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Abstract
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MSC 2000 subject classification. Primary: 90C10, 90C27, 90C57.

OR/MS subject classification. Primary: Programming/graphs.

Key words. Min-max relation, feedback vertex set, clutter, packing, covering.

∗Supported in part by NSA grant H98230-05-1-0081, NSF grant ITR-0326387, and AFOSR grant F49620-03-1-0239-0241.
†Supported in part by the NSF of China under Grant No. 70221001 and 60373012.
‡Supported in part by the Research Grants Council of Hong Kong (Project HKU7053/05P).
§Corresponding author. E-mail: wzang@maths.hku.hk.

1



1 Introduction

We begin with a brief introduction to the theory of packing and covering. More details on this subject can

be found in [2, 8]. A clutter C is an ordered pair (V, E), where V is a finite set and E is a collection of subsets

of V such that A1 6⊆ A2, for all distinct A1, A2 ∈ E . Members of V and E are called vertices and edges of C,
respectively. The blocker of C is the clutter b(C) = (V, E ′), where E ′ is the collection of all minimal subsets

B ⊆ V such that B ∩A 6= ∅, for all A ∈ E . It is well known that b(b(C)) = C holds for every clutter C.
Let I be a set and let α be a real-valued function with domain I. Then, for any finite subset S of I, we

denote by α(S) the sum of α(s), over all s ∈ S. Let R+ and Z+ denote the sets of nonnegative real numbers

and nonnegative integers, respectively. Let M be the E-V incidence matrix of a clutter C = (V, E). That is,

rows and columns of the 0-1 matrix M are indexed by members of E and V , respectively, such that, for any

A ∈ E and v ∈ V , MA,v = 1 if and only if v ∈ A. For any vector w ∈ ZV
+, let

ν∗w(C) = max{xT 1 : x ∈ RE
+, xT M ≤ wT },

τ∗w(C) = min{wT y : y ∈ RV
+, My ≥ 1},

νw(C) = max{xT 1 : x ∈ ZE+, xT M ≤ wT },
τw(C) = min{wT y : y ∈ ZV

+, My ≥ 1}.
Combinatorially, each vector x ∈ ZE+ with xT M ≤ wT can be interpreted as a collection F of edges (repetition

allowed) of C, for which each vertex v ∈ V belongs to at most w(v) members of F . Such a collection is called

a w-packing of C. It is clear that νw(C) is the maximum size of a w-packing of C. Similarly, τw(C) is the

minimum of w(B), over all edges B of b(C). Notice that

νw(C) ≤ ν∗w(C) = τ∗w(C) ≤ τw(C), (1.1)

where the equality follows from the LP Duality Theorem. One of the fundamental problems in combinatorial

optimization is to identify scenarios under which either one or two of the above inequalities hold with equality.

In particular, C is ideal if τ∗w(C) = τw(C), for all w ∈ ZV
+, while C is Mengerian if ν∗w(C) = νw(C), for all

w ∈ ZV
+. It follows from a well known result of Edmonds and Giles [5] that being Mengerian is actually

equivalent to νw(C) = τw(C), for all w ∈ ZV
+. Therefore, every Mengerian clutter is ideal.

In this paper, we consider a special class of clutters. For any simple graph G = (V, E), let CG = (V, E),

where E consists of V (C), for all induced cycles C of G. Our work is a continuation of the work done in

[3, 4], by two of the authors and Xu. To clarify our motivation, we summarize the main results in [4].

We first define a few graphs. A Θ-graph is a subdivision of K2,3. A wheel is obtained from a cycle by

adding a new vertex and making it adjacent to all vertices of the cycle. A W -graph is a subdivision of a

wheel. An odd ring (see Figure 1 below) is a graph obtained from an odd cycle by replacing each edge e = uv

with either a triangle containing e or two triangles uab, vcd together with two additional edges ac and bd. A

subdivision of an odd ring is called an R-graph. Let L be the class of simple graphs G such that no induced

subgraph of G is isomorphic to a Θ-graph, a W -graph, or an R-graph.

Theorem 1.1 ([4]) The following are equivalent for every simple graph G:

(i) CG is Mengerian;
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Figure 1: An odd ring obtained from a cycle of length 7.

(ii) CG is ideal;

(iii) G ∈ L.

It was proved by Lehman [7] that a clutter is ideal if and only if its blocker is ideal. Therefore, the

equivalence of (ii) and (iii) in Theorem 1.1 implies the following.

Corollary 1.2 The clutter b(CG) is ideal if and only if G ∈ L.

A subset of V (G) is a feedback vertex set (FVS) if its removal from G results in a forest. Clearly, edges

of b(CG) are precisely minimal feedback vertex sets of G. The idealness of CG and b(CG) can also be stated

as follows. Let G = (V, E) ∈ L. Then vertices of the polyhedron {x ∈ RV
+ : x(V (C)) ≥ 1, ∀C ∈ CG} are

precisely characteristic vectors of minimal feedback vertex sets of G. Meanwhile, vertices of the polyhedron

{x ∈ RV
+ : x(F ) ≥ 1, ∀F ∈ b(CG)} are precisely characteristic vectors of induced cycles of G.

At this point, a natural question suggested by Guenin [6] arises: When is b(CG) Mengerian? In general,

the blocker of a Mengerian clutter does not have to be Mengerian (see Section 79.2 of [8]). However, the

following theorem, our main result in this paper, says that CG and b(CG) are always Mengerian together.

Theorem 1.3 b(CG) is Mengerian if and only if CG is.

Using graph theoretical language, Theorem 1.3 can be restated as follows.

Theorem 1.4 The following two statements are equivalent for every simple graph G = (V,E):

(i) For any w ∈ ZV
+, the minimum of w(F ), over all feedback vertex sets F of G, is equal to the

maximum number of cycles (repetition allowed) of G such that each v ∈ V belongs to at most w(v)

of these cycles;

(ii) For any w ∈ ZV
+, the minimum of w(V (C)), over all cycles C of G, is equal to the maximum

number of feedback vertex sets (repetition allowed) of G such that each v ∈ V belongs to at most

w(v) of these feedback vertex sets.

It can be seen from Theorem 1.3 and Theorem 1.1 that b(CG) is Mengerian if and only if G belongs to

L. A structural characterization of these graphs is available from [4], which we will use to prove Theorem
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1.3. It is worthwhile pointing out that this structural characterization yields a polynomial-time algorithm

for recognizing graphs in L. We also remark that our proof is constructive and thus can be converted into a

polynomial-time algorithm to find an optimal feedback vertex set packing for graphs in L.

The remainder of this paper is devoted to the proof of Theorem 1.3. Since every Mengerian clutter is ideal,

the “only if” part of Theorem 1.3 follows immediately from Corollary 1.2 and Theorem 1.1. So it remains

to prove, by Theorem 1.1, that b(CG) is Mengerian if G ∈ L. Our proof heavily relies on the structural

characterization of graphs in L obtained in [4], which asserts that every graph in L can be constructed from

some “prime” graphs by “summing” operations. This structure will be explained in detail in Section 2. Then

we show in Section 3 that being Mengerian is preserved under our “summing” operations. Finally, we prove

in Section 4 that all prime graphs have the required Mengerian property and thus establish our main result.

2 Structures

In this section, we summarize some results from [4] that describe how graphs in L can be constructed from

“prime” graphs. First, we clarify our terminology.

All graphs considered in this paper are undirected, finite, and simple, unless otherwise stated. The reader

is referred to [1] for undefined terminology. Let G = (V, E) be a graph. For any U ⊆ V or U ⊆ E, let G\U
be the graph obtained from G by deleting U , and let G[U ] be the subgraph of G induced by U ; when U is a

singleton {u}, we may write G\u instead of G\{u}.
Let G1 and G2 be two graphs. The 0-sum of G1 and G2 is obtained by taking the disjoint union of these

two graphs; the 1-sum is obtained by identifying a vertex of G1 with a vertex of G2. A 2-sum of G1 and

G2 is obtained by first choosing a triangle xiyizi from Gi (i = 1, 2) such that zi has degree two in Gi, then

deleting zi from Gi (i = 1, 2), and finally, identifying x1y1 with x2y2. A triangle T of a graph G is called

stable if G\V (T ) is connected and every vertex in T has degree at least three in G. A 3-sum of G1 and G2

is obtained by identifying a stable triangle in G1 with a stable triangle in G2.

