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Introduction

Let X be a smooth projective curve of genus g ≥ 2 and let UX(r, d) be the moduli
space of stable vector bundles of rank r and degree d on X. Assume (r, d) = 1, then
UX(r, d) is a smooth projective variety of dimension r2(g−1)+1. Let ci(UX(r, d)) be
the Chern classes ci(Ω1

UX(r,d)) in the deRham cohomology of UX(r, d). A conjecture
of Newstead and Ramanan states that

ci(UX(2, 1)) = 0 for i > 2(g − 1).

It was proved by Gieseker [Gi] on 1984 by using degeneration. In fact, by degener-
ating X into an irreducible curve X0 with one node, Gieseker constructs a degen-
eration GX0(2, 1) of UX(2, 1) which has normal crossing singularities. The normal-
ization NX̃0

(2, 1) of GX0(2, 1), where X̃0 is the normalization of X0, is smooth and
the vanishing of ci(UX(2, 1)) is equivalent to the vanishing of ci(Ω1

N
X̃0

(2,1)(logD)),

where D is the divisor which maps to the singular locus of GX0(2, 1). Then he shows
that NX̃0

(2, 1) can be obtained, by explicit blowing up and blowing down, from a
fibre bundle over UX̃0

(2, 1) with fibre being the so called wonderful compactification
of GL(2), where X̃0 has genus g−1. Thus he is able to prove the vanishing of Chern
classes by using induction to genus g. Gieseker proposed also in [Gi] to generalize
his theory to higher rank.

Gieseker’s degeneration GX0(2, 1) consists of pairs (Xk, E) such that the curve
Xk embedding through E in a Grassmannian is a stable Hilbert point. In rank two
case, Gieseker was able to write down all of the types of (Xk, E), which is however
difficult to generalize to higher rank. Around 1999, D. S. Nagaraj and C. S. Seshadri
made an important observation that one should relate Gieseker’s degeneration to
moduli spaces of stable torsion free sheaves on X0. Let π : Xk → X0 be the
canonical morphism contractiong the chain of projective lines. They consider in
[NS] the pairs (Xk, E) such that π∗E is a stable sheaf on X0 and construct their
moduli space as a GIT quotient GX0(r, d) which has normal crossing singularities.
It remains difficult to work out the relationship between GX0(r, d) and UX̃0

(r, d) so
that the induction on the genus g is applicable.

In a very recent work [KL], Young-Hoon Kiem and Jun Li provide an alternate
construction of the degeneration. They construct the degeneration as an algebraic
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space with normal crossing singularities, which parameterizes (Xk, E) such that
E is a suitable defined stable bundle on Xk (See Definition 1.1 of [KL] where a
sufficiently small ε > 0 is needed). With the cost that the moduli spaces may not be
projective varieties, they construct a family of proper separated smooth algebraic
spaces Mα (0 < α < 1), which are moduli spaces of certain bundles, so that
M1− is normalization of the degeneration and M0+

is a fiber bundle over UX̃0
(r, d)

with fiber being the wonderful compactification of GL(r) (studied carefully by Ivan
Kausz in [K1]). When α moves from 0+ to 1−, they work out a very precise
description of the variation of Mα in the case of rank 3. By using these description
and the inductive assumption of UX̃0

(3, 1), they prove that

ci(UX(3, 1)) = 0 for i > 6g − 5.

Base on the proved vanishing result, we would like to make the following

Conjecture. Let (r, d) = 1 and UX(r, d) be the moduli space of stable bundles of
rank r and degree d over a smooth projective curve X of genus g ≥ 2. Then

ci(UX(r, d)) = 0 for i > r(r − 1)(g − 1).

In trying of understand the work [KL] of Young-Hoon Kiem and Jun Li, we
show in this note that their degeneration coincides with the degeneration GX0(r, d)
of Nagaraj and Seshadri. We also construct a family of GIT quotients Mα (0 <
α < 1) which are fine moduli spaces of α-stable Gieseker vector bundle data except
finite number of α ∈ Ir. The moduli space M1− is the normalization NX̃0

(r, d) of

GX0(r, d) and M0+
is a fiber bundle over UX̃0

(r, d) with fiber being the wonderful

compactification of GL(r). The vanishing of Chern classes for M0+
has been proved

very recently by Michel Brion and Ivan Kausz in [BK]. Thus it remains to work out
the relationship between Mα− and Mα+

when α ∈ Ir.

Acknowledgement. The work was done during my stay at the university of Hong
Kong. I would like to thank Prof. Ngaiming Mok for many helpful discussions.

§1 Generalized Gieseker moduli spaces

Let X0 be the irreducible curve with one node x0, let π : X̃0 → X0 be the
normalization and π−1(x0) = {x1, x2}. The semistable models of X0, by definition,
are semistable curves X0, Xk = X̃0∪R (k=1 2 ...), where R is a chain of k projectives
lines and X̃0 ∩ R = {x1, x2}. We still use π : Xk → X0 to denote all of the
morphisms that contract the chain R. The generalized Gieseker’s moduli spaces
are moduli spaces of suitable defined semistable pairs (Xk, E), where E is a vector
bundle on Xk. Two pairs (Xk, E), (X ′

k, E′) are called equivalent if E ∼= σ∗E′,
where σ : Xk → X ′

k is an isomorphism that is identity on X̃0.
Assume (r, d) = 1, Nagaraj and Seshadri [NS] prove that there is a canonical

structure of projective variety GX0(r, d) on the set

G(r, d) =


Equivalence classes of pairs (Xk, E), where E is a vector
bundle on Xk of rank r and degree d which is strictly

positive on each P1 of R and π∗(E) is stable on X0.
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Remark that stability of π∗(E) implies k ≤ r. The singularities of GX0(r, d) are
(analytic) normal crossings. Nagaraj and Seshadri construct GX0(r, d) as a GIT
quotient, which we are going to recall briefly.

