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Abstract

In this paper, we introduce a new type of companion matrices,

namely, D-companion matrices. By using these D-companion matrices,

we are able to apply matrix theory directly to study the geometrical

relation between the zeros and critical points of a polynomial. In fact,

this new approach will allow us to prove quite a number of new as well

as known results on this topic. For example, we prove some results

on the majorization of the critical points of a polynomial by its zeros.

In particular, we give a different proof of a recent result of Gerhard

Schmeisser on this topic. The same method allows us to prove a higher

order Schoenberg-type conjecture proposed by M. G. de Bruin and A.

Sharma.

1 Introduction and D-companion matrices

Let p be a non-linear polynomial of one complex variable. A complex number

w is a critical point of p if p′(w) = 0. Geometry of polynomials is the study of

AMS Classification: Primary, 30C10; Secondary, 15A42.

Key words and phrases: D-companion matrices, polynomials, zeros, critical points, Schoen-

berg conjecture, De Bruin and Sharma conjecture, majorization, Gerschgorin’s disks, ovals

of Cassini.

∗ The research was partially supported by a seed funding grant of HKU and RGC grant

HKU 7020/03P.

1



zeros of polynomials. In this paper, we focus on a class of problems in geometry

of polynomials, namely, those problems concern with the geometrical relation

between zeros and critical points of a polynomial. Our main goal is to develop

a new approach of applying matrix theory to study these problems. Matrix

theory has already been applied successfully to the study of the analytic theory

of polynomials through the use of companion matrices (see [2], [13], [16] and

[21]). An n×n matrix whose eigenvalues coincide with the zeros of a degree n

polynomial p is called a companion matrix of p (here we follow the definition

of companion matrix given in [16, p.265], which is different from the usual

definition). For example, if p(z) = anz
n + · · ·+a1z +a0, then the n×n matrix

below is a companion matrix of p,




0 · · · · · · 0 −a0

an

1
. . .

... −a1

an

0
. . . . . .

...
...

...
. . . . . . 0

...

0 · · · 0 1 −an−1

an




.

This matrix is called the Frobenius matrix of p and we shall denote it by Fp.

Other types of companion matrices can be found in [16, Chapter 8].

Companion matrices are very useful in the study of analytic theory of poly-

nomials. For example, by applying Gerschgorin’s Theorem in matrix theory

(see Theorem 3.1 in Section 3) directly to the matrix Fp, we immediately ob-

tain the result that all the zeros of p(z) =
n∑

i=0

aiz
i are contained in the two

disks {
z ∈ C : |z +

an−1

an

| ≤ 1

}

and {
z ∈ C : |z| ≤ max

{∣∣∣∣
a0

an

∣∣∣∣ , 1 +

∣∣∣∣
a1

an

∣∣∣∣ , · · · , 1 +

∣∣∣∣
an−2

an

∣∣∣∣
}}

.

On the other hand, the usual companion matrices are not very useful in the

study of problems related to critical points of a polynomial for the following

reason. When one tries to study these problems by applying results from ma-

trix theory, it is natural to find an (n− 1)× (n− 1) matrix whose eigenvalues
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are the critical points of a given degree n polynomial p(z) =
n∑

i=0

aiz
i. We shall

call such matrix a derivative companion matrix. Of course, Fp′ is a derivative

companion matrix of p. However, this matrix is not very useful when one tries

to use it to study the relative locations of zeros and critical points of a polyno-

mial as the entries of Fp′ are expressed directly in terms of the coefficients ai.

In this paper, we shall introduce a new type of derivative companion matrices

which is very suitable for the study of problems concerning zeros and criti-

cal points of polynomials. By using these derivative companion matrices, we

are able to prove quite a number of new and old results in geometry of poly-

nomials systematically. Our approach is based on the following result which

provides a unified way to study many problems in the geometry of polynomials

through the direct applications of matrix theory. The proof of it is however

very elementary.

Theorem 1.1 . Let p(z) = an

n∏
i=1

(z−zi) be a polynomial of degree n ≥ 2. Let

D =




z1

. . .
0

0
zn−1




, I and J be the identity matrix of order n− 1 and the

(n− 1)× (n− 1) matrix with all entries equal to 1 respectively. Then the set

of all eigenvalues of the (n− 1)× (n− 1) matrix

D
(
I − 1

n
J
)

+
zn

n
J

is the same as the set of all critical points of the polynomial p.

As we shall see later, Theorem 1.1 opens up the possibilities of applying

matrix theory directly to the study of some problems in geometry of polyno-

mials. In view of Theorem 1.1, we shall have the following

Definition. Let p(z) = an

n∏
i=1

(z − zi) be a polynomial of degree n ≥ 2. Let

D =




z1

. . .
0

0
zn−1




, I and J be the identity matrix of order n− 1 and the
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(n − 1) × (n − 1) matrix with all entries equal to 1 respectively. Then the

(n− 1)× (n− 1) derivative companion matrix,

D
(
I − 1

n
J
)

+
zn

n
J

is called a D-companion matrix of p.

An immediate consequence of Theorem 1.1 and the Gerschgorin disk the-

orem is the following result about the geometric locations of critical points

relative to the zeros of a polynomial.

Theorem 1.2 . Let p be a polynomial of degree n ≥ 2 with zeros z1, ..., zn.