A rooted graph consists of a graph G and a specified set R of edges such that each edge in R belongs

to a triangle and each triangle in G contains at most one edge from R. By adding pendent triangles to the

rooted graph G we mean the following operation: for each edge uv in R, we introduce a new vertex tuv and

two new edges utuv and vtuv. The following is a reformulation of Theorem 3.1 in [4].

Lemma 2.1 For any graph G ∈ L, at least one of the following holds.

(i) G is a k-sum of two smaller graphs, for k = 0, 1, 2, 3;

(ii) G is obtained from a rooted 2-connected line graph by adding pendent triangles.

An edge is pendent if at least one of its ends has degree one. Two distinct edges are called in series if

they form a minimal edge cut. The following statement is contained in Lemma 4.7 of [4].

Lemma 2.2 Two distinct edges are in series if neither is a cut edge, and every cycle that contains one must

also contain the other.
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Let us also consider every edge as being in series with itself. Then being in series is an equivalence

relation. We call each equivalence class a series family. A series family is trivial if it has only one edge and

nontrivial otherwise. A graph G is weakly even if, for every nontrivial series family F of G with |F | odd,

there are two distinct edges xy and xz of F such that they are the only two edges of G that are incident

with x. A graph is subcubic if the degree of each vertex is at most three. A graph is chordless if every cycle

of the graph is an induced cycle. Let K−
4 be obtained from K4 by deleting an edge, W−

4 be obtained from

a wheel on five vertices by deleting a rim edge, and K+
2,3 be obtained from K2,3 by adding an edge between

the two vertices of degree three. We shall follow convention to let L(G) denote the line graph of G.

Lemma 2.3 Suppose G ∈ L is not a 2-sum of two smaller graphs. If G is obtained from a rooted 2-connected

line graph L(Q) by adding pendant triangles, where Q has no isolated vertices, then

(i) Q is connected, subcubic, and chordless;

(ii) every cut edge of Q is a pendent edge;

(iii) Q is weakly even;

(iv) if Q has a triangle, then G ∈ {K3,K
−
4 ,W−

4 ,K+
2,3}.

In this lemma, statement (i) follows instantly from the assumption that G is in L, because if Q has a

vertex of degree at least four, or a cycle with a chord, then G would have one of the forbidden induced

subgraphs (a subdivision of a wheel). Other statements (ii-iv) can all be found in the proof of Lemma 4.10

in [4].

The next two lemmas expose some other facts on series families, and the first one is implicit in the proof

of Lemma 4.10 in [4].

Lemma 2.4 If Q is subcubic and chordless, then every noncut edge belongs to a nontrivial series family.

A path with end vertices u and v is called a u-v path. If a vertex v has degree three, then the subgraph

formed by the three edges incident with v is called a triad with center v. Our next lemma follows from

Lemma 4.9 in [4], where the indices are taken modulo t.

Lemma 2.5 Suppose Q is connected and subcubic, and all its cut edges are pendent edges. If F = {e1, e2,

. . ., et} is a nontrivial series family of Q, then Q\F has precisely t components Q1, Q2, . . . , Qt. The indices

can be renamed such that each ei is between V (Qi) and V (Qi+1). In addition, if |V (Qi)| = 2, then the only

edge in E(Qi) is a pendent edge of Q and it forms a triad with ei−1 and ei; if |V (Qi)| > 2, and u and v are

the ends of ei−1 and ei in Qi, then u 6= v and Qi has two internally vertex-disjoint u-v paths.

The following statement is a combination of three lemmas (4.3-4.5) from [4].

Lemma 2.6 Let G ∈ L be a k-sum of two smaller graphs. Then the following hold.

(i) If k ∈ {0, 1, 2}, then G is a k-sum of two smaller graphs that belong to L.

(ii) If G is a 3-sum of G1 and G2 over a triangle x1x2x3, then all Gijk (1 ≤ i ≤ 2, 1 ≤ j < k ≤ 3) are

in L, where Gijk is obtained from Gi by adding a new vertex xijk and two new edges xijkxj and xijkxk.
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Recall that the definition of 3-sum for graphs requires a stable triangle; this requirement is actually

needed for the above (ii) to be true.

In the remainder of this section, we prove two lemmas. It should be pointed out that within the rest of

this section, graphs may have parallel edges, but no loops.

Let G = (V, E) be a graph. For any v ∈ V , let NG(v) be the set of vertices that are adjacent with v,

while δG(v) be the set of edges between v and NG(v). The degree of v is defined by dG(v) = |δG(v)|. A

2-edge coloring of G is an assignment of one of two colors to every edge in E. We will say that a color is

represented at a vertex v if at least one edge in δG(v) is assigned that color. It is not difficult to show that

a graph G has a 2-edge coloring in which both colors are represented at each vertex of degree at least two,

provided no component of G is an odd cycle (see Section 6.1 of [1]). The following is a minor modification

of this fact.

Lemma 2.7 Let G = (V, E) be a graph and let U ⊆ V . Suppose G[U ] is bipartite and dG(u) ≥ 2, for all

u ∈ U . Then G has a 2-edge coloring such that both colors are represented at every vertex in U .

Proof. Let v ∈ V − U be an arbitrary vertex and let δG(v) = {ei = vui : i = 1, 2, ..., dG(v)}. By

disassembling v we mean the operation of replacing v with a set Vv = {v1, v2, ..., vdG(v)} of new vertices and

making each ei (i = 1, 2, . . . , dG(v)) joining from ui to vi, instead of v. Let us perform this operation at

every v ∈ V − U . It is clear that the resulting graph G′ is bipartite and dG′(u) = dG(u) ≥ 2, for all u ∈ U .

Therefore, G′ has a 2-edge coloring λ such that both colors are represented at every vertex in U . Since

E(G′) = E(G), λ is also a 2-edge coloring of G, and it is easy to see that λ has the required property.

Let G′ be a connected subgraph of G. Then the contraction of G′ in G is obtained from G\E(G[V (G′)])

by identifying all vertices of V (G′). This is the same as the ordinary contraction except we also delete the

resulting loops. Notice that the contraction of a simple graph may have parallel edges, but no loops.

Lemma 2.8 Let G = (V, E) be subcubic, chordless, and weakly even. If G′ = (V ′, E′) is obtained from G by

repeatedly contracting induced cycles, and U = (V ′ − V ) ∪ {v ∈ V ∩ V ′ : dG(v) = 3}, then G′[U ] is bipartite.

Proof. By definition, two distinct edges are in series if and only if they form a minimal cut. Hence two

edges of G′ are in series if and only if they are in series in G. By definition, edges of any contracted cycle are

not in series with any edge not in this cycle, so each series family of G′ is a series family of G. Let C be a

cycle of G′. Then its edges can be partitioned into series families F1, F2, ..., Ft of G. If C is an odd cycle, it

is clear that there exists an Fi with odd |Fi|. By Lemma 2.4, |Fi| 6= 1. Since G is weakly even, there exists

a vertex v of G such that v is incident with two edges of Fi and dG(v) = 2. Consequently, v ∈ V (C) yet

v 6∈ U , which proves that G′[U ] has no odd cycles and thus is bipartite.

3 Sums of hypergraphs

The purpose of this section is to prove a few results, which assert that being Mengerian is preserved under

some natural summing operations.
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A hypergraph H is an ordered pair (V, E), where V is a finite set and E is a collection of subsets of V .

