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Abstract

In this paper, we use credibility theory to estimate credit transition ma-

trices in a multivariate Markov chain model for credit rating. A transition

matrix is estimated by a linear combination of the prior estimate of the transi-

tion matrix and the empirical transition matrix. These estimates can be easily

computed by solving a set of Linear Programming (LP) problems. The esti-

mation procedure can be implemented easily on Excel spreadsheets without

requiring much computational effort and time. The number of parameters is

O(s2m2), where s is the dimension of the categorical time series for credit rat-

ings and m is the number of possible credit ratings for a security. Numerical

evaluations of credit risk measures based on our model are presented.
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1 Introduction

Modelling credit risk is an important topic in quantitative finance and risk man-

agement. Recently, there has been much interest in modelling the dependency of

credit risks of securities in portfolios due to the practical importance of risk analysis

of portfolios of credit risky securities. The specification of the model that explains

and describes the dependency of the credit risks can have significant implications in

measuring and managing credit risky portfolios. There are two major approaches

to modelling the dependency of credit risky securities in industries, namely copulas

and Monte-Carlo simulation. Copulas have long been used in statistics, in partic-

ular survival analysis, and have also been widely applied in actuarial science. Li

(2000) introduced the use of copula functions for credit risk measurement. Since

then, copulas have become a popular tool for credit risk analysis in the finance and

insurance industries. The main advantages of copulas are that they can capture

the dependency of credit risks when the credit loss distributions do not belong to

the elliptical class and that they can incorporate the dependency of more than two

credit risks. Embrechts et al. (1999) documented the potential pitfalls of corre-

lations and introduced the use of copulas for modelling dependent risks when the

multivariate distribution is asymmetric. The Monte Carlo simulation technique is

usually adopted together with copulas for modelling the dependency of credit risks.

The monograph by Cherubini et al. (2004) provided a comprehensive discussion on

the use of simulation methods with various copulas for modelling dependent risks.

Modelling the dynamics of transitions between credit ratings is vital for credit

risk analysis in the finance industry. The discrete-time homogeneous Markov chain

model has been used by academic researchers and market practitioners to model

such transitions over time. The transition matrix represents the likelihood of the

future evolution of the ratings. In practice, the transition matrix can be estimated

from empirical data for credit ratings. Standard & Poor, Moodys and Fitch are the

major providers of credit rating data. They provide and update from time to time

historical data for individual companies and for countries. Credit Metrics (Gupton

et al. (1997)) provides a very comprehensive account of practical implementation

of transition matrices. For measuring and managing the risk of a credit portfolio,

it is of practical importance to develop quantitative models that can describe the

dependencies between the credit ratings of individual assets in the portfolio since
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the losses from the individual assets depend on their credit ratings. A multivari-

ate Markov chain model provides a natural and convenient way to describe these

dependencies.

Kijima et al. (2002) used a multivariate Markov chain model to simulate the

evolution of correlated ratings of several credit risks. They applied their model to

questions of pricing and risk measurement. They estimated the unknown parame-

ters in their model by minimizing the squared error based on historic rating data

only. Thomas et al. (2002) suggested that historic rating data alone is not adequate

to reflect future movements in ratings when the future may not evolve smoothly

from the past experience. The market view is a mixture of beliefs determined by

both historic movements in ratings and a more extreme view of ratings. The latter

can be specified by subjective views or other expert opinion. Incorporating expert

opinion on future movements in ratings also plays a vital role in measuring and

managing the risk of credit portfolios. From the perspectives of risk measurement

and management, both regulators and risk managers may wish to use a more con-

servative view or pessimistic outlook than that predicted by using historic data only.

It is of practical relevance to incorporate expert opinion into tools for credit risk

measurement and management (see Alexander (2005) for an excellent discussion).

In this paper, we investigate the use of a discrete-time homogeneous multivariate

Markov chain model for dependent credit risks introduced by Ching et al. (2002).

The conditional probability distribution of the rating of a particular credit risk in

the next period given the currently available information depends not only on its

own current rating, but also on the current ratings of all other credit risks in the

portfolio. The multivariate Markov chain model can handle both temporal and

cross-sectional dependencies of categorical time series for credit ratings. It is very

useful for handling time series generated from similar sources or from the same

source. In the model, the number of parameters involved is O(s2m2), where s is the

dimension of the categorical time series for credit ratings and m is the number of

possible credit ratings of a security. We need Cs
2 = s(s−1)/2 parameters to capture

all possible pairwise correlations (or dependencies) between any two categorical time

series for credit ratings and there are m possible credit ratings for each security. We

have a m × m transition matrix. We cannot further reduce the factor of order s2

unless it is given that some parameters are zero in advance. Here, we consider the

simple case, namely the first-order multivariate Markov chain model. It is possible
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to extend this to a higher-order multivariate Markov chain model as discussed in

Ching et al. (2004). The structure of our multivariate Markov chain model is

different from that of Kijima et al. (2002). Kijima et al. (2002) assumed that the

change in the credit ratings over a period called the ‘credit increment’ is specified

by a single index model consisting of two components, namely the systematic part

described by a single common factor and the firm-specific component. Their model

is more suitable than our model for pricing credit risky securities. However, our

model is more general and more analytically tractable than the model in Kijima

et al. (2002). It requires fewer structural assumptions relating to the change in

credit ratings. However, its applicability is limited by the number of parameters

involved. When both the dimension of the categorical time series for credit ratings

and the number of possible credit ratings are high, the simulation approach adopted

in Kijima et al. (2002) is more applicable.

We employ actuarial credibility theory to combine two sources of information for

estimating the transition matrix and other unknown model parameters in the mul-

tivariate Markov chain model. Our approach provides a consistent and convenient

way to incorporate both historical rating data and another source of information, for

instance, expert opinion or a subjective view. In contrast, the estimation method in

Kijima et al. (2002) can only incorporate one source of information, namely historic

rating data. We provide an estimate of the transition matrix as a linear combina-

tion of the empirical transition matrix and a prior transition matrix. The empirical

transition matrix can be specified based on historic rating data while the prior tran-

sition matrix can be determined by expert opinion or some other subjective view.

Hence, our model is more suitable for measuring and managing the risk of credit

portfolios when the market view is a mixture of beliefs based on both historic data

and expert opinion. In practice, it is difficult to obtain plentiful historic rating data,

in which, the role of the prior transition matrix becomes more important. We can

formulate our estimation problem as a set of Linear Programming (LP) problems,

which is easy to implement and more computationally efficient compared with the

minimization of the square error in Kijima et al. (2002). Our estimation procedure

can be implemented easily using Excel spreadsheets. Our approach also aims to

highlight the interplay between actuarial credibility theory and risk measurement.

Some related works along this direction include Siu and Yang (1999), Siu et al.

(2001) and Woo and Siu (2004).
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The rest of the paper is organized as follows. In Section 2, we introduce the

multivariate Markov chain model for credit risk measurement. Section 3 presents

the credibility approach for estimating the model parameters. We discuss the port-

folio credit risk measures under the multivariate Markov chain model in Section

4. Numerical examples are given to illustrate the effectiveness of the model for the

evaluation of portfolio credit risk measures in Section 5. Finally, concluding remarks

are given in Section 6.

2 The Model

Credit risk measurement and management are of practical importance and relevance

in finance and banking. There are two important models for credit risk measurement

and management, namely the structural approach and the reduced-form approach.