Fix a line bundle OX0(1) = OX0(x), x 6= x0. Let N be large enough such that
E(N) := E⊗π∗OX0(N) is generated by global sections and H1(E(N)) = 0 for any
(Xk, E) ∈ G(r, d). Let P (N) = rN + d + r(1− g). Then we define the functor

Y : (C-schemes) → (Sets),

Y(T ) := set of closed subschemes C ⊂ X0 × T ×Gr(P (N), r) such that
(1) the induced projection map C → T × Gr(P (N), r) is a closed embedding

over T . Let OP (N)
C → F → 0 be the pull-back of tautological quotient on

Gr(P (N), r).
(2) the projection C → T is a flat family of curves {Ct}t∈T such that Ct

∼= Xk,
and the projection C → X0 × T over T is the canonical morphism π : C →
X0 × T contracting the chains of projective lines.

(3) the vector bundles Ft = F|Ct
on Ct (t ∈ T ) are of rank r and degree

d+rN = P (N)+r(g−1). The qoutients OP (N)
Ct

→ Ft induce isomorphisms

H0(OP (N)
Ct

) ∼= H0(Ft).

Proposition 1.1 ([Gi], [NS]). Y is represented by a SL(P (N))-stable subscheme
H ⊂ HilbP1(X0 × Gr(P (N), r)). The H is irreducible with only normal crossing
singularities.

Let C ⊂ X0 × H × Gr(P (N), r), π : C → X0 × H and OP (N)
C → F → 0 be the

universal objects. Let E = F ⊗π∗OX0(−N) and CP (N)⊗π∗OX0(−N)
q−→ E → 0 on

C. For y = (CP (N)⊗OXk
(−N)

qy−→ Ey → 0) ∈ H, where OXk
(−N) = π∗OX0(−N),

the quotient defines an embedding Xk ⊂ X0 ×Gr(P (N), r) such that Ey(N) is the
pull-back of the tautological quotient bundle. For any g ∈ SL(P (N)),

g · y = (CP (N) ⊗OXk
(−N)

g−→ CP (N) ⊗OXk
(−N)

qy−→ Ey → 0) ∈ H.

It is easy to see that y1 = g · y2 if and only if (Cy1 , Ey1) is equivalent to (Cy2 , Ey2).
By CP (N) ⊗ π∗OX0(−N)

q−→ E → 0, we get CP (N) ⊗ OX0×H(−N) −→ π∗E → 0
on X0 × H, which induces a morphism θ : H → R, where R is the open set
of Q1 = QuotP (OX0(−N)P (N)) consisting of quotients OX0(−N)P (N) → F → 0
which induces CP (N) ∼= H0(F (N)) and H1(F (N)) = 0.

Proposition 1.2 ([NS]). The morphism θ : H → R is a proper SL(P (N))-
equivariant birational morphism.

Let H̄, R̄ be the closure of H, R in the Hilbert scheme and Q1 respectively,
let OH̄(1), OR̄(1) be the ample line bundles pulling back from the Hilbert scheme
and Q1. Let Z ⊂ H̄ × R̄ be the closure of the graph of θ : H → R, and OZ(a)
be the pull-back of OH̄(1) ⊗ OR̄(a). Let Zs

a (resp. Zss
a ) be the set of GIT stable

(resp. semistable) points under OZ(a). Similarly, let R̄s
a (resp. R̄ss

a ) be the set
of GIT stable (resp. semistable) points under OR̄(a). It is now well-known that
R̄s

a = R̄ss
a ⊂ R is the set Rs := {OX0(−N)P (N) → F → 0 |F is stable}. It is
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standard that θ̄−1(R̄s
a) ⊂ Zs

a ⊂ Zss
a ⊂ θ̄−1(R̄ss

a ) when a is large enough, where
θ̄ : Z → R̄ induced by the projection H̄ × R̄ → R̄ which coincides with θ on
H. By Proposition 1.2, θ is proper, we have θ̄−1(R̄s

a) = θ̄−1(R̄ss
a ) = θ−1(Rs).

Thus Zss
a = Zs

a = θ−1(Rs). The projective variety structure on G(r, d) of [NS] is
GX0(r, d) = Zs

a//SL(P (N)). We will show that GX0(r, d) is also the coarse moduli
space of the functor defined in [KL] where the coarse moduli space exists as a
separated and proper algebraic space.

Definition 1.3. A pair (Xk, E) is called semistable if deg(E|Ri) > 0 for all i and
for any subsheaf F ⊂ E we have

χ(F ) ≤ χ(E)
r

rank(F |X0r{x0}).

(Xk, E) is called stable if it is semistable and when rank(F |X0r{x0}) 6= 0

χ(F ) <
χ(E)

r
rank(F |X0r{x0}).

Remark 1.4. In [KL], (Xk, E) is called semistable (resp. stable) if deg(E|Ri
) > 0

for all i and for any subsheaf F ⊂ E we have χ(F ) ≤ χ(E)
r rε(F ) (resp. <), where

ε > 0 is a sufficiently small rational number and rε(F ) := (1−εk)rank(F |X0r{x0})+
ε
∑k

i=1 rank(F |Ri
). This ε-stability makes sense only when χ(E) > 0: For any line

bundle L ⊂ E|Ri
, the ε-stability implies deg(L) − 1 < χ(E)

r ε ≤ 0 when χ(E) ≤ 0,
which contradicts to deg(E|Ri

) > 0. If we assume (r, χ(E)) = 1 and χ(E) > 0,
then the two stability are equivalent.

Lemma 1.5. If (Xk, E) is stable, then E|R is strictly standard, i.e., on each
component Ri of R, we have E|Ri = Oai

Ri
⊕ ORi(1)r−ai and ai < r. Moreover,

H0(E|R(−x1 − x2)) = 0.

Proof. Let p1, p2 be the intersection points of Ri with other components of R. Use
stability to any line bundle L ⊂ E|Ri

, we have χ(L(−p1 − p2)) = deg(L) − 1 ≤ 0.
On the other hand, let F be the kernel of surjection E → E|Ri

→ L. Then, by
stability of E, χ(L) = χ(E)− χ(F ) > 0. Thus 0 ≤ deg(L) ≤ 1.

If there is s ∈ H0(E|R(−x1 − x2)) with s 6= 0, then s generates a subsheaf
L ⊂ E|R(−x1 − x2) ⊂ E with χ(L) ≥ 1. By stability of E, χ(L) ≤ 0. This is a
contradiction.