For each zk, define the disks

Gk
i =

{
z ∈ C :

∣∣∣z − n− 1

n
zi − 1

n
zk

∣∣∣ ≤ n− 2

n
|zi − zk|

}
, i = 1, . . . , n, i 6= k

and if n ≥ 3, the ovals of Cassini

Ck
ij =

{
z ∈ C :

∣∣∣z−n− 1

n
zi− 1

n
zk

∣∣∣
∣∣∣z−n− 1

n
zj− 1

n
zk

∣∣∣ ≤
(n− 2

n

)2

|zi−zk| |zj−zk|
}

,

for i, j = 1, . . . , n, i, j 6= k.

Then the set of all critical points of p is contained in the the domain Gk =
n⋃

i=1

Gk
i as well as the domain Ck =

n⋃
i,j=1
i6=j

Ck
ij.

Remark. Note that Ck =
n⋃

i,j=1
i6=j

Ck
ij is actually a subset of Gk =

n⋃
i=1

Gk
i .

2 Geometry of polynomials and main results

Theorem 1.2 is about certain relative geometric locations between the zeros

and critical points of a polynomial. The first result of this type is the following

basic result in geometry of polynomials.

Gauss-Lucas Theorem : If p is a polynomial of degree n, then all the critical

points of p lie inside the closed convex hull of the zeros of p.

The Gauss-Lucas theorem is a result about the general location of all the

critical points of a polynomial relative to all its zeros. A more refined result

was conjectured in 1958 by B. Sendov:
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Sendov Conjecture : If p(z) = an

n∏
k=1

(z − zk) is a polynomial of degree

n ≥ 2, then each of the disks |z− zk| ≤ r = max
i
|zi| must contain at least one

critical point of p.

The radius r = max
i
|zi| is best possible as can be seen by considering the

polynomial p(z) = zn−1. This conjecture, also known as “Ilieff’s Conjecture”,

appeared in 1967 as Problem 4.5 in Hayman’s book, Research problems in

function theory [7]. Sendov conjecture is still open although attempts to verify

this conjecture have led to over 80 papers. To know more about this conjecture,

the readers are referred to the survey papers [17] and [20] as well as the two

recent books on the analytic theory of polynomials, [16] and [21].

Besides Sendov conjecture, one can also generalize the Gauss-Lucas theo-

rem by studying the majorization of the critical points of a polynomial by its

zeros. In fact, very recently Gerhard Schmeisser has succeeded in refining the

Gauss-Lucas theorem in this direction (see [18]). In order to state Schmeisser’s

result, we shall first introduce the concept of majorization, which is a useful

way of comparing the distribution of two sets of real numbers. We shall follow

very closely the presentation of majorization given in [18] (see also [14]).

For any vector x = (x1, · · · , xn) ∈ Rn, we denote by (x[1], · · · , x[n]) a

rearrangement of the components of x such that

x[1] ≥ x[2] ≥ · · · ≥ x[n].

Definition. For any two vectors a = (a1, · · · , an) and b = (b1, · · · , bn) from

Rn, we say that b weakly majorizes a, and write this as a ≺w b if

k∑
i=1

a[i] ≤
k∑

i=1

b[i] (k = 1, · · · , n).

Furthermore, we say that b (strongly) majorizes a, and write this as a ≺ b,

if, in addition, when k = n, we have

n∑
i=1

a[i] =
n∑

i=1

b[i].

Roughly speaking, a ≺ b means that the components of a are less spread out

than those of b.

5



Very recently, Gerhard Schmeisser has obtained the following result on the

majorization of the critical points of a polynomial by its zeros.

Theorem A ([18]). Let p be a polynomial of degree n ≥ 1 with zeros z1, · · · , zn

and critical points w1, · · · , wn−1. Put wn = 0, then

(
ψ(|w1|), · · · , ψ(|wn|)

) ≺w

(
ψ(|z1|), · · · , ψ(|zn|)

)
,

for every increasing function ψ : [0, +∞) → R such that ψ ◦ exp is convex on

R.

Remark. One can take the above ψ to be any of the following functions:

ψ(x) ≡ xp (p > 0), ψ(x) ≡ max{a, log x} (a ∈ R), ψ(x) ≡ log x.

To see why Theorem A is a refinement of the Gauss-Lucas theorem, let’s

take ψ(x) = x. Then in this case, we have for each k = 1, . . . , n,

k∑
i=1

|w[i]| ≤
k∑

i=1

|z[i]|.

In particular it follows from the k = 1 case that

max
{|w| : p′(w) = 0

}
= |w[1]| ≤ |z[1]| = max

{|z| : p(z) = 0
}
.

As noticed by Schmeisser in [18], this inequality is actually equivalent to the

Gauss-Lucas theorem. First of all, it is clear that the Gauss-Lucas theorem

implies that |w[1]| ≤ |z[1]|. Now suppose we assume that the Gauss-Lucas

theorem were false. Then there would exist a polynomial q which has a critical

point w lying outside the convex hull H of the zeros. Clearly, there would exist

a circle containing H in its interior while w lies outside. Let c be the center

and r the radius of this circle. Then the moduli of the zeros of p(z) := q(z + c)

are bounded by r while p′ has a zero of modulus larger than r. This implies

that |w[1]| > |z[1]| and we are done.