The structural approach was originally proposed by Merton (1974) and assumes

that the value of a corporation’s asset is driven by a Geometric Brownian Motion.

In this case, default is an endogenous event which occurs when the value of the

corporation’s asset triggers an a priori threshold level. The structural approach

facilitates the rapid development of different models for pricing corporate debts and

credit derivatives. It is also one of the most important models used to analyse the

financial leverage and capital structure of a firm from the perspective of corporate

finance. However, in practice, the value of a firm’s asset is not observable. This

can induce the technical difficulty of modelling the value of the firm’s asset as an

exogenously given variable. The reduced-form approach was considered by Artzner

and Delbaen (1995), Duffie et al. (1996), Jarrow and Turnbull (1995) and Madan

and Unal (1995). It assumes that default is an exogenous event and its occurrence

is governed by a random point process. The reduced-form approach focuses on

modelling the hazard rate of default. In our setting, we adopt the reduced-form

approach and assume that the future transitions between ratings of correlated credit

risks in a portfolio only depend on their current ratings. We consider modelling the

dynamics of the ratings by the multivariate Markov chain model introduced by

Ching et al. (2002). In the following, we present the main idea of the multivariate

Markov chain model for credit risk measurement.

First, we fix a complete probability space (Ω,F ,P). Suppose T represents the

time index set {0, 1, 2, . . . ,∞} on which all economic activities take place. In our
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setting, we consider a portfolio with n correlated credit risks, for instance, n corpo-

rate bonds with correlated credit ratings. On (Ω,F ,P), we define n categorical time

series Y (1), Y (2), . . . , Y (n) with common time index set T . Let S denote a set of unit

basis vectors {e1, e2, . . . , em} in Rm, where ei = (0, . . . , 0,

ithentry︷︸︸︷
1 , 0, . . . , 0)T ∈ Rm.

For each j = 1, 2, . . . , n, Y (j) := {Y (j)
t }t∈T is a discrete-time and finite-state stochas-

tic process with state space S. Note that {Y (j)
t }t∈T represents the random transitions

of the ratings of the jth credit risk. In particular, the event {ω ∈ Ω|Y (j)
t (ω) = ei}

means that the jth credit risk is in the ith rating class at time t. Define the space Ŝ
as

{s ∈ Rm|s =
m∑

i=1

αiei, 0 ≤ αi ≤ 1,
m∑

i=1

αi = 1}.

For each j = 1, 2, . . . , n, we denote the dynamics of the discrete probability distri-

butions {X(j)
t }t∈T for Y (j), where X

(j)
t ∈ Ŝ for each t ∈ T . In particular, for each

t ∈ T , the ith entity of the probability vector X
(j)
t represents the probability that

the jth credit risk is in the ith rating class at time t. It is interesting to note that

{X(j)
t }t∈T can also be used to represent the ratings of the jth credit risk at time t,

for each j = 1, 2, . . . , n. Suppose that the jth credit risk is in the ith rating class

at time t; that is, Y
(j)
t = ei. This means that the probability of the jth credit risk

being in the ith rating class at time t is equal to one. Hence, we have

X
(j)
t = ei = (0, . . . , 0, 1︸︷︷︸

ith entry

, 0 . . . , 0)T .

Let P (jk) be a transition matrix from the states in the kth sequence to the states in

the jth sequence. For each j = 1, 2, . . . , n, P (jj) represents the transition matrix for

the jth categorical time series Y j. Write X
(k)
t for the state probability distribution of

the kth sequences at time t. Then, we assume that the dynamics of the probability

distributions of the ratings for the jth credit risk are governed by the following

equation:

X
(j)
t+1 =

n∑

k=1

λjkP
(jk)X

(k)
t , for j = 1, 2, · · · , n (1)

where

λjk ≥ 0, 1 ≤ j, k ≤ n and
n∑

k=1

λjk = 1, for j = 1, 2, · · · , n. (2)

The interpretation of Equation (1) is that the state probability distribution of

the jth categorical time series Y j at time (t+1) depends on the weighted average of
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P (jk)X
(k)
t at time t. It is not difficult to check that the multivariate categorical time

series Y := (Y (1), Y (2), . . . , Y (n)) forms a multivariate Markov chain under Equation

(1). For each t ∈ T , let Yt be (Y
(1)
t , Y

(2)
t , . . . , Y

(n)
t ) and Ft the information set

generated by the market observations {Y0, Y1, . . . , Yt} of the ratings of the n credit

risks up to and including time t. Since Yt is known given Ft, Yt = (ei1 , ei2 , . . . , ein),

for some i1, i2, . . . , in ∈ {1, 2, . . . , m} given Ft. In this case, X
(j)
t = Y

(j)
t = eij for

each t ∈ T and j = 1, 2, . . . , n. From Equation (1), we notice that the probability

distribution X
(j)
t+1 of Y

(j)
t+1 given Ft depends only on (Y

(1)
t , Y

(2)
t , . . . , Y

(n)
t ). Hence,

the multivariate Markov property follows. In this case, the conditional probability

distribution for the ratings of the jth credit risk at time t+1 depends on the ratings

of all credit risks in the portfolio at time t. We can write Equation (1) in the

following matrix form:

Xt+1 ≡




X
(1)
t+1

X
(2)
t+1

...

X
(n)
t+1




=




λ11P
(11) λ12P

(12) · · · λ1nP (1n)

λ21P
(21) λ22P

(22) · · · λ2nP (2n)

...
...

...
...

λn1P
(n1) λn2P

(n2) · · · λnnP
(nn)







X
(1)
t

X
(2)
t

...

X
(n)
t



≡ QXt

or

Xt+1 = QXt.

Although the column sum of Q is not equal to one (the column sum of P (jk) is equal

to one), we still have the following proposition. The proof of the proposition can be

found in Ching, Fung and Ng (2002).

Proposition 1 Suppose that P (jk) (1 ≤ j, k ≤ n) are irreducible and λjk > 0 for

1 ≤ j, k ≤ n. Then, there is a vector

X = [X(1), X(2), · · · , X(n)]T

such that X = QX and
m∑

i=1

[X(j)]i = 1, 1 ≤ j ≤ n ,

where [·]i denote the ith entry of the corresponding vector.

The vector X in Proposition 1 contains the stationary probability distributions

for the ratings of all credit risks in the portfolio. That is, for each j, X(j) represents

the probability distribution for the ratings of the jth credit risk in the long-run. For
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various mathematical and statistical properties of the multivariate Markov chain,

refer to the recent paper by Ching et al. (2002).

Kijima et al. (2002) considered the use of the multivariate Markov model for

simulating dependent credit risks. Their approach was based on the single-index

model of modern portfolio theory and can be considered to be an extension of

the credit risk model by Jarrow et al. (1997). They described the change in the

credit ratings (or credit increment) as the single-index model, which consists of two

components, namely the systematic component described by a single common factor

and the firm-specific component. Compared with the model in Kijima et al. (2002),

our model is more general and more analytical tractable. However, our model has

more parameters than the model by Kijima et al. (2002). This limits its applicability.

However, one cannot further reduce the order of the number of parameters given the

generality of our model. Nevertheless, the estimation procedure of our model can

be implemented easily on Excel spreadsheets without requiring much computational

effort and time. Our model is intuitively appealing. It supposes that the transitions

of the credit ratings are exogenous and describes the random behavior of transitions

of the credit ratings directly.

