Nonlinear Analysis

Twin positive solutions for quasi-linear multi-point boundary value problems

Wing-Sum Cheung ${ }^{\text {a,*, }}$, Jingli Ren ${ }^{\text {b,2 }}$
${ }^{\text {a }}$ Department of Mathematics, The University of Hong Kong, Pokfulam, Hong Kong
${ }^{\mathrm{b}}$ Institute of Systems Science, Chinese Academy of Sciences, Beijing 100080, PR China

Received 8 November 2004; accepted 9 March 2005

Abstract

In this paper, we investigate two classes of quasi-linear multi-point boundary value problems with sign-changing nonlinearity. By applications of fixed point index theory, sufficient conditions for the existence of twin positive solutions are established.

© 2005 Elsevier Ltd. All rights reserved.
Keywords: Multi-point boundary value problems; p-Laplacian; Fixed point index theory

1. Introduction

In recent years, the existence of positive solutions for multi-point (including three-point) boundary value problems (BVP) has attracted much attention, see [4,7-9] and the references cited therein. Most results so far have been obtained mainly by using the fixed-point theorem in cones, such as Kransnosel'skii fixed-point theorem [5], Leggett-Williams' theorem [6], Avery and Henderson's theorem [1], and so on. In order to apply the concavity of solutions in the proofs, all the existing works were done under the assumption that the nonlinear term

[^0]is nonnegative. For example, in [7], Liu studied the three-point boundary value problem
\[

$$
\begin{align*}
& y^{\prime \prime}(t)+a(t) f(y(t))=0, \quad 0<t<1, \tag{1.1}\\
& y^{\prime}(0)=0, \quad y(1)=\beta y(\eta), \tag{1.2}
\end{align*}
$$
\]

where $0<\eta<1,0<\beta<1$. By applying Kransnosel'skii fixed-point theorem, Liu obtained some existence results for positive solutions of the BVP (1.1)-(1.2) under the condition that both f and a are in $C([0, \infty),[0, \infty)$).

Motivated by this, we consider a quasi-linear differential equation with sign-changing nonlinearity

$$
\begin{equation*}
\left(\Phi_{p}\left(u^{\prime}\right)\right)^{\prime}+h(t) f(t, u)=0, \quad 0<t<1 \tag{1.3}
\end{equation*}
$$

where $h:[0,1] \rightarrow \mathbb{R}^{+}$and $f:[0,1] \times[0, \infty) \rightarrow \mathbb{R}$ are continuous, and

$$
\Phi_{p}(u):=|u|^{p-2} u, \quad p>1,
$$

is a one-dimensional p-Laplacian. Note that the nonlinear term $f(t, u)$ here is allowed to change sign. Observe also that if q is the conjugate exponent of p, i.e., if $1 / q+1 / p=1$, then $\Phi_{q}=\left(\Phi_{p}\right)^{-1}$. We investigate Eq. (1.3) subject to one of the following multi-point boundary conditions:

$$
\begin{align*}
& u^{\prime}(0)=0, \quad u(1)=\sum_{i=1}^{m-2} \alpha_{i} u\left(\xi_{i}\right) \tag{1.4}\\
& u(0)=\sum_{i=1}^{m-2} \alpha_{i} u\left(\xi_{i}\right), \quad u^{\prime}(1)=0 \tag{1.5}
\end{align*}
$$

Here $\xi_{i} \in(0,1)$ with $0<\xi_{1}<\xi_{2}<\cdots<\xi_{m-2}<1, \alpha_{i} \geqslant 0$ with $0<\sum_{i=1}^{m-2} \alpha_{i}<1, m \geqslant 3$. It is obvious that BVP (1.3)-(1.4) can be regarded as a generalization of BVP (1.1)-(1.2). We shall apply fixed point index theory to obtain sufficient conditions for the existence of twin positive solutions for the prescribed problems (1.3)-(1.4) and (1.3)-(1.5) by constructing available operators. In doing so the usual restriction $f \geqslant 0$ is removed.

2. Main results

Before giving the main theorems, we need a couple of preliminary results. The first one is a well-known result of the fixed point index theory which our main results are based on.

Lemma 2.1 (Deimling [2], Guo and Lakshmikantham [3] and Krasnoselskii [5]). Let E be a Banach space and K a cone in E. For $r>0$, define $K_{r}=\{u \in K:\|x\|<r\}$.Assume that $T: \bar{K}_{r} \rightarrow K$ is completely continuous such that $T x \neq x$ for $x \in \partial K_{r}=\{u \in K:\|x\|=r\}$.
(i) If $\|T x\| \geqslant\|x\|$ for $x \in \partial K_{r}$, then

$$
i\left(T, K_{r}, K\right)=0
$$

(ii) If $\|T x\| \leqslant\|x\|$ for $x \in \partial K_{r}$, then

$$
i\left(T, K_{r}, K\right)=1
$$

Lemma 2.2. Let $X=C[0,1]$ with the sup norm $\|u\|:=\sup _{0 \leqslant t \leqslant 1}|u(t)|$, and $K=\{x \in$ $X: x(t) \geqslant 0\}$. Suppose $T: X \rightarrow X$ is completely continuous. Define $\Theta: T X \rightarrow K$ by $(\Theta y)(t)=\max \{y(t), 0\}$ for $y \in T X, t \in[0,1]$. Then $\Theta \circ T: X \rightarrow K$ is also a completely continuous operator.

