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Abstract

In this paper, we investigate two classes of quasi-linear multi-point boundary value problems with
sign-changing nonlinearity. By applications of fixed point index theory, sufficient conditions for the
existence of twin positive solutions are established.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

In recent years, the existence of positive solutions for multi-point (including three-point)
boundary value problems (BVP) has attractedmuch attention, see[4,7–9]and the references
cited therein.Most results so far have been obtainedmainly by using the fixed-point theorem
in cones, such as Kransnosel’skii fixed-point theorem[5], Leggett–Williams’ theorem[6],
Avery and Henderson’s theorem[1], and so on. In order to apply the concavity of solutions
in the proofs, all the existing works were done under the assumption that the nonlinear term
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is nonnegative. For example, in[7], Liu studied the three-point boundary value problem

y′′(t) + a(t)f (y(t)) = 0, 0< t <1, (1.1)

y′(0) = 0, y(1) = �y(�), (1.2)

where 0< �<1, 0<�<1. By applying Kransnosel’skii fixed-point theorem, Liu obtained
some existence results for positive solutions of the BVP (1.1)–(1.2) under the condition that
bothf anda are inC([0,∞), [0,∞)).
Motivated by this, we consider a quasi-linear differential equation with sign-changing

nonlinearity

(�p(u
′))′ + h(t)f (t, u) = 0, 0< t <1, (1.3)

whereh : [0,1] → R+ andf : [0,1] × [0,∞) → R are continuous, and

�p(u) := |u|p−2u, p >1,

is a one-dimensionalp-Laplacian. Note that the nonlinear termf (t, u) here is allowed to
change sign. Observe also that ifq is the conjugate exponent ofp, i.e., if 1/q + 1/p = 1,
then�q = (�p)

−1. We investigate Eq. (1.3) subject to one of the following multi-point
boundary conditions:

u′(0) = 0, u(1) =
m−2∑
i=1

�iu(�i ), (1.4)

u(0) =
m−2∑
i=1

�iu(�i ), u′(1) = 0. (1.5)

Here�i ∈ (0,1)with 0< �1< �2< · · ·< �m−2<1,�i �0 with 0<
∑m−2

i=1 �i <1,m�3. It
is obvious that BVP (1.3)–(1.4) can be regarded as a generalization of BVP (1.1)–(1.2).We
shall apply fixed point index theory to obtain sufficient conditions for the existence of twin
positive solutions for the prescribed problems (1.3)–(1.4) and (1.3)–(1.5) by constructing
available operators. In doing so the usual restrictionf �0 is removed.

2. Main results

Before giving the main theorems, we need a couple of preliminary results. The first one
is a well-known result of the fixed point index theory which our main results are based on.

Lemma 2.1(Deimling [2] , Guo and Lakshmikantham[3] and Krasnoselskii[5] ). Let E
be aBanach space andK a cone in E. Forr >0,defineKr ={u ∈ K : ‖x‖<r}.Assume that
T : K̄r → K is completely continuous such thatT x �= x for x ∈ �Kr ={u ∈ K : ‖x‖= r}.

(i) If ‖T x‖�‖x‖ for x ∈ �Kr , then

i(T ,Kr,K) = 0.
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(ii) If ‖T x‖�‖x‖ for x ∈ �Kr , then

i(T ,Kr,K) = 1.

Lemma 2.2. LetX = C[0,1] with the sup norm‖u‖ := sup0� t �1 |u(t)|, andK = {x ∈
X : x(t)�0}. SupposeT : X → X is completely continuous. Define� : TX → K by
(�y)(t)=max{y(t),0} for y ∈ TX, t ∈ [0,1]. Then� ◦ T : X → K is also a completely
continuous operator.

Proof. The complete continuity ofT implies thatT is continuous and relatively compact.
Therefore, given any boundedD ⊂ X and any�>0, there areyi, i = 1, . . . , m, such that

TD ⊂
m⋃

i=1

B(yi, �),

whereB(yi, �) = {x ∈ X : ‖x − yi‖< �}. Hence for anyy ∈ (� ◦ T )(D), there isy ∈ TD

such thaty(t) = max{y(t),0}. We choose ani ∈ {1, . . . , m} such that max0� t �1 |y(t) −
yi(t)|< �. The fact

max
0� t �1

|y(t) − yi(t)|� max
0� t �1

|y(t) − yi(t)|< �

implies thaty ∈ B(yi, �). So(� ◦ T )(D) is relatively compact.
On the other hand, for arbitrary�>0, there is�>0 such that

‖Ty − T x‖< � whenever ‖y − x‖< �

and hence

‖(� ◦ T )y − (� ◦ T )x‖ = max
0� t �1

‖(T y)(t) − (T x)(t)‖

� max
0� t �1

‖(T y)(t) − (T x)(t)‖

= ‖Ty − T x‖
< �

whenever‖y − x‖< �. Therefore,� ◦T is continuous onXand hence� ◦T is completely
continuous. �

Below we discuss BVP (1.3)–(1.4) and BVP (1.3)–(1.5), separately.