The multivariate Markov chain model considered here is homogeneous. How-

ever, Das et al. (2004) provided a very comprehensive empirical investigation of

correlated default risk and showed that the joint correlated default probabilities

varied substantially over time. Their empirical result suggests that a homogeneous

Markov chain is not appropriate for modelling the transitions of the ratings of a

credit risk over time since it cannot describe the time-varying behavior of default

risk. Although a non-homogeneous Markov chain may provide a more realistic way

to describe the time-varying behavior of default risk, it makes the estimation proce-

dure much more complicated and the model less analytically tractable. Hence, there

is a tradeoff between the tractability of a model and a more realistic description of

the empirical data.

In reality, the parameters in the matrix Q are unknown to market practitioners.

In order to evaluate the risk of the credit portfolio, we have to estimate the unknown

market parameters. We will discuss the use of credibility theory for the estimation

in the next section.
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3 Estimation of the Credit Transition Matrix

We relax the stringent assumption that the credit transition matrix is given in ad-

vance. In this section, we describe in some detail the case that the Q-matrix is

unknown. We employ the idea of credibility theory to estimate the transition ma-

trix and other unknown model parameters in the multivariate Markov chain model.

Credibility theory has a long history in actuarial science. It has been widely applied

in the actuarial discipline for calculating a policyholder’s premium through experi-

ence rating of the policyholder’s past claims. The main idea of credibility theory is

to provide a consistent and convenient way to combine two different sources of infor-

mation for premium calculation. It determines the weight that should be assigned to

each source of information. Mowbray (1914), Bühlmann (1967) and Klugman, Pan-

jer and Willmot (1997) together provide excellent accounts of actuarial credibility

theory.

Bühlmann (1967) introduced a least squares approach for the estimation of cred-

ibility premiums without imposing stringent parametric assumptions for the claim

models. Following an idea similar to the “Bühlmann least squares model”, we pro-

vide market practitioners with an analytically tractable framework for estimating

the Q-matrix without imposing any parametric assumptions. We assume that the

estimate of each transition matrix in the Q-matrix can be represented as a linear

combination of a prior transition matrix and the empirical transition matrix , where

the empirical transition matrix is based on the frequencies of transitions between

rating. Then, by noticing from Proposition 1 that there exists a vector X of sta-

tionary probability distributions such that X = QX, we can estimate the Q-matrix

based on the vector X of the stationary distributions for the ratings.

Hu, Kiesel and Perraudin (2002) proposed an empirical Bayesian approach for

the estimation of transition matrices for governments to evaluate and manage the

risk of portfolios with credit exposures to emerging markets. Their estimator for

transition matrices of ratings is also a linear combination of a prior matrix given by

the empirical transition matrix (estimated directly from Standard & Poor’s data)

and a model-based updating matrix evaluated from the ordered probit model. They

adopted empirical Bayesian techniques for estimating contingency tables and se-

lected the weights of the linear combination of the prior and updating matrices by

the goodness-of-fit X 2-statistic. Our approach is different from their approach in
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that it is adapted to the multivariate Markov chain model and in that it adopts a

different objective function associated with the method of optimization used for the

estimation of the unknown model parameters. We present our approach as follows:

Suppose we are given a multivariate categorical time series of ratings of credit

risks in the portfolio. We count the transition frequency f (jk)
rs from the rating r

in the categorical time series {X(j)
t } of ratings of the jth credit risk to the rating

s in the categorical time series {X(k)
t } of the ratings of the kth credit risk, where

r, s ∈ {1, 2, . . . , m}. Then, the transition frequency matrix can be constructed as

follows:

F (jk) =




f
(jk)
11 · · · · · · f

(jk)
m1

f
(jk)
12 · · · · · · f

(jk)
m2

...
...

...
...

f
(jk)
1m · · · · · · f (jk)

mm




.

¿From F (jk), we get the estimate for the transition matrix P (jk) as follows:

P̂ (jk) =




p̂
(jk)
11 · · · · · · p̂

(jk)
m1

p̂
(jk)
12 · · · · · · p̂

(jk)
m2

...
...

...
...

p̂
(jk)
1m · · · · · · p̂(jk)

mm




where

p̂(jk)
rs =





f (jk)
rs

m∑

s=1

f (jk)
rs

if
m∑

s=1

f (jk)
rs 6= 0

0 , otherwise.

For each j = 1, 2, . . . , n, the empirical estimate P̂ (jj) of the transition matrix

P (jj) for the jth categorical time series Y j is then given by:

P̂ (jj) =




p̂
(jj)
11 · · · · · · p̂

(jj)
m1

p̂
(jj)
12 · · · · · · p̂

(jj)
m2

...
...

...
...

p̂
(jj)
1m · · · · · · p̂(jj)

mm



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where

p̂(jj)
rs =





f (jj)
rs

m∑

s=1

f (jj)
rs

if
m∑

s=1

f (jj)
rs 6= 0

0 , otherwise.

Let Q(jk) denote the prior transition matrix for the estimation of P (jk). There are,

in general, different approaches to determining the prior transition matrix. Market

practitioners may determine the prior transition matrix based on prior knowledge

of ratings of other firms or within the same industry. This resembles the determi-

nation of claim frequencies based on prior experience, in the experience rating of

classical actuarial credibility. They may also base the prior transition matrix on

their subjective beliefs about the different credit risks in the portfolio. The prior

transition matrix can also be specified by the reference transition matrix produced

by some well-renowned international credit rating agency such as Standard & Poor’s,

Moody’s, Fitch and TRIS, etc. It may also be specified by the model-based esti-

mate from the probit model in logistic regression analysis. Here, we specify the

prior transition matrix by the transition matrix created by Standard & Poor’s. It

is well-known that the transition matrix produced by Standard & Poor’s has been

widely used as a benchmark for credit risk measurement and management in the fi-

nance and banking industries. For illustration, we assign a common prior transition

matrix for two credit risky assets as the transition matrix created by Standard &

Poor’s shown in Table 2 to represent the belief that the transition matrices for the

two credit risky assets are essentially the same based on the prior information. If

more prior information about the credit rating of each asset is available, we can de-

termine a more informative prior transition matrix for each credit risky asset. For a

comprehensive overview and detailed discussion on the choice of prior distributions

based on prior information, refer to some representative monographs on Bayesian

Statistics, such as Lee (1997), Bernardo and Smith (2001) and Robert (2001), etc.

Then, the estimate P (jk)
e of P (jk) is given by:

P (jk)
e = wjkQ

(jk) + (1− wjk)P̂
(jk) , j, k = 1, 2, . . . , n , (3)

where 0 ≤ wjk ≤ 1, for each j, k = 1, 2, . . . , n.

To estimate the Q-matrix, we also need to estimate the parameters λjk. From

Proposition 1, we have seen that the multivariate Markov chain model has a station-

11



ary distribution X. In practice, the vector X can be estimated from the multivariate

categorical time series of ratings by computing the proportion of the occurrence of

each state in each of the categorical time series of ratings; let us denote the estimate

of X by

X̂ = (X̂(1), X̂(2), . . . , X̂(n))T .

¿From Proposition 1, we have that




λ11P
(11)
e λ12P

(12)
e · · · λ1nP (1n)

e

λ21P
(21)
e λ22P

(22)
e · · · λ2nP (2n)

e

...
...

...
...

λn1P
(n1)
e λn2P

(n2)
e · · · λnnP

(nn)
e




X̂ ≈ X̂ , (4)

where the approximation sign means that the probability vector on the left hand

side is approximated by the vector on the right hand side in the component-wise

sense.