Proposition 1.6. Let π : Xk → X0 be the canonical morphism contracting the
chain R of projective lines. If (Xk, E) is semistable (resp. stable), then π∗(E) is
semistable (resp. stable). If E|R is strictly positive and π∗(E) is semistable (resp.
stable). then (Xk, E) is semistable (resp. stable).

Proof. Assume k > 0, let Xk = X̃0 ∪ R, X̃0 ∩ R = {x1, x2}, Ẽ = E|X̃0
, F̃ = E|R.

Consider E being obtained by isomorphisms F̃x′1

θ1−→ Ẽx1 , F̃x′2

θ2−→ Ẽx2 . Then

H0(R, F̃ )
s 7→(s(x′1),s(x

′
2))−−−−−−−−−−→ F̃x′1

⊕ F̃x′2

θ1⊕θ2−−−−→ Ẽx1 ⊕ Ẽx2

gives the GPB on X̃0, which defines π∗(E) as follows: the canonical exact sequence
0 → F̃ (−x1 − x2) → E → Ẽ → 0 induces the defining sequence

0 → π∗(E) → π∗(Ẽ) → x0H
1(F̃ (−x1 − x2)) → 0.
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It is enough to show that this GPB is semistable (resp. stable) when (Xk, E)
semistable (resp. stable). For any subsheaf Ẽ′ ⊂ Ẽ (on X̃0), let ji : Ẽ′

xi
→ Ẽxi

and

K = {s ∈ H0(R, F̃ ) | (θ1(s(x′1)), θ2(s(x′2))) ∈ j1(Ẽx1)⊕ j2(Ẽx2)}.

Then, if r1 = dim(j1(Ẽ′
x1

)), r2 = dim(j2(Ẽ′
x2

)), it is enough to show

χ(Ẽ′) + dim(K)− r1 − r2

rank(Ẽ′)
≤ χ(Ẽ) + dim(H0(R, F̃ ))− 2r

r
(resp. <).

Let K ⊂ F̃ be the subsheaf generated by K ⊂ H0(R, F̃ ) (thus H1(K) = 0), we are
going to glue Ẽ′ and K into a subsheaf E′ ⊂ E. By the choice of K, the diagram

F̃x′1
⊕ F̃x′2

θ1⊕θ2−−−−→ Ẽx1 ⊕ Ẽx2x x
j′1(Kx′1

)⊕ j′2(Kx′2
) θ1⊕θ2−−−−→ j1(Ẽ′

x1
)⊕ j2(Ẽ′

x2
)

is commutative, where j′i : Kx′i
→ F̃x′i

is the map induced by K ⊂ F̃ . Let ϕ :
X̃0tR → Xk be the gluing morphism. Then there is a subsheaf E′ ⊂ E defined by

0 → E′ → ϕ∗(K ⊕ Ẽ′) → x1j1(Ẽ
′
x1

)⊕ x2j2(Ẽ
′
x2

) → 0.

Since χ(E′) = χ(Ẽ′) + χ(K) − r1 − r2 = χ(Ẽ′) + dim(H0(R,K)) − r1 − r2 and
χ(E) = χ(Ẽ)+dim(H0(R, F̃ ))−2r, semistability (resp. stability) of (Xk.E) implies

χ(Ẽ′) + dim(H0(R,K))− r1 − r2

rank(Ẽ′)
≤ χ(Ẽ) + dim(H0(R, F̃ ))− 2r

r
(resp. <).

Thus π∗(E) is semistable (resp. stable).
Assume π∗(E) semistable (resp. stable), for any E1 ⊂ E, we need to show

χ(E1) ≤
χ(E)

r
rank(E1|X̃0

)

(resp. χ(E1) < χ(E)
r rank(E1|X̃0

) when rank(E1|X̃0
) 6= 0). Consider exact sequence

0 → F̃ (−x1 − x2) → E → Ẽ → 0,

let Ẽ1 ⊂ Ẽ be the image of E1 and K ⊂ F̃ (−x1 − x2) be the kernel of E1 → Ẽ1.
Then we have 0 → π∗(E1) → π∗(Ẽ1) → R1π∗(K) = x0H

1(K) since π∗F̃ (−x1 −
x2) = 0. Thus χ(E1) = χ(Ẽ1) + χ(K) = χ(π∗Ẽ1) − dim(H1(K)) ≤ χ(π∗E1). The
assumption of E|R being positive implies χ(π∗E) = χ(E). Then the semistability
(resp. stability) of π∗(E) implies the semistability (resp. stability) of (Xk, E).

For any scheme T , a family (XT , ET ) of stable Gieseker bundles of rank r and
degree d over T consists (1) a flat family fT : XT → T of curves Xk (0 ≤ k ≤ r)
with the canonical morphism π : XT → X0×T contracting the chains of projective
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lines such that fT = pT · π where pT : X0 × T → T is the projection, (2) a rank r
vector bundle ET on XT such that on each fiber ET is stable of Euler characteristic
χ = d + r(1− g). Two families (XT , ET ) and (X ′

T , E ′T ) are equivalent if there is an
T -isomorphism σT : XT → X ′

T and a line bundle LT on T such that

π = π′ · σT , σ∗T (E ′T ) ∼= ET ⊗ f∗T (LT ).

Define the moduli functor

GVs(r, χ) : {Schemes} → {Sets},

for any scheme T , GVs(r, χ)(T ) is the set of equivalence classes of families (XT , ET )
of stable Gieseker bundles of rank r and Euler characteristic χ = d + r(1− g).

Theorem 1.7. When (r, χ) = 1, the projective variety GX0(r, d) corepresents the
functor GVs(r, χ). That is, there is a natural transformation

Φ : GVs(r, χ) → Hom( • , GX0(r, d))

of functors such that for any other scheme M and any other natural transformation

Φ′ : GVs(r, χ) → Hom( • , M)

there is a unique morphism t : GX0(r, d) → M satisfying Φ′ = h(t) · Φ.

Proof. To define Φ, we define for any scheme T the map

ΦT : GVs(r, χ)(T ) → Hom(T,GX0(r, d)).