Proof. The complete continuity of T implies that T is continuous and relatively compact. Therefore, given any bounded $D \subset X$ and any $\varepsilon>0$, there are $y_{i}, i=1, \ldots, m$, such that

$$
T D \subset \bigcup_{i=1}^{m} B\left(y_{i}, \varepsilon\right)
$$

where $B\left(y_{i}, \varepsilon\right)=\left\{x \in X:\left\|x-y_{i}\right\|<\varepsilon\right\}$. Hence for any $\bar{y} \in(\Theta \circ T)(D)$, there is $y \in T D$ such that $\bar{y}(t)=\max \{y(t), 0\}$. We choose an $i \in\{1, \ldots, m\}$ such that $\max _{0 \leqslant t \leqslant 1} \mid y(t)-$ $y_{i}(t) \mid<\varepsilon$. The fact

$$
\max _{0 \leqslant t \leqslant 1}\left|\bar{y}(t)-\bar{y}_{i}(t)\right| \leqslant \max _{0 \leqslant t \leqslant 1}\left|y(t)-y_{i}(t)\right|<\varepsilon
$$

implies that $\bar{y} \in B\left(\bar{y}_{i}, \varepsilon\right)$. So $(\Theta \circ T)(D)$ is relatively compact.
On the other hand, for arbitrary $\varepsilon>0$, there is $\delta>0$ such that

$$
\|T y-T x\|<\varepsilon \quad \text { whenever } \quad\|y-x\|<\delta
$$

and hence

$$
\begin{aligned}
\|(\Theta \circ T) y-(\Theta \circ T) x\| & =\max _{0 \leqslant t \leqslant 1}\|(\overline{T y})(t)-(\overline{T x})(t)\| \\
& \leqslant \max _{0 \leqslant t \leqslant 1}\|(T y)(t)-(T x)(t)\| \\
& =\|T y-T x\| \\
& <\varepsilon
\end{aligned}
$$

whenever $\|y-x\|<\delta$. Therefore, $\Theta \circ T$ is continuous on X and hence $\Theta \circ T$ is completely continuous.

Below we discuss BVP (1.3)-(1.4) and BVP (1.3)-(1.5), separately.

2.1. Positive solution to BVP (1.3)-(1.4)

Lemma 2.3. Suppose $\sum_{i=1}^{m-2} \alpha_{i} \neq 1$ and $y(\cdot) \in C[0,1]$. Then the problem

$$
\begin{align*}
& \left(\Phi_{p}\left(u^{\prime}\right)\right)^{\prime}+y(t)=0, \quad 0<t<1, \tag{2.1}\\
& u^{\prime}(0)=0, \quad u(1)=\sum_{i=1}^{m-2} \alpha_{i} u\left(\xi_{i}\right) \tag{2.2}
\end{align*}
$$

has a unique solution

$$
\begin{equation*}
u(t)=\int_{t}^{1} \Phi_{q}\left(\int_{0}^{s} y(r) \mathrm{d} r\right) \mathrm{d} s+\frac{\sum_{i=1}^{m-2} \alpha_{i} \int_{\xi_{i}}^{1} \Phi_{q}\left(\int_{0}^{s} y(r) \mathrm{d} r\right) \mathrm{d} s}{1-\sum_{i=1}^{m-2} \alpha_{i}} \tag{2.3}
\end{equation*}
$$

Proof. Integrate (2.1) from 0 to t, we get

$$
\Phi_{p}\left(u^{\prime}(t)\right)=-\int_{0}^{t} y(r) \mathrm{d} r
$$

i.e.,

$$
u^{\prime}(t)=-\Phi_{q}\left(\int_{0}^{t} y(r) \mathrm{d} r\right)
$$

Integrating this from t to 1 yields

$$
u(t)=u(1)+\int_{t}^{1} \Phi_{q}\left(\int_{0}^{s} y(r) \mathrm{d} r\right) \mathrm{d} s
$$

From the boundary condition (2.2), we have

$$
u(1)=\frac{\sum_{i=1}^{m-2} \alpha_{i} \int_{\xi_{i}}^{1} \Phi_{q}\left(\int_{0}^{s} y(r) \mathrm{d} r\right) \mathrm{d} s}{1-\sum_{i=1}^{m-2} \alpha_{i}}
$$