To prove Theorem A, Schmeisser applies a theorem of de Bruijn and

Springer on the zeros of composition-polynomials [5, Theorem 7]. In Sec-

tion 5, we give a different proof of Theorem A by our matrix theory approach.

Besides, we also prove the following new result.
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Theorem 2.1 Let p be a polynomial of degree n ≥ 2 with zeros z1, · · · , zn and

critical points w1, · · · , wn−1. Let pa be a polynomial of degree n ≥ 2 with zeros

|z1|, · · · , |zn|. Suppose v1, · · · , vn−1 are the critical points of pa. If zn = 0, then

(
ψ(|w1|), · · · , ψ(|wn−1|)

) ≺w

(
ψ(v1), · · · , ψ(vn−1)

)
,

for every increasing function ψ : [0, +∞) → R such that ψ ◦ exp is convex on

R.

Related to Theorem 2.1, we would like to mention the following recent

result of R. Pereira which solves a conjecture of Katsoprinakis [10].

Theorem B ([15]). Let p be a polynomial of degree n ≥ 2 with zeros z1, · · · , zn

and critical points w1, · · · , wn−1. Let pr be a polynomial of degree n ≥ 2 with

zeros Rez1, · · · , Rezn. Suppose v1, · · · , vn−1 are the critical points of pr, then

(
ψ(Rew1), · · · , ψ(Rewn−1)

) ≺w

(
ψ(v1), · · · , ψ(vn−1)

)
,

for every increasing function ψ : [0, +∞) → R such that ψ ◦ exp is convex on

R.

In view of Pereira’s result, one may ask if the condition zn = 0 in Theorem

2.1 is essential. Unfortunately, we are unable to answer this question.

Let’s go back to Theorem A. If we take ψ(x) = x2 in Theorem A, then it

follows easily from Theorem A that,

n−1∑
i=1

|wi|2 ≤
n∑

i=1

|zi|2.

This inequality is not sharp as we actually have

n−1∑
i=1

|wi|2 ≤ n− 1

n

n∑
i=1

|zi|2,

which is first proved by de Bruijn and Springer [4] in a more general form. It is

certainly possible to further reduce the size of the coefficient of
∑n

i=1 |zi|2 if one

is willing to add an extra term to the right hand side of the above inequality of

de Bruijn and Springer. The problem is what should be the appropriate term

to be added. The following Schoenberg conjecture is related to this problem.

7



Schoenberg conjecture: Let z1, · · · , zn be the zeros of a polynomial p of

degree n ≥ 2 and w1, · · · , wn−1 be the critical points of p. Then

n−1∑
i=1

|wi|2 ≤ 1

n2

∣∣∣
n∑

i=1

zi

∣∣∣
2

+
n− 2

n

n∑
i=1

|zi|2,

where equality holds if and only if all zi lie on a straight line.

This conjecture was first posed by Schoenberg [19] in 1986 and was solved

very recently by R. Pereira in [15] and S.M. Malamud ([11] and [12]) indepen-

dently. Although their approaches are different from each other, the under-

lying ideas of their proofs are similar. Besides, Schoenberg conjecture, Mala-

mud’s approach also allows him to obtain a remarkable generalization of the

de Bruijn-Springer conjecture. On the other hand, in Pereira’s proof, he uses

the concept of differentiators of finite dimensional operators which was first

introduced by Chandler Davis [6] in 1959. Our work is inspired by Pereira’s

approach even though we do not use the concept of differentiators.

Schoenberg conjecture asserts that it is possible to bound
n−1∑
i=1

|wi|2 by a

suitable combination of the terms
∣∣∣

n∑
i=1

zi

∣∣∣
2

and
n∑

i=1

|zi|2. In [3], M. G. de Bruin

and A. Sharma proposed the following higher order Schoenberg-type conjec-

ture.

De Bruin and Sharma’s conjecture: Let z1, · · · , zn be the zeros of a

polynomial p of degree n ≥ 2 and w1, · · · , wn−1 be the critical points of p. If
n∑

i=1

zi = 0, Then

n−1∑
i=1

|wi|4 ≤ n− 4

n

n∑
i=1

|zi|4 +
2

n2

( n∑
i=1

|zi|2
)2

,

where equality holds if and only if all zi lie on a straight line passing through

the origin of the complex plane.

This conjecture has been verified for some classes of polynomials (see [3]

and [10]) but as far as we know it had remained open. In Section 6, we solve

this conjecture and prove the following

Theorem 2.2 . The conjecture of de Bruin and Sharma is true.

Our proof is based on the following general result.
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Theorem 2.3 . Let z1, · · · , zn be the zeros of a polynomial p of degree n ≥ 2

and w1, · · · , wn−1 be the critical points of p. Suppose D, I and J are the same

as those defined in Theorem 1.1. Then for any positive integer k, we have

n−1∑
i=1

|wi|2k ≤ tr

([
D

(
I − 1

n
J
)

+
zn

n
J
]k[

D
(
I − 1

n
J
)

+
zn

n
J
]k

)
,

where tr(A) and A denote the trace and complex conjucate of a square matrix

A respectively.