For any (XT , ET ) ∈ GVs(r, χ)(T ), let {Ti}i∈I be an affine covering of T such that
fT∗ET (N) is trivial on each Ti. If we fix a trivialization on each Ti, we get morphisms
φ(XTi

,ETi
) : Ti → Zs

a such that ETi
is the pullback of the universal quotient CP (N)⊗

π∗OX0(−N)
q−→ E → 0 on C. It is clear that these morphisms define a morphism

φ(XT ,ET ) : T → Zs
a//SL(P (N)) = GX0(r, d)

since the dependences of trivializations are precisely modulated by the group ac-
tion. Define ΦT ((XT , ET )) = φ(XT ,ET ) ∈ Hom(T,GX0(r, d)), we get the natural
transformation

Φ : GVs(r, χ) → Hom( • , GX0(r, d)).

For any other scheme M and any other natural transformation

Φ′ : GVs(r, χ) → Hom( • , M),

the unique morphism t : GX0(r, d) → M is induced by the morphism Φ′Zs
a
((C, E)) ∈

Hom(Zs
a,M), where (C, E) ∈ GVs(r, χ)(Zs

a) is the universal object.
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§2 The normalization of Generalized Gieseker moduli spaces

Recall that H ⊂ HilbP1(X0 × Gr(P (N), r)) is the SL(P (N))-stable subscheme
parametrizes the curves in Gr(P (N), r) of type Xk, and C ⊂ X0×Y ×Gr(P (N), r)
is the universal curve. The action of SL(P (N)) on X0 ×H×Gr(P (N), r) induces
clearly an action on C such that the projection p2 : C → H is a SL(P (N))-linear
morphism. It is known that the subscheme H̃ ⊂ C defined by the first Fitting ideal
of the sheaf Ω1

C/H is the normalization of H (See [K2], proof of Theorem 4.9).

Lemma 2.1. The smooth variety H̃ represents a functor

Ỹ : (C-schemes) → (Sets),

where Ỹ(T ) is defined to be the set of pairs (CT , sT ), CT ∈ Y(T ) and sT : T → CT

is a section of nodes in the fibres of CT → T .

Proof. Straightforward.

The normalization p2 : H̃ → H is a SL(P (N))-linear morphism. Recall in
Section 1 we have compactified H by a projective variety Z and have chosen an
ample line bundle OZ(a) so that Zss

a = Zs
a ⊂ H and GX0(r, d) = Zs

a//SL(P (N)).
We can similarly compactify H̃ by a projective variety Z̃ and choose an ample line
bundle OZ̃(a) so that Z̃ss

a = Z̃s
a = p−1

2 (Zs
a) ⊂ H̃. Thus NX̃0

(r, d) = Z̃s
a//SL(P (N))

is the normalization of GX0(r, d). The smooth projective variety NX̃0
(r, d) itself is

a moduli space of marked stable Gieseker bundles that we are going to define.
For any scheme T , a family (XT , ET , sT ) of marked stable Gieseker bundles of

rank r and degree d over T consists (1) a flat family fT : XT → T of curves Xk

(0 ≤ k ≤ r) with the canonical morphism π : XT → X0 × T contracting the chains
of projective lines such that fT = pT · π where pT : X0 × T → T is the projection,
(2) a rank r vector bundle ET on XT such that on each fiber ET is stable of Euler
characteristic χ = d + r(1− g), (3) a section sT : T → XT of nodes in the fibres of
fT : XT → T . Two families (XT , ET , sT ) and (X ′

T , E ′T , s′T ) are equivalent if there is
an T -isomorphism σT : XT → X ′

T and a line bundle LT on T such that

π = π′ · σT , σT · sT = s′T , σ∗T (E ′T ) ∼= ET ⊗ f∗T (LT ).

Define the moduli functor

GVms(r, χ) : {Schemes} → {Sets},

for any scheme T , GVms(r, χ)(T ) is the set of equivalence classes of families of
marked stable Gieseker bundles of rank r and Euler characteristic χ = d+ r(1− g).

Theorem 2.2. When (r, χ) = 1, the projective variety NX̃0
(r, d) corepresents the

functor GVms(r, χ). That is, there is a natural transformation

Φ : GVms(r, χ) → Hom( • , NX̃0
(r, d))

of functors such that for any other scheme M and any other natural transformation

Φ′ : GVms(r, χ) → Hom( • , M)
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there is a unique morphism t : NX̃0
(r, d) → M satisfying Φ′ = h(t) · Φ.

Proof. Straightforward and similarly with the proof of Theorem 1.7.

In the rest of this section, we will give another construction of NX̃0
(r, d). In

fact, we will construct a sequence {Mα}0<α<1 of GIT quotients such that M1− is
NX̃0

(r, d) and M0+
is a fibre bundle over UX̃0

(r, d) with fibre being the wonderful
compactification of GL(r), where `− (resp. `+) denote rational numbers which are
smaller (resp. bigger) than ` and are sufficiently closing to `. We give firstly an
interpretation of the functor GVms(r, χ) from another point of view.

Recall X̃0 being the normalization of X0 and x1, x2 being the two preimages of
the node. Follow the notation of [K2], a modification of (X̃0, x1, x2) at x1 and x2

is a morphism of two pointed curves (Yn,m, y1, y2)
h−→ (X̃0, x1, x2) where

Yn,m = X̃0 ∪R′ ∪R′′, R′ =
n⋃

i=1

R′
i, R′′ =

m⋃
i=1

R′′
i

R′, R′′ are chains of P1s of length n, m such that h(R′) = x1, h(R′′) = x2, y1 ∈ R′
n,

y2 ∈ R′′
m are smooth points of Yn,m and R′ ∩ X̃0 = R′

1 ∩ X̃0 = {x1}, R′′ ∩ X̃0 =
R′′

1 ∩ X̃0 = {x2}. A GPB of rank r and degree d on Yn,m consists of a vector
bundle V of rank r and degree d on Yn,m with an isomorphism ϕ : Vy1

∼= Vy2 . Let
Γϕ ⊂ Vy1 ⊕ Vy2 be the graph of ϕ. Then we can define a marked Gieseker bundle
(Xn+m, y, E) of rank r and Euler characteristic χ = d + r(1− g) as follows

(1) Identify y1, y2 into a point y, we get j : (Yn,m, y1, y2) → (Xn+m, y).
(2) The bundle E on Xn+m is defined by exact sequence

0 −→ E −→ j∗(V ) −→ y
Vy1 ⊕ Vy2

Γϕ
−→ 0.