Let λ̃1
jk = λjkwjk and λ̃2

jk = λjk(1−wjk). Then, it is easy to check that λ̃1
jk+λ̃2

jk =

λjk, for each j, k = 1, 2, . . . , n. We notice that the estimation of λjk and wjk is

equivalent to the estimation of λ̃1
jk and λ̃2

jk. Then, (4) can be written in the following

form:



λ̃1
11Q

(11) + λ̃2
11P̂

(11) · · · λ̃1
1nQ

(1n) + λ̃2
1nP̂

(1n)

λ̃1
21Q

(21) + λ̃2
21P̂

(21) · · · λ̃1
2nQ

(2n) + λ̃2
2nP̂

(2n)

...
...

...

λ̃1
n1Q

(n1) + λ̃2
n1P̂

(n1) · · · λ̃1
nnQ

(nn) + λ̃2
nnP̂

(nn)




X̂ ≈ X̂ . (5)

Now, we formulate our estimation problem as follows:





min
λ̃1,λ̃2

max
i

∣∣∣∣∣∣

[
m∑

k=1

(λ̃1
jkQ

(jk) + λ̃2
jkP̂

(jk))X̂(k) − X̂(j)

]

i

∣∣∣∣∣∣

subject to
n∑

k=1

(λ̃1
jk + λ̃2

jk) = 1, λ̃1
jk ≥ 0 and λ̃2

jk ≥ 0, ∀j, k.

(6)

Let Oj = maxi

∣∣∣
[∑m

k=1(λ̃
1
jkQ

(jk) + λ̃2
jkP̂

(jk))X̂(k) − X̂(j)
]
i

∣∣∣. Then, Problem (6) can

be reformulated as the following set of n Linear Programming problems ( see, for

12



instance, Ching et al. (2002)). For each j:





min
λ̃1,λ̃2

Oj

subject to




Oj

Oj

Oj

Oj

...

Oj

Oj




≥ X̂(j) −Bj




λ̃1
j1

λ̃2
j1

λ̃1
j2

λ̃2
j2

...

λ̃1
jn

λ̃2
jn




,




Oj

Oj

Oj

Oj

...

Oj

Oj




≥ −X̂(j) + Bj




λ̃1
j1

λ̃2
j1

λ̃1
j2

λ̃2
j2

...

λ̃1
jn

λ̃2
jn




,

Oj ≥ 0,
n∑

k=1

(λ̃1
jk + λ̃2

jk) = 1, λ̃1
jk ≥ 0 and λ̃2

jk ≥ 0, ∀j, k.

(7)

where

Bj = [Q(j1)X̂(1) | P̂ (j1)X̂(1) | Q(j2)X̂(2) | P̂ (j2)X̂(2) | · · · | Q(jn)X̂(n) | P̂ (jn)X̂(n)].

Since there are n independent linear programming (LP) problems and each of

them contains O(m) constraints and O(n) variables, the total computational com-

plexity of solving such n LP problems is of O(n4s) where s (dependent on n and m)

is the number of binary bits needed to record all the data of the LP problems (see

for example Fang and Puthenpura (1993)). In Section 5, we will demonstrate the

effectiveness of our proposed method.

Kijima et al. (2002) estimated the unknown parameters in their model by the

minimization of the squared error based on historic rating data only. Here, we adopt

the idea of the Bühlmann credibility model to incorporate both prior information

on the credit ratings and the historic rating data. The estimation procedure based

on the Bühlmann credibility model can then be formulated as a set of LP problems.

The Bühlmann credibility approach can incorporate additional prior information,

such as expert opinion or rating data from other similar industries, when there is a

lack of available historic rating data. In practice, one can implement our procedure

by solving the LP problems on Excel spreadsheets. It is easy to implement without

requiring much computational effort and time.

13



4 Credit Risk Measures

In recent years, there has been considerable interest in developing advanced tech-

niques for credit risk measurement. The problem of credit risk measurement is more

challenging than its market risk counterpart from both theoretical and practical

perspectives. At the theoretical level, one has to apply various mathematical tools

to model the possibility of defaults or rare events in a consistent way. From the

practical viewpoint, it is not easy to obtain credit risk data, in comparison with

its publicly available market risk counterpart. This makes the implementation and

estimation of credit risk models even more difficult. In this section, we consider the

problem of evaluating measures of risk, such as Value at risk (VaR) and Expected

Shortfall (ES), for a portfolio of credit risks with correlated ratings.

4.1 Credit Value at Risk

In this subsection, we compute Credit VaR for a portfolio of correlated credit risks

based on our multivariate Markov chain model. For illustration, we consider the

one-step-ahead forecast Profit/Loss distribution for the portfolio. The method can

also facilitate the evaluation of multi-step-ahead risk measures for the portfolio.

Due to the fact that the predictive Profit/Loss distribution for the portfolio can be

generated by the multivariate Markov chain model, we can obtain the Credit VaR

for the portfolio easily.

We consider a simplified portfolio with n correlated credit risks, for instance, n

corporate bonds with correlated transitions of ratings. For each j = 1, 2, . . . , n and

t ∈ T , we assume that the losses from the jth credit risk at time t are exogenous

and represented by an m-dimensional vector Lj
t = (Lj

t1, L
j
t2, . . . , L

j
tm) ∈ Rm, where

Lj
ti represents the loss from the jth credit risk at time t when Y

(j)
t = ei. If Lj

ti is

negative, the gain from the jth credit risky entity at time t when Y
(j)
t = ei is given

by −Lj
ti. The loss from the jth credit risk at time t is a function of Y

(j)
t and is

denoted by L(j)
t (Y

(j)
t ). It is easy to check that

L(j)
t (Y

(j)
t ) =< Lj

t , Y
(j)
t >=

m∑

i=1

< Lj
t , ei > I{ω ∈ Ω|Y (j)

t (ω) = ei} ,

where < x, y > denotes the inner product of two vectors x, y ∈ Rm.

For each t ∈ T , the aggregate loss Lt of the portfolio at time t is a function

14



Lt(Yt) of Yt and is given by:

Lt(Yt) :=
n∑

j=1

< Lj
t , Y

(j)
t >=

n∑

j=1

m∑

i=1

< Lj
t , ei > I{ω ∈ Ω|Y (j)

t (ω) = ei} .

One important statistic for credit risk measurement and management is the

conditional expectation of the aggregate loss Lt+1 of the portfolio at time t+1 given

the information set Ft. It can be evaluated as follows:

EP(Lt+1(Yt+1)|Ft) =
n∑

j=1

m∑

i=1

EP(< Lj
t+1, ei > I{ω ∈ Ω|Y (j)

t+1(ω) = ei}|Ft)

=
n∑

j=1

m∑

i=1

< Lj
t+1, ei > P({Y (j)

t+1 = ei}|Ft) .

For each j = 1, 2, . . . , n, we define the following conditional predictive distribu-

tion P
(j)
t+1|t of Y

(j)
t+1 given Ft:

P
(j)
t+1|t := (p

(j1)
t+1|t, p

(j2)
t+1|t, . . . , p

(jm)
t+1|t) .