2.1. Positive solution to BVP (1.3)–(1.4)

Lemma 2.3. Suppose
∑m−2

i=1 �i �= 1 andy(·) ∈ C[0,1]. Then the problem
(�p(u

′))′ + y(t) = 0, 0< t <1, (2.1)

u′(0) = 0, u(1) =
m−2∑
i=1

�iu(�i ) (2.2)
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has a unique solution

u(t) =
∫ 1

t

�q

(∫ s

0
y(r)dr

)
ds +

∑m−2
i=1 �i

∫ 1
�i

�q(
∫ s

0 y(r)dr)ds

1− ∑m−2
i=1 �i

. (2.3)

Proof. Integrate (2.1) from 0 tot, we get

�p(u
′(t)) = −

∫ t

0
y(r)dr,

i.e.,

u′(t) = −�q

(∫ t

0
y(r)dr

)
.

Integrating this fromt to 1 yields

u(t) = u(1) +
∫ 1

t

�q

(∫ s

0
y(r)dr

)
ds.

From the boundary condition (2.2), we have

u(1) =
∑m−2

i=1 �i

∫ 1
�i

�q(
∫ s

0 y(r)dr)ds

1− ∑m−2
i=1 �i

.

This proves Lemma 2.3.�

Now letX=C[0,1],K={u ∈ X : u(t)�0 ∀t ∈ [0,1]},K ′={u ∈ X : u is nonnegative,
concave, and nonincreasing}. EquipXwith the sup norm‖u‖ := sup0� t �1 |u(t)|. Clearly,
K,K ′ ⊆ X are cones withK ′ ⊆ K. Define operatorsA,TandT ′ as follows: for anyu ∈ K,
define

(Au)(t) :=
∫ 1

t

�q

(∫ s

0
h(r)f (r, u(r))dr

)
ds

+
∑m−2

i=1 �i

∫ 1
�i

�q(
∫ s

0 h(r)f (r, u(r))dr)ds

1− ∑m−2
i=1 �i

, t ∈ [0,1].

By Lemma 2.3, for anyu ∈ K,Ausatisfies BVP (1.3)–(1.4). Furthermore, BVP (1.3)–(1.4)
is equivalent to the fixed point problem of the operatorA. Next, for anyu ∈ K, define

(T u)(t) :=

 ∫ 1

t

�q

(∫ s

0
h(r)f (r, u(r))dr

)
ds

+
∑m−2

i=1 �i

∫ 1
�i

�q(
∫ s

0 h(r)f (r, u(r))dr)ds

1− ∑m−2
i=1 �i




+
, t ∈ [0,1],
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whereg+ := max{g,0}. ObviouslyT = � ◦ A, where� is as defined in Lemma 2.2.
Finally, for anyu ∈ K ′, define

(T ′u)(t) :=
∫ 1

t

�q

(∫ s

0
h(r)f +(r, u(r))dr

)
ds

+
∑m−2

i=1 �i

∫ 1
�i

�q(
∫ s

0 h(r)f +(r, u(r))dr)ds

1− ∑m−2
i=1 �i

, t ∈ [0,1].

Lemma 2.4. If u ∈ K ′ satisfies BVP(1.3)–(1.4),then

min
0� t �1

u(t)�
∑m−2

i=1 �i (1− �i )

1− ∑m−2
i=1 �i�i

‖u‖.

Proof. Foru ∈ K ′, it is easy to see thatu(0)=‖u‖,u(1)=min0� t �1 u(t). By the concavity
of u(t), we have

u(1) − u(�i )

1− �i

� u(1) − u(0)

1
, i = 1, . . . , m − 2,

i.e.,

u(�i ) − �iu(1)�(1− �i )u(0), i = 1, . . . , m − 2.

Then

m−2∑
i=1

�iu(�i ) −
m−2∑
i=1

�i�iu(1)�
m−2∑
i=1

�i (1− �i )u(0).

By (1.4),u(1) = ∑m−2
i=1 �iu(�i ). Hence

u(1)�
∑m−2

i=1 �i (1− �i )

1− ∑m−2
i=1 �i�i

u(0).