Follow [K2], (Yn,m, y1, y2, V, Γϕ) is called a Gieseker vector bundle data.

Definition 2.3. For any subsheaf V ′ ⊂ V , let r0(V ′) denote the rank of V ′|X̃0
.

When r0(V ′) 6= 0 and V/V ′ torsion free, let

µα(V ′) :=
χ(V ′)− (1− α)dim(V ′

y1
⊕ V ′

y2
)− αdim

V ′
y1
⊕V ′

y2
(V ′

y1
⊕V ′

y2
)∩Γϕ

r0(V ′)
.

Then the Gieseker vector bundle data (Yn,m, y1, y2, V, Γϕ) is called α-semistable
(resp. α-stable) if V has positive degree on each projective line,

µα(V ′) ≤ µα(V ) =
χ(V )− (2− α)r

r
(resp. <),

and χ(V ′)− dim
V ′

y1
⊕V ′

y2
(V ′

y1
⊕V ′

y2
)∩Γϕ

≤ 0 when r0(V ′) = 0.

Remark 2.4. For α ∈ [0, 1], there may exist V ′ ⊂ V with r0(V ′) 6= 0 such that the
equality in Definition 2.3 holds. These critical points form a finite subset Ir ⊂ [0, 1].
For any α ∈ [0, 1] r Ir, α-semistability is equivalent to α-stability. It is clear that 0
and 1 are not in Ir when (r, d) = 1.



REMARKS ON GIESEKER’S DEGENERATION AND ITS NORMALIZATION 9

Lemma 2.5. If (r, d) = 1, then (Yn,m, y1, y2, V, Γϕ) is 1−-stable if and only if the
associated marked Gieseker bundle (Xn+m, y, E) is stable.

Proof. A straightforward computation.

We can define familes of α-stable Gieseker vector bundle data over a scheme T
(See Definition 4.7 of [K2] for details). It consists of (1) a modification (Y, s1, s2, h)
of (X̃0, x1, x2) over T that is a commutative diagram

Y h−−−−→ X̃0 × T

fT

y y
T T

with two sections si : T → Y (i = 1, 2) such that (Yt, s1(t), s2(t), ht) is a modifica-
tion of (X̃0, x1, x2) for any t ∈ T , (2) a vector bundle V of rank r and degree d on Y
and an isomorphism ϕ : s∗1V ∼= s∗2V such that (Yt, s1(t), s2(t),Vt, ϕt) is α-stable for
any t ∈ T . Two families (Y, s1, s2, h,V, ϕ) and (Y ′, s′1, s′2, h′,V ′, ϕ′) are equivalent
if there is an T -isomorphism σT : Y → Y ′ and a line bundle LT on T such that
h = h′ ·σT , σT ·si = s′i (i = 1, 2) and σ∗T (V ′) ∼= V⊗f∗T (LT ), where the isomorphisms
satisfy the commutative diagram

(s′1)
∗V ′ = s∗1σ

∗
T (V ′) −−−−→ (s∗1V)⊗ LT

ϕ′
y ϕ⊗id

y
(s′2)

∗V ′ = s∗2σ
∗
T (V ′) −−−−→ (s∗2V)⊗ LT .

Define the functor
GVDα(r, χ̃) : {Schemes} → {Sets},

GVDα(r, χ̃)(T ) is the set of equivalence classes of families of α-stable Gieseker
vector bundle data of rank r and Euler characteristic χ̃ = χ + r.

Lemma 2.6. When α = 1−, the functor GVDα(r, χ̃) is canonically isomorphic to
the functor GVms(r, χ) of marked stable Gieseker bundles.

Proof. For any (Y, s1, s2, h,V, ϕ) ∈ GVDα(r, χ̃)(T ), by identifying the two sections
s1 and s2 (cf. [K2]), we get T -morphism j : (Y, s1, s2) → (X , s) and a vector bundle
E on X defined by

0 → E → j∗(V) → s(T )
s∗1V ⊕ s∗2V

Γϕ
→ 0.

By Lemma 2.5, (X , E , s) is a family of marked stable Gieseker bundles. This defines
the canonical isomorphism

GVDα(r, χ̃) → GVms(r, χ)

whose inverse is defined as follows: for any (X , E , s) ∈ GVms(r, χ)(T ), let

(Y, s1, s2)
h−→ X̃0 × T
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be the pull-back of (X , s) → X0 × T by the base change X̃0 × T → X0 × T , V be
the pull-back of E and ϕ the natural identification. Then, when α = 1−,

(Y, s1, s2, h,V, ϕ) ∈ GVDα(r, χ̃)(T ).

Let P̃ (N) = rN + χ̃, Q ⊂ QuotP̃ (OX̃0
(−N)P̃ (N)) be the open subscheme of

Quot scheme consisting of locally free quotients and F be the universal quotient on
X̃0×Q. Let P0 = P((Hom(Fx1 ,Fx2)⊕OQ)∨) → Q. It contains the open subvariety
V(Hom(Fx1 ,Fx2)

∨). For any scheme T , the T -valued points of V(Hom(Fx1 ,Fx2)
∨)

are the pairs (x, ξ) where x : T → Q is a morphism of schemes and ξ : x∗Fx1 →
x∗Fx2 is a morphism of OT -modules. For i ∈ [0, r−1], let Y ′

i ⊂ V(Hom(Fx1 ,Fx2)
∨)

be the closed subvariety whose T -valued points are (x, ξ) where ξ is of rank at
most i and let Y 0

i be the closure of Y ′
i in P0. Let Z0

0 be the complement of
V(Hom(Fx1 ,Fx2)

∨) inside P0 and define Z0
i to be the intersection of Y 0

r−i with
Z0

0 (i ∈ [1, r − 1]). Now H = KGL(Fx1 ,Fx2) may be defined as the result of the
following successive blowing ups:

H = KGL(Fx1 ,Fx2) = Pr−1 → Pr−2 → · · · → P1 → P0.

Here, P1 is the blow up of P0 along the union of Y 0
0 and Z0

n−1 (one might equally
well blow up first along Y 0

0 and then along Z0
n−1 or vice versa since these subvarieties

are disjoint). Now denote by Y 1
i , Z1

i the proper transforms of Y 0
i , Z0

i . Then Y 1
1

and Z1
n−2 are disjoint and smooth and P2 is the blow up of P1 along Y 1

1 ∪ Z1
n−2.