Remark. If we put k = 1 in the above inequality, it is not difficult to check

that tr
(
[D(I − 1

n
J) +

zn

n
J ][D(I − 1

n
J) +

zn

n
J ]

)
is equal to

1

n2

∣∣∣
n∑

i=1

zi

∣∣∣
2

+
n− 2

n

n∑
i=1

|zi|2,

and hence we get back the Schoenberg inequality. Therefore, this gives an

alternative proof of the Schoenberg conjecture.

We shall give the proof of Theorem 1.1 and 1.2 in Section 3. In Section 4,

we recall some basic results from matrix theory which we shall repeatedly use.

We then prove Theorem A and Theorem 2.1 in Section 5. Finally we prove

Theorem 2.3 and solve the de Bruin and Sharma’s conjecture in Section 6.

3 Proof of Theorem 1.1 and 1.2

Proof of Theorem 1.1. Note that
p′(z)

p(z)
=

n∑
i=1

1

z − zi

. If w is a critical point of

p and w is not equal to any of the zeros zi, then we have

0 =
p′(w)

p(w)
=

n∑
i=1

1

w − zi

.

Therefore,
n−1∑
i=1

1

zi − w
=

1

w − zn

and

n−1∑
i=1

zi − zn

zi − w
=

n−1∑
i=1

zi − w + w − zn

zi − w
= n− 1 +

w − zn

w − zn

= n.
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On the other hand, it is clear from the above discussion that if λ is a

complex number such that λ 6= zi for all 1 ≤ i ≤ n − 1 and
n−1∑
i=1

zi − zn

zi − λ
= n,

then λ 6= zn and λ is a critical point of the polynomial p = an

n∏
i=1

(z − zi).

Now suppose λ ∈ C is an eigenvalue of the (n − 1) × (n − 1) matrix

D(I − 1

n
J) +

zn

n
J = D − 1

n
(D − znI)J . We would like to show that λ is a

critical point of p. Suppose (v1, · · · , vn−1)
T is an eigenvector associated with

the eigenvalue λ. Then







z1

. . .
0

0
zn−1



− 1

n




z1 − zn

. . .
0

0
zn−1 − zn







1 · · · 1
...

...

1 · · · 1










v1

...

vn−1




is equal to the vector

λ




v1

...

vn−1


 .

Hence,




z1 − λ

. . .
0

0
zn−1 − λ







v1

...

vn−1


 =

1

n




z1 − zn

. . .
0

0
zn−1 − zn







n−1∑
i=1

vi

...
n−1∑
i=1

vi




,




(z1 − λ)v1

...

(zn−1 − λ)vn−1


 =




(
1

n

n−1∑
i=1

vi

)
(z1 − zn)

...(
1

n

n−1∑
i=1

vi

)
(zn−1 − zn)




.

Note that since (v1, · · · , vn−1)
T is an eigenvector, at least one of its components

is non-zero. Let’s first consider the case that
n−1∑
i=1

vi = 0. Then at least two of

v1, . . . , vn−1 are non-zero and we may assume them to be v1 and v2. Since for

1 ≤ k ≤ n− 1,

(zk − λ)vk =

(
1

n

n−1∑
i=1

vi

)
(zk − zn),
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we have z1 − λ = z2 − λ = 0 and hence λ equals to the critical point z1 = z2.

Now consider the case
n−1∑
i=1

vi 6= 0. If λ = zk for some 1 ≤ k ≤ n − 1, then

zk = zn and therefore λ = zk = zn is a critical point. It remains to consider

the case that λ 6= zi for all 1 ≤ i ≤ n − 1. Note that in this case we have for

1 ≤ i ≤ n− 1,
vi

n−1∑
i=1

vi

=
zi − zn

n(zi − λ)
.

Summing up all i from 1 to n− 1, we have

n =
n−1∑
i=1

zi − zn

zi − λ
,

and therefore λ is a critical point of the polynomial p.

Now, we claim that for each critical point w of p, w is an eigenvalue of the

(n− 1)× (n− 1) matrix D(I − 1

n
J) +

zn

n
J = D − 1

n
(D − znI)J .

We first consider the case that w is not equal to any of the zeros zi. In this

case,
n−1∑
i=1

zi − zn

zi − w
= n and we shall show that

(
z1 − zn

n(z1 − w)
, · · · ,

zn−1 − zn

n(zn−1 − w)

)T

is actually an eigenvector associated with the eigenvalue w of D− 1

n
(D−znI)J .

In fact,







z1

. . .
0

0
zn−1



− 1

n




z1 − zn

. . .
0

0
zn−1 − zn







1 · · · 1
...

...

1 · · · 1










z1 − zn

n(z1 − w)
...

zn−1 − zn

n(zn−1 − w)




=




z1(z1 − zn)

n(z1 − w)
...

zn−1(zn−1 − zn)

n(zn−1 − w)



− 1

n




z1 − zn

. . .
0

0
zn−1 − zn







1

n

n−1∑
i=1

zi − zn

zi − w
...

1

n

n−1∑
i=1

zi − zn

zi − w




=




z1(z1 − zn)

n(z1 − w)
...

zn−1(zn−1 − zn)

n(zn−1 − w)



− 1

n




z1 − zn

. . .
0

0
zn−1 − zn







1
...

1
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=




z1(z1 − zn)

n(z1 − w)
...

zn−1(zn−1 − zn)

n(zn−1 − w)



−




z1 − zn

n
...

zn−1 − zn

n


 = w




z1 − zn

n(z1 − w)
...

zn−1 − zn

n(z1 − w)




.