This proves Lemma 2.4.�

Next, define

� =
∑m−2

i=1 �i (1− �i )

1− ∑m−2
i=1 �i�i

and

M =
∫ 1

0
�q

(∫ s

0
h(r)dr

)
ds +

∑m−2
i=1 �i

∫ 1
�i

�q(
∫ s

0 h(r)dr)ds

1− ∑m−2
i=1 �i

.
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We have

Theorem 2.1. Supposef (t,0)�0 for t ∈ [0,1] andh(t)f (t,0) /≡ 0 on any subinterval
of [0,1]. If there exist nonnegative numbers a, b and d such that0<(1/�)d < a < �b<b

and f satisfies the following conditions:

(H1) f (t, u)�0 for (t, u) ∈ [0,1] × [d, b];
(H2) f (t, u)<�p(a/M) for (t, u) ∈ [0,1] × [0, a];
(H3) f (t, u)>�p(b/M) for (t, u) ∈ [0,1] × [�b, b],
then BVP(1.3)–(1.4)has two positive solutionsu1 andu2 with

0< ‖u1‖<a < ‖u2‖<b.

Proof. First of all, from the definitions ofTandT ′, it is clear thatT (K) ⊂ K andT ′(K ′) ⊂
K ′. Moreover, by the continuity off, it is easy to see thatA : K → X andT ′ : K ′ → K ′
are completely continuous. So by Lemma 2.2,� ◦ A : K → K andT : K → K are
completely continuous.
Now we show thatT has a fixed pointu1 ∈ K with 0< ‖u1‖<a. For simplicity, for any

r >0, we writeKr := {u ∈ K : ‖u‖<r}. Observe that�Kr = {u ∈ K : ‖u‖ = r}. Hence
for anyu ∈ �Ka , we have‖u‖ = a and 0�u(t)�a for all t ∈ [0,1]. So it follows from
(H2) that

‖T u‖ = max
0� t �1


 ∫ 1

t

�q

(∫ s

0
h(r)f (r, u(r))dr

)
ds

+
∑m−2

i=1 �i

∫ 1
�i

�q(
∫ s

0 h(r)f (r, u(r))dr)ds

1− ∑m−2
i=1 �i




+

= max
0� t �1

max




∫ 1

t

�q

(∫ s

0
h(r)f (r, u(r))dr

)
ds

+
∑m−2

i=1 �i

∫ 1
�i

�q(
∫ s

0 h(r)f (r, u(r))dr)ds

1− ∑m−2
i=1 �i

,0




<
a

M
max

0� t �1


∫ 1

t

�q

(∫ s

0
h(r)dr

)
ds+

∑m−2
i=1 �i

∫ 1
�i

�q

(∫ s

0 h(r)dr
)
ds

1− ∑m−2
i=1 �i




= a

M


∫ 1

0
�q

(∫ s

0
h(r)dr

)
ds+

∑m−2
i=1 �i

∫ 1
�i

�q

(∫ s

0 h(r)dr
)
ds

1− ∑m−2
i=1 �i




= a.
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It follows from Lemma 2.1 that

i(T ,Ka,K) = 1

and henceT has a fixed pointu1 in Ka . We claim thatu1 is also a fixed point ofA in Ka .
Suppose not, then there existst0 ∈ [0,1] such that

(Au1)(t0) �= u1(t0) = (T u1)(t0) =max{(Au1)(t0),0}

and so this forces

(Au1)(t0)<0= u1(t0).

Let I = I (t0) be the largest interval inR that is open in[0,1] and containst0 such that
(Au1)(t)<0 for all t ∈ I . Note that

u1(t) = T u1(t) =max{(Au1)(t),0} = 0 for all t ∈ I .

Let Ī= the closure ofI in [0,1]. ObviouslyĪ �= [0,1], for otherwise we would have

u1(t) = 0 for all t ∈ [0,1],

which contradicts to the assumption thath(t)f (t,0) /≡ 0 in any subinterval of[0,1]. So
we should have either 1/∈ Ī or 0 /∈ Ī .
Case1: 1 /∈ Ī . We haveu1(t) = 0 for all t ∈ Ī . It is easy to check that

(�p[(Au1)
′](t))′ = −h(t)f (t,0)�0 for all t ∈ Ī .