The general step consists in blowing up Pi along Y i
i ∪ Zi

n−i−1. According to [K1],
H = KGL(Fx1 ,Fx2) has a modular interpretation. The T -valued points of H =
KGL(Fx1 ,Fx2) consist of pairs (x, ξ), where x : T → Q is a morphism of schemes
and ξ is (an equivalence class of) a generalized isomorphism from x∗Fx1 to x∗Fx2 .
In [K2], Ivan Kausz proved further that the functor of Gieseker vector bundle data
is isomorphic to the functor of generalized isomorphisms. In particular, there is
firstly a modification (C −→ H, s1, s2)

h−→ (X̃0 × H, x1, x2) of (X̃0, x1, x2) over H
(see Definition 4.4 of [K2]), where si : H → C (i = 1, 2) are sections that map
(under h) to the sections {xi} × H (i = 1, 2). Secondly, there is an admissible
(E , ϕ) on C such that h•(E) ∼= F on X̃0 ×H.

Let G = Grassr(Fx1 ,⊕Fx2) → Q be the Grassmanian variety over Q which
parametrizes subbundles of rank r of Fx1 ⊕Fx2 . By Proposition 10.1 of [K1], there
is a proper birational Q-morphism

f : H = KGL(Fx1 ,Fx2) → G = Grassr(Fx1 ,⊕Fx2).

To see the birational morphism f : H → G, let p ∈ H be a closed point. Then
the fibre Cp = X̃0 ∪R′ ∪R′′ is the curve X̃0 attached two disjoint chains R′, R′′ of
rational lines at x1, x2 with two marked points y1 ∈ R′

n, y2 ∈ R′′
m, where

R′ =
n⋃

i=1

R′
i, R′′ =

m⋃
i=1

R′′
i

and x1 ∈ R′
1, x2 ∈ R′′

1 . The morphism h : Cp → X̃0 contracts the chains R′, R′′.
The pair (E , ϕ) is an admissible vector bundle E on Cp of rank r and degree d with
an isomorphism ϕ : Ey1 → Ey2 . Then, by definition,

h•(E) = (h∗E(−y1 − y2))(x1 + x2) := F .
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To see the GPB structure on F , note that R1h∗E(−y1 − y2) = 0, we have

0 → h∗E(−y1 − y2) → h∗E → ( x1Ey1)⊕ ( x2Ey2) → 0

where we use xV to denote Skyscraper sheaf at point x with fiber space V . The
canonical morphism h∗(E) → h∗(E)(x1 + x2) induces a morphism

h∗(E) → (h∗E(−y1 − y2))(x1 + x2) = F ,

thus a morphism ( x1Ey1)⊕ ( x2Ey2)
β−→ F|x1+x2 which gives the GPB structure

Γϕ ↪→ Ey1 ⊕ Ey2

β−→ Fx1 ⊕Fx2 .

The kernel of morphism β1 := β|Ey1
: Ey1 → Fx1 (resp. β2 : Ey2 → Fx2) is the

image of H0(E|R′(−x1)) → Ey1 (resp. H0(E|R′′(−x2)) → Ey2) that send any section
s ∈ H0(E|R′(−x1)) to s(y1) ∈ Ey1 (resp. s ∈ H0(E|R′′(−x2)) to s(y2) ∈ Ey2). Thus
β induces an injection β : Γϕ ↪→ Fx1 ⊕Fx2 . Now the image of f at p ∈ H is

f(p) = (F , β(Γϕ) ⊂ Fx1 ⊕Fx2) ∈ G.

Definition 2.7. A GPB (F ,K ⊂ Fx1⊕Fx2) is called α-semistable (resp. α-stable)
if for any proper subbundle F ′ ⊂ F one has

χ(F ′)− αdim
F ′x1

⊕F ′x2

K ∩ (F ′x1
⊕F ′x2

)
≤ (resp. < )

χ(F)− αr

r
r(F ′).

Proposition 2.8. The Gieseker vector bundle data (Cp, E , ϕ) is α-semistable (resp.
α-stable) if and only if the GPB f(p) = (F , β(Γϕ) ⊂ Fx1 ⊕ Fx2) is α-semistable
(resp. α-stable).

Proof. We prove firstly that α-semistability of (F , β(Γϕ) ⊂ Fx1 ⊕ Fx2) implies α-
semistability of (Cp, E , ϕ). To recall the definition of β : Ey1 ⊕Ey2 → Fx1 ⊕Fx2 (see
[K2]), consider the commutative diagram

h∗E(−y1 − y2) −−−−→ h∗E −−−−→ x1Ey1 ⊕ x2Ey2y y 0

y
h∗E(−y1 − y2)(x1 + x2) −−−−→ h∗E(x1 + x2) −−−−→ x1Ey1(x1)⊕ x2Ey2(x2)

where the vertical maps are induced by the canonical map OX̃0
→ OX̃0

(x1 + x2).
Thus the middle vertical map induces β′ : h∗E → h∗E(−y1 − y2)(x1 + x2) := F ,
which then induces β : Ey1 ⊕ Ey2 → Fx1 ⊕Fx2 through the commutative diagram

0 −−−−→ h∗E(−y1 − y2) −−−−→ h∗E −−−−→ x1Ey1 ⊕ x2Ey2 −−−−→ 0∥∥∥ β′
y β

y
0 −−−−→ h∗E(−y1 − y2) −−−−→ F −−−−→ x1Fx1 ⊕ x2Fx2 −−−−→ 0.
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For any E ′ ⊂ E with E/E ′ torsion free, if r0(E ′) = 0, it is clear that E ′ satisfies
the definition of α-semistability since E is admissible. Thus we assume r0(E ′) > 0.
Let F ′ = h∗E ′(−y1 − y2)(x1 + x2), then we have

0 −−−−→ h∗E ′(−y1 − y2) −−−−→ h∗E ′ −−−−→ x1E ′y1
⊕ x2E ′y2∥∥∥ β′

y β

y
0 −−−−→ h∗E ′(−y1 − y2) −−−−→ F ′ −−−−→ x1F ′x1

⊕ x2F ′x2
−−−−→ 0.