This proves Lemma 2.3.
Now let $X=C[0,1], K=\{u \in X: u(t) \geqslant 0 \forall t \in[0,1]\}, K^{\prime}=\{u \in X: u$ is nonnegative, concave, and nonincreasing $\}$. Equip X with the sup norm $\|u\|:=\sup _{0 \leqslant t \leqslant 1}|u(t)|$. Clearly, $K, K^{\prime} \subseteq X$ are cones with $K^{\prime} \subseteq K$. Define operators A, T and T^{\prime} as follows: for any $u \in K$, define

$$
\begin{aligned}
(A u)(t):= & \int_{t}^{1} \Phi_{q}\left(\int_{0}^{s} h(r) f(r, u(r)) \mathrm{d} r\right) \mathrm{d} s \\
& +\frac{\sum_{i=1}^{m-2} \alpha_{i} \int_{\xi_{i}}^{1} \Phi_{q}\left(\int_{0}^{s} h(r) f(r, u(r)) \mathrm{d} r\right) \mathrm{d} s}{1-\sum_{i=1}^{m-2} \alpha_{i}}, \quad t \in[0,1] .
\end{aligned}
$$

By Lemma 2.3, for any $u \in K, A u$ satisfies BVP (1.3)-(1.4). Furthermore, BVP (1.3)-(1.4) is equivalent to the fixed point problem of the operator A. Next, for any $u \in K$, define

$$
\begin{aligned}
(T u)(t):= & {\left[\int_{t}^{1} \Phi_{q}\left(\int_{0}^{s} h(r) f(r, u(r)) \mathrm{d} r\right) \mathrm{d} s\right.} \\
& \left.+\frac{\sum_{i=1}^{m-2} \alpha_{i} \int_{\xi_{i}}^{1} \Phi_{q}\left(\int_{0}^{s} h(r) f(r, u(r)) \mathrm{d} r\right) \mathrm{d} s}{1-\sum_{i=1}^{m-2} \alpha_{i}}\right]^{+}, \quad t \in[0,1]
\end{aligned}
$$

where $g^{+}:=\max \{g, 0\}$. Obviously $T=\Theta \circ A$, where Θ is as defined in Lemma 2.2. Finally, for any $u \in K^{\prime}$, define

$$
\begin{aligned}
\left(T^{\prime} u\right)(t):= & \int_{t}^{1} \Phi_{q}\left(\int_{0}^{s} h(r) f^{+}(r, u(r)) \mathrm{d} r\right) \mathrm{d} s \\
& +\frac{\sum_{i=1}^{m-2} \alpha_{i} \int_{\xi_{i}}^{1} \Phi_{q}\left(\int_{0}^{s} h(r) f^{+}(r, u(r)) \mathrm{d} r\right) \mathrm{d} s}{1-\sum_{i=1}^{m-2} \alpha_{i}}, \quad t \in[0,1]
\end{aligned}
$$

Lemma 2.4. If $u \in K^{\prime}$ satisfies $B V P$ (1.3)-(1.4), then

$$
\min _{0 \leqslant t \leqslant 1} u(t) \geqslant \frac{\sum_{i=1}^{m-2} \alpha_{i}\left(1-\xi_{i}\right)}{1-\sum_{i=1}^{m-2} \alpha_{i} \xi_{i}}\|u\| .
$$

Proof. For $u \in K^{\prime}$, it is easy to see that $u(0)=\|u\|, u(1)=\min _{0 \leqslant t \leqslant 1} u(t)$. By the concavity of $u(t)$, we have

$$
\frac{u(1)-u\left(\xi_{i}\right)}{1-\xi_{i}} \leqslant \frac{u(1)-u(0)}{1}, \quad i=1, \ldots, m-2
$$

i.e.,

$$
u\left(\xi_{i}\right)-\xi_{i} u(1) \geqslant\left(1-\xi_{i}\right) u(0), \quad i=1, \ldots, m-2 .
$$

Then

$$
\sum_{i=1}^{m-2} \alpha_{i} u\left(\xi_{i}\right)-\sum_{i=1}^{m-2} \alpha_{i} \xi_{i} u(1) \geqslant \sum_{i=1}^{m-2} \alpha_{i}\left(1-\xi_{i}\right) u(0)
$$

$\operatorname{By}(1.4), u(1)=\sum_{i=1}^{m-2} \alpha_{i} u\left(\xi_{i}\right)$. Hence

$$
u(1) \geqslant \frac{\sum_{i=1}^{m-2} \alpha_{i}\left(1-\xi_{i}\right)}{1-\sum_{i=1}^{m-2} \alpha_{i} \xi_{i}} u(0)
$$

