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Abstract A recent method of Soundararajan enables one to obtain improved Ω-result for finite
series of the form

∑
n f(n) cos(2πλnx + β) where 0 ≤ λ1 ≤ λ2 ≤ . . . and β are real numbers

and the coefficients f(n) are all non-negative. In this paper, Soundararajan’s method is adapted to
obtain improved Ω-result for E(t), the remainder term in the mean-square formula for the Riemann
zeta-function on the critical line. The Atkinson series for E(t) is of the above type, but with an
oscillating factor (−1)n attached to each of its terms.
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1 Introduction

Let d(n) denote the divisor function. The error terms

∆(x) :=
∑

n≤x

d(n)− x log x + (2γ − 1)x, (x ≥ 0)

for the divisor sum, and

E(t) :=
∫ t

0
|ζ(

1
2

+ iu)|2du− t log
t

2π
− (2γ − 1)t, (t > 0)

for the mean square of the Riemann zeta function are two central objects in analytic number
theory. Accounts of the research on these two error terms can be found in [7], [13], for example.
In his fundamental paper [1], Atkinson showed that E(t) and ∆(x) are indeed closely related.
Corresponding to the well-known truncated Voronoi series for ∆(x) (see [13], eq.(12.4.4))

∆(x) =
x1/4

π
√

2

∑

n≤N

d(n)n−
3
4 cos(4π

√
nx− π

4
) + O(x

1
2
+εN− 1

2 ) for 1 ≤ N ¿ x, (1.1)

Atkinson found in [2] a similar series representation for E(t). The terms in the series for (2π)−1E(2πx)
for n ¿ x1/3 are, up to first order approximations, just those in (1.1) but with the extra oscillating
factor (−1)n. Atkinson’s formula is instrumental in many of the subsequent studies on E(t).

A central problem in this area is the widely held conjecture that for any ε > 0, both ∆(x) ¿
x1/4+ε and E(t) ¿ t1/4+ε hold. The best upper bounds we have for ∆(x) and E(t) to this date are
still quite far from the conjecture. On the other hand the current best omega results for ∆(x) and
E(t) are just marginally smaller than the conjectured bounds. Therefore any improvement on the
omega results is of significance.

The main purpose of this paper is to improve on the omega result for E(t). Investigation on
the omega results for ∆(x) and E(t) have made gradual progress over the past few decades. In
2003, Soundararajan [12] sharpened the previous best omega result for ∆(x) (and also the error
term in the circle problem) obtained in [4] by introducing a clever trick to the method of Hafner.
His method works for series of the form

∑
n f(n) cos(2πλnx + β), where 0 ≤ λ1 ≤ λ2 ≤ · · · and

β are real numbers and the coefficients f(n) are non-negative. For applications of this method of
Soundararajan to other related problems, see [3], [10]. However, Soundararajan’s method cannot be
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applied to E(t) to yield a similar improvement, since the Atkinson series for E(t) has the additional
oscillating factor (−1)n attached to each of its terms, its coefficients are not of a constant sign. In
this paper, we shall show that, via an indirect argument, Soundararajan’s method can indeed be
adapted to the case of E(t). Hence we obtain the following.

Theorem 1.1. We have

E(t) = Ω
(

(t log t)
1
4 (log2 t)

3
4
(24/3−1)(log3 t)−

5
8

)
. (1.2)

Here logj denotes the j-th iterated logarithm, so that log2 = log log, log3 = log log log and so on.

The omega result obtained here is of the same order of magnitude as that for ∆(x) in [12]. It
improves on the power of log2 t in the previous result of Hafner and Ivic [5], from (3 + 2 log 2)/4 =
1.0965... to the present value of 3

4(24/3 − 1) = 1.13988.... As was pointed out in [12], this improve-
ment is of significance since, on some probabilistic grounds, (1.2) may represent the true order of
E(t) up to (log2 t)o(1). On the other hand, due to the presence of the phase angle π/4 inside the
cosine function in (1.1), the method we use does not yield the more precise Ω+ or Ω−-result.

