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Abstract

This is a continuation of an earlier work of Cheung-Pečarić. By using the C-technique

developed by Cheung and Pečarić, some new and interesting Hardy-type inequalities involving

vector-valued functions are established. These generalize and imporve some known results by

Cheung, Cheung-Hanǰs-Pečarić, Izumi-Izumi, and Pachpatte.
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1. Introduction

One of the classical and important inequalities of G.H. Hardy is the following integral

inequality [7, Theorem 330]:

If p > 1, m 6= 1, f(x) is non-negative measurable on (0,∞), and

F (x) =
{ ∫ x

0
f(t)dt for m > 1 ,∫∞

x
f(t)dt for m < 1 ,

(A)

then ∫ ∞

0

x−mF (x)pdx <
( p

|m− 1|
)p

∫ ∞

0

x−m+pf(x)pdx (B)

unless f ≡ 0, where the constant on the right is best possible.

Because of its fundamental importance in the discipline, over the years much effort and

time have been devoted to the improvement and generalizations of Hardy’s inequality (B).

These include, among others, the works by Cheung [1], Cheung-Hanǰs-Pečarić [3], Isumi-Isumi

[8], Levinson [9], Love [10], Pachpatte [14], and Pachpatte-Love [15]. Recently, Hanǰs, Love and

Pečarić [6] adopted a function more general than F (x) in (A) and established some new and

interesting Hardy-type integral inequalities. In this paper, using the C-technique developed by

Cheung and Pečarić (see, e.g. [1-4]), by adopting also a function similar to that in [6] and using

techniques parallel to those in Cheung-Pečarić [5], we obtain some new Hardy-type inequalities

which generalize and imporve some existing results of Cheung [1], Cheung-Hanǰs-Pečarić [3],

Isumi-Isumi [8] and Pachpatte [14].

2. Main Results

We follow the notations used in [5], namely, R+ = (0,∞), X ∈ R+ a fixed number, n ≥ 1

an integer, and i, j are indices running from 1 to n. Also, as all summations and products that

will appear are taken over i, j from 1 to n, we shall drop the limits and denote these simply by∑
i

,
∑
j

,
∏
i

,
∏
j

, etc.

Theorem 1. Let m > 1, p ≥ 1, and q ≥ 0. Let s(x), w(x) and z(x) be absolutely continuous

and positive a.e. on [0, X], with z′(x) essentially bounded and positive. If f(x) is nonnegative

and integrable on [0, X],

F (x) :=
1

s(x)

∫ x

x
2

s(t)z′(t)
z(t)

f(t)dt for 0 ≤ x ≤ X ,

and

1 +
1

m− 1
z(x)
z′(x)

(
(p + q)

s′(x)
s(x)

− w′(x)
w(x)

)
≥ 1

α
> 0 a.e. , (1)

then ∫ X

0

w(x)
z′(x)
z(x)m

F (x)p+qdx ≤
[α(p + q)

m− 1

]p
∫ X

0

w(x)
z′(x)
z(x)m

F q(x)f̃(x)pdx , (2)
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where

f̃(x) :=
z(x)

z′(x)s(x)
|∆(x)| ,

∆(x) :=
s(x)z′(x)

z(x)
f(x)− s(x

2 )z′(x
2 )

2z(x
2 )

f
(x

2

)
.

(3)

Proof. (i) By arguments similar to those in the proof of (i) of Theorem 1 in [6], F (x) is absolutely

continuous. So the whole integrand in the left hand side of (2) is bounded, and the integral on

the left hand side of (2) is convergent.

(ii) Again by arguments similar to those in the proof of (ii) of Theorem 1 in [6], the following

integration by parts is valid:

∫ X

0

w(x)F (x)p+q(1−m)
z′(x)
z(x)m

dx =
[
w(x)F (x)p+qz(x)1−m

]x=X

x=0

−
∫ X

0

z(x)1−m
[
w′(x)F (x)p+q + w(x)(p + q)F (x)p+q−1F ′(x)

]
dx ,

hence

(m− 1)
∫ X

0

z′(x)
z(x)m

w(x)F p+q(x)dx + z(X)1−mw(X)F (X)p+q

=
∫ X

0

z(x)1−m
[
w′(x)F (x)p+q + w(x)(p + q)F (x)p+q−1F ′(x)

]
dx

=
∫ X

0

z(x)1−m

{
w′(x)F (x)p+q + w(x)(p + q)F (x)p+q−1

[
− s′(x)

s(x)
F (x)

+
1

s(x)

(s(x)z′(x)
z(x)

f(x)− s(x
2 )z′(x

2 )
2z(x

2 )
f
(x

2
))]}

dx

=
∫ X

0

{
z′(x)
z(x)m

w(x)
[w′(x)

w(x)
z(x)
z′(x)

− (p + q)
s′(x)
s(x)

z(x)
z′(x)

]
F (x)p+q

+
z(x)1−m

s(x)
w(x)(p + q)

(s(x)z′(x)
z(x)

f(x)− s(x
2 )z′(x

2 )
2z(x

2 )
f
(x

2
))

F (x)p+q−1

}
dx .