Now suppose the critical point w is equal to one of the zeros, say zi. This

implies that w = zi = zj for some j 6= i. If j = n, we claim that w = zn is an

eigenvalue of D− 1

n
(D−znI)J and (1, · · · , 1)T is a corresponding eigenvector.

In fact,







z1

. . . 0
0 zn−1



− 1

n




z1 − zn

. . .
0

0
zn−1 − zn







1 · · · 1
...

...

1 · · · 1










1
...

1




=




z1

...

zn−1


−




z1 − zn

...

zn−1 − zn




=




zn

...

zn


 = zn




1
...

1


 = w




1
...

1


 .

Finally, it remains to consider the case that w = zi = zj for some 1 ≤
j ≤ n − 1. Let v = (v1, · · · , vn−1)

T be the column vector with vi = 1,

vj = −1 and vk = 0 otherwise. Then Jv equals to the zero vector. Hence,

(D − 1

n
(D − znI)J)v = Dv = wv and we are done.

¥

Proof of Theorem 1.2. The proof of Theorem 1.2 is a direct application of

Theorem 1.1 and the following well-known results in matrix theory. To state

these results, for any square matrix A = (aij) of order n ≥ 2, we shall use the

following notation:

Ri(A) =
n∑

j=1
j 6=i

|aij| , i = 1, . . . , n .
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Theorem 3.1 (Gerschgorin’s theorem) ([8, p.344]). The eigenvalues of

any square matrix A = (aij) of order n ≥ 2, lie in the union G =
n⋃

i=1

Gi of the

Gerschgorin disks

Gi = {z ∈ C : |z − aii| ≤ Ri(A)} , i = 1, . . . , n .

Theorem 3.2 (Brauer’s theorem) ([8, p.380]). All the eigenvalues of a

square matrix A = (aij) of order n ≥ 2, are contained in the union C =
n⋃

i,j=1
i6=j

Cij

of the ovals of Cassini

Cij =
{
z ∈ C : |z − aii| |z − ajj| ≤ Ri(A)Rj(A)

}
, i 6= j , i, j = 1, . . . , n .

Now, let A = D − 1

n
DJ +

zn

n
J . Then A is an (n − 1) × (n − 1) matrix

with entry aii = n−1
n

zi + 1
n
zn and aij =

1

n
(zn − zi) for all j 6= i. Then

Ri(A) = n−2
n
|zn − zi| and the results follow from Gerschgorin’s theorem and

Brauer’s theorem and the fact that zn can be any zero of p. ¥

Remark. Other than Gerschgorin’s theorem and Brauer’s theorem, one can

find many other eigenvalue inclusion theorems in the recent book of R.S. Varga

[22]. These eigenvalue inclusion theorems can also in used to obtained results

similar to Theorem 1.2.

4 Reviews on matrix theory

Before we continue, it would be helpful to fix some notations and recall a few

facts from matrix theory. The readers are referred to [1], [8] and [9] for other

basic results in matrix theory.

Let A = (aij) be an n×n matrix. The n eigenvalues of A will be written as

λi(A) (1 ≤ i ≤ n). If f(z) is a polynomial, then the eigenvalues of the matrix

f(A) are precisely f(λi(A)).

Let A = (aij) be the complex conjugate of A, then A
T

is the conjugate

transpose of A and it will be denoted by A∗. A matrix A is called Hermitian

if A = A∗, unitary if AA∗ = I = A∗A and normal if AA∗ = A∗A. Let tr (A)

13



be the trace of A, then the Schur inequality [16, p.56] says that

n∑
i=1

|λi(A)|2 ≤ tr(A∗A),

and equality holds if and only if A is normal.

A Hermitian matrix A is said to be positive semidefinite if x∗Ax ≥ 0 for

all column vector x in Cn and we shall then write A ≥ 0. It is known that

a Hermitian matrix is positive semidefinite if and only if all its eigenvalues

are nonnegative [8, p.402]. Moreover, it is easy to see that if A is positive

semidefinite, then so is S∗AS for any n× n matrix S.

Note that if A is positive semidefinite, then there exists a unique positive

semidefinite matrix
√

A such that
√

A
√

A = A. Moreover the matrix A∗A

is always positive semidefinite and its unique positive semidefinite
√

A∗A will

be denoted by |A|. The n eigenvalues of |A| counted with multiplicities are

called the singular values of A, denoted by σi(A) (1 ≤ i ≤ n). We shall always

enumerate the singular values and the modulus of the eigenvalues of A in

decreasing order, i.e.

σ1(A) ≥ · · · ≥ σn(A) and |λ1(A)| ≥ · · · ≥ |λn(A)|.

We say A is similar to B (denoted by A ∼ B) if there exists an invertible

matrix S such that A = S−1BS. A is unitarily similar to B if such S is an

unitary matrix. Note that A and B share the same set of eigenvalues (singular

values) if A and B are similar (unitarily similar). Finally, it is well-known that

MN ∼ NM for any two square matrices M and N .

Throughout the remaining part of this paper, I is the identity matrix of

order n− 1 and J is the (n − 1) × (n− 1) matrix with all entries equal to 1.