Members of V and E are called vertices and edges of H. An edge is minimal if none of its proper subset is

an edge. It is clear that clutters are special hypergraphs. Our problem is essentially a problem on clutters.

We use the language of hypergraphs just to simplify our terminology.

The concept of w-packing and blocker can be extended obviously from clutters to hypergraphs. These

are formalized as follows. Let H = (V, E) be a hypergraph and let w ∈ ZV
+. A w-packing of H is a collection

F of edges (repetition allowed) of H, for which each vertex v ∈ V belongs to at most w(v) members of F .

The blocker of H is the clutter b(H) = (V, E ′), where E ′ is the collection of all minimal subsets B ⊆ V such

that B ∩ A 6= ∅, for all A ∈ E . We also define b̄(H) = (V, E ′′), where E ′′ consists of all B ⊆ V such that

B ∩A 6= ∅, for all A ∈ E . Finally, let rw(H) = min
A∈E

w(A).

Lemma 3.1 The following hold for any hypergraph H = (V, E).

(i) τw(b(H)) = rw(H), for all w ∈ ZV
+;

(ii) The clutter b(H) is Mengerian if and only if b̄(H) has a w-packing of size rw(H), for all w ∈ ZV
+.

Proof. In general, the equality b(b(H)) = H does not hold, but it is easy to see that edges of b(b(H))

are precisely minimal edges of H (see Section 77.6 of [8]). Therefore,

τw(b(H)) = min
A∈b(b(H))

w(A) = min
A∈E

w(A) = rw(H),

which proves (i). To prove (ii), notice that edges of b(H) are precisely minimal edges of b̄(H). Thus b̄(H)

has a w-packing of size rw(H) if and only if b(H) has a w-packing of size rw(H), which is equivalent to

νw(b(H)) ≥ rw(H) = τw(b(H)). On the other hand, since b(H) is a clutter, we deduce from (1.1) that

νw(b(H)) ≤ τw(b(H)). Therefore, b̄(H) has a w-packing of size rw(H) if and only if νw(b(H)) = τw(b(H)),

which proves (ii).

Let H1 = (V1, E1) and H2 = (V2, E2) be two hypergraphs. If k := |V1 ∩ V2| ≤ 1, then (V1 ∪ V2, E1 ∪ E2) is

called the k-sum of H1 and H2.

Lemma 3.2 Suppose H is the k-sum (k = 0, 1) of H1 and H2. If both b(H1) and b(H2) are Mengerian,

then so is b(H).

Proof. Let H = (V, E), w ∈ ZV
+, and r = rw(H). By Lemma 3.1, we only need to show that b̄(H) has

a w-packing of size r. For i = 1, 2, let Hi = (Vi, Ei), and wi(v) = w(v), for all v ∈ Vi. Since E = E1 ∪ E2,

it follows that r = min{rw1(H1), rw2(H2)}. By Lemma 3.1, as b(Hi) (i = 1, 2) is Mengerian, b̄(Hi) has a

wi-packing {Bi
1, B

i
2, . . . , B

i
r}. In case k = 1, we further assume that, without loss of generality, if x is the

common vertex of H1 and H2, then x appears only in Bi
1, B

i
2, . . . , B

i
ri

(i = 1, 2). Now it is straightforward

to verify that {B1
1 ∪B2

1 , B1
2 ∪B2

2 , . . . , B1
r ∪B2

r} is a w-packing of b̄(H) as desired.

Before proceeding, let us prove three technical lemmas which will be used in our discussions on 2- and

3-sums.

Lemma 3.3 Suppose b̄(H) has no w-packing of size rw(H), for some w ∈ ZV
+. If we choose such an integral

vector w so that w(V (H)) is minimized, then w(v) ≤ rw(H), for all v ∈ V (H).
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Proof. Let r = rw(H) and V = V (H). Suppose w(v0) > r for some v0 ∈ V . Let w′ ∈ ZV
+ such that

w′(v0) = r and w′(v) = w(v), for all v ∈ V − {v0}. It follows from w(v0) > r that v0 does not belong to any

edge of H of minimum weight. Therefore, rw′(H) = r. By the minimality of w, b̄(H) has a w′-packing of

size rw′(H) = r. Notice that every w′-packing is also a w-packing, as w′ ≤ w, thus b̄(H) has a w-packing of

size r. This contradiction proves the lemma.

Lemma 3.4 Suppose b̄(H) has a w-packing B of size r, where w ∈ ZV
+. If B is chosen so that ||B|| =∑

B∈B |B| is maximized, subject to |B| = r, then every vertex v of H is contained in exactly min{r, w(v)}
members of B.

Proof. Suppose some vertex v is contained in fewer than min{r, w(v)} members of B. Then, as |B| = r,

there must exist B ∈ B that does not contain v. Let B′ be obtained from B by replacing B with B ∪ {v},
which is another member of b̄(H). It is straightforward to verify that B′ is still a w-packing of b̄(H) of size

r, yet ‖B′‖ > ‖B‖. This contradicts the maximality of ‖B‖ and thus every vertex must belong to at least

min{r, w(v)} members of B. However, since B is a w-packing of b̄(H) with ||B|| = r, no vertex is contained

in more than min{r, w(v)} members of B, and thus the lemma follows.

Lemma 3.5 Let H1 = (V1, E1) and H2 = (V2, E2) be hypergraphs with V1 ∩ V2 = V0. Let H = (V, E), where

V0 ⊆ V ⊆ V1 ∪ V2 and E = {A ∈ E1 ∪ E2 : A ⊆ V }. Let w ∈ ZV
+, w1 ∈ ZV1

+ , and w2 ∈ ZV2
+ such that

w(v) = wi(v), for all v ∈ V ∩ Vi and i = 1, 2. Let r = rw(H). For i = 1, 2, suppose b̄(Hi) has a wi-packing

Bi of size r. Then at least one of the following holds.

(i) b̄(H) has a w-packing of size r;

(ii) b̄(H) has no w′-packing of size rw′(H), for some w′ ∈ ZV
+ with w′(V ) < w(V );

(iii) B1 ∩ V0 6= B2 ∩ V0, for all B1 ∈ B1 and B2 ∈ B2.

Proof. We prove that (i) holds if both (ii) and (iii) fail. Let B1 ∈ B1 and B2 ∈ B2 with B1∩V0 = B2∩V0.

Let χ1, χ2, and χ be the characteristic vectors of B1, B2, and B := (B1 ∪ B2) ∩ V , which are considered

as subsets of V1, V2, and V , respectively. We define w′1 = w1 − χ1, w′2 = w2 − χ2, and w′ = w − χ. For

i = 1, 2, since b̄(Hi) has a w′i-packing Bi − {Bi} of size r − 1, it follows from (1.1) and Lemma 3.1(i) that

rw′i(Hi) = τw′i(b(Hi)) ≥ r − 1. Therefore, rw′(H) ≥ r − 1. Notice that B is an edge of b̄(H). If B = ∅, then

(i) holds trivially. If B 6= ∅, then w′(V ) < w(V ). Since (ii) is false, b̄(H) has a w′-packing B′ of size r − 1.

Hence (i) holds again, as B′ ∪ {B} is a w-packing of b̄(H) of size r, which proves the lemma.

Let H1 = (V1, E1) and H2 = (V2, E2) be hypergraphs with V1 ∩ V2 = {x1, x2}. Suppose, for i = 1, 2, Hi

has an edge Ai = {x1, x2, yi} which is the only edge containing yi. Let V ′
i = Vi − {yi} and E ′i = Ei − {Ai}.

Then (V ′
1 ∪ V ′

2 , E ′1 ∪ E ′2) is called the 2-sum of H1 and H2.

Lemma 3.6 Let H be a 2-sum of H1 and H2. If both b(H1) and b(H2) are Mengerian, then so is b(H).