In particular, this implies that(Au1)
′(t) is decreasing on̄I . On the other hand, if�<1

denotes the right-hand end-point ofI , since(Au1)(t)<0 for all t ∈ I and(Au1)(�) = 0,
we have(Au1)

′(�)�0. Hence(Au1)(t)<0 and is bounded away from 0 everywhere inI.
This forcest0 = 0 and(Au1)

′(t)>0 for all t ∈ I = [0,�), which contradicts with the first
condition of (1.4).
Case2: 0 /∈ Ī . Similar to Case 1, it can be shown that 1∈ I and (Au1)

′(t)<0 for
all t ∈ I . Hence(Au1)(t)<0 is strictly decreasing onI. For anyj ∈ {1, . . . , m − 2}, if
(Au1)(�j )�0, then since(Au1)(1)<0, we have(Au1)(�j )> (Au1)(1). On the other hand,
if (Au1)(�j )<0, we must have�j ∈ I . For if not, denote byI (�j ) the largest interval inR
that is open in[0,1] and contains�j such that(Au1)(t)<0 for all t ∈ I (�j ). SinceI must
be disjoint fromI (�j ) and 1∈ I , we have 1/∈ Ī (�j ), which is impossible as shown in Case
1. So in this situation we also have(Au1)(�j )> (Au1)(1). Thus(Au1)(�i ) > (Au1)(1) for
all i ∈ {1, . . . , m − 2} and so

(Au1)(1) =
m−2∑
i=1

�i (Au1)(�i )�
m−2∑
i=1

�i (Au1)(1)> (Au1)(1),
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which is also impossible. Combining, we conclude thatu1 is also a fixed point ofA and,
therefore, is a positive solution of BVP (1.3)–(1.4).
Next we show the existence of another fixed point ofA. Foru ∈ �K ′

a , similar to above,
we have from (H2) that

‖T ′u‖ = (T ′u)(0)

=
∫ 1

0
�q

(∫ s

0
h(r)f +(r, u(r))dr

)
ds

+
∑m−2

i=1 �i

∫ 1
�i

�q(
∫ s

0 h(r)f +(r, u(r))dr)ds

1− ∑m−2
i=1 �i

<
a

M


∫ 1

0
�q

(∫ s

0
h(r)dr

)
ds +

∑m−2
i=1 �i

∫ 1
�i

�q(
∫ s

0 h(r)dr)ds

1− ∑m−2
i=1 �i




= a.

For u ∈ �K ′
b, we have‖u(t)‖ = b. For 0� t �1, in view of Lemma 2.4, we have

�b�min0� s �1 u(s)�u(t)�b. Henceu(t) ∈ [�b, b] for t ∈ [0,1]. By (H3), we get

‖T ′u‖ =
∫ 1

0
�q

(∫ s

0
h(r)f +(r, u(r))dr

)
ds

+
∑m−2

i=1 �i

∫ 1
�i

�q(
∫ s

0 h(r)f +(r, u(r))dr)ds

1− ∑m−2
i=1 �i

>
b

M


∫ 1

0
�q

(∫ s

0
h(r)dr

)
ds +

∑m−2
i=1 �i

∫ 1
�i

�q(
∫ s

0 h(r)dr)ds

1− ∑m−2
i=1 �i




= b.

It follows from Lemma 2.1 that

i(T ′,K ′
a,K

′) = 1, i(T ′,K ′
b,K

′) = 0.

Thusi(T ′,K ′
b\K̄ ′

a,K
′) = −1 andT ′ has a fixed pointu2 in K ′

b\K̄ ′
a .

We claim thatAx = T ′x for x ∈ K ′
b\K̄ ′

a ∩ {u : T ′u= u}. In fact, foru2 ∈ K ′
b\K̄ ′

a ∩ {u :
T ′u = u}, it is clear thatu2(0) = ‖u2‖>a and so by Lemma 2.4,

u2(1) = min
0� t �1

u2(t)��u2(0)> �a >d.
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Thus for t ∈ [0,1], d�u2(t)�b. From (H1), we know thatf +(t, u2(t)) = f (t, u2(t)).
This implies thatAu2 = T ′u2 for u2 ∈ K ′

b\K̄ ′
a ∩ {u : T ′u = u}. Henceu2 is a fixed point

of A in K ′, which is also a positive solution of (1.3)–(1.4).�

2.2. Positive solution to BVP (1.3)–(1.5)

Lemma 2.5. Suppose
∑m−2

i=1 �i �= 1 andy(·) ∈ C[0,1]. Then the problem
(�p(u

′))′ + y(t) = 0, 0< t <1, (2.4)

u(0) =
m−2∑
i=1

�iu(�i ), u′(1) = 0 (2.5)

has a unique solution

u(t) =
∫ t

0
�q

(∫ 1

s

y(r)dr

)
ds +

∑m−2
i=1 �i

∫ �i

0 �q(
∫ 1
s
y(r)dr)ds

1− ∑m−2
i=1 �i

. (2.6)

Proof. Integrate (2.4) fromt to 1, we get

�p(u
′(t)) =

∫ 1

t

y(r)dr,

i.e.,

u′(t) = �q

(∫ 1

t

y(r)dr

)
.

