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Abstract

In this paper, we investigate two classes of quasi-linear multi-point boundary value problems with
sign-changing nonlinearity. By applications of fixed point index theory, sufficient conditions for the
existence of twin positive solutions are established.
© 2005 Elsevier Ltd. All rights reserved.

Keywords:Multi-point boundary value problemg:-Laplacian; Fixed point index theory

1. Introduction

In recent years, the existence of positive solutions for multi-point (including three-point)
boundary value problems (BVP) has attracted much attentiof4 Sed]and the references
cited therein. Most results so far have been obtained mainly by using the fixed-point theorem
in cones, such as Kransnosel'skii fixed-point theofsmLeggett—Williams’ theorenfg],

Avery and Henderson'’s theoreity, and so on. In order to apply the concavity of solutions
in the proofs, all the existing works were done under the assumption that the nonlinear term

* Corresponding author. Tel.: +852 28591996; fax: +852 25592225.
E-mail addressesanvscheung@hkucc.hku.l{kV.-S. Cheung)renjl@amss.ac.cf. Ren).

1 Research partially supported by the Research Grants Council of the Hong Kong SAR, China (Project No.
HKU7040/03P).

2 Research partially supported by the Postdoctoral Foundation of China.

0362-546X/$ - see front matté@ 2005 Elsevier Ltd. All rights reserved.
doi:10.1016/j.na.2005.03.018


http://www.elsevier.com/locate/na
mailto:wscheung@hkucc.hku.hk
mailto:renjl@amss.ac.cn

168 W.-S. Cheung, J. Ren / Nonlinear Analysis 62 (2005) 167-177

is nonnegative. For example, [if], Liu studied the three-point boundary value problem
Y +a®) f(y@) =0, O0<t<1, (1.1)
Y (©0) =0, y@)=pym, (1.2)

where O< 5 < 1, 0< f < 1. By applying Kransnosel'skii fixed-point theorem, Liu obtained
some existence results for positive solutions of the BVP (1.1)—(1.2) under the condition that
bothf anda are inC ([0, 00), [0, 00)).

Motivated by this, we consider a quasi-linear differential equation with sign-changing
nonlinearity

(@p')) +h(t)f(t,u)=0, O<t<1, (1.3)
whereh : [0, 1] — RT and f : [0, 1] x [0, oo) — R are continuous, and
D,(u) = ulP2u, p=>1,

is a one-dimensionagl-Laplacian. Note that the nonlinear terfiis, u) here is allowed to
change sign. Observe also thagjifs the conjugate exponent pfi.e., if /g +1/p =1,
thend, = (qﬁp)_l. We investigate Eq. (1.3) subject to one of the following multi-point
boundary conditions:

m—2
W(0)=0, u® =Y ou(&), (1.4)
i=1
m—2
u© =) wu), u'@)=0. (1.5)
i=1

Here¢; € (0, DwithO< & <&y <-- <&, o<1,0,>0with0O< Y20y <1,m>3.1t

is obvious that BVP (1.3)—(1.4) can be regarded as a generalization of BVP (1.1)—(1.2). We
shall apply fixed point index theory to obtain sufficient conditions for the existence of twin
positive solutions for the prescribed problems (1.3)—(1.4) and (1.3)—(1.5) by constructing
available operators. In doing so the usual restriciforn0 is removed.

2. Main results

Before giving the main theorems, we need a couple of preliminary results. The first one
is a well-known result of the fixed point index theory which our main results are based on.

Lemma 2.1 (Deimling[2], Guo and Lakshmikanthaf@] and Krasnoselskij5]). Let E
be aBanach space and KaconeinE. For 0,defineK, ={u € K : ||x|| <r}. Assume that

T : K, — K is completely continuous such that # x forx € 0K, ={u € K : ||x|| =r}.

@) If | Tx|>|x]l for x € OK,, then
i(T,K,,K)=0.



W.-S. Cheung, J. Ren / Nonlinear Analysis 62 (2005) 167-177 169

(i) If |7x| <|x]|l for x € OK,, then

i(T,K,, K)=1.
Lemma 2.2. Let X = C[0, 1] with the sup normjul| := sugy<, < [u(?)],andK = {x €
X : x(¢t)>0}. Supposel’ : X — X is completely continuous. Defig : TX — K by

(@y)(t)=maxXy(),0}fory e TX,t €[0,1]. Then®o T : X — K is also a completely
continuous operator

Proof. The complete continuity of implies thatT is continuous and relatively compact.
Therefore, given any bounddd ¢ X and any > 0, there arey;, i =1, ..., m, such that

m
D c | J B o),
i=1

whereB(y;,e) ={x € X : |lx — y;|| < ¢&}. Hence forany € (® o T)(D), thereisy € TD
such thafy(r) = max{y(r), 0}. We choose an € {1, ..., m} such that mag<,<1|y() —
vi (t)] < &. The fact
Y —_. < -_— . a
max, [y@) =y ()< oI, ly(@®) —yi®)] <e

implies thaty € B(y;, ¢). So(@ o T)(D) is relatively compact.
On the other hand, for arbitrary> 0, there i) > 0 such that