This proves Lemma 2.4.
Next, define

$$
\delta=\frac{\sum_{i=1}^{m-2} \alpha_{i}\left(1-\xi_{i}\right)}{1-\sum_{i=1}^{m-2} \alpha_{i} \xi_{i}}
$$

and

$$
M=\int_{0}^{1} \Phi_{q}\left(\int_{0}^{s} h(r) \mathrm{d} r\right) \mathrm{d} s+\frac{\sum_{i=1}^{m-2} \alpha_{i} \int_{\xi_{i}}^{1} \Phi_{q}\left(\int_{0}^{s} h(r) \mathrm{d} r\right) \mathrm{d} s}{1-\sum_{i=1}^{m-2} \alpha_{i}} .
$$

We have
Theorem 2.1. Suppose $f(t, 0) \geqslant 0$ for $t \in[0,1]$ and $h(t) f(t, 0) \not \equiv 0$ on any subinterval of $[0,1]$. If there exist nonnegative numbers a, b and d such that $0<(1 / \delta) d<a<\delta b<b$ and f satisfies the following conditions:
(H1) $f(t, u) \geqslant 0$ for $(t, u) \in[0,1] \times[d, b]$;
(H2) $f(t, u)<\Phi_{p}(a / M)$ for $(t, u) \in[0,1] \times[0, a]$;
(H3) $f(t, u)>\Phi_{p}(b / M)$ for $(t, u) \in[0,1] \times[\delta b, b]$,
then $B V P$ (1.3)-(1.4) has two positive solutions u_{1} and u_{2} with

$$
0<\left\|u_{1}\right\|<a<\left\|u_{2}\right\|<b
$$

Proof. First of all, from the definitions of T and T^{\prime}, it is clear that $T(K) \subset K$ and $T^{\prime}\left(K^{\prime}\right) \subset$ K^{\prime}. Moreover, by the continuity of f, it is easy to see that $A: K \rightarrow X$ and $T^{\prime}: K^{\prime} \rightarrow K^{\prime}$ are completely continuous. So by Lemma $2.2, \Theta \circ A: K \rightarrow K$ and $T: K \rightarrow K$ are completely continuous.

Now we show that T has a fixed point $u_{1} \in K$ with $0<\left\|u_{1}\right\|<a$. For simplicity, for any $r>0$, we write $K_{r}:=\{u \in K:\|u\|<r\}$. Observe that $\partial K_{r}=\{u \in K:\|u\|=r\}$. Hence for any $u \in \partial K_{a}$, we have $\|u\|=a$ and $0 \leqslant u(t) \leqslant a$ for all $t \in[0,1]$. So it follows from (H2) that

$$
\begin{aligned}
\|T u\|= & \max _{0 \leqslant t \leqslant 1}\left[\int_{t}^{1} \Phi_{q}\left(\int_{0}^{s} h(r) f(r, u(r)) \mathrm{d} r\right) \mathrm{d} s\right. \\
& \left.+\frac{\sum_{i=1}^{m-2} \alpha_{i} \int_{\xi_{i}}^{1} \Phi_{q}\left(\int_{0}^{s} h(r) f(r, u(r)) \mathrm{d} r\right) \mathrm{d} s}{1-\sum_{i=1}^{m-2} \alpha_{i}}\right]^{+} \\
= & \max _{0 \leqslant t \leqslant 1} \max \left\{\int_{t}^{1} \Phi_{q}\left(\int_{0}^{s} h(r) f(r, u(r)) \mathrm{d} r\right) \mathrm{d} s\right. \\
& \left.+\frac{\sum_{i=1}^{m-2} \alpha_{i} \int_{\xi_{i}}^{1} \Phi_{q}\left(\int_{0}^{s} h(r) f(r, u(r)) \mathrm{d} r\right) \mathrm{d} s}{1-\sum_{i=1}^{m-2} \alpha_{i}}, 0\right\} \\
< & \frac{a}{M} \max _{0 \leqslant t \leqslant 1}\left(\int_{t}^{1} \Phi_{q}\left(\int_{0}^{s} h(r) \mathrm{d} r\right) \mathrm{d} s+\frac{\sum_{i=1}^{m-2} \alpha_{i} \int_{\xi_{i}}^{1} \Phi_{q}\left(\int_{0}^{s} h(r) \mathrm{d} r\right) \mathrm{d} s}{1-\sum_{i=1}^{m-2} \alpha_{i}}\right) \\
= & \frac{a}{M}\left(\int_{0}^{1} \Phi_{q}\left(\int_{0}^{s} h(r) \mathrm{d} r\right) \mathrm{d} s+\frac{\sum_{i=1}^{m-2} \alpha_{i} \int_{\xi_{i}}^{1} \Phi_{q}\left(\int_{0}^{s} h(r) \mathrm{d} r\right) \mathrm{d} s}{1-\sum_{i=1}^{m-2} \alpha_{i}}\right) \\
= & a .
\end{aligned}
$$