Proof. Let H = (V, E). Like in the proof of Lemma 3.2, we will show that, for all w ∈ ZV
+,

(*) b̄(H) has a w-packing of size r := rw(H).
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Let us use the terminology in the definition of a 2-sum. Suppose (*) is false for some w ∈ ZV
+. Then we

choose such a w with w(V ) as small as possible. By Lemma 3.3,

(3.6.1) w(v) ≤ r for all v ∈ V .

Let i ∈ {1, 2}. We define wi ∈ ZVi
+ such that wi(yi) = max{0, r − w(x1)− w(x2)} and wi(v) = w(v), for

all v ∈ Vi − {yi}. Notice that other than Ai every edge of Hi is an edge of H, so rwi(Hi) ≥ r. Since b(Hi)

is Mengerian, we conclude from Lemma 3.1 that b̄(Hi) has a wi-packing Bi of size r. We choose such a Bi

with ‖Bi‖ =
∑

B∈Bi
|B| as large as possible. Then, by (3.6.1) and Lemma 3.4,

(3.6.2) for any i, j ∈ {1, 2}, xj is contained in exactly w(xj) members of Bi.

Furthermore, by Lemma 3.5,

(3.6.3) B1 ∩ {x1, x2} 6= B2 ∩ {x1, x2}, for all B1 ∈ B1 and B2 ∈ B2.

If w(x1) + w(x2) > r, we deduce from (3.6.2) that, for i = 1, 2, there exists Bi ∈ Bi that contains both

x1 and x2, which contradicts (3.6.3). So we must have w(x1) + w(x2) ≤ r. By the definition of wi (i = 1, 2),

we have wi(Ai) = r. Therefore, |Bi ∩ Ai| = 1, for all Bi ∈ Bi (i = 1, 2), as every edge of Hi should meet

every edge of b̄(Hi). Since (*) does not hold, r > 0 and thus B1 6= ∅. Take any B1 ∈ B1. There must exist

a1 ∈ A1 such that B1 ∩ A1 = {a1}. It follows that w1(a1) 6= 0. Let a2 ∈ A2 be the vertex corresponding to

a1. Then w2(a2) = w1(a1) 6= 0. By (3.6.2), some B2 ∈ B2 contains a2. Since |B2 ∩ A2| = 1, we conclude

that B1 ∩ {x1, x2} = B2 ∩ {x1, x2}, contradicting (3.6.3), which completes our proof of the lemma.

Let H1 = (V1, E1) and H2 = (V2, E2) be hypergraphs with V1∩V2 = {x1, x2, x3}. Suppose A = {x1, x2, x3}
is an edge of H1 and H2. Then (V1 ∪ V2, E1 ∪ E2) is called the 3-sum of H1 and H2 over A.

Lemma 3.7 Let H be the 3-sum of H1 and H2 over A = {x1, x2, x3}. For i = 1, 2 and 1 ≤ j < k ≤ 3, let

Hijk be obtained from Hi by adding a new vertex xijk and a new edge Aijk = {xijk, xj , xk}. If all b(Hijk)

are Mengerian, then so is b(H).

Proof. Let H = (V, E). Again, we prove that, for all w ∈ ZV
+,

(*) b̄(H) has a w-packing of size r := rw(H).

We use the terminology in the definition of a 3-sum. Suppose (*) is false for some w ∈ ZV
+. Then we

choose such a w with w(V ) as small as possible. Our proof is very similar to the proof of the last lemma.

First, by Lemma 3.3,

(3.7.1) w(v) ≤ r for all v ∈ V .

Let 1 ≤ i ≤ 2 and 1 ≤ j < k ≤ 3. Let Vijk = Vi ∪ {xijk}, which is the vertex set of Hijk. We define

wijk ∈ ZVijk

+ with wijk(xijk) = max{0, r − w(xj) − w(xk)} and wijk(v) = w(v) for all v ∈ Vi. Since other

than Aijk every edge of Hijk is an edge of H, it follows that rwijk
(Hijk) ≥ r. Then, as b(Hijk) is Mengerian,

we conclude from Lemma 3.1 that b̄(Hijk) has a wijk-packing Bijk of size r. We choose such a Bijk with

‖Bijk‖ =
∑

B∈Bijk
|B| as large as possible. Then, by (3.7.1) and Lemma 3.4,
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(3.7.2) for any 1 ≤ i ≤ 2, 1 ≤ j < k ≤ 3, and 1 ≤ h ≤ 3, xh belongs to exactly w(xh) members of Bijk.

Furthermore, by Lemma 3.5,

(3.7.3) B ∩A 6= B′ ∩A, for all B ∈ B1jk and B′ ∈ B2j′k′ with 1 ≤ j < k ≤ 3, and 1 ≤ j′ < k′ ≤ 3.

Since rw(H) = r, it follows that w(A) ≥ r. We prove that

(3.7.4) w(A) > r.

If w(A) = r, then A is an edge of Hi12 (i = 1, 2) of minimum weight. It follows that |B ∩ A| = 1, for

all B ∈ Bi12 (i = 1, 2), as |Bi12| = r and every member of Bi12 should meet every edge of Hi12. Since (*)

does not hold, we have r > 0 and so, w(xh) 6= 0, for some h = 1, 2, 3. Therefore, by (3.7.2), there exists

Bi12 ∈ Bi12 (i = 1, 2) with B112 ∩A = {xh} = B212 ∩A. This contradicts (3.7.3) and thus (3.7.4) is proved.

(3.7.5) w(xj) + w(xk) > r, for all 1 ≤ j < k ≤ 3.

Suppose otherwise. By symmetry, we assume that w(x1)+w(x2) ≤ r. Then we deduce from the definition

of wi12 that wi12(Ai12) = r (i = 1, 2). It follows that Ai12 (i = 1, 2) is an edge of Hi12 of minimum weight,

and thus no member of Bi12 can contain both x1 and x2.

If w(x1) + w(x3) > r, by (3.7.2) there exists Bi12 ∈ Bi12 (i = 1, 2) that contains both x1 and x3.

Therefore, B112 ∩A = {x1, x3} = B212 ∩A, contradicting (3.7.3). Hence w(x1) + w(x3) ≤ r. By symmetry,

we must also have w(x2) + w(x3) ≤ r. Therefore, the conclusion we made in the previous paragraph holds

not only for Bi12, but for all Bijk. That is, |B ∩ {xj , xk}| ≤ 1, for all edges B ∈ Bijk. On the other hand, by

(3.7.4) and (3.7.2), each Bijk has an edge Bijk with |Bijk ∩A| > 1. Thus, by (3.7.3), {B1jk ∩A, B2jk ∩A} =

{{xj , x`}, {xk, x`}} (1 ≤ j < k ≤ 3), where ` ∈ {1, 2, 3} − {j, k}.
Without loss of generality, let B112 ∩ A = {x1, x3}, and B212 ∩ A = {x2, x3}. We deduce from (3.7.3)

that B113 ∩A 6= {x2, x3}. Thus B113 ∩A = {x1, x2}, and B213 ∩A = {x2, x3}. Now B223 ∩A is {x1, x2} or

{x1, x3}. But (3.7.3) is violated in either case, which completes the proof of (3.7.5).

(3.7.6) |B ∩A| ≤ 2, for all B ∈ Bijk, where 1 ≤ i ≤ 2 and 1 ≤ j < k ≤ 3.

Suppose the claim is false. Without loss of generality, we assume that some B1jk has a member B0 ⊇ A.

It follows that |B ∩A| ≤ 2, for all B ∈ B212 ∪B213 ∪B223. Let 1 ≤ j < k ≤ 3. Since w(xj) + w(xk) > r, B2jk

has a member B2jk that contains both xj and xk, which implies B2jk ∩A = {xj , xk}. Therefore, by (3.7.3),

|B ∩A| 6= 2, for all B ∈ B112 ∪ B113 ∪ B123.

Let 1 ≤ j < k ≤ 3 and ` ∈ {1, 2, 3} − {j, k}. Let B′1jk consist of members of B1jk that contains x`.