ITy — Tx||<e whenever |y —x| <o

and hence
[(@oT)y—(OoT)x| = 02«?2(1 I(Ty)@) — (Tx)(@)|l

S max [(Ty) @) — Tx) @)

\[\
=Ty = Tx|
<é

whenevel|y — x|| < d. Therefore® o T is continuous oiX and hence o T is completely
continuous. [J

Below we discuss BVP (1.3)—(1.4) and BVP (1.3)—(1.5), separately.
2.1. Positive solution to BVP (1.3)—(1.4)
Lemma 2.3. Suppos{:;":‘f o; #landy(:) € C[0, 1]. Then the problem

(@,u")) +y(t)=0, O0<t<l, (2.1

m—2
W©=0 u@=) wu&) (2.2)
i=1
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has a unigue solution

1 K i )] dr)d
u(t)=/ D, (/ y(r)dr) o|s+Z S S (foy(r) ne (2.3)
t 0 1-3" 1 o

Proof. Integrate (2.1) from 0O to, we get

t
(1) = — fo ¥y dr,

u'(t) = -, (/Ot y(r) dr> .

Integrating this front to 1 yields

1 K
u(t) =u(l) +/ D, </ y(r) dr) ds
t 0

From the boundary condition (2.2), we have

f ® (fo y(r)dr)ds
1-Yr i

This proves Lemma 2.3.0]

u(l) =

NowletX=C[0,1],K={u € X : u(t)>0Vr € [0, 1]}, K'={u € X : u is nonnegative
concave, and nonincreasingquipX with the sup normju|| := supy <, <4 [u(?)|. Clearly,
K, K’ C X are coneswitlk’ C K. Define operator8, T and7’ as follows: forany: € K,
define

1 K
(Au)(t) := / D, (/ h(r) f(r,u(r)) dr) ds
t

1 o fé o) (fo h(r) f(r,u(r))dr)ds
1->1 1“1 ’

By Lemma 2.3, for any € K, Ausatisfies BVP (1.3)—(1.4). Furthermore, BVP (1.3)—(1.4)
is equivalent to the fixed point problem of the operatoNext, for anyx € K, define

1 K
(Tu)(t) := |:/ D, </ h(r)f(r,u(r)) dr) ds
t 0

n2ai [T Dy (f3 R £, u(r))dr)ds:| o

t € [0, 1].

1- Zlal
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whereg™ := max{g, 0}. ObviouslyT = @ o A, where@® is as defined in Lemma 2.2.
Finally, for anyu € K’, define

1 K
(T'u) (@) :=/ @, </ h(r)f+(r,u(r))dr) ds
t

) 2y, f Dy( [y h(r)f+(r u(r)) dr) ds

, te]0,1].
1-37 2 5
Lemma 2.4. If u € K’ satisfies BVR1.3)—(1.4)then
min u(t)>—é) [lu]].

0<r<1 1— Z —1 o(l

Proof. Foru € K’,itis easy to see that0)=||u||, u(1)=ming<, <1 u(z). By the concavity
of u(r), we have

w(@® —u(&) _u@) —u(0)

1-¢ < 1 , i=1,...,m—2,
i.e.,
u(é) = Eu>A—-EHu©), i=1,...,m—2.
Then
m—2 m—2 m—2
D @) = Y w&u®= Y wi(l—EHu).
i=1 i=1 i=1
By (1.4),u(1) =}/ oc,u(é) Hence
m—2
u(1)>w (0).
- Z 151
This proves Lemma 2.4.0]
Next, define
Z -1 0‘1(1 é)
1-— Zm 12 OCl
and

1 s i )] h dr)d
M :/ D, (/ h(r) dr) ds + 1 % ff (fo ) S.
0 0 1-y" 24
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We have

Theorem 2.1. Supposef (z, 0) >0 for ¢ € [0, 1] andh(¢) f (¢, 0) == 0 on any subinterval
of [0, 1]. If there exist nonnegative numbersteand d such tha® < (1/)d <a < db <b
and f satisfies the following conditions

(H1) f(t,u)>=0for (¢,u) € [0, 1] x [d, b];
(H2) f(t,u)< (Pp(a/M) for (z, u) € [0, 1] x [0, al;
(H3) f(t,u)> D,(b/M) for (¢, u) € [0, 1] x [6b, b],

then BVP(1.3)—(1.4)has two positive solutions; andu, with

0<|luill <a < ||uz| <b.