Our argument utilises the following two ideas.
First, if ∆∗(x) denotes the error term

∆∗(x) :=
∑

n≤4x

(−1)n

2
d(n)− x log x− (2γ − 1)x,

then there is also a Voronoi type series for ∆∗(x) (see [11], Theorem 2 or [8], eq.(1.22)), namely,

∆∗(x) =
x1/4

π
√

2

∑

n≤N

(−1)nd(n)n−
3
4 cos(4π

√
nx− π

4
) + O(x

1
2
+εN− 1

2 ) (for 1 ≤ N ¿ x). (1.3)

Furthermore, we have the following relationship between ∆(x) and ∆∗(x):

∆∗(x) = −∆(x) + 2∆(2x)− 1
2
∆(4x) (1.4)

(see [8]). This functional relation immediately gives, for any upper bound for ∆(x), a corresponding
upper bound of the same order of magnitude for ∆∗(x). It turns out that the converse of this is
also true (see Theorem 1.2 below). Thus, both ∆(x) and ∆∗(x) have the same omega result.

Second, as already observed by Jutila [8], [9], ∆∗(x) is the right approximation to (2π)−1E(2πx).
This is due to the fact that the above Voronoi series (1.3) for ∆∗(x), like the Atkinson formula
for (2π)−1E(2πt), also has the oscillating factor (−1)n attached to each of its terms. The relation
(1.4) then provides the link between E(x) and ∆(x) to which Soundararajan’s method applies.
However, for our argument, ∆∗(x) is not close enough to (2π)−1E(2πx). Hence, we cannot deduce
our omega result directly from that of ∆(x). Instead, we have to first smooth the functions by
taking convolutions with a suitable kernel (at present, the Fejer kernel). The details of all these
are given in the next section.

Theorem 1.2. Suppose ∆∗(x) ¿ xσ for some σ ≤ 1
3 , then we also have

∆(x) ¿ xσ.
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2 Proofs of Theorem 1.1 and Theorem 1.2

In the sequel we use ε to denote an arbitrarily small positive number, which may not be the same
at each occurrence. Let e(y) := e2πiy.

First we define

E1(x) := (2x)−
1
2 E(2πx2) for x ≥ 1, (2.1)

and consider its convolution with the Fejer kernel

K(u) := (πu)−2sin2(πu).

Lemma 2.1. Let x ≥ 200 and 2 ≤ τ ≤ x1/7. We have
∫ τ

−τ
E1(x + uτ−1)e(−u)K(u)du

=
1
2
e(−1

8
)

∑

n≤τ2

(−1)nd(n)n−
3
4 e(2

√
nx)k(1− 2τ−1√n) + O(log τ),

where k(y) := max(0, 1− |y|) is the Fourier transform of K(u).

Proof. This is essentially Lemma 1 in [5], where parts of the analysis there could be simplified by
the argument used in the proof of Lemma 1 in [6].

Let

∆1(x) := x−
1
2 ∆(x2), ∆∗

1(x) := x−
1
2 ∆∗(x2) for x ≥ 1.

The relation (1.4) then becomes

∆∗
1(x) = −∆1(x) + 2

5
4 ∆1(

√
2x)− 2−

1
2 ∆1(2x), x ≥ 1. (2.2)

From the Voronoi series (1.3) for ∆∗(x2) (with N = x2), we have

∆∗
1(x) =

1
π
√

2

∑

n≤x2

(−1)nd(n)n−
3
4 cos(4π

√
nx− π

4
) + O(x−

1
2
+ε).

Substituting for ∆1(x) in (2.2) by the Voronoi series (1.1), we get
∑

n≤x2

(−1)nd(n)n−
3
4 cos(4π

√
nx− π

4
) = −

∑

n≤x2

d(n)n−
3
4 cos(4π

√
nx− π

4
) +

+ 2
5
4

∑

n≤x2

d(n)n−
3
4 cos(4π

√
2nx− π

4
)

− 2−
1
2

∑

n≤x2

d(n)n−
3
4 cos(8π

√
nx− π

4
)

+ O(x−
1
2
+ε). (2.3)

Recall that k(y) is the Fourier transform of K(u). We easily prove that, for any positive x, ω
and τ ,

∫

|u|<x
cos(2πω(x + u)− π

4
)e(−τu)K(τu)du = (2τ)−1e(ωx− 1

8
)k(

ω

τ
− 1) + O(τ−2x−1).
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Hence, on multiplying (2.3) throughout by e(−τu)K(τu) and then integrating with respect to u
over the range (−1

2x, 1
2x), we get

∑

n≤x2

(−1)nd(n)n−
3
4 e(2

√
nx− 1

8
)k(

2
√

n

τ
− 1) = −

∑

n≤x2

d(n)n−
3
4 e(2

√
nx− 1

8
)k(

2
√

n

τ
− 1)

+ 2
5
4

∑

n≤x2

d(n)n−
3
4 e(2

√
2nx− 1

8
)k(

2
√

2n

τ
− 1)

− 2−
1
2

∑

n≤x2

d(n)n−
3
4 e(4

√
nx− 1

8
)k(

4
√

n

τ
− 1)

+ O(τ−1x−
1
2
+ε).