By (3.7.2), |B′1jk| = w(x`). Notice that (3.7.5) implies w1jk(x1jk) = 0. Since every member of B1jk must

meet A1jk, which is an edge of H1jk, we deduce that every member of B1jk contains at least one of xj and

xk. In particular, every member of B′1jk contains at least one of xj and xk. Therefore, B ⊇ A, for all

B ∈ B′1jk, as |B ∩A| 6= 2. Consequently, w(xj) ≥ w(x`). Since j, k, ` were chosen arbitrarily, it follows that

w(x1) = w(x2) = w(x3). It also follows that B′1jk = B1jk, and thus w(x1) = w(x2) = w(x3) = r. On the
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other hand, since |B ∩ A| ≤ 2, for all B ∈ B212, we deduce from (3.7.2) that r = |B212| ≥ w(A)/2 = 3r/2, a

contradiction, which completes the proof of (3.7.6).

Finally, let i ∈ {1, 2}. By (3.7.5), w(x1)+w(x2) > r, which implies Bi12 has a member Bi12 that contains

both x1 and x2. Then, by (3.7.6), we must have Bi12 ∩A = {x1, x2}, which contradicts (3.7.3). The lemma

is proved.

We finally point out that performing k-sums on graphs agrees with performing k-sums on hypergraphs.

We omit the proof of the next lemma since it follows from the corresponding definitions immediately.

Lemma 3.8 Let G be a k-sum (k = 0, 1, 2, 3) of G1 and G2. Then CG is the k-sum of CG1 and CG2 .

Moreover, if H = CG and Hi = CGi (i = 1, 2), then each hypergraph Hijk defined in Lemma 3.7 is precisely

CGijk
, where Gijk is the graph defined in Lemma 2.6.

4 Packing feedback vertex sets

We have shown in the preceding section that the Mengerian property is preserved under summing operations.

To prove Theorem 1.3, it remains to verify that every prime graph G enjoys the desired Mengerian property.

Recall Lemma 2.1, G is obtained from a rooted 2-connected line graph L(Q) by adding pendent triangles.

Since G belongs to a finite set of sporadic graphs if Q has a triangle (see Lemma 2.3), it is natural to divide

our proof into two parts, depending on the presence or absence of a triangle in Q. Our next two lemmas are

concerning the case when Q is triangle-free, while the opposite case is established by the third lemma.

When Q is triangle-free, we start with an arbitrary collection F of subsets of V (G) such that |F| = rw(CG)

and every vertex v belongs to exactly w(v) members of F . We then adjust the collection to make it more

efficient, meaning to make sets in F to meet as many induced cycles as possible. We prove that if F is

optimal then it is a w-packing of feedback vertex sets. When we make the adjustments, we distinguish

triangles and other cycles. They behave quite differently because triangles in G correspond to triads in Q,

as Q is triangle-free, and other induced cycles of G correspond to cycles of Q. We first make sets in F meet

all triangles and then other cycles. One of the key steps for making these adjustments is to find a better

partition of the union of two members of F . This is our first lemma.

Lemma 4.1 Let G be obtained from a rooted line graph L(Q) by adding pendent triangles, where Q is

triangle-free and satisfies (i-iii) in Lemma 2.3. Let C be a collection of induced cycles in G, which includes

all triangles of G. Suppose S ⊆ V (G) with |S ∩ V (C)| ≥ 2, for every C ∈ C. Then S can be partitioned into

R and B such that R ∩ V (C) 6= ∅ 6= B ∩ V (C), for every C ∈ C.

Proof. Suppose the lemma is false. Then we can choose a counterexample Ω = (G, C, S) such that

(a) |C| is minimized;

(b) subject to (a), tΩ = |{C ∈ C : |V (C)| = 3 and V (C) ⊆ S}| is minimized;

(c) subject to (a) and (b), dΩ = |{v ∈ V (G) : dG(v) ≥ 4}| is minimized.

11



A pair (R,B) that satisfies the conclusion of the lemma is called a certificate for (G, C, S). Since L(Q)

is an induced subgraph of G, we will view elements of V (L(Q)) indifferently as vertices of G or edges of Q.

We proceed by proving a sequence of claims.

(1) |C| ≥ 2.

This is clear since Ω is a counterexample.

(2) If x ∈ V (G) belongs to a triangle T of G and dG(x) = 2, then x 6∈ S.

Let x, y, z be the three vertices of T . If T is a pendent triangle added to L(Q), then y, z ∈ E(Q). If T is

not such a pendent triangle, then x is a pendent edge of Q, as Q has no triangles. In both cases, it is clear

that Ω′ = (G\x, C −{T}, S−{x}) satisfies the assumptions of the lemma. By the minimality of |C|, Ω′ has a

certificate (R, B). Since S contains at least two vertices of T , at least one of R and B, say R, contains either

y or z. Therefore, the partition (R, B ∪ {x}) of S is a certificate for Ω, a contradiction, which proves (2).

It follows immediately from (2) that

(3) S ⊆ E(Q).

Let x = uv be an edge of Q. Let δ′Q(u) = δQ(u) − {x} and δ′Q(v) = δQ(v) − {x}. Since Q is simple,

δ′Q(u) and δ′Q(v) are disjoint. On the other hand, NL(Q)(x) = δ′Q(u)∪ δ′Q(v). Let Qx be obtained from Q by

subdividing x with a new vertex w. Observe that every series family of Qx that does not contain uw or wv

is also a series family of Q, while the series family containing uw must also contain wv, and dQ(w) = 2, thus

Qx is weakly even as well. Moreover, L(Qx) can be obtained from L(Q) by replacing x with two adjacent

vertices uw and vw, such that uw is adjacent to all vertices in δ′Q(u), and vw is adjacent to all vertices in

δ′Q(v). Since Q has no triangles, L(Q) has no edges between δ′Q(u) and δ′Q(v). Therefore, this “splitting”

operation performed on L(Q) (to get L(Qx)) does not destroy any of its triangles, which means that there

is a natural correspondence between triangles in L(Q) and triangles in L(Qx). It follows that L(Qx) can be

rooted the same ways as L(Q) was rooted. Let Gx be obtained from the rooted L(Qx) by adding pendent

triangles. Then the following is clear.

(4) If x is not a pendent edge of Q, then Gx satisfies the assumption of the lemma.

For any induced cycle C of G, we define an induced cycle Cx of Gx as follows. If C is a triangle, let Cx

be the triangle in Gx that naturally corresponds to C. If C has length at least four, then C can be expressed

as L(D) for a cycle D of Q. If x 6∈ E(D), then we define Cx = C. If x ∈ E(D), let Dx be obtained from D

by subdividing x with w and let Cx = L(Dx). Finally, let Cx = {Cx : C ∈ C}.

(5) tΩ = 0. That is, |S ∩ V (T )| = 2, for all triangles T of G.

Suppose (5) is false. Then G has a triangle T such that all its three vertices, say, x, y, z, belong to S.

By (3), T is not a pendent triangle. Let us name these three vertices such that, if T contains a root edge at

which a pendent triangle is attached, then this root edge is yz. Suppose, as an edge of Q, that x has ends u
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and v, where u is the common end of x, y, z. Then x is not a pendent edge of Q, for otherwise dG(x) = 2, so

x /∈ S by (2), a contradiction. Then it is routine to verify, using (4), that Ωx = (Gx, Cx, (S − {x}) ∪ {wv})
satisfies the assumptions of the lemma. Moreover, |Cx| = |C|, but tΩx = tΩ − 1. By the minimality of tΩ, we

conclude that Ωx has a certificate (R,B). Now it is easy to see that replacing wv with x in (R, B) results in

a partition of S, which is a certificate of Ω. This is a contradiction and thus (5) is proved.

(6) G = L(Q).