In particular, β maps E ′y1
⊕ E ′y2

to F ′x1
⊕F ′x2

, thus we have

(2.1) dim Γϕ ∩ (E ′y1
⊕ E ′y2

) ≤ dim β(Γϕ) ∩ (F ′x1
⊕F ′x2

).

Since R1h∗E(−y1 − y2) = 0, and R1h∗E ′(−y1 − y2) is a torsion sheaf, let r′ be the
rank of F ′, we have

(2.2) χ(E ′) ≤ χ(F ′) + dim(E ′y1
⊕ E ′y2

)− 2r′.

By using (2.1) and (2.2), note r0(E ′) = r′, we have

(2.3) µα(E ′) ≤
χ(F ′)− α dim

F ′
x1
⊕F ′

x2
β(Γϕ)∩(F ′

x1
⊕F ′

x2
)

r′
− 2(1− α).

When (F , β(Γϕ) ⊂ Fx1 ⊕Fx2) is α-semistable (resp. α-stable), we have

χ(F ′)− α dim
F ′

x1
⊕F ′

x2
β(Γϕ)∩(F ′

x1
⊕F ′

x2
)

r′
− 2(1− α) ≤ (<)

χ(F)− αr

r
− 2(1− α) = µα(E).

Thus the Gieseker vector bundle data (Cp, E , ϕ) is α-semistable (resp. α-stable).
To prove that α-semistability of (Cp, E , ϕ) implies α-semistability of (F , β(Γϕ) ⊂

Fx1 ⊕ Fx2), we describe the map β in detail. Let Tx1 ⊂ Ex1 (resp. Tx2 ⊂ Ex2)
be the image of H0(E|R′(−y1)) → Ex1 (resp. H0(E|R′′(−y2)) → Ex2) that sends a
section s to its value s(x1) (resp. s(x2)). Similarly, Ty1 ⊂ Ey1 (resp. Ty2 ⊂ Ey2)
is the image of H0(ER′(−x1)) (resp. H0(ER′′(−x2))). Let Ẽ = E|X̃0

, the canonical
sequece 0 → ER′(−x1 − y1)⊕ ER′′(−x2 − y2) → E(−y1 − y2) → Ẽ → 0 induces

0 → h∗E(−y1 − y2) → Ẽ → x1

Ex1

Tx1

⊕ x2

Ex2

Tx2

→ 0

such that h∗E(−y1 − y2) = F(−x1 − x2) is the Hecke modification of Ẽ at x1,
x2 along the subspaces Txi ⊂ Exi (note Ẽxi = Exi). In [KL], a homomorphism
ξ1 : Ey1 → Ex1/Tx1 (resp. ξ2 : Ey2 → Ex2/Tx2) is introduced, which assigns to each
c ∈ Ey1 (resp. c ∈ Ey2) the class [s(x1)] ∈ Ex1/Tx1 (resp. [s(x2)] ∈ Ex2/Tx2) for
some s ∈ H0(ER′) (resp. s ∈ H0(ER′′)) such that s(y1) = c (resp. s(y2) = c). The
homomorphism ξ = (ξ1, ξ2) : Ey1 ⊕ Ey2 →

Ex1
Tx1

⊕ Ex2
Tx2

makes the diagram

0 −−−−→ h∗E(−y1 − y2) −−−−→ h∗E −−−−→ x1Ey1 ⊕ x2Ey2 −−−−→ 0∥∥∥ y ξ

y
0 −−−−→ h∗E(−y1 − y2) −−−−→ Ẽ −−−−→ x1

Ex1
Tx1

⊕ x2

Ex2
Tx2

−−−−→ 0
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being commutative. Similarly, the canonical map Ẽ → Ẽ(x1 + x2) induces an
injection Ẽ i−→ F , thus an injection x1

Ex1
Tx1

⊕ x2

Ex2
Tx2

i−→ x1Fx1 ⊕ x2Fx2 satisfying

0 −−−−→ h∗E(−y1 − y2) −−−−→ Ẽ −−−−→ x1

Ex1
Tx1

⊕ x2

Ex2
Tx2

−−−−→ 0∥∥∥ i

y i

y
0 −−−−→ h∗E(−y1 − y2) −−−−→ F −−−−→ x1Fx1 ⊕ x2Fx2 −−−−→ 0.

Then it is easy to see that β′ : h∗E → F (resp. β : Ey1 ⊕ Ey2 → Fx1 ⊕ Fx2) is the

homomorphism h∗E → Ẽ i−→ F (resp. Ey1 ⊕ Ey2

ξ−→ Ex1
Tx1

⊕ Ex2
Tx2

i−→ Fx1 ⊕Fx2).

For any proper subbundle F ′ ⊂ F of rank r′, let Ẽ ′ = ker{Ẽ i−→ F → F/F ′}
(which is a subbundle of Ẽ since F/F ′ is a bundle). We still use Ẽ ′xi

⊂ Exi
to

denote the image of Ẽ ′xi ⊂ Ẽxi under the identification Ẽxi = Exi . Let B ⊂ Γϕ be
the subspace such that β(B) = β(Γϕ)∩ (F ′x1

⊕F ′x2
) and Bi ⊂ Eyi be projections of

B. Then it is easy to check that ξi(Bi) ⊂ σi(Ẽ ′xi
) under the canonical projection

Exi

σi−→ Exi
/Txi

. By Lemma 2.2 of [KL], there is a subsheaf E ′1 ⊂ ER′ (resp.
E ′2 ⊂ ER′′) such that Im{E ′1|x1 → ER′ |x1} = Ẽ ′x1 , Im{E ′1|y1 → ER′ |y1} = B1

(resp. Im{E ′2|x2 → ER′′ |x2} = Ẽ ′x2 , Im{E ′2|y2 → ER′′ |y2} = B2) and χ(E ′i) ≥
dim(Ẽ ′xi

)+dim(Bi)-dim σi(Ẽ ′xi
). Glue the subsheaves Ẽ ′ ⊂ E|X̃0

, E ′1 ⊂ ER′ , E ′2 ⊂
ER′′ together, one get a subsheaf E ′ ⊂ E such that r0(E ′) = rk(F ′) = r′ and

Im{E ′y1
⊕ E ′y2

→ Ey1 ⊕ Ey2} = B1 ⊕B2, χ(E ′) = χ(Ẽ ′) + χ(E ′1) + χ(E ′2)− 2r′.