Multiplying throughout by e(1
8) and then taking the real parts, this becomes

∑

n≤τ2

(−1)nd(n)n−
3
4 cos(4π

√
nx)k(

2
√

n

τ
− 1) = −

∑

n≤τ2

d(n)n−
3
4 cos(4π

√
nx)k(

2
√

n

τ
− 1)

+ 2
5
4

∑

n≤τ2/2

d(n)n−
3
4 cos(4π

√
2nx)k(

2
√

2n

τ
− 1)

− 2−
1
2

∑

n≤(τ/2)2

d(n)n−
3
4 cos(8π

√
nx)k(

4
√

n

τ
− 1)

+ O(τ−1x−
1
2
+ε), (2.4)

for any τ ≤ x.
Remark. The identity (1.4) can be easily derived by writing

∑

n≤4x

(−1)nd(n) = −
∑
n≤4x
n odd

d(n) +
∑

2lm≤4x
l≥1

d(2lm) = −
∑

n≤4x

d(n) + 2
∑

2lm≤4x
l≥1

d(2lm)

and then applying the simple identity d(2lm) = 2d(2l−1m)− d(2l−2m) to the last sum. This same
argument can also be applied to obtain (2.4) directly.

Define

P (x, τ) :=
∑

n≤τ2

(−1)nd(n)n−
3
4 cos(4π

√
nx)(1− |2

√
n

τ
− 1|), (2.5)

Q(x, τ) :=
∑

n≤τ2

d(n)n−
3
4 cos(4π

√
nx)(1− |2

√
n

τ
− 1|).

Then (2.4) is

P (x, τ) = −Q(x, τ) + 2
5
4 Q(

√
2x,

√
2
−1

τ)− 2−
1
2 Q(2x, 2−1τ) + O(τ−1x−

1
2
+ε). (2.6)

If we write

R(x, τ) = Q(x, τ)− αQ(
√

2x,
√

2
−1

τ), (2.7)
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(2.6) can be rewritten as

P (x, τ) = −R(x, τ) + βR(
√

2x,
√

2
−1

τ) + O(τ−1x−
1
2
+ε), (2.8)

where α and β satisfy αβ = 2−1/2 and α + β = 25/4. Hence, we set α = 21/4 − 2−1/4 =
0.348 · · · , β = 21/4 + 2−1/4 = 2.030 · · · .

Repeated application of (2.7) then yields

Q(x, τ) =
J∑

j=0

αjR(
√

2
j
x,
√

2
−j

τ) + αJ+1Q(
√

2
J+1

x,
√

2
−J−1

τ), for τ ≤ x (2.9)

and any J ≥ 0. Similarly, from (2.8) we have, for any I ≥ 1 and τ ≤ 2−Ix,

R(x, τ) =
I∑

i=1

β−iP (
√

2
−i

x,
√

2
i
τ) + β−IR(

√
2
−I

x,
√

2
I
τ) + O(τ−1x−

1
2
+ε).

Substituting this into (2.9) then yields

Q(x, τ) =
J∑

j=0

I∑

i=1

αjβ−iP (
√

2
j−i

x,
√

2
−j+i

τ) +
J∑

j=0

αjβ−IR(
√

2
j−I

x,
√

2
−j+I

τ)

+ αJ+1Q(
√

2
J+1

x,
√

2
−J−1

τ) + O(τ−1x−
1
2
+ε

J∑

j=0

(α2
1
4 )j).