Suppose x is a vertex of G that does not belong to E(Q). Then there is a unique pendent triangle T that

contains x. From the minimality of |C| we deduce that Ω′ = (G, C −{T}, S) has a certificate (R, B). Let y, z

be the other two vertices of T . By the rule of adding pendent triangles, L(Q) must have a triangle, say T ′,

that contains both y and z. It follows from (2) and (5) that S ∩ V (T ′) = {y, z}, and thus each of R and B

contains precisely one of y and z. Therefore, (R, B) is a certificate for Ω, a contradiction, which proves (6).

It follows instantly from (6) and (2) that

(7) If x = uv is a pendent edge of Q, then x 6∈ S.

From (6) we also deduce that members of C are line graphs of triads and cycles of Q. This fact suggests

that all properties of Ω can be verified via Q. An edge uv ∈ E(Q) is maximum if dQ(u) = dQ(v) = 3.

(8) Every maximum edge of Q belongs to S

Suppose there exists a maximum edge x 6∈ S. Then x is not a pendent edge in Q. It is straightforward

to verify that Ωx = (Gx, Cx, S) satisfies the assumptions of the lemma. Moreover, |Cx| = |C|, tΩx = tΩ, but

dΩx = dΩ − 1. By the minimality of dΩ, Ωx has a certificate (R, B). Then the definition of Gx implies that

(R,B) is a certificate for Ω, a contradiction, which proves (8).

By (5), every triad T of Q contains precisely two edges in S. Let ST be the set of these two edges. Let

D be the collection of cycles D of Q such that L(D) ∈ C.

(9) |ST ∩ E(D)| < 2, for all triads T of Q and all cycles D ∈ D.

Suppose ST ⊆ E(D), for a triad T of Q and a cycle D ∈ D. By the minimality of |C|, there exists

a certificate (R, B) for Ω′ = (G, C − {L(D)}, S). Since L(T ) ∈ C − {L(D)} and |ST | = 2, it follows that

R ∩ ST 6= ∅ 6= B ∩ ST . Therefore, R ∩ E(D) 6= ∅ 6= B ∩ E(D), which implies that (R, B) is a certificate for

Ω, a contradiction, which proves (9).

(10) No cycle in D contains a maximum edge.

Suppose x is a maximum edge contained in D ∈ D. By Lemma 2.2, two distinct edges are in series iff

neither is a cut edge, and every cycle that contains one must also contain the other, so the series family F

that contains x is a subset of E(D). Since x is a maximum edge, we deduce from Lemma 2.4 and Lemma

2.3(ii) that t := |F | ≥ 2. Let edges x1, x2, ..., xt of F and components Q1, Q2, ..., Qt of Q\F be indexed as in

Lemma 2.5. If |V (Qi)| = 2, for some i, by Lemma 2.5, the only edge y of E(Qi) is a pendent edge of Q and
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it forms a triad with xi−1, xi. Now (7) implies y 6∈ S but (9) implies y ∈ S. This contradiction proves that

|V (Qi)| 6= 2 for all i. Let I = {i : 1 ≤ i ≤ t and |V (Qi)| > 2}. It follows from the choice of x that |I| ≥ 2.

For each i = 1, 2, ..., t, let xi = uivi such that ui ∈ V (Qi) and vi ∈ V (Qi+1), where Qt+1 = Q1.

Claim 1. For each i ∈ I, vertices vi−1 and ui are nonadjacent, where v0 = vt.

Assume the contrary: vi−1 and ui are adjacent. Since F is a series family, Lemma 2.5 guarantees the

existence of two edge-disjoint paths linking vi−1 and ui in Qi; let P denote one of them that is different

from edge vi−1ui. Let D′ = D if D does not contain edge vi−1ui, and let D′ be the cycle obtained from

D by replacing edge vi−1ui with path P otherwise. Then vi−1ui is a chord of cycle D′, contradicting the

hypothesis that Q is chordless. So claim 1 is justified.

Let us proceed by distinguishing between two cases.

We first assume that I = {1, 2, ..., t}. It follows from Lemma 2.5 that all edges in F are maximum, and

thus they are in S, by (8). Let Z2 = Q2 and Z1 = Q\V (Q2). For i = 1, 2, let Q′i be obtained from Q by

contracting Zj (j ∈ {1, 2} − {i}) into a vertex wi, and then adding a pendent edge yi at wi.

Claim 2. Q′
i is triangle-free and satisfies (i-iii) in Lemma 2.3, for i = 1 and 2.

From Claim 1 we see that Q′
i is triangle-free and chordless. Since Q is connected, subcubic, and every

cut edge of Q is a pendent edge, from the construction of Q′i we deduce that all these properties also hold

on Q′i. Observe that each series family of Q′i is either a series family of Q, or it contains both x1 and x2. In

the latter case, the series family is just {x1, x2} if i = 2, while it is F if i = 1, but |F | must be even since all

the edges in F are maximum in Q. So Q′
i is weakly even, and thus Claim 2 is established.

For i = 1 and 2, let Gi = L(Q′i), Ci = {C ∈ C : V (C) ⊆ V (Gi)}∪{x1x2yi}, and Si = (S∩E(Zi))∪{x1, x2}.
It follows from {x1, x2} ⊆ S that Si contains at least two vertices from every cycle in Ci. Notice that Zj

(j ∈ {1, 2} − {i}) contains at least two vertices v with dQ(v) = 3, so |Ci| < |C|. By Claim 2 and the

minimality of C, (Gi, Ci, Si) has a certificate (Ri, Bi). Since x1 and x2 are the only members of Si that are

contained in the triangle x1x2yi, we may assume that x1 ∈ Ri and x2 ∈ Bi. Now it is routine to verify that

(R1 ∪R2, B1 ∪B2) is a certificate for Ω, which is a contradiction.

Next, we assume that |I| < t. Without loss of generality, let 1 6∈ I. Take any i ∈ I. Let Q′
i =

Q[E(Qi) ∪ E(D)] and Zi = E(Qi) ∪ {xi−1, xi}. Let Gi = L(Q′
i), Si = S ∩ Zi, and Ci = {C : C ∈ C

and V (C) ⊆ Zi} ∪ {L(D)}. It follows from the definition of I, Lemma 2.5, and the definition of Q′i that

dQ′i(vi−1) = dQ′i(ui) = 3. Let Tvi−1 and Tui be the two triads centered as these two vertices. Since

|E(D) ∩ Tvi−1 | = |E(D) ∩ Tui | = 2, by Claim 1, vi−1 and ui are nonadjacent. Therefore, we deduce from

(5) that |Si ∩ E(D)| ≥ 2, and thus |Si ∩ V (C)| ≥ 2, for every C ∈ Ci. Clearly Ωi = (Gi, Ci, Si) satisfies the

hypothesis of the lemma. Notice that, for any j ∈ I−{i}, Qj contains at least two vertices v with dQ(v) = 3,

so |Ci| < |C|. By the minimality of C, Ωi has a certificate (Ri, Bi). In addition, since 1 6∈ I, renaming R’s

and B’s if necessary, we may assume that, for each i with {i, i + 1} ⊆ I, if Si ∩Si+1 6= ∅ (which implies that

xi is their common edge), then xi belongs to either both Ri and Ri+1, or both Bi and Bi+1. It follows that

(R,S −R), where R = ∪i∈IRi, is a certificate for Ω. This contradiction completes the proof of (10).

For each cycle D ∈ D, edges of Q that have precisely one end in V (D) are called connectors of D.

(11) Every D ∈ D has at least two connectors.
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If D has no connectors, then, as Q is connected, Q = D, which contradicts (1). If D has only one

connector x, then x is a cut edge of Q, which means x is a pendent edge. Now (7) implies x 6∈ S but (9)

implies x ∈ S. This contradiction proves (11).

(12) Cycles in D are pairwise vertex-disjoint.