Following Elliott, Aggoun and Moore (1997), the conditional predictive probability

P
(ji)
t+1|t for each i = 1, 2, . . . , m can be evaluated as follows:

p
(ji)
t+1|t := P ({Y (j)

t+1 = ei}|Ft) = EP(< Y
(j)
t+1, ei > |Ft)

= EP(< Y
(j)
t+1, ei >)|Yt=(ei1

,ei2
,...,ein) ,

where f(Yt)|Yt=(ei1
,ei2

,...,ein ) represents the value of the function f of the vector Yt

evaluated at (ei1 , ei2 , . . . , ein), for some i1, i2, . . . , in ∈ {1, 2, . . . , m}. Note that the

last equality in the aforementioned expression follows from the multivariate Markov

property of Y .

¿From Equation (1) in Section 2,

X
(j)
t+1 =

n∑

k=1

λjkP
(jk)X

(k)
t , for j = 1, 2, · · · , n .

We can estimate the unknown parameters in the aforementioned equation as

follows:

X
(j)
t+1 =

n∑

k=1

λjkP
(jk)X

(k)
t ≈

n∑

k=1

(λ̃1
jkQ

(jk) + λ̃2
jkP̂

(jk))X
(k)
t , for j = 1, 2, · · · , n .

Let [V ]i denote the ith element of the column vector V . Then, for each j =

1, 2, . . . , n and i = 1, 2, . . . , m, we have

p
(ji)
t+1|t = EP(< Y

(j)
t+1, ei >)|Yt=(ei1

,ei2
,...,ein) = P({Y (j)

t+1 = ei})|Yt=(ei1
,ei2

,...,ein )
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= [X
(j)
t+1]

i|Yt=(ei1
,ei2

,...,ein ) = [X
(j)
t+1]

i|Xt=(ei1
,ei2

,...,ein )

= [
n∑

k=1

λjkP
(jk)X

(k)
t ]i|Xt=(ei1

,ei2
,...,ein )

≈ [
n∑

k=1

(λ̃1
jkQ

(jk) + λ̃2
jkP̂

(jk))X
(k)
t ]i|Xt=(ei1

,ei2
,...,ein) .

This also implies that

EP(Lt+1(Yt+1)|Ft) =
n∑

j=1

m∑

i=1

< Lj
t+1, ei > P({Y (j)

t+1 = ei}|Ft)

=
n∑

j=1

m∑

i=1

< Lj
t+1, ei > p

(ji)
t+1|t

≈
n∑

j=1

m∑

i=1

< Lj
t+1, ei > [

n∑

k=1

(λ̃1
jkQ

(jk) + λ̃2
jkP̂

(jk))X
(k)
t ]i

|Xt=(ei1
,ei2

,...,ein) .

For evaluating Credit VaR, we need to have complete knowledge of the joint

conditional predictive distribution of Yt+1 given the information set Ft. Based on

the aforementioned result on the individual conditional predictive distribution p
(ji)
t+1|t,

we obtain

P
(j)
t+1|t := (p

(j1)
t+1|t, p

(j2)
t+1|t, . . . , p

(jm)
t+1|t)

T

≈
n∑

k=1

(λ̃1
jkQ

(jk) + λ̃2
jkP̂

(jk))X
(k)
t |Xt=(ei1

,ei2
,...,ein) .

Note that Y
(1)
t+1, Y

(2)
t+1, . . . , Y

(n)
t+1 are conditionally independent given Ft or Yt. Hence,

the joint conditional predictive distribution Pt+1|t of Yt+1 given the information Ft

can be completely determined by:

Pt+1|t := (P
(1)
t+1|t, P

(2)
t+1|t, . . . , P

(n)
t+1|t)

T , (8)

where Pt+1|t is a (n×m)-dimensional probability matrix.

Suppose the state space of Lt+1|t is {Lt+1(1),Lt+1(2), . . . ,Lt+1(M)}, for some

positive integer M , such that Lt+1(1) < Lt+1(2) < . . . < Lt+1(M). For each k̃ =

1, 2, . . . , M , we let It+1,k̃ denote the set {(i1, i2, . . . , in) ∈ {1, 2, . . . , m}n|Lt+1(ei1 , ei2 , . . . , ein) =

L(k̃)}. Then, the conditional predictive probability that the aggregate loss Lt+1

equals Lt+1(k̃) is given by:

P(Lt+1 = Lt+1(k̃)|Ft) =
∑

(i1,i2,...,in)∈It+1,k̃

n∏

j=1

p
(jij)
t+1|t
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≈ ∑

(i1,i2,...,in)∈It+1,k̃

{ n∏

j=1

[ n∑

k=1

(λ̃1
jkQ

(jk) + λ̃2
jkP̂

(jk))X
(k)
t

|Xt=(er1 ,er2 ,...,ern)

]ij }
. (9)

By definition, the VaR of the portfolio with probability level α ∈ (0, 1) at time

t + 1 given the market information Ft is given by:

V aRα,P(Lt+1|Ft) := inf{L ∈ R|P(Lt+1 ≥ L|Ft) ≤ α} , (10)

where the probability level α is usually chosen to be 1% or 5% according to different

purposes and practices of risk measurement and management.

Let K? denote a positive integer in {1, 2, . . . , M} such that

P(Lt+1 ≥ Lt+1(K
?)|Ft) =

M∑

k̃=K?

P(Lt+1 = Lt+1(k̃)|Ft) ≤ α , (11)

and

P(Lt+1 ≥ Lt+1(K
?) + 1|Ft) =

M∑

k̃=K?+1

P(Lt+1 = Lt+1(k̃)|Ft) > α . (12)

Then, we have

V aRα,P(Lt+1|Ft) = Lt+1(K
?) . (13)

4.2 Credit Expected Shortfall

Acerbi and Tasche (2001) and Wirch and Hardy (1999) pointed out that one has

to add an adjustment term to the Expected Shortfall in order to make it coherent

when the loss distribution is discrete. Following these authors, the ES for the credit

portfolio at time t + 1 given the market information Ft up to and including time t

with probability level α is defined as follows:

ESα(Lt+1|Ft) =
1

α
EP(Lt+1I{Lt+1≥Lt+1(K?)}|Ft) + A(α) , (14)

where the adjustment term A(α) is given by:

A(α) := Lt+1(K
?)

[
1− P(Lt+1 ≥ Lt+1(K

?)|Ft)

α

]
. (15)
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To facilitate the computation, we can write the Expected Shortfall of the credit

portfolio as follows:

ESα(Lt+1|Ft) =
1

α

[ M∑

k̃=K?

Lt+1(k̃)P(Lt+1 = Lt+1(k̃)|Ft)− Lt+1(K
?)

(P(Lt+1 ≥ Lt+1(K
?)|Ft)− α)

]

=
1

α

{ M∑

k̃=K?

Lt+1(k̃)
( ∑

(i1,i2,...,in)∈It+1,k̃

n∏

j=1

p
(jij)
t+1|t

)
− Lt+1(K

?)

[ M∑

k̃=K?

( ∑

(i1,i2,...,in)∈It+1,k̃

n∏

j=1

p
(jij)
t+1|t

)
− α

]}

≈ 1

α

{ M∑

k̃=K?

Lt+1(k̃)
{ ∑

(i1,i2,...,in)∈It+1,k̃

{ n∏

j=1

[ n∑

k=1

(λ̃1
jkQ

(jk) + λ̃2
jkP̂

(jk))X
(k)
t |Xt=(er1 ,er2 ,...,ern )

]ij }}
−

Lt+1(K
?)

{ M∑

k̃=K?