Finally, by substituting R(x, τ) from (2.7), we get

Q(x, τ) =
J∑

j=0

I∑

i=1

αjβ−iP (
√

2
j−i

x,
√

2
−j+i

τ) + β−IQ(
√

2
−I

x,
√

2
I
τ)

− αJ+1β−IQ(
√

2
J+1−I

x,
√

2
−J−1+I

τ) + αJ+1Q(
√

2
J+1

x,
√

2
−J−1

τ)

+ O(τ−1x−
1
2
+ε), (2.10)

which essentially expresses Q in terms of P . Choosing now I = J = 2 log2 τ , and using the trivial
bound

|Q(x, τ)| ≤
∑

n≤τ2

d(n)n−3/4 ¿ √
τ log τ

to bound the last three terms involving Q on the right hand side of (2.10), we have

Q(x, τ) =
J∑

j=0

I∑

i=1

αjβ−iP (
√

2
j−i

x,
√

2
−j+i

τ) + β−IQ((log τ)− log 2x, τ(log τ)log 2)

− αJ+1β−IQ(
√

2x,
√

2
−1

τ) + αJ+1Q(
√

2(log τ)log 2x,
√

2
−1

(log τ)− log 2τ) + O(τ−1x−
1
2
+ε)

=
J∑

j=1

I∑

i=1

αjβ−iP (
√

2
j−i

x,
√

2
−j+i

τ) + O(
√

τ). (2.11)

We now employ the idea of Soundararajan in [12] to produce an Ω+-result for Q(x, τ). Note that
our Q(x, τ) is indeed the function F1(x) considered in Lemma 3 of [12], with λn = 2

√
n, λN = τ

and f(n) = 2d(n)n−3/4. Following the arguments in Lemma 3 and the proof of Theorem 1 in §3
of [12], we obtain the following.
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Lemma 2.2. Let λ > 0 be a constant. For any X ≥ 2 and

τ ¿ (log X)
1
2 (log2 X)

1
2
(1−λ+λ log λ)(log3 X)−

1
4 ,

there exists x ∈ [X, X
3
2 ] and a positive constant c such that

Q(x, τ) > c
√

τ(log τ)λ log( 2e
λ

)−1(log2 τ)−
1
2 .

In particular, with the optimal choice of λ = 2
4
3 and

τ ³ (log X)
1
2 (log2 X)

1
2
(1−λ+λ log λ)(log3 X)−

1
4 ,

we have the lower bound

Q(x, τ) > c(log X)
1
4 (log2 X)

3
4
(24/3−1)(log3 X)−

5
8

for a suitable x ∈ [X,X
3
2 ].

Now, by considering the largest P (
√

2
j−i

x,
√

2
−j+i

τ) in the first double sum on the right hand
side of (2.11), we deduce from Lemma 2.2 the following large value estimate for P (x, τ).

Lemma 2.3. For any X > 2, there exists x ∈ [X,X
3
2 log2

2 X] and a τ ¿ (log X)
1
2 (log2 X)1.1 such

that
P (x, τ) > c(log X)

1
4 (log2 X)

3
4
(24/3−1)(log3 X)−

5
8 .

To finish the proof of Theorem 1.1 we note from Lemma 2.1 that,

sup
|y−x|≤1

|E1(y)| ≥ Re

(∫ τ

−τ
E1(x + uτ−1)e(

1
8
− u)K(u)du

)

=
1
2

∑

n≤τ2

(−1)nd(n)n
3
4 cos(4π

√
nx)k(2

√
n

τ
− 1) + O(log τ).

The sum on the last line is just P (x, τ) defined in (2.5). Our Theorem 1.1 now follows readily from
Lemma 2.3 and (2.1).

We now prove our Theorem 1.2. Similar to (2.7), (2.8), we can rewrite (1.4) as

∆∗(x) = W (x)− bW (2x), W (x) = −∆(x) + a∆(2x),

where a and b satisfy a + b = 2, ab = 1/2. Hence, we set a = 1 − 2−1/2 = 0.29289 · · · , b =
1 + 2−1/2 = 1.7071 · · · . Then similar to the deduction in (2.9) to (2.10), we find that

∆(x) =
J∑

j=0

I∑

i=1

ajb−i∆∗(2j−ix)−
J∑

j=0

ajb−IW (2j−Ix) + aJ+1∆(2J+1x) (2.12)

for J ≥ 0, I ≥ 1. Since ∆(y) ¿ y1/3, we have W (y) ¿ y1/3 too. By choosing I = J ³ log2 x
(notice that 2σa ≤ 21/3a < 0.37 and 2σb > b > 1.7), we deduce from (2.12) that

∆(x) ¿
J∑

j=0

(2σa)j
I∑

i=1

(2σb)−ixσ + (2
1
3 b)−Ix

1
3 + (2

1
3 a)Jx

1
3 ¿ xσ,

as desired. This finishes the proof of Theorem 1.2.
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