Suppose some D ∈ D shares a common vertex with another cycle in D − {D}. By the minimality of C,
Ω′ = (G, C − {L(D)}, S) has a certificate (R,B). Since (R,B) is not a certificate for Ω, we may assume that

S ∩ E(D) ⊆ R. Since E(T ) ∩B 6= ∅ for each triad T and E(D) ∩B = ∅, all connectors of D belong to B.

Let D1 ∈ D − {D} with V (D1) ∩ V (D) 6= ∅. Since Q is subcubic, D1 must contain two (or more)

connectors of D; let x1 denote one of them and let y1, z1 be the two edges of D that are incident with

x1 such that y1 ∈ R. By (10), {x1, y1, z1} is the only triad in Q that contains x1 or y1. So there must

exist a cycle D2 in D − {D, D1} such that R ∩ E(D2) = {y1} and x1 /∈ E(D2), for otherwise (R′, B′), with

R′ = (R − {y1}) ∪ {x1} and B′ = (B − {x1}) ∪ {y1}, would be a certificate for Ω, a contradiction. Let P

be a maximal common segment of D and D2 with S ∩E(P ) = {y1}, and let {xi, yi, zi}, i = 2, 3, denote the

triads whose centers are the two ends of P , such that x2, x3 are connectors of D contained in D2. From the

choice of D2, we see that {y2, y3} ⊆ S ∩ (E(D)−E(P )) and that x1, x2, x3 are distinct. Let vi be the center

of the triad {xi, yi, zi} for i = 1, 2, 3. Symmetry allows us to assume that y1 is on the subpath of P from v1

to v2. Now define R′′ := (R − {y2}) ∪ {x2} and B′′ := (B − {x2}) ∪ {y2}. Let us show that (R′′, B′′) is a

certificate for Ω.

For any triad T of Q, since both x2 and y2 are contained in cycles of D, it follows from (10) that either

T has center v2 or T contains neither x2 nor y2. Therefore R′′∩E(T ) 6= ∅ 6= B′′∩E(T ) in either case. Next,

suppose D′ ∈ D. If v2 6∈ V (D′), it is clear that R′′ ∩E(D′) = R∩E(D′) 6= ∅ 6= B ∩E(D′) = B′′ ∩E(D′). If

D′ = D, we have y1 ∈ R′′ ∩ E(D) and y2 ∈ B′′ ∩ E(D). Finally, suppose D′ 6= D yet v2 ∈ V (D′).

If one of R′′ ∩E(D′) and B′′ ∩E(D′) is empty then, as D′ contains at least two indicators of D that are

in B, we have R ∩E(D′) = {y2} and x2 6∈ E(D′). Since S ∩E(P ) = {y1} and since, by (10), D contains no

maximum edge, x1, x2, x3 are the only connectors of D incident with vertices on P . Thus from y2 ∈ E(D′)

and x2 6∈ E(D′), we deduce that y1 ∈ E(D′). Recall that R ∩ E(D′) = {y2}, so y1 = y2, contradicting the

fact that y1 ∈ E(P ) while y2 /∈ E(P ). Hence (12) holds.

Let ED = ∪D∈DE(D) and VD = ∪D∈DV (D). Let QD be obtained from Q by contracting D, for every

cycle D ∈ D, into a vertex vD. Let U = {vD : D ∈ D} ∪ {v ∈ V (Q) − VD : dQ(v) = 3}. Then, by Lemma

2.8, QD[U ] is a bipartite graph. Let S′ ⊆ E(QD) be the set of edges corresponding to those in S −ED, and

let Q′ = QD[S′]. Then Q′[U ] is bipartite. By (5), (11) and (9), dQ′(u) ≥ 2, for all u ∈ U . Thus, by Lemma

2.7, Q′ has a 2-edge coloring λ′ such that both colors are represented at every vertex in U . Let us view S′

as a subset of S. Then λ′ can be extended into a 2-edge coloring on S as follows. For each x ∈ ED, if x is

not incident with a connector of D then we assign a color to x arbitrarily; if x is incident with a connector

x′ of D, then x′ is unique, by (10), and thus we assign x a color different from that of x′. Let R, B be the

color classes. Then it is routine to verify that (R, B) is a certificate for Ω, a contradiction, which completes

the proof of the lemma.
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Lemma 4.2 Let G = (V, E) be obtained from a rooted line graph L(Q) by adding pendent triangles, where

Q is triangle-free and satisfies (i-iii) in Lemma 2.3. Then b(CG) is Mengerian.

Proof. Let w ∈ ZV
+. By Lemma 3.1, we need to show that b̄(CG), which consists of all feedback vertex

sets of G, has a w-packing of size r := rw(CG), which is the minimum of w(V (C)), over all cycles C of G.

By decreasing the value of w(v) to r, if necessary, we may assume that w(v) ≤ r, for all v ∈ V .

Let C′ consist of all triangles in G and C′′ consist of all other cycles in G. For any F ⊆ V , let α(F ) and

β(F ) be the number of cycles in C′ and C′′, respectively, that F meets. Clearly, there is a collection F of

subsets of V such that

(a) |F| = r; and

(b) every v ∈ V is contained in exactly w(v) members of F .

We choose such an F such that

(c) α(F) =
∑

F∈F α(F ) is maximum, and

(d) subject to (c), β(F) =
∑

F∈F β(F ) is maximum.

We prove that every member of F is an FVS of G. This implies that F is a w-packing of b̄(CG) of size r,

which would prove the lemma.

(1) F ∩ V (C) 6= ∅, for all F ∈ F and C ∈ C′.
Suppose, by contradiction, that there exist F0 ∈ F and C0 ∈ C′ with F0 ∩ V (C0) = ∅. From (a), (b),

and the fact w(V (C0)) ≥ r we deduce that there exists F1 ∈ F with |F1 ∩ V (C0)| ≥ 2. As usual, let

F0∆F1 = (F0 − F1) ∪ (F1 − F0). Let FQ
01 = (F0∆F1) ∩ E(Q) and FG

01 = (F0∆F1) − E(Q). Let C′0 be the

collection of all cycles C ∈ C′ with V (C) ∩ (F0 ∩ F1) = ∅ and |V (C) ∩ FQ
01| ≥ 2. Clearly, for each C ∈ C′0,

there exists a triad in Q that contains all members of V (C) ∩ FQ
01. Let U be the set of centers of all these

triads.

For each pendent triangle C ∈ C′0, we perform the following operation on Q. Let x, y be the two edges

in V (C) ∩ FQ
01. Let u be their common end and let z = uv be the other edge incident with u. We replace

z with u′v, where u′ is a new vertex. In other words, edges in δQ(u) are split into two groups, x, y are still

incident with u, but z is moved from u to the new vertex u′. Let Q′ be the resulting graph, after performing

this operation over all pendent triangles C ∈ C′0. Let Q′′ = Q′[FQ
01]. Then the definitions of U and Q′ imply

that dQ′′(u) ≥ 2, for all u ∈ U . On the other hand, by Lemma 2.8, Q[U ] is bipartite, so Q′[U ] is bipartite,

which in turn implies that Q′′[U ] is bipartite. By Lemma 2.7, Q′′ has a 2-edge coloring so that both colors

are represented at each vertex of U . Let R0 and R1 denote the two color classes.

For each z ∈ V (G) − E(Q), let Tz denote the unique (pendent) triangle of G that contains z. Let

S0 = {z ∈ FG
01 : |V (Tz) ∩R0| < |V (Tz) ∩R1|} and S1 = FG

01 − S0. For i = 0, 1, let F ′i = (F0 ∩ F1) ∪Ri ∪ Si.