{ ∑

(i1,i2,...,in)∈It+1,k̃

{ n∏

j=1

[ n∑

k=1

(λ̃1
jkQ

(jk) + λ̃2
jkP̂

(jk))X
(k)
t |Xt=(er1 ,er2 ,...,ern)

]ij }}
− α

}}

5 A Numerical Experiment

In this section, we provide some numerical results to illustrate the use of our mul-

tivariate Markov chain model for evaluating credit VaR and ES for a portfolio of

credit risks with dependent credit ratings.

5.1 An Example

In order to calculate the VaR and ES, we first have to estimate the unknown pa-

rameters in the multivariate Markov chain model. We use the data set extracted

from that in Kijima et al. (2002) for the ratings of two assets, to estimate the mul-

tivariate Markov chain model. A total of eighteen years of past ratings of the two

assets will be used for illustrating the numerical procedure for the estimation. In

practice, it is more appropriate to use a data set with a higher sampling frequency

over a shorter time interval, say two years of monthly data, instead of eighteen years
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of annual data, since the economic conditions may have changed dramatically over

eighteen years. 1 Suppose AAA=1, AA=2, A=3, BBB=4, BB=5, B=6, CCC=7,

Default=8. The historical ratings of the two assets are shown in Table 1. The

following illustrates the numerical procedure of estimation.

Let S1 and S2 represent the ratings of the first and the second assets, respectively.

By counting the transition frequencies of ratings,

S1 :
4 → 4 → 4 → 4 → 4 → 5 → 5 → 5 → 5 →
5 → 4 → 4 → 4 → 4 → 5 → 5 → 5 → 5

and

S2 :
4 → 4 → 4 → 4 → 4 → 4 → 4 → 4 → 5 →
5 → 5 → 4 → 4 → 4 → 5 → 5 → 5 → 5

we obtain the following results:

F (11) =




0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 7 1 0 0 0

0 0 0 2 7 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0




and F (22) =




0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 9 1 0 0 0

0 0 0 2 5 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0




.

By counting the inter-transition frequencies,

S1 : 4 4 4 4 4 5 5 5 5 5 4 4

↗ ↗ ↗ ↗ ↗ ↗ ↗ ↗ ↗ ↗ ↗
S2 : 4 4 4 4 4 4 4 4 5 5 5 4

S1 : 4 4 5 5 5 5

↗ ↗ ↗ ↗ ↗
S2 : 4 4 5 5 5 5

and

S1 : 4 4 4 4 4 5 5 5 5 5 4 4

↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘
S2 : 4 4 4 4 4 4 4 4 5 5 5 4

S1 : 4 4 5 5 5 5

↘ ↘ ↘ ↘ ↘
S2 : 4 4 5 5 5 5

1The authors are grateful to the referee for pointing out this important issue.
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we have:

F (12) =




0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 6 2 0 0 0

0 0 0 5 4 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0




, F (21) =




0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 8 2 0 0 0

0 0 0 1 6 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0




.

Now, we normalize the columns. In practical situations, it is possible to get transi-

tion matrices with many columns of zeros. If there is a column of zeros, we follow

the approach adopted in Ching et al. (2002) and replace it by a uniform distribu-

tion column vector. We then create the following transition matrix by filling in the

columns with a discrete uniform distribution in the absence of information on the

historical transition frequencies between other ratings for the two assets:

P̂ (11) =




1
8

1
8

1
8 0 0 1

8
1
8

1
8

1
8

1
8

1
8 0 0 1

8
1
8

1
8

1
8

1
8

1
8 0 0 1

8
1
8

1
8

1
8

1
8

1
8

7
9

1
8

1
8

1
8

1
8

1
8

1
8

1
8

2
9

7
8

1
8

1
8

1
8

1
8

1
8

1
8 0 0 1

8
1
8

1
8

1
8

1
8

1
8 0 0 1

8
1
8

1
8

1
8

1
8

1
8 0 0 1

8
1
8

1
8




, P̂ (12) =




1
8

1
8

1
8 0 0 1

8
1
8

1
8

1
8

1
8

1
8 0 0 1

8
1
8

1
8

1
8

1
8

1
8 0 0 1

8
1
8

1
8

1
8

1
8

1
8

6
11

1
3

1
8

1
8

1
8

1
8

1
8

1
8

5
11

2
3

1
8

1
8

1
8

1
8

1
8

1
8 0 0 1

8
1
8

1
8

1
8

1
8

1
8 0 0 1

8
1
8

1
8

1
8

1
8

1
8 0 0 1

8
1
8

1
8




,

P̂ (21) =




1
8

1
8

1
8 0 0 1

8
1
8

1
8

1
8

1
8

1
8 0 0 1

8
1
8

1
8

1
8

1
8

1
8 0 0 1

8
1
8

1
8

1
8

1
8

1
8

8
9

1
4

1
8

1
8

1
8

1
8
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, P̂ (22) =
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.

Based on the historical ratings of the two assets, we obtain the following estimates

for the stationary probability distributions of the ratings of the first and the second

credit risks:

X̂1 = (0, 0, 0,
1

2
,
1

2
, 0, 0, 0)T and X̂2 = (0, 0, 0,

11

18
,

7

18
, 0, 0, 0)T

Finally, by solving a set of Linear Programming (LP) problems, the estimated mul-
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tivariate Markov chain model for S1 and S2 is given by:





X
(1)
n+1 = 0.614Q(11)X(1)

n + 0.000P̂ (11)X(1)
n + 0.000Q(12)X(2)

n + 0.384P̂ (12)X(2)
n

X
(2)
n+1 = 0.000Q(21)X(1)

n + 1P̂ (21)X(1)
n + 0.000Q(22)X(2)

n + 0.000P̂ (22)X(2)
n .

It is natural to use the average probability to replace the missing information in the

estimated transition matrix P since the data only appear in two different states,

4 and 5, in P . Although most of the entries in P are equal to zero, the missing

information can be given by the prior transition matrix once the weighting of the

corresponding prior transition matrix, Q(kk), is non-zero. The aforementioned es-

timated model can be used to generate the predictive probability distributions for

evaluating credit risk measures.

The traditional reduced-form approach assumes that the losses from a credit risk

at each particular rating class are exogenous. It is supposed that the losses from

credit risks in different rating classes can be evaluated based on some accounting

information and principles. Following the traditional reduced-form approach, we

also assume that the losses from credit risks at different rating classes are given in

advance. For illustration, we consider a portfolio of the two assets with correlated

ratings. We suppose that the aggregate loss from the portfolio is given by:

Lt+1(Y
(1)
t+1, Y

(2)
t+1) = L(1)

t+1(Y
(1)
t+1) + L(2)

t+1(Y
(2)
t+1) . (16)

For each j = 1, 2, the rating of the jth asset Y
(j)
t+1 at time t + 1 can take values in

the set of unit basis vectors {e1, e2, . . . , e8} ∈ R8. Now, we consider a unit interval

[0, 1] and its uniform partition ∪8
i=1Pi with

Pi = [
i− 1

8
,
i

8
) , (17)

for each i = 1, 2, . . . , 8.