We shall always use D to denote the (n− 1)× (n− 1) diagonal matrix below




z1

0
. . .

0
zn−1




.
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In this case, |D| is simply be the following (n− 1)× (n− 1) diagonal matrix




|z1|
0

. . .

0 |zn−1|




.

5 Proof of Theorem A and Theorem 2.1

Proof of Theorem A. Let α =

√
n + 1√

n(n− 1)
. We claim that the set of eigenvalues

of the matrix A1 = (I − αJ)D(I − αJ) +
zn

n
J is exactly the same as the set

of critical points of the polynomial p. This follows directly from the following

lemma and Theorem 1.1.

Lemma 5.1 Let α =

√
n + 1√

n(n− 1)
. Then the symmetric matrix (I−αJ)D(I−

αJ) +
zn

n
J and D(I − 1

n
J) +

zn

n
J have the same set of eigenvalues.

Proof of Lemma 5.1. It suffices to show that (I − αJ)D(I − αJ) +
zn

n
J and

D(I − 1

n
J) +

zn

n
J are similar. First of all, notice that for α =

√
n + 1√

n(n− 1)
, we

have (I − αJ)(I − αJ) = I − 1

n
J . Moreover, one can also check easily that

(I−αJ)−1 = I− α
(n−1)α−1

J = I−
√

n+1
n−1

J . Hence both (I−αJ) and (I−αJ)−1

are degree one polynomials in J and therefore they commute with J . This

implies that

(I − αJ)D(I − αJ) +
zn

n
J

= (I − αJ)D(I − αJ) +
zn

n
(I − αJ)J(I − αJ)−1

= (I − αJ)
(
D(I − αJ) +

zn

n
J(I − αJ)−1

)

∼
(
D(I − αJ) +

zn

n
J(I − αJ)−1

)
(I − αJ)

= D(I − αJ)2 +
zn

n
J

= D(I − 1

n
J) +

zn

n
J.

Therefore, (I − αJ)D(I − αJ) +
zn

n
J is similar to D(I − 1

n
J) +

zn

n
J .

¥

15



By Lemma 5.1 and Theorem 1.1, the set of eigenvalues of the matrix (I −
αJ)D(I − αJ) +

zn

n
J is exactly equal to {w1, . . . , wn−1}, the set of critical

points of the polynomial p.

Let v ∈ Cn−1 be a column vector with all entries equal to one and E be

the following n× n Hermitian matrix




I − αJ
1√
n
v

1√
n
vT 1√

n


 .

Then it is easy to verify that E∗E = In and therefore E−1 = E∗ = E. Hence,

D̃ =


D O

O zn


 is unitarily similar to




I − αJ
1√
n
v

1√
n
vT 1√

n





D O

O zn







I − αJ
1√
n
v

1√
n
vT 1√

n




=




(I − αJ)D
zn√
n
v

1√
n
vT D

zn√
n







I − αJ
1√
n
v

1√
n
vT 1√

n




=




(I − αJ)D(I − αJ) +
zn

n
J

1√
n

(I − αJ)Dv +
zn

n
v

1√
n
vT D(I − αJ) +

zn

n
vT 1

n
vT Dv +

zn

n


 .

We shall denote the last matrix by A. Since A is unitarily similar to D̃,

the set of the singular values of A is equal to that of D̃, which is simply

{|z1|, . . . , |zn|}.
Notice that A1 = (I − αJ)D(I − αJ) +

zn

n
J is the upper-left hand n − 1

by n− 1 principal submatrix of A. In order to compare the singular values of

A1 with that of A, we shall need the following interlacing theorem for singular

values of complex matrices which follows from Corollary 3.1.3 in [9].

Theorem 5.2 . Let A be an n× n complex matrix and σ1(A) ≥ · · · ≥ σn(A)

be the ordered singular values of A. Let A1 be the upper-left hand n − 1 by

n − 1 principal submatrix of A and σ1(A1) ≥ · · · ≥ σn−1(A1) be the ordered

16



singular values of A1. Then for each 1 ≤ k ≤ n, we have

σk(A) ≥ σk(A1) ≥ σk+2(A).

Remark. Note that the above submatrix A1 corresponds to the matrix A2 in

Corollary 3.1.3 of [9] because A1 is obtained by deleting a total of two ”lines”

(one row and one column) from A.

We also need the following result on the majorization of the eigenvalues of

a matrix by its singular values.

Theorem 5.3 ([9, p.166]). Let A be an n × n complex matrix and σ1(A) ≥
σ2(A) ≥ · · · σn(A) ≥ 0 be the ordered singular values of A. Let {λ1(A), . . . , λn(A)}
be the set of eigenvalues of A ordered so that |λ1(A)| ≥ · · · ≥ |λn(A)|. Then,

we have for each k = 1, · · · , n,

k∑
i=1

ψ(|λi(A)|) ≤
k∑

i=1

ψ(σi(A)),

for every increasing function ψ : [0, +∞) → R such that ψ ◦ exp is convex on

R.

Now without loss of generality assume that |w1| ≥ · · · ≥ |wn−1| ≥ |wn| = 0.