(4)

We note that
z(x)1−m

s(x)
w(x)

[s(x)z′(x)
z(x)

f(x)− s(x
2 )z′(x

2 )
2z(x

2 )
f
(x

2
)]

F (x)p+q−1

is integrable. In fact, by the proof of (i) of Theorem 1 in [6], s(x)z′(x)
z(x) f(x) is integrable, so the

same is true for s( x
2 )z′( x

2 )

2z( x
2 ) f

(
x
2

)
and ∆(x), while the other factors in the item including z(x)1−m

are absolutely continuous.

Now, by additivity and using condition (1), (4) can be restated as

1
α

∫ X

0

w(x)F (x)p+qdx ≤ p + q

m− 1

∫ X

0

w(x)F (x)p+q−1f̃(x)dx , (5)

where w(x) = z′(x)
z(x)m w(x) and f̃(x) is defined as in (3).
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From (5), we have

1
α

∫ X

0

w(x)F (x)p+qdx ≤ p + q

m− 1

∫ X

0

(
w(x)1−

1
p F (x)p+q−1− q

p

)
·
(
w(x)

1
p F (x)

q
p f̃(x)

)
dx

≤ p + q

m− 1

(∫ X

0

w(x)F (x)p+qdx
)1− 1

p
( ∫ X

0

w(x)F q(x)f̃(x)pdx
) 1

p

by Hölder’s inequality, and Theorem 1 follows.

Theorem 2. For any i = 1, . . . , n, let w, si, zi : [0, X] → R+ be absolutely continuous with z′i
essentially bounded and positive a.e., and ki > 1, pi ≥ qi > 0, ri ≥ 0, αi > 0 be real numbers

such that
∑
i

qi = 1 and

1 +
1

ki − 1
zi(x)
z′i(x)

[(pi + ri

qi

)s′i(x)
si(x)

− w′(x)
w(x)

]
≥ 1

αi
> 0 a.e. .

If for any i = 1, . . . , n, fi is integrable and nonnegative and

Fi(x) :=
1

si(x)

∫ x

x
2

si(t)z′i(t)
zi(t)

fi(t)dt , 0 ≤ x ≤ X ,

then ∫ X

0

w(x)
∏

i

[( z′i(x)
zi(x)ki

)qi

Fi(x)pi+ri

]
dx

≤
( ∏

j

C
−pj

j

) ∑

i

qiC
pi
qi
i

[αi(pi + ri)
qi(ki − 1)

] pi
qi

∫ X

0

w(x)
z′i(x)

zi(x)ki
Fi(x)

ri
qi f̃i(x)

pi
qi dx ,

where

f̃i(x) =
zi(x)

z′i(x)si(x)
|∆i(x)|

∆i(x) =
si(x)z′i(x)

zi(x)
fi(x)− si(x

2 )z′i(
x
2 )

2zi(x
2 )

fi

(x

2

)
.

Proof. By Theorem 1, we have

∫ X

0

w(x)
z′i(x)

zi(x)ki
F (x)

pi+ri
qi dx ≤

[αi(pi + ri)
qi(ki − 1)

] pi
qi

∫ X

0

w(x)
z′i(x)

zi(x)ki
Fi(x)

ri
qi f̃

pi
qi

i (x)dx (6)

for all i = 1, . . . , n. On the other hand, for any Ci > 0, by the arithmetic-geometric inequality

[7, 11-13], we have

w(x)
∏

i

[( z′i(x)
zi(x)ki

)qi

Fi(x)pi+ri

]
= w(x)

∏

i

{[
C

pi
qi
i

z′i(x)
zi(x)ki

Fi(x)
pi+ri

qi

]qi

C−pi

i

}

=
( ∏

j

C
−pj

j

)
w(x)

∏

i

[
C

pi
qi
i

z′i(x)
zi(x)ki

Fi(x)
pi+ri

qi

]qi

≤
( ∏

j

C
−pj

j

)
w(x)

∑

i

qiC
pi
qi
i

z′i(x)
zi(x)ki

Fi(x)
pi+ri

qi .
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Therefore, from (6) we obtain

∫ X

0

w(x)
∏

i

[( z′i(x)
zi(x)ki

)qi

Fi(x)pi+ri

]
dx ≤

( ∏

j

C
−pj

j

) ∑

i

qiC
pi
qi
i

∫ X

0

w(x)
z′i(x)

zi(x)ki
Fi(x)

pi+ri
qi dx

≤
(∏

j

C
−pj

j

) ∑

i

(qiC
pi
qi
i )

[αi(pi + ri)
qi(ki − 1)

] pi
qi

∫ X

0

w(x)
z′i(x)

zi(x)ki
Fi(x)

ri
qi f̃i(x)

pi
qi dx .

Corollary 1. For any i = 1, . . . , n, let si : [0, X] → R+ be absolutely continuous and positive

a.e., and pi ≥ qi > 0, mi > qi be real numbers such that
∑
i

qi = 1 and

1 +
pi

mi − qi

xs′i(x)
si(x)

≥ 1
αi

> 0 a.e.