We further assume that for each j = 1, 2 and i = 1, 2, . . . , 8, the loss from the

jth asset L(j)
t+1(Y

(j)
t+1) given that Y

(j)
t+1 = ei can take values in the interval Pi. More

precisely, the conditional distribution of the loss L(j)
t+1(Y

(j)
t+1) given that Y

(j)
t+1 = ei is

a uniform distribution on the interval Pi, for each i = 1, 2, . . . , 8. Suppose the jth

asset is in the highest rating class at time t + 1, say the class AAA. This implies

that Y
(j)
t+1 = e1. In this case, the loss from the jth asset L(j)

t+1(Y
(j)
t+1) at time t + 1 can

take values in P1 = [0, 1
8
). For each j = 1, 2 and i = 1, 2, . . . , 8, we assign a value

to the loss L(j)
t+1(Y

(j)
t+1) from the jth asset at time t + 1 given that Y

(j)
t+1 = ei by a
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pseudo-random number drawn from a uniform distribution on the interval Pi. The

simulated results are shown in Table 3. We summarize the future possible values of

the aggregate loss from the portfolio, their corresponding ratings of the underlying

assets and their corresponding conditional predictive probabilities given the current

information in Table 4. The set It+1,k̃ is also shown in Table 4. The conditional

predictive probability of the aggregate loss L given the current market information

for each combination of ratings of the assets in the portfolio is computed by Equation

(9).

Based on the numerical results in Table 4, the ordered aggregate losses from the

credit portfolio at time t + 1 based on the simulated results in Table 3 are given

by { 0.1477 0.2297 0.3045 0.3866 0.3903 0.4610 0.4640 0.4961 0.5461 0.5472 0.5782

0.6178 0.6316 0.6744 0.7067 0.7308 0.7387 0.7564 0.7773 0.7884 0.8094 0.8428 0.8877

0.8941 0.9170 0.9248 0.9259 0.9479 0.9610 0.9800 0.9876 1.0431 1.0445 1.0472 1.0510

1.0792 1.0828 1.0854 1.1266 1.1561 1.1583 1.2037 1.2105 1.2423 1.2425 1.2575 1.2743

1.2743 1.2871 1.3267 1.3578 1.4208 1.4259 1.4450 1.4526 1.5284 1.5442 1.5892 1.6210

1.6276 1.7075 1.7393 1.7909 1.8227 } .

For evaluating Credit VaR for the portfolio, we choose the value K? such that it

satisfies Equation (11) and Equation (12) for a given probability level α. In practice,

the probability level α is usually chosen to be either 0.05 or 0.01. Hence, we adopt

these two commonly used values of α for illustration.

First, we set α = 0.05. From Table 4, we obtain:

64∑

k̃=41+1

P(Lt+1 = Lt+1(k̃)|Ft) ≤ 0.05

and
64∑

k̃=41

P(Lt+1 = Lt+1(k̃)|Ft) > 0.05 .

This implies that

K? = 41 .

Hence, the numerical value of the VaR is given by:

V aRα,P(Lt+1|Ft) = Lt+1(K
?) = 1.1583 .

¿From the numerical value of the VaR and the numerical values in Table 4, we can
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evaluate the Expected shortfall of the portfolio using Equation (15). Note that

1

α

{ M∑

k̃=K?

Lt+1(k̃)
{ ∑

(i1,...,in)∈It+1,k̃

{ n∏

j=1

[ n∑

k=1

(λ̃1
jkQ

(jk) + λ̃2
jkP̂

(jk))X
(k)
t

|Xt=(er1 ,...,ern )

]ij }}

= 14.44287 ,

and

1

α

{
Lt+1(K

?)
{ M∑

k̃=K?

{ ∑

(i1,...,in)∈It+1,k̃

{ n∏

j=1

[ n∑

k=1

(λ̃1
jkQ

(jk) + λ̃2
jkP̂

(jk))X
(k)
t

|Xt=(er1 ,...,ern )

]ij }}
− α

}}

= 13.15134 .

Therefore, we obtain:

ESα(Lt+1|Ft) = 1.291532 .

Now, we set α = 0.01 and follow the same procedure as before. ¿From Table 4, we

obtain:
64∑

k̃=48+1

P(Lt+1 = Lt+1(k̃)|Ft) ≤ 0.01

and
64∑

k̃=48

P(Lt+1 = Lt+1(k̃)|Ft) > 0.01 .

This implies that

K? = 48 .

Hence, we have

V aRα,P(Lt+1|Ft) = Lt+1(K
?) = 1.2743 .

In this case, we have:

1

α

{ M∑

k̃=K?

Lt+1(k)
{ ∑

(i1,...,in)∈It+1,k̃

{ n∏

j=1

[ n∑

k=1

(λ̃1
jkQ

(jk) + λ̃2
jkP̂

(jk))X
(k)
t

|Xt=(er1 ,...,ern )

]ij }}}

= 1.611218 ,
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and

1

α

{
Lt+1(K

?)
{ M∑

k̃=K?

{ ∑

(i1,...,in)∈It+1,k̃

{ n∏

j=1

[ n∑

k=1

(λ̃1
jkQ

(jk) + λ̃2
jkP̂

(jk))X
(k)
t

|Xt=(er1 ,...,ern )

]ij }}
− α

}}

= 0.178402 .

Therefore, the Expected Shortfall of the portfolio is given by:

ESα(Lt+1|Ft) = 1.432816 .

The numerical results for VaR and ES are consistent with intuition. The VaR

(ES) increases from 1.1583 (1.291532) to 1.2743 (1.432816) as the probability level

α decreases from 5% to 1%. For each fixed probability level α, the ES is always

greater than the VaR.

5.2 Efficiency of Parameter Estimation

Finally, we report the efficiency of our proposed method for parameter estima-

tion. Figure 1 shows the total computational times for model parameters estima-

tion. The computational times include the construction of the transition matrices

and the linear programming solver for (6). All the calculations were made with

CPU=AMD1800+ with RAM=512. Here, we set the number of states to be eight,

which is the same as in our previous numerical example. Credit rating sequences are

simulated and the computational times required for the construction of our proposed

multivariate Markov models are recorded. In Figure 1, we show the computational

times for different numbers of credit rating sequences. We see from the figure that

the computation times increase quadratically with respect to the number n of se-

quences. As we mentioned in Section 3, there are n linear programming problems

to be solved, so these numerical results show that our proposed estimation method

is quite efficient. Indeed, the construction time of our multivariate Markov models

in the previous example only requires a few seconds.

The implementation of the estimation procedure in the model by Kijima, Ko-

moribayashi and Suzuki (2002) involves the computation of a two-stage minimization

iteratively (see Algorithm 2 therein). Our estimation procedure involves solving a

set of LP problems, which can be implemented easily on Microsoft Excel spread-
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sheets. Most of the calculations in our estimation procedures only involve elementary

mathematical operations.

6 Conclusion and Further Research

We have considered one of the most important topics in risk management, namely

the modelling of dependent risks. In particular, we applied the multivariate Markov

chain model to incorporate the dependency of the ratings of credit risks in a portfo-

lio. Our model allows the next period’s rating of a particular credit risk to depend

not only on its current rating but also on the current ratings of other credit risks in

the portfolio. We proposed an estimate for the transition matrix based on a linear

combination of the empirical transition matrix and a prior estimate of the transi-

tion matrix. The estimation method can incorporate both the historic rating data

and another source of information about rating data, for instance, expert opinion or

subjective views, which is also important for credit risk measurement and manage-

ment. The estimates of the unknown parameters and the transition matrices can

be obtained by solving a set of LP problems. Our estimation method is analytically

tractable, easy to implement and computationally efficient. It can be implemented

on Excel spreadsheets easily. However, its applicability is limited by the number of

parameters involved, which depends on the dimension of the multivariate categorical

time series and the number of possible credit ratings.