Apply Theorem 5.2 and Theorem 5.3 and use the fact that {λ1(A1), . . . , λn−1(A1)} =

{w1, . . . , wn−1}, we have for each k = 1, . . . , n− 1,

k∑
i=1

ψ(|wi|) =
k∑

i=1

ψ(|λi(A1)|) ≤
k∑

i=1

ψ(|σi(A1)|) ≤
k∑

i=1

ψ(|σi(A)|) =
k∑

i=1

ψ(|zi|).

The k = n case follows from the k = n − 1 case and the fact that |zn| ≥
|wn| = 0 and ψ is an increasing function on [0, +∞). This completes the proof

of Theorem A. ¥

Proof of Theorem 2.1. Without loss of generality we shall assume that

|w1| ≥ · · · ≥ |wn−1| and |v1| ≥ · · · ≥ |vn−1|.

Now fix a branch of
√

z and define

D
1
2 =




√
z1

0
. . .

0 √
zn−1




.
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Let A = D
1
2 (I − 1

n
J)D

1
2 . Then A = D

1
2 (I − 1

n
J)D

1
2 ∼ D

1
2 D

1
2 (I − 1

n
J) =

D(I− 1

n
J). It follows from Theorem 1.1 that for each 1 ≤ i ≤ n−1, λi(A) = wi.

Now we would like to find the singular values of A, which are the same as the

eigenvalues of |A|. We claim that |A| is equal to D
1
2 (I − 1

n
J)D

1
2 . First of all,

the eigenvalues of (I − 1

n
J) are equal to 1 and 1

n
, hence (I − 1

n
J) is positive

semidefinite. It follows easily that D
1
2 (I− 1

n
J)D

1
2 = (D

1
2 )∗(I− 1

n
J)D

1
2 is also

positive semidefinite. Now it remains to check that

D
1
2

(
I − 1

n
J
)
D

1
2 D

1
2

(
I − 1

n
J
)
D

1
2

= D
1
2

(
I − 1

n
J
)
|D|

(
I − 1

n
J
)
D

1
2

= D
1
2

(
I − 1

n
J
)
D

1
2 D

1
2

(
I − 1

n
J
)
D

1
2

= A∗A.

Since D is a diagonal matrix, it is possible to choose a unitary matrix S of the

form 


eiθ1

0
. . .

0
eiθn−1




such that S−1D
1
2 = |D| 12 = D

1
2 S. Therefore |A| = D

1
2 (I − 1

n
J)D

1
2 is unitary

similar to |D| 12 (I − 1

n
J)|D| 12 . Hence, we have

σi(A) = λi(|A|) = λi

(
|D| 12 (I − 1

n
J)|D| 12

)
.

Note that |D| 12 (I − 1

n
J)|D| 12 is similar to |D|(I − 1

n
J) and by Theorem 1.1,

the eigenvalues of |D|(I − 1

n
J) are the critical points of the polynomial pa.

Therefore, we have for each 1 ≤ i ≤ n− 1, σi(A) = vi.

Apply Theorem 5.3 and use the fact that λi(A) = wi, we have for each

k = 1, . . . , n− 1,

k∑
i=1

ψ(|wi|) =
k∑

i=1

ψ(|λi(A)|) ≤
k∑

i=1

ψ(σi(A)) ≤
k∑

i=1

ψ(vi),

and we are done. ¥
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6 A proof of de Bruin and Sharma’s conjec-

ture

We prove Theorem 2.3 first, our proof of de Bruin and Sharma’s conjecture

will then follow easily from this theorem.

Proof of Theorem 2.3. We shall need the following simple lemma in our proof.

Lemma 6.1 Let C be an m × m square matrix. Suppose there exists some

positive semidefinite matrix S such that C = S−1C∗S. Then for any positive

integer k,
m∑

i=1

|λi(C)|2k ≤ tr(CkC
k
).

Proof. Let
√

S be the unique positive semidefinite matrix such that
√

S
√

S =

S. Note that this
√

S must be Hermitian, i.e.
√

S = (
√

S)∗. From the

assumption, we have

CkC
k

= CkS−1(C∗)kS

= Ck(
√

S)−1(
√

S)−1(C∗)k
√

S
√

S

∼ √
SCk

√
S
−1√

S
−1

(Ck)∗
√

S

=
√

SCk
√

S
−1

((
√

S)∗)−1(Ck)∗(
√

S)∗

=
√

SCk
√

S
−1

(
√

SCk
√

S
−1

)∗.

Therefore,

tr (CkC
k
) = tr (

√
SCk

√
S
−1

(
√

SCk
√

S
−1

)∗)

≥
m∑

i=1

|λi(
√

SCk
√

S
−1

)|2

=
m∑

i=1

|λi(C
k)|2

=
m∑

i=1

|λi(C)|2k.

¥

Let B = D(I − 1

n
J) +

zn

n
J , then B = D(I − 1

n
J) +

zn

n
J and B∗ =

19



(I − 1

n
J)D +

zn

n
J . In order to apply Lemma 6.1, we first notice that

(
I − 1

n
J
)−1

B∗
(
I − 1

n
J
)

= (I + J)B∗
(
I − 1

n
J
)

= (I + J)
((

I − 1

n
J
)
D +

zn

n
J
)(

I − 1

n
J
)

= D
(
I − 1

n
J
)

+
zn

n
J = B.