Integrating this from 0 tot yields

u(t) = u(0) +
∫ t

0
�q

(∫ 1

s

y(r)dr

)
ds.

From the boundary condition (2.5), we have

u(0) =
∑m−2

i=1 �i

∫ �i

0 �q(
∫ 1
s
y(r)dr)ds

1− ∑m−2
i=1 �i

.

This proves Lemma 2.5.�

Now letX, K, K ′, ‖ · ‖, Kr , and�Kr be as defined in Section 2.1. For anyu ∈ K, we
define

(Ãu)(t) :=
∫ t

0
�q

(∫ 1

s

h(r)f (r, u(r))dr

)
ds

+
∑m−2

i=1 �i

∫ �i

0 �q(
∫ 1
s
h(r)f (r, u(r))dr)ds

1− ∑m−2
i=1 �i

, t ∈ [0,1].
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By Lemma 2.5, BVP (1.3)–(1.5) is equivalent to the fixed point problem of the operatorÃ.
For anyu ∈ K we also define

(T̃ u)(t) :=
[ ∫ t

0
�q

(∫ 1

s

h(r)f (r, u(r))dr

)
ds

+
∑m−2

i=1 �i

∫ �i

0 �q(
∫ 1
s
h(r)f (r, u(r))dr)ds

1− ∑m−2
i=1 �i

]+
, t ∈ [0,1],

whereg+ = max{g,0}. ObviouslyT̃ = � ◦ Ã, where� is defined as in Lemma 2.2. For
anyu ∈ K ′, define

(T̃ ′u)(t) :=
∫ t

0
�q

(∫ 1

s

h(r)f +(r, u(r))dr

)
ds

+
∑m−2

i=1 �i

∫ �i

0 �q(
∫ 1
s
h(r)f +(r, u(r))dr)ds

1− ∑m−2
i=1 �i

, t ∈ [0,1].

Lemma 2.6. If u ∈ K ′ satisfies BVP(1.3)–(1.5),then

min
0� t �1

u(t)�
∑m−2

i=1 �i�i

1− ∑m−2
i=1 �i (1− �i )

‖u‖.

Proof. Foru ∈ K ′, it is easy to see thatu(1)=‖u‖,u(0)=min0� t �1 u(t). By the concavity
of u(t), we have

u(�i ) − u(0)

�i

� u(1) − u(0)

1
, i = 1, . . . , m − 2,

i.e.,

u(�i ) − u(0) + �iu(0)��iu(1), i = 1, . . . , m − 2.

By (1.5),u(0) = ∑m−2
i=1 �iu(�i ). Hence we have

min
0� t �1

u(t)�
∑m−2

i=1 �i�i

1− ∑m−2
i=1 �i (1− �i )

‖u‖.

This proves Lemma 2.6.�

As in Section 2.1, define

�̃ :=
∑m−2

i=1 �i�i

1− ∑m−2
i=1 �i (1− �i )

,

M̃ :=
∫ 1

0
�q

(∫ 1

s

h(r)dr

)
ds +

∑m−2
i=1 �i

∫ �i

0 �q(
∫ 1
s
h(r)dr)ds

1− ∑m−2
i=1 �i

.



W.-S. Cheung, J. Ren / Nonlinear Analysis 62 (2005) 167–177 177

Analogous to Theorem 2.1, by using Lemmas 2.1, 2.2, 2.5, and 2.6, it is not hard to show
that BVP (1.3)–(1.5) has at least two positive solutions:

Theorem 2.2. Supposef (t,0)�0 for t ∈ [0,1] andh(t)f (t,0) /≡ 0 on any subinterval
of [0,1]. If there exist nonnegative numbers a, b and d such that0<(1/�̃)d < a < �̃b<b

and f satisfies the following conditions:

(H1)′ f (t, u)�0 for (t, u) ∈ [0,1] × [d, b];
(H2)′ f (t, u)<�p(a/M̃) for (t, u) ∈ [0,1] × [0, a];
(H3)′ f (t, u)>�p(b/M̃) for (t, u) ∈ [0,1] × [�̃b, b],
then BVP(1.3)–(1.5)has at least two positive solutionsu1 andu2 with

0< ‖u1‖<a < ‖u2‖<b.
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