One may also explore applications of the multivariate Markov chain model to

portfolio management and financial econometrics. For portfolio management, it is

important to model the correlation of risky securities. It has been documented in

the literature that Markov chain models are feasible approximations to continuous-

state time series models. Hence, it would be interesting to explore the use of the

multivariate Markov chain model as a model of the dependency of multivariate

sources of risk in portfolio management, and to investigate the efficiency of the

approximation. It would also be interesting to explore the use of the multivariate

Markov chain model to approximate the dependency between multivariate financial

time series, which is a very important topic in financial econometrics (see Diebold

(2003) and Patton (2004)). The advantage of using the multivariate Markov chain

model in these two areas is that the model is easy to implement and computationally

efficient. However, the applicability of the multivariate Markov chain model in these
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two areas is also limited by the number of parameters involved.

There are also some possible directions for further research from the technical

perspective. First, it is interesting to explore the possibility of using the risk-neutral

transition matrix as a specification of the prior transition matrix. In this case, one

can combine the information obtained from both the risk-neutral probability and

the real-world probability for the estimation of the unknown parameters and the

transition matrix. It may also be interesting to investigate whether it is possible

to explain the choice of the risk-neutral transition matrix as the prior probability

matrix under a certain combination of preference and probability structures. Finally,

the investigation of the use of probit models in logistic regression analysis for the

specification of the prior transition matrix is also interesting.

Acknowledgments

The authors would like to thank the referees for many valuable and helpful com-

ments and suggestions. Their valuable comments and suggestions improved the pa-

per. This work was supported in part by RGC Grant No. HKU 7126/02P, 7130/02P,

7046/03P, 7035/04P and 7035/05P, and HKU CRCG Grant Nos. 10204436, 10205105

and 10205775.

26



References

Alexander, C., 2005. The Present and Future of Risk Management. Journal of

Financial Econometrics 3 (1), 3-25.

Artzner, P., Delbaen, F., 1995. Default Risk Premium and Incomplete Markets.

Mathematical Finance 5, 187-195.

Acerbi, C., Tasche, D., 2001. On the Coherence of Expected Shortfall. Journal of

Banking and Finance 26 (7), 1487-1503.

Bernardo, J. M., Smith, A. M. F., 2001. Bayesian Theory. John Wiley & Sons, New

York.
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7 Tables and Figures

Asset/Year 1 2 4 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1 4 4 4 4 4 5 5 5 5 5 4 4 4 4 5 5 5 5

2 4 4 4 4 4 4 4 4 5 5 5 4 4 4 5 5 5 5

Table 1. The Ratings of the Two Assets.
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Asset/Year AAA AA A BBB BB B CCC D

AAA 0.9193 0.0746 0.0048 0.0008 0.0004 0.0000 0.0000 0.0000

AA 0.6400 0.9181 0.0676 0.0060 0.0006 0.0012 0.0003 0.0000

A 0.0700 0.0227 0.9169 0.0512 0.0056 0.0025 0.0001 0.0004

BBB 0.0400 0.0270 0.0556 0.8788 0.0483 0.0102 0.0017 0.0024

BB 0.0400 0.0010 0.0061 0.0775 0.8148 0.0790 0.0111 0.0101

B 0.0000 0.0010 0.0028 0.0046 0.0695 0.8280 0.0396 0.0545

CCC 0.1900 0.0000 0.0037 0.0075 0.0243 0.1213 0.6045 0.2369

D 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000

Table 2. The Transition Probability Table from Standard & Poor’s (1999)
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j/i 1 2 3 4 5 6 7 8

1 0.1188 0.2009 0.3614 0.4321 0.6027 0.7019 0.8652 0.8970

2 0.0289 0.1857 0.3453 0.3773 0.5556 0.7240 0.8423 0.9257

Table 3. The Simulated Losses (i.e. L(j)
t+1(ei))
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k̃ The Value of Aggregate Loss at State L(k̃) P(Lt+1 = Lt+1(k̃)|Ft) It+1,k̃

1 0.1477 0 { 1 , 1 }
2 0.2297 0 { 2 , 1 }
3 0.3045 0 { 1 , 2 }
4 0.3866 0 { 2 , 2 }
5 0.3903 0 { 3 , 1 }
6 0.461 0 { 4 , 1 }
7 0.464 0 { 1 , 3 }
8 0.4961 0.0001 { 1 , 4 }
9 0.5461 0 { 2 , 3 }
10 0.5472 0 { 3 , 2 }
11 0.5782 0.0002 { 2 , 4 }
12 0.6178 0 { 4 , 2 }
13 0.6316 0 { 5 , 1 }
14 0.6744 0.0002 { 1 , 5 }
15 0.7067 0 { 3 , 3 }
16 0.7308 0 { 6 , 1 }
17 0.7387 0.0009 { 3 , 4 }
18 0.7564 0.0005 { 2 , 5 }
19 0.7773 0 { 4 , 3 }
20 0.7884 0 { 5 , 2 }
21 0.8094 0.0441 { 4 , 4 }
22 0.8428 0 { 1 , 6 }
23 0.8877 0 { 6 , 2 }
24 0.8941 0 { 7 , 1 }
25 0.917 0.0028 { 3 , 5 }
26 0.9248 0 { 2 , 6 }
27 0.9259 0 { 8 , 1 }
28 0.9479 0 { 5 , 3 }
29 0.961 0 { 1 , 7 }
30 0.98 0.1894 { 5 , 4 }
31 0.9876 0.1322 { 4 , 5 }
32 1.0431 0 { 2 , 7 }
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k̃ The Value of Aggregate Loss at State L(k̃) P(Lt+1 = Lt+1(k̃)|Ft) It+1,k̃

33 1.0445 0 { 1 , 8 }
34 1.0472 0 { 6 , 3 }
35 1.051 0 { 7 , 2 }
36 1.0792 0.0121 { 6 , 4 }
37 1.0828 0 { 8 , 2 }
38 1.0854 0 { 3 , 6 }
39 1.1266 0 { 2 , 8 }
40 1.1561 0 { 4 , 6 }
41 1.1583 0.5682 { 5 , 5 }
42 1.2037 0 { 3 , 7 }
43 1.2105 0 { 7 , 3 }
44 1.2423 0 { 8 , 3 }
45 1.2425 0.0017 { 7 , 4 }
46 1.2575 0.0364 { 6 , 5 }
47 1.2743 0 { 4 , 7 }
48 1.2743 0.0016 { 8 , 4 }
49 1.2871 0 { 3 , 8 }
50 1.3267 0 { 5 , 6 }
51 1.3578 0 { 4 , 8 }
52 1.4208 0.0051 { 7 , 5 }
53 1.4259 0 { 6 , 6 }
54 1.445 0 { 5 , 7 }
55 1.4526 0.0047 { 8 , 5 }
56 1.5284 0 { 5 , 8 }
57 1.5442 0 { 6 , 7 }
58 1.5892 0 { 7 , 6 }
59 1.621 0 { 8 , 6 }
60 1.6276 0 { 6 , 8 }
61 1.7075 0 { 7 , 7 }
62 1.7393 0 { 8 , 7 }
63 1.7909 0 { 7 , 8 }
64 1.8227 0 { 8 , 8 }

Table 4. The Aggregate Loss
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Figure 1: The total computational times for model parameters estimation.
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