Now S = (I − 1

n
J) is positive semidefinite because it is Hermitian and its

eigenvalues are nonnegative. By Lemma 6.1, we have

n−1∑
i=1

|wi|2k ≤ tr

([
D

(
I − 1

n
J
)

+
zn

n
J
]k[

D
(
I − 1

n
J
)

+
zn

n
J
]k

)
.

¥
Proof of Theorem 2.2. Take k = 2 in Theorem 2.3, then we have

n−1∑
i=1

|wi|4 ≤ tr

([
D

(
I − 1

n
J
)

+
zn

n
J
]2[

D
(
I − 1

n
J
)

+
zn

n
J
]2

)
.

Using the fact that for a diagonal matrix E, we have JEJ = tr(E)J as

well as the assumption that
n∑

i=1

zi = 0 (which is the same as tr(D) = −zn),

one can check easily that

[
D

(
I − 1

n
J
)

+
zn

n
J
]2

= D2 − 1

n
D2J − 1

n
DJD +

zn

n
JD +

z2
n

n
J.

Let A = [D(I− 1

n
J)+

zn

n
J ]2, then AA = [D(I− 1

n
J)+

zn

n
J ]2[D(I− 1

n
J)+

zn

n
J ]2

is equal to

[
D2− 1

n
D2J− 1

n
DJD+

zn

n
JD+

z2
n

n
J
][

D
2− 1

n
D

2
J− 1

n
DJD+

zn

n
JD+

zn
2

n
J
]
.

To compute tr(AA), it is useful to notice that tr(MN) = tr(NM) and for

any diagonal matrix E, we have JEJ = tr(E)J and tr(EJ) = tr(JE) = tr(E).
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Expand AA and after simplifications, we find that

tr (AA) =
n− 4

n
tr (|D|4) + 2 Re

{zn

n
tr (D|D|2)

}

+2 Re

{
z2

n

n
tr (D

2
)

}
+

1

n2
tr (D

2
) tr (D2)

+2 Re

{
1

n2
tr (D) tr (D|D|2)

}
− 2 Re

{
n− 1

n2
zn tr (D|D|2)

}

−2 Re

{
n− 1

n2
z2

n tr (D
2
)

}
+

1

n2
[ tr (|D|2)]2

−2 Re
{zn

n2
tr (D) tr (|D|2)

}
− 2 Re

{
z2

n

n2
[ tr (D)]2

}

+
|zn|2
n2

| tr (D)|2 + 2 Re

{
(n− 1)zn|zn|2

n2
tr (D)

}
+

(
n− 1

n

)2

|zn|4.

Since tr (D) = −zn, we have

tr (AA) =
n− 4

n
tr (|D|4) +

2

n2
Re

{
z2

n tr (D
2
)
}

+
1

n2
| tr (D2)|2 +

1

n2
[ tr (|D|2)]2

+
2

n2
|zn|2 tr (|D|2) +

(
n− 4

n
+

2

n2

)
|zn|4

≤ n− 4

n

n∑
i=1

|zi|4 +
2

n2
{[ tr (|D|2)]2 + 2|zn|2 tr (|D|2) + |zn|4}

=
n− 4

n

n∑
i=1

|zi|4 +
2

n2

(
n∑

i=1

|zi|2
)2

.

The inequality above follows from the simple fact that

Re
{

z2
n tr (D

2
)
}
≤ |zn|2 tr (|D|2) and | tr (D2)|2 ≤ [ tr (|D|2)]2.

It remains to show that equality holds if and only if z1, . . . , zn lie on a

straight line passing through the origin of the complex plane. Note that when

the equality holds, we must have | tr (D2)|2 = [ tr (|D|2)]2 which is the same as

|(z1, . . . , zn−1)(z1, . . . , zn−1)
∗|2 =

( n∑
i=1

|zi|2
)( n∑

i=1

|zi|2
)
.

By Cauchy-Schwarz inequality, there exists some complex number λ such

that (z1, . . . , zn−1) = λ(z1, . . . , zn−1). This implies that for those non-zero zi,

their argument are all equal to some fixed angle θ. This is also true for zn
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because zn = −
n−1∑
i=1

zi. Therefore, all z1, . . . , zn lie on a straight line passing

through the origin.

Finally, assume that z1, · · · , zn lie on a straight line passing through the

origin. This is equivalent to saying that there exists some 0 ≤ θ ≤ 2π such

that zi = |zi|eiθ for all 1 ≤ i ≤ n. By the Gauss-Lucas theorem, all wi will

also lie on the same straight line and therefore wi = |wi|eiθ for all i. Then it

follows easily from the identity,

n−1∑
i=1

w4
i =

n− 4

n

n∑
i=1

z4
i +

2

n2

( n∑
i=1

z2
i

)2

,

that the equality holds.

One way to obtain the above identity is applying the formulae of Newton

(see [16, p.8]). Here we suggest another way to get the above identity. Notice

that if A = D(I − 1

n
J) +

zn

n
J , then Theorem 1.1 implies that the eigenvalues

of A4 are w4
1, . . . , w

4
n−1. Hence, we have

n−1∑
i=1

w4
i = tr (A4). Expand tr (A4) and

use the assumption tr (D) = −zn to simplify the expression as we have done

before, we will have

tr (A4) =
n− 4

n

n∑
i=1

z4
i +

2

n2

( n∑
i=1

z2
i

)2

,

and we are done.
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