It follows from Lemma 2.1 that

$$
i\left(T, K_{a}, K\right)=1
$$

and hence T has a fixed point u_{1} in K_{a}. We claim that u_{1} is also a fixed point of A in K_{a}. Suppose not, then there exists $t_{0} \in[0,1]$ such that

$$
\left(A u_{1}\right)\left(t_{0}\right) \neq u_{1}\left(t_{0}\right)=\left(T u_{1}\right)\left(t_{0}\right)=\max \left\{\left(A u_{1}\right)\left(t_{0}\right), 0\right\}
$$

and so this forces

$$
\left(A u_{1}\right)\left(t_{0}\right)<0=u_{1}\left(t_{0}\right)
$$

Let $I=I\left(t_{0}\right)$ be the largest interval in \mathbb{R} that is open in $[0,1]$ and contains t_{0} such that $\left(A u_{1}\right)(t)<0$ for all $t \in I$. Note that

$$
u_{1}(t)=T u_{1}(t)=\max \left\{\left(A u_{1}\right)(t), 0\right\}=0 \quad \text { for all } t \in I
$$

Let $\bar{I}=$ the closure of I in $[0,1]$. Obviously $\bar{I} \neq[0,1]$, for otherwise we would have

$$
u_{1}(t)=0 \quad \text { for all } t \in[0,1]
$$

which contradicts to the assumption that $h(t) f(t, 0) \not \equiv 0$ in any subinterval of $[0,1]$. So we should have either $1 \notin \bar{I}$ or $0 \notin \bar{I}$.

Case 1: $1 \notin \bar{I}$. We have $u_{1}(t)=0$ for all $t \in \bar{I}$. It is easy to check that

$$
\left(\Phi_{p}\left[\left(A u_{1}\right)^{\prime}\right](t)\right)^{\prime}=-h(t) f(t, 0) \leqslant 0 \quad \text { for all } t \in \bar{I}
$$

In particular, this implies that $\left(A u_{1}\right)^{\prime}(t)$ is decreasing on \bar{I}. On the other hand, if $\beta<1$ denotes the right-hand end-point of I, since $\left(A u_{1}\right)(t)<0$ for all $t \in I$ and $\left(A u_{1}\right)(\beta)=0$, we have $\left(A u_{1}\right)^{\prime}(\beta) \geqslant 0$. Hence $\left(A u_{1}\right)(t)<0$ and is bounded away from 0 everywhere in I. This forces $t_{0}=0$ and $\left(A u_{1}\right)^{\prime}(t)>0$ for all $t \in I=[0, \beta)$, which contradicts with the first condition of (1.4).

Case 2: $0 \notin \bar{I}$. Similar to Case 1, it can be shown that $1 \in I$ and $\left(A u_{1}\right)^{\prime}(t)<0$ for all $t \in I$. Hence $\left(A u_{1}\right)(t)<0$ is strictly decreasing on I. For any $j \in\{1, \ldots, m-2\}$, if $\left(A u_{1}\right)\left(\xi_{j}\right) \geqslant 0$, then since $\left(A u_{1}\right)(1)<0$, we have $\left(A u_{1}\right)\left(\xi_{j}\right)>\left(A u_{1}\right)(1)$. On the other hand, if $\left(A u_{1}\right)\left(\xi_{j}\right)<0$, we must have $\xi_{j} \in I$. For if not, denote by $I\left(\xi_{j}\right)$ the largest interval in \mathbb{R} that is open in $[0,1]$ and contains ξ_{j} such that $\left(A u_{1}\right)(t)<0$ for all $t \in I\left(\xi_{j}\right)$. Since I must be disjoint from $I\left(\xi_{j}\right)$ and $1 \in I$, we have $1 \notin \bar{I}\left(\xi_{j}\right)$, which is impossible as shown in Case 1. So in this situation we also have $\left(A u_{1}\right)\left(\xi_{j}\right)>\left(A u_{1}\right)(1)$. Thus $\left(A u_{1}\right)\left(\xi_{i}\right)>\left(A u_{1}\right)(1)$ for all $i \in\{1, \ldots, m-2\}$ and so

$$
\left(A u_{1}\right)(1)=\sum_{i=1}^{m-2} \alpha_{i}\left(A u_{1}\right)\left(\xi_{i}\right) \geqslant \sum_{i=1}^{m-2} \alpha_{i}\left(A u_{1}\right)(1)>\left(A u_{1}\right)(1),
$$

which is also impossible. Combining, we conclude that u_{1} is also a fixed point of A and, therefore, is a positive solution of BVP (1.3)-(1.4).

