgart,
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