Proof. Firstof all, from the definitions of andT”, itis clear tha#’ (K) c K andT’(K’) C
K’. Moreover, by the continuity df it is easy to seethat : K — X and7’ : K/ — K’
are completely continuous. So by Lemma 220 A : K — K andT : K — K are
completely continuous.

Now we show thaT has a fixed point, € K with 0 < |lu1]| < a. For simplicity, for any
r>0,wewriteK, :={u € K : ||u|]| <r}. Observe thadK, = {u € K : |ju|| = r}. Hence
for anyu € 0K,, we have|lu|| = a and 0<u(t) <a for all 7 € [0, 1]. So it follows from
(H2) that

1 s
I Tul = Og]tagxl |:/t D, (/(; h(r) f(r, u(r)) dr) ds

St f @y (fo h(r) f(r, u(r)) dr) ds
1-— Zm 12 o

1 s
= 0gagxl max[ /; D, (/(; h(r) f(r,u(r)) dr) ds

P [2 By (f3 h(r) £, u(r)) dr) ds }

1- Zlcx,

1 s i QP h d
<% max (/ ¢q</ h(r)dr) ds-+ R UO () dr) ds )
M o<i<1\ J; 0 1-— Z 1 o

1 s ’7’__21» 1 Sh dr) d
=i(/ @, (/ h(r)dr) gy it s P (fo D) S)
M\ Jo 0 1-Y" Py
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It follows from Lemma 2.1 that
l(T7 Ka, K) = 1

and hencd has a fixed poiniy in K,. We claim thatu1 is also a fixed point oA in K,,.
Suppose not, then there exigss [0, 1] such that

(Au1)(10) # ua(to) = (Tu1)(to) = max{(Au1)(io), 0}

and so this forces

(Au1)(to) <0 =u1(t).

Let I = I(19) be the largest interval iR that is open in0, 1] and containgg such that
(Au1)(t) <Oforallz € I. Note that

u1(t) = Tu1(t) = max{(Au1)(),0} =0 forallr eI.
Let /= the closure of in [0, 1]. ObviouslyI # [0, 1], for otherwise we would have
u1(t)=0 forallr e [0, 1],

which contradicts to the_assumgtion thet) f (z, 0) # 0 in any subinterval of0, 1]. So
we should have eitherd 7 or 0¢ 1. )
Casel: 1¢ 1. We haveu1(r) =0forallr € I. Itis easy to check that

(@p[(Au)1(1)) = —h(t) f(t,00<0 forallt e 1.

In particular, this implies thatAu1)'(r) is decreasing or. On the other hand, if <1
denotes the right-hand end-pointfsince(Au1)(t) <0 for allr € I and(Au1)(f) =0,
we have(Auy)' () >0. Hence(Au1)(¢) < 0 and is bounded away from O everywheré.in
This forcestg = 0 and(Au1)’(t) > 0 for all+ € I = [0, f8), which contradicts with the first
condition of (1.4).

Case2: 0¢ I. Similar to Case 1, it can be shown thatel I and (Au1)'(r) <0 for
allt € I. Hence(Au1)(¢) <0 is strictly decreasing oh For any; € {1,..., m — 2}, if
(Au1)(¢;) =0, then sinc€Aus)(1) <0, we haveAu1)(¢;) > (Auz)(1). Onthe other hand,
if (Au1)(¢;) <0, we musthavé; € I. Forif not, denote by (¢ ;) the largest interval ifik
that is open irf0, 1] and containg ; such thaAu1)(t) <0 forallz € 1(¢;). Sincel must
be disjoint from/ (£;) and 1 I, we have ¥ I_(g“j), which is impossible as shown in Case
1. So in this situation we also havauy)(&;) > (Aug)(1). Thus(Aug)(&;) > (Auz) (1) for
alli e{1,...,m —2}andso

m—2 m—2

(Au)(D) =Y w(Aun) (&)= Y wi(Aun) (D) > (Au) (D),

i=1 i=1
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which is also impossible. Combining, we conclude thafs also a fixed point oA and,
therefore, is a positive solution of BVP (1.3)—(1.4).

Next we show the existence of another fixed poinfoForu € 0K, similar to above,
we have from (H2) that

IT"ull = (T"u)(0)

1 K
=/ @, (/ h(r)f+(r,u(r))dr> ds
0 0

Yo [7 @ (fy h(r)f+(r u(r)) dr)ds
1-Y P

1 K i (D h dr)d
-4 |:/ D, (/ h(r)dr> ds + i Co f (foz rd s:|
M | Jo 0 1-— §:m1 o

Foru € 0K;, we havel|lu(r)|| = b. For 0<t <1, in view of Lemma 2.4, we have
ob<minp<s<1u(s)<u(r)<b.Henceu(r) € [ob, b] for ¢ € [0, 1]. By (H3), we get

1 K
||T/u||=/ @, (f h(r)f+(r,u(r))dr> ds
0 0

Y oc, f ) (fo h(r)f+(r u(r))dr)ds
1- Yo

1 K i D h dr)d
" /<pq(/ h(r)dr> ds + e (fo (rdr s
M| Jo 0 1- Yy

=b.