Next we show the existence of another fixed point of A. For $u \in \partial K_{a}^{\prime}$, similar to above, we have from (H2) that

$$
\begin{aligned}
\left\|T^{\prime} u\right\|= & \left(T^{\prime} u\right)(0) \\
= & \int_{0}^{1} \Phi_{q}\left(\int_{0}^{s} h(r) f^{+}(r, u(r)) \mathrm{d} r\right) \mathrm{d} s \\
& +\frac{\sum_{i=1}^{m-2} \alpha_{i} \int_{\xi_{i}}^{1} \Phi_{q}\left(\int_{0}^{s} h(r) f^{+}(r, u(r)) \mathrm{d} r\right) \mathrm{d} s}{1-\sum_{i=1}^{m-2} \alpha_{i}} \\
< & \frac{a}{M}\left[\int_{0}^{1} \Phi_{q}\left(\int_{0}^{s} h(r) \mathrm{d} r\right) \mathrm{d} s+\frac{\sum_{i=1}^{m-2} \alpha_{i} \int_{\xi_{i}}^{1} \Phi_{q}\left(\int_{0}^{s} h(r) \mathrm{d} r\right) \mathrm{d} s}{1-\sum_{i=1}^{m-2} \alpha_{i}}\right] \\
= & a
\end{aligned}
$$

For $u \in \partial K_{b}^{\prime}$, we have $\|u(t)\|=b$. For $0 \leqslant t \leqslant 1$, in view of Lemma 2.4, we have $\delta b \leqslant \min _{0 \leqslant s \leqslant 1} u(s) \leqslant u(t) \leqslant b$. Hence $u(t) \in[\delta b, b]$ for $t \in[0,1]$. By (H3), we get

$$
\begin{aligned}
\left\|T^{\prime} u\right\|= & \int_{0}^{1} \Phi_{q}\left(\int_{0}^{s} h(r) f^{+}(r, u(r)) \mathrm{d} r\right) \mathrm{d} s \\
& +\frac{\sum_{i=1}^{m-2} \alpha_{i} \int_{\xi_{i}}^{1} \Phi_{q}\left(\int_{0}^{s} h(r) f^{+}(r, u(r)) \mathrm{d} r\right) \mathrm{d} s}{1-\sum_{i=1}^{m-2} \alpha_{i}} \\
> & \frac{b}{M}\left[\int_{0}^{1} \Phi_{q}\left(\int_{0}^{s} h(r) \mathrm{d} r\right) \mathrm{d} s+\frac{\sum_{i=1}^{m-2} \alpha_{i} \int_{\xi_{i}}^{1} \Phi_{q}\left(\int_{0}^{s} h(r) \mathrm{d} r\right) \mathrm{d} s}{1-\sum_{i=1}^{m-2} \alpha_{i}}\right] \\
= & b
\end{aligned}
$$

It follows from Lemma 2.1 that

$$
i\left(T^{\prime}, K_{a}^{\prime}, K^{\prime}\right)=1, \quad i\left(T^{\prime}, K_{b}^{\prime}, K^{\prime}\right)=0
$$

Thus $i\left(T^{\prime}, K_{b}^{\prime} \backslash \bar{K}_{a}^{\prime}, K^{\prime}\right)=-1$ and T^{\prime} has a fixed point u_{2} in $K_{b}^{\prime} \backslash \bar{K}_{a}^{\prime}$.
We claim that $A x=T^{\prime} x$ for $x \in K_{b}^{\prime} \backslash \bar{K}_{a}^{\prime} \cap\left\{u: T^{\prime} u=u\right\}$. In fact, for $u_{2} \in K_{b}^{\prime} \backslash \overline{K_{a}^{\prime}} \cap\{u$: $\left.T^{\prime} u=u\right\}$, it is clear that $u_{2}(0)=\left\|u_{2}\right\|>a$ and so by Lemma 2.4,

$$
u_{2}(1)=\min _{0 \leqslant t \leqslant 1} u_{2}(t) \geqslant \delta u_{2}(0)>\delta a>d .
$$

Thus for $t \in[0,1], d \leqslant u_{2}(t) \leqslant b$. From (H1), we know that $f^{+}\left(t, u_{2}(t)\right)=f\left(t, u_{2}(t)\right)$. This implies that $A u_{2}=T^{\prime} u_{2}$ for $u_{2} \in K_{b}^{\prime} \backslash \bar{K}_{a}^{\prime} \cap\left\{u: T^{\prime} u=u\right\}$. Hence u_{2} is a fixed point of A in K^{\prime}, which is also a positive solution of (1.3)-(1.4).