Let F ′ = (F −{F0, F1})∪ {F ′0, F ′1}. Notice that (R0 ∪S0, R1 ∪S1) is a partition of F0∆F1, thus F ′ satisfies

(a) and (b). Let D = {C ∈ C′ : V (C) ∩ (F0 ∪ F1) 6= ∅}. Let D0 = {C ∈ D : V (C) ∩ (F0 ∩ F1) 6= ∅},
D1 = {C ∈ D − D0 : |V (C) ∩ (F0∆F1)| = 1}, and D2 = D − D0 − D1. Then it is clear that C0 ∈ D2 and

α(F0) + α(F1) ≤ 2|D0|+ |D1|+ 2|D2 −{C0}|+ |{C0}|. On the other hand, the definition of (R0, R1) implies

that each cycle in C′0 meets both R0 and R1. Similarly, the definition of (S0, S1) implies that every cycle in

D2 − C′0 meets both R0 ∪ S0 and R1 ∪ S1. Therefore, every cycle in D2 meets both F ′0 and F ′1, which means
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α(F ′0) + α(F ′1) = 2|D0|+ |D1|+ 2|D2| > α(F0) + α(F1). It follows that α(F ′) > α(F), contradicting (c), and

thus (1) is proved.

(2) For any x ∈ V , if G′ is a block of G\x, then there exists a triangle-free graph Q′, which satisfies (i-iii)

in Lemma 2.3, and such that G′ is obtained from L(Q′) by adding pendent triangles.

Clearly, we may assume that |V (G′)| ≥ 3. Let Q1 = Q[V (G′) ∩ E(Q)]. Since G′ is 2-connected and has

three or more vertices, for each z ∈ V (G′)−E(Q), the unique (pendent) triangle Tz of G that contains z is

contained in G′. If Tz\z is contained in a triangle of L(Q1), for all z ∈ V (G′)− E(Q), then it is routine to

verify that Q′ = Q1 has the required properties. Therefore, we may assume that some Tz\z is not contained

in any triangle of L(Q1). Let Z be the set of all such vertices z. Observe that G′\(V (G′) − E(Q) − Z)

is isomorphic to L(Q′), where Q′ is obtained from Q1 by adding |Z| pendent edges. It follows that G′

can be obtained from L(Q′) by adding pendent triangles. Furthermore, it is routine to verify that Q′ is

triangle-free and satisfies (i-ii) in Lemma 2.3. To verify that Q′ is weakly even, notice that Q′ and Q1 have

the same nontrivial series families, since the two graphs only differ by some pendent edges. In addition,

every nontrivial series family of Q1 can be partitioned into series families of Q, as Q1 is a subgraph of Q.

Therefore, each odd series family S1 of Q1 contains an odd series family S of Q. By Lemma 2.4, |S| > 1.

It follows that Q has a degree-two vertex u, which is incident with two edges of S. From the way we add

pendent edges we deduce that dQ′(u) = 2, which proves that Q′ is weakly even, and thus (2) is proved.

Now we are ready to prove that each F ∈ F is an FVS. Suppose otherwise. By (1), there exist F0 ∈ F
and C0 ∈ C′′ with F0 ∩ V (C0) = ∅. Again, there must exist F1 ∈ F with |F1 ∩ V (C0)| ≥ 2. Suppose that

G1, G2, . . . , Gk are all blocks of G\(F0∩F1). Let i ∈ {1, 2, ..., k}. By (2), Gi is obtained from L(Qi) by adding

pendent triangles, where Qi is triangle-free and satisfies (i-iii) in Lemma 2.3. Let Si = (F0∆F1)∩V (Gi) and

let Di be the collection of cycles C of Gi with |V (C)∩Si| ≥ 2. By (1), Di contains all triangles of Gi. Then,

by Lemma 4.1, Si can be partitioned into (Bi, Ri) such that each cycle in Di meets both Bi and Ri. We

further assume, by interchanging Bi with Ri when necessary, that if any distinct Si and Sj have a common

vertex v then either v ∈ Ri ∩Rj or v ∈ Bi ∩Bj . Let B = B1 ∪B2 ∪ ...∪Bk and R = R1 ∪R2 ∪ ...∪Rk. Let

F ′0 = (F0 ∩ F1)∪B and F ′1 = (F0 ∩ F1)∪R. Let F ′ = (F − {F0, F1})∪ {F ′0, F ′1}. Since (B,R) is a partition

of F0∆F1, F ′ satisfies (a) and (b). By (1) and by the constructions of (B, R), we see that α(F ′) ≥ α(F).

However, β(F ′)−β(F) = β(F ′0)+β(F ′1)− (β(F0)+β(F1)) ≥ 2|D′′|− (2|D′′−{C0}|+ |{C0}|) = 1, where D′′
consists of all cycles C in C′′ that are contained in G\(F0 ∩F1) with |V (C)∩ (F0∆F1)| ≥ 2. This contradicts

the maximality of β(F), which completes the proof of the Lemma.

Lemma 4.3 If K ∈ {K3,K
−
4 ,W−

4 ,K+
2,3}, then b(CK) is Mengerian.

Proof. Let K = (V, E) and w ∈ ZV
+. Suppose v1, v2, . . . , v|V | are all the vertices in K such that v1v2v3

is a triangle in K of minimum weight and that dK(v1) ≥ dK(v2) ≥ dK(v3). We only need to exhibit an

FVS w-packing F of K of size w(v1) + w(v2) + w(v3). Let V ′ = V − {v1, v2}. It is routine to verify that, if

K ∈ {K3,K
−
4 , K+

2,3}, then F = {w(v1){v1}, w(v2){v2}, w(v3)V ′} is as desired, where the number w(x) in

front of each set indicates the number of times the set appears in F .

Next, suppose K = W−
4 . Then dK(v1) = 4. When v4v5 6∈ E, we may assume that vertices on the

path K\v1 are ordered as v5v2v3v4. It follows that w(v2) ≤ w(v4) and w(v3) ≤ w(v5). Again, it is
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straightforward to verify that F = {w(v1){v1}, w(v2){v2, v4}, w(v3){v3, v5}} has the required property. It

remains to consider the case where v4v5 ∈ E. Let us assume vertices on the path K\v1 are ordered as

v3v2v4v5. Then w(v3) ≤ w(v4). In this case, we have to consider two subcases. If w(v2) ≤ w(v5), then F =

{w(v1){v1}, w(v3){v3, v4}, w(v2){v2, v5}} has the required property; if w(v2) > w(v5) then F = {w(v1){v1},
w(v3){v3, v4}, w(v5){v2, v5}, (w(v2)− w(v5)){v2, v4}} is as desired for w(v2) + w(v3) ≤ w(v4) + w(v5).

Remark. For each K ∈ {K3,K
−
4 , W−

4 ,K+
2,3}, let v1v2v3 be a triangle in K with dK(v1) ≥ dK(v2) ≥ dK(v3),

and let the vertices on the path W−
4 \v1 be ordered as v5v2v3v4. It is easy to see that the edge sets of

b(CK) (K = K3, K−
4 , K+

2,3, W−
4 ) are {{v1}, {v2}, {v3}}, {{v1}, {v2}, {v3, v4}}, {{v1}, {v2}, {v3, v4, v5}},

{{v1}, {v2, v3}, {v2, v4}, {v3, v5}}, respectively. In every case, the incidence matrix for b(CK) is totally uni-

modular, which also implies that b(CK) is Mengerian (See Section 83.3 of [8]).

Proof of Theorem 1.3. As observed at the end of Section 1, we only need to show that, if G is in

L then b(CG) is Mengerian. We apply induction on |V (G)|. The case |V (G)| = 1 is trivial, so we proceed

to the induction step. By Lemma 2.6, Lemma 3.2, and Lemmas 3.6-3.8, we may assume that G cannot

be represented as a k-sum (k = 0, 1, 2, 3) of two smaller graphs, for otherwise we are done by induction.

Then we conclude from Lemma 2.1 that G is obtained from a rooted 2-connected line graph L(Q) by adding

pendant triangles. Clearly we may assume that Q has no isolated vertices. If Q has a triangle, then we are

done by Lemma 2.3(iv) and Lemma 4.3. Thus we may assume that Q is triangle-free and satisfies (i-iii) in

Lemma 2.3. Now the result follows from Lemma 4.2.
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