If for any i = 1, . . . , n, fi is integrable and nonnegative and

F̃i(x) :=
1

si(x)

∫ x

x
2

si(t)
t

fi(t)dt , 0 ≤ x ≤ X ,

then ∫ x

0

x−
∑

i
mi

∏

i

(
F̃i(x)pi

)
dx

≤
( ∏

j

C
−pj

j

) ∑

i

qiC
pi
qi
i

[ piαi

mi − qi

] pi
qi

∫ X

0

x
−mi

qi f̃∗i (x)
pi
qi dx

(7)

where

f̃∗i (x) =
1

si(x)

∣∣∣si(x)fi(x)− si

(x

2
)
fi

(x

2
)∣∣∣ .

Proof. This follows from Theorem 2 by setting w(x) ≡ 1, zi(x) = x, ki = mi

qi
, and ri = 0 for all

i.

Remark 1. If we rename fi(x) as gi(x)fi(x)βi−αi and si(x) as fi(x)αi , (7) becomes

∫ X

0

x−
∑

i
mi

∏

i

(µi(x)pi)dx

≤
( ∏

j

C
−pj

j

)∑

i

qiC
pi
qi
i

[ piαi

mi − qi

] pi
qi

∫ X

0

x
−mi

qi

[
1

fi(x)αi

∣∣∣fβi

i (x)gi(x)− fβi

i

(x

2
)
gi

(x

2
)∣∣∣

] pi
qi

dx

(8)

which is exactly Theorem 2.9 in [1], where

µi(x) =
1

fαi
i (x)

∫ x

x
2

fβi

i (t)gi(t)
t

dt , 0 ≤ x ≤ X .

Furthermore, if we restrict to αi = βi = 1 for all i, (8) reduces to Theorem 3 in [3]. Note that

inequality (8) also generalizes a result of Isumi-Isumi [8, Theorem 2], which only deals with the

situation where n = 1.

Now, we choose specific constants Ci, qi etc. to derive two interesting Hardy-type inequal-

ities from Theorem 2 in the following Corollaries.
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Corollary 2. Under the same conditions as in Theorem 2,

∫ X

0

w(x)
∏

i

[( z′i(x)
zi(x)ki

)qi

Fi(x)pi+ri

]
dx ≤ C

∑

i

∫ X

0

w(x)
z′i(x)

zi(x)ki
Fi(x)

ri
qi f̃i(x)

pi
qi dx ,

where

C =
∏

j

{
q

qj

j

[αj(pj + rj)
qj(kj − 1)

]pj

}
,

Fi and f̃i are defined as in Theorem 2.

Proof. It follows immediately from Theorem 2 by setting

Ci = q
− qi

pi
i

[αi(pi + ri)
qi(ki − 1)

]−1

for all i = 1, . . . , n.

Corollary 3. For any i = 1, . . . , n, let w, si, zi : [0, X] → R+ be absolutely continuous with z′i
essentially bounded and positive a.e. and ki > 1, pi ≥ 1

n , ri ≥ 0 be real numbers such that

1 +
1

ki − 1
zi(x)
z′i(x)

[
n(pi + ri)

s′i(x)
si(x)

− w′(x)
w(x)

]
≥ 1

αi
> 0 a.e.

If for any i = 1, . . . , n, fi is integrable and nonnegative and

Fi(x) :=
1

si(x)

∫ x

x
2

si(t)z′i(t)
zi(t)

fi(t)dt , 0 ≤ x ≤ X ,

then

∫ X

0

w(x)
∏

i

[( z′i(x)
zi(x)ki

) 1
n

Fi(x)pi+ri

]
dx

≤ 1
n

(∏

j

C
−pj

j

) ∑

i

Cnpi

i

[αi(pi + ri)n
ki − 1

]npi
∫ X

0

w(x)
z′i(x)

zi(x)ki
Fi(x)nri f̃i(x)npidx

(9)

for any constants Ci > 0, where Fi and f̃i are defined as in Theorem 2.

Proof. This follows immediately from Theorem 2 by setting qi = 1
n for all i.

Remark 2. If we choose Ci = 1 for all i, (9) becomes

∫ X

0

w(x)
∏

i

[( z′i(x)
zi(x)ki

) 1
n

Fi(x)pi+ri

]
dx

≤ 1
n

∑

i

[αi(pi + ri)n
ki − 1

]npi
∫ X

0

w(x)
z′i(x)

zi(x)ki
Fi(x)nri f̃i(x)npidx .

In particular, setting zi(x) = x, ki = m, w ≡ 1, and ri = 0, this reduces to an inequality obtained

by Pachpatte in [13, Theorem 6]. Observe, though, that our assumption here are considerably

milder. In [14] it was required that pi > 1 for all i, while here all we need is pi ≥ 1
n for all i.

7



Remark 3. In Theorems 1, 2 and Corollaries 1, 2 and 3, if the hypotheses on w, si, zi and z′i
hold locally on [0,∞), the assertions are still true with X replaced by ∞ (but in this case the

improper integrals concerned may not always be convergent).
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[12] D.S. Mitrinović, Analytic Inequalities, Springer-Verlag, New York, 1970.
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