2.2. Positive solution to $B V P(1.3)-(1.5)$

Lemma 2.5. Suppose $\sum_{i=1}^{m-2} \alpha_{i} \neq 1$ and $y(\cdot) \in C[0,1]$. Then the problem

$$
\begin{align*}
& \left(\Phi_{p}\left(u^{\prime}\right)\right)^{\prime}+y(t)=0, \quad 0<t<1, \tag{2.4}\\
& u(0)=\sum_{i=1}^{m-2} \alpha_{i} u\left(\xi_{i}\right), \quad u^{\prime}(1)=0 \tag{2.5}
\end{align*}
$$

has a unique solution

$$
\begin{equation*}
u(t)=\int_{0}^{t} \Phi_{q}\left(\int_{s}^{1} y(r) \mathrm{d} r\right) \mathrm{d} s+\frac{\sum_{i=1}^{m-2} \alpha_{i} \int_{0}^{\xi_{i}} \Phi_{q}\left(\int_{s}^{1} y(r) \mathrm{d} r\right) \mathrm{d} s}{1-\sum_{i=1}^{m-2} \alpha_{i}} \tag{2.6}
\end{equation*}
$$

Proof. Integrate (2.4) from t to 1 , we get

$$
\Phi_{p}\left(u^{\prime}(t)\right)=\int_{t}^{1} y(r) \mathrm{d} r,
$$

i.e.,

$$
u^{\prime}(t)=\Phi_{q}\left(\int_{t}^{1} y(r) \mathrm{d} r\right) .
$$

Integrating this from 0 to t yields

$$
u(t)=u(0)+\int_{0}^{t} \Phi_{q}\left(\int_{s}^{1} y(r) \mathrm{d} r\right) \mathrm{d} s
$$

From the boundary condition (2.5), we have

$$
u(0)=\frac{\sum_{i=1}^{m-2} \alpha_{i} \int_{0}^{\xi_{i}} \Phi_{q}\left(\int_{s}^{1} y(r) \mathrm{d} r\right) \mathrm{d} s}{1-\sum_{i=1}^{m-2} \alpha_{i}} .
$$

This proves Lemma 2.5.
Now let $X, K, K^{\prime},\|\cdot\|, K_{r}$, and ∂K_{r} be as defined in Section 2.1. For any $u \in K$, we define

$$
\begin{aligned}
(\tilde{A} u)(t):= & \int_{0}^{t} \Phi_{q}\left(\int_{s}^{1} h(r) f(r, u(r)) \mathrm{d} r\right) \mathrm{d} s \\
& +\frac{\sum_{i=1}^{m-2} \alpha_{i} \int_{0}^{\xi_{i}} \Phi_{q}\left(\int_{s}^{1} h(r) f(r, u(r)) \mathrm{d} r\right) \mathrm{d} s}{1-\sum_{i=1}^{m-2} \alpha_{i}}, \quad t \in[0,1] .
\end{aligned}
$$

By Lemma 2.5, BVP (1.3)-(1.5) is equivalent to the fixed point problem of the operator \tilde{A}. For any $u \in K$ we also define

$$
\begin{aligned}
(\tilde{T} u)(t):= & {\left[\int_{0}^{t} \Phi_{q}\left(\int_{s}^{1} h(r) f(r, u(r)) \mathrm{d} r\right) \mathrm{d} s\right.} \\
& \left.+\frac{\sum_{i=1}^{m-2} \alpha_{i} \int_{0}^{\xi_{i}} \Phi_{q}\left(\int_{s}^{1} h(r) f(r, u(r)) \mathrm{d} r\right) \mathrm{d} s}{1-\sum_{i=1}^{m-2} \alpha_{i}}\right]^{+}, \quad t \in[0,1]
\end{aligned}
$$

where $g^{+}=\max \{g, 0\}$. Obviously $\tilde{T}=\Theta \circ \tilde{A}$, where Θ is defined as in Lemma 2.2. For any $u \in K^{\prime}$, define

$$
\begin{aligned}
\left(\tilde{T}^{\prime} u\right)(t):= & \int_{0}^{t} \Phi_{q}\left(\int_{s}^{1} h(r) f^{+}(r, u(r)) \mathrm{d} r\right) \mathrm{d} s \\
& +\frac{\sum_{i=1}^{m-2} \alpha_{i} \int_{0}^{\xi_{i}} \Phi_{q}\left(\int_{s}^{1} h(r) f^{+}(r, u(r)) \mathrm{d} r\right) \mathrm{d} s}{1-\sum_{i=1}^{m-2} \alpha_{i}}, \quad t \in[0,1]
\end{aligned}
$$

Lemma 2.6. If $u \in K^{\prime}$ satisfies $B V P(1.3)-(1.5)$, then

$$
\min _{0 \leqslant t \leqslant 1} u(t) \geqslant \frac{\sum_{i=1}^{m-2} \alpha_{i} \xi_{i}}{1-\sum_{i=1}^{m-2} \alpha_{i}\left(1-\xi_{i}\right)}\|u\| .
$$