It follows from Lemma 2.1 that
i(T'. K, K)=1, i(T',K},K')=0
Thusi(T’, K;\K,, K') = —1 andT" has a fixed point in K\ K.
We claim thatAx = T'x for x € K;\K/, N {u : T'u=u}. In fact, foru, € K;\K/, N {u :

T'u = u}, itis clear that2(0) = |luz|| > a and so by Lemma 2.4,

uz(l) = min  u2(t) >6u(0) > da > d.
0<r<1
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Thus forz € [0, 1], d <uz(t) <b. From (H1), we know thaf +(r, uz(1)) = f(t, ua(t)).
This implies thatAup = T'uz for up € K;\K), N {u : T'u = u}. Henceuy is a fixed point
of Ain K’, which is also a positive solution of (1.3)—(1.4)
2.2. Positive solution to BVP (1.3)—(1.5)

Lemma 2.5. Supposé /= 12 o; # landy(-) € C[O0, 1]. Then the problem
(@p) +y(1)=0, O0<r<l, (2.4)

w@ =) wu(&). u'1)=0 (2.5)
has a unigue solution

¢ 1 m—2
“(f>=/ b, (/ y(r)dr> dy 4 2=t % ' @ (f y()dr)ds 06
0 s 1 Z 1 %

Proof. Integrate (2.4) from to 1, we get

1
D' (1)) =/ y(r)dr,
t

1
u'(n) = @, (/ y(r) dr) .
t

Integrating this from O td yields

1
u(t) =u(0) + /t D, </ y(r) dr) ds
0 K

From the boundary condition (2.5), we have

> 1 o S (f y(r)dr)ds
1 Zm 12 o
This proves Lemma 2.5.0

u(0) =

Now letX, K, K’, | - |I, K, andOK, be as defined in Section 2.1. For any K, we
define

t 1
(Au)(1) :=/ @, (/ h(r)f(r,u(r))dr) ds
0 s

1 o fO’ (o) (f h(r)f(r u(r))dr)ds
1-Y"y fx,

€ [0, 1].
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By Lemma 2.5, BVP (1.3)—(1.5) is equivalent to the fixed point problem of the opefator
For anyu € K we also define

t 1
(Tma):z[/‘éq(/ mnfoJum)m)ds
0 s

ii 1 '
Z o[5S h(r)f(r u(r)) dr) ds , te][0,1],
1-300 1 %

wheregt = maxg, 0}. ObviouslyT = © o A, where® is defined as in Lemma 2.2. For
anyu € K’, define

t 1
(T'w)(t) == / D, (/ h(r) 1@, u@r)) dr> ds
0 K

i +
+ iy 20 fo P (f h(r)f (r, u(r))dr)ds, L e0.11

1-y"y 2 5
Lemma 2.6. If u € K’ satisfies BVR1.3)—(1.5)then

m— 2
min  u(t) > =1 %S flul].
0<r<1 1 Z l(l 6)

Proof. Foru € K',itis easytoseethatl)=||ull,u(0)=ming<, <1 u(t). By the concavity
of u(r), we have
u(&;) —u(0) S u(l) —u(0)
i g 1 ’

u(&) —u) + Eu0>Eu@), i=1,...,m—2.
By (1.5),u(0) = >/ oclu(é,) Hence we have

min  u(r)> 2 10"
o<r<1 1-Y" e(1=&)

This proves Lemma 2.6.]

As in Section 2.1, define

5: Z 1“151
1- Z 1051(1 é)

M := /1<D (flh(r)dr> ds+ i1 O‘lfol‘p (f h(r)dr)ds
. O q s 1 Z 1 (xl .
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Analogous to Theorem 2.1, by using Lemmas 2.1, 2.2, 2.5, and 2.6, it is not hard to show
that BVP (1.3)—(1.5) has at least two positive solutions:

Theorem 2.2. Supposef (z, 0) >0 for ¢ € [0, 1] andh(z) f (¢, 0) = 0 on any subinterval
of [0, 1]. If there exist nonnegative numberstaand d such thad < (l/5)d <a<db<b
and f satisfies the following conditians

(HY)" f(t,u)=0for (t, u) € [0, 1] x [d, b];
(H2)' f(t,u) < ®,(a/M) for (1, u) € [0,1] x [0, al;
(H3) f(t,u)>®,(b/M) for (t,u) € [0, 1] x [0b, b],

then BVP(1.3)—(1.5)has at least two positive solutiong andu with

O0<|uill <a < ||uz| <b.
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