Proof. For $u \in K^{\prime}$, it is easy to see that $u(1)=\|u\|, u(0)=\min _{0 \leqslant t \leqslant 1} u(t)$. By the concavity of $u(t)$, we have

$$
\frac{u\left(\xi_{i}\right)-u(0)}{\xi_{i}} \geqslant \frac{u(1)-u(0)}{1}, \quad i=1, \ldots, m-2
$$

i.e.,

$$
u\left(\xi_{i}\right)-u(0)+\xi_{i} u(0) \geqslant \xi_{i} u(1), \quad i=1, \ldots, m-2
$$

By (1.5), $u(0)=\sum_{i=1}^{m-2} \alpha_{i} u\left(\xi_{i}\right)$. Hence we have

$$
\min _{0 \leqslant t \leqslant 1} u(t) \geqslant \frac{\sum_{i=1}^{m-2} \alpha_{i} \xi_{i}}{1-\sum_{i=1}^{m-2} \alpha_{i}\left(1-\xi_{i}\right)}\|u\| .
$$

This proves Lemma 2.6.
As in Section 2.1, define

$$
\begin{aligned}
\tilde{\delta} & :=\frac{\sum_{i=1}^{m-2} \alpha_{i} \xi_{i}}{1-\sum_{i=1}^{m-2} \alpha_{i}\left(1-\xi_{i}\right)} \\
\tilde{M} & :=\int_{0}^{1} \Phi_{q}\left(\int_{s}^{1} h(r) \mathrm{d} r\right) \mathrm{d} s+\frac{\sum_{i=1}^{m-2} \alpha_{i} \int_{0}^{\xi_{i}} \Phi_{q}\left(\int_{s}^{1} h(r) \mathrm{d} r\right) \mathrm{d} s}{1-\sum_{i=1}^{m-2} \alpha_{i}}
\end{aligned}
$$

Analogous to Theorem 2.1, by using Lemmas 2.1, 2.2, 2.5, and 2.6, it is not hard to show that BVP (1.3)-(1.5) has at least two positive solutions:

Theorem 2.2. Suppose $f(t, 0) \geqslant 0$ for $t \in[0,1]$ and $h(t) f(t, 0) \not \equiv 0$ on any subinterval of $[0,1]$. If there exist nonnegative numbers a, b and d such that $0<(1 / \tilde{\delta}) d<a<\tilde{\delta} b<b$ and f satisfies the following conditions:
$(\mathrm{H} 1)^{\prime} f(t, u) \geqslant 0$ for $(t, u) \in[0,1] \times[d, b]$;
$(\mathrm{H} 2)^{\prime} f(t, u)<\Phi_{p}(a / \tilde{M})$ for $(t, u) \in[0,1] \times[0, a]$;
(H3)' $f(t, u)>\Phi_{p}(b / \tilde{M})$ for $(t, u) \in[0,1] \times[\tilde{\delta} b, b]$,
then $B V P(1.3)-(1.5)$ has at least two positive solutions u_{1} and u_{2} with

$$
0<\left\|u_{1}\right\|<a<\left\|u_{2}\right\|<b
$$

References

[1] R.I. Avery, J. Henderson, Twin solutions of boundary value problems for ordinary differential equations and finite difference equations, Comput. Math. Appl. 42 (2001) 695-704.
[2] K. Deimling, Nonlinear Functional Analysis, Springer, Berlin, 1985.
[3] D. Guo, V. Lakshmikantham, Nonlinear Problems in Abstract Cones, Academic Press, Orlando, FL, 1988.
[4] X. He, W. Ge, Triple solutions for second-order three-point boundary value problems, J. Math. Anal. Appl. 268 (2002) 256-265.
[5] M.A. Krasnoselskii, Positive Solutions of Operators Equations, P. Noordhoff, Groningen, The Netherlands, 1964.
[6] R.W. Leggett, L.R. Williams, Multiple positive fixed points of nonlinear operators on ordered Banach spaces, Indiana Univ. Math. J. 28 (1979) 673-688.
[7] B. Liu, Positive solutions of a nonlinear three-point boundary value problem, Appl. Math. Comput. 132 (2002) 11-28.
[8] R. Ma, N. Castaneda, Existence of solutions of m-point boundary value problems, J. Math. Anal. Appl. 256 (2001) 556-567.
[9] Y.N. Raffoul, Positive solutions of three-point nonlinear second boundary value problem, Electron. J. Qual. Theory Differential Equations 15 (2002) 1-11.

[^0]: * Corresponding author. Tel.: +852 28591996; fax: +852 25592225.

 E-mail addresses: wscheung @hkucc.hku.hk (W.-S. Cheung), renj1@amss.ac.cn (J. Ren).
 ${ }^{1}$ Research partially supported by the Research Grants Council of the Hong Kong SAR, China (Project No. HKU7040/03P).
 ${ }^{2}$ Research partially supported by the Postdoctoral Foundation of China.