Note χ(Ẽ ′)− dim σ1(Ẽ ′x1)−dim σ2(Ẽ ′x2) = χ(F ′)− 2r′, we have

(2.3) χ(E ′) ≥ χ(F ′)− 2r′ + dim(B1 ⊕B2).

Using (2.3) and β(B) = β(Γϕ) ∩ (F ′x1
⊕F ′x2

), one has

χ(F ′)− αdim
F ′

x1
⊕F ′

x2
β(Γϕ)∩(F ′

x1
⊕F ′

x2
)

r′
≤ µα(E ′) + 2(1− α).

Then µα(E ′) ≤ µα(E) (resp. µα(E ′) < µα(E)) implies

µα(E ′) + 2(1− α) ≤ (resp. < )
χ(F)− αr

r
.

Thus α-semistability (resp. α-stability) of (Cp, E , ϕ) implies α-semistability (resp.
α-stability) of (F , β(Γϕ) ⊂ Fx1 ⊕Fx2).

The action of PGL(P̃ (N)) on the Quot scheme induces actions on H and G
such that f : H → G is a PGL(P̃ (N))-equivariant morphism. Let Q̃ be the
closure of Q in the Quot scheme with universal quotient F̃ on X̃0 × Q̃. Let G̃ ⊂
Grassr(F̃x1 ⊕ F̃x2) be the closure of G and H̃ be the closure of H in P̃, where
P̃ is obtained by performing blowing ups of P((Hom(F̃x1 , F̃x2) ⊕ OQ̃)∨). Then it

is clear that H̃ and G̃ have the induced PGL(P̃ (N))-action. Let W ⊂ H̃ × G̃
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be the graph of the rational map f : H̃ → G̃ and p : W → G̃ the projection,
which is a PGL(P̃ (N))-equivariant morphism and p|H = f . Thus we have the
PGL(P̃ (N))-equivariant factorization

H↪→W

f

y p

y
G↪→G̃.

According to [B], there exist a family of polarizations Lα (0 < α < 1) on G̃ such
that GIT stability (resp. semistability) for Lα is equivalent to α-stability (resp.
α-semistability) of the corresponding GPB. Fix a polarization OW(1) and consider
the polarization Lα = OW(1)⊗ p∗(Lm

α ) on W. Then, when m is sufficiently large,
we have the following relationships of GIT stable (resp. semistable) locus

(2.4) p−1(G̃(Lα)s) ⊂ W(Lα)s ⊂ W(Lα)ss ⊂ p−1(G̃(Lα)ss)

by the general facts of GIT. Let Gs
α (resp. Gss

α ) be the open set of G consisting of
α-stable (resp. α-semistable) GPB, and let Hs

α (resp. Hss
α ) be the open set of H

consisting of α-stable (resp. α-semistable) Gieseker vector bundle data. Then, by
the results of [B], we have G̃(Lα)s = Gs

α and G̃(Lα)ss = Gss
α . Since f is proper,

we have p−1(Gs
α) = f−1(Gs

α), p−1(Gss
α ) = f−1(Gss

α ). By Proposition 2.8, we have

Lemma 2.9. For any 0 < α < 1, when m is large enough, we have

Hs
α ⊂ W(Lα)s ⊂ W(Lα)ss ⊂ Hss

α .

When α 6∈ Ir (the set of critical values), we have

Hs
α = W(Lα)s = W(Lα)ss = Hss

α .

Theorem 2.10. Let Mα := W(Lα)ss//PGL(P̃ (N)) be the GIT quotient. Then,
when α 6∈ Ir, Mα is the fine moduli space of α-stable Gieseker vector bundle data.

Proof. It is not difficult to check that two points of H are in the same orbit if and
only if the corresponding Gieseker vector bundle data are equivalent. When α 6∈ Ir,
by Lemma 2.9, Mα is a smooth projective variety whose closed points are precisely
the equivalent classes of α-stable Gieseker vector bundle data.

To show the existence of a universal object, we show the universal generalized
isomorphism from Fx1 to Fx2 on Hs

α = W (Lα)s descends to Mα, where F is the
pullback of the universal quotient. From the construction of universal generalized
isomorphism (see [K1]), it is enough to show the bundles Fxi and the divisors Zi,
Yi descend to Mα. To see this, note firstly the stabilizer of any point of Hs

α consists
of scales λ · I ⊂ GL(P̃ (N)), and H = KGL(Fx1 ,Fx2) is unchanged if we tensor F
by a line bundle on the Quot scheme. Then, by tensor F with a line bundle on the
Quot scheme, we can make any scale acting on F trivially since (χ, r) = 1. Thus
there is a universal generalized isomorphism on Hs

α that descends to Mα, which
gives a universal Gieseker vector bundle data on Mα by the construction of [K2].



REMARKS ON GIESEKER’S DEGENERATION AND ITS NORMALIZATION 15

References

[B] Bhosle, U. N., Generalized parabolic bundles and applications II, Proc. Indian Acad.

Sci.(Math. Sci.) 106 (1996), 403–420.
[BK] M. Brion and I. Kausz, Vanishing of top equivariant Chern classes of regular embeddings,

math.AG/0503196 (2005).

[Gi] D. Gieseker, A degeneration of the moduli space of stable bundles, J. Differential Geom.
19 (1984), 173–206.

[K1] Ivan Kausz, A modular compactification of the general linear group, Doc. Math. 5 (2000),

553–594.
[K2] Ivan Kausz, A Gieseker type degeneration of moduli stacks of vector bundles on curves,

math.AG/0201197 (2002), 1–59.
[KL] Young-Hoon Kiem and Jun Li, Vanishing of the top Chern classes of the moduli of vector

bundles, math.AG/0403033 (2004).

[NS] D.S. Nagaraj and C.S. Seshadri, Degenerations of the moduli spaces of vector bundles on
curves II. Generalized Gieseker moduli spaces, Proc. Indian Acad. Sci.(Math. Sci.) 109

(1999), 165–201.

[Tei] M. Teixidor, Brill-Noether theory for stable vector bundles, Duke Math. J. 62 (1991),
385–400.

Institute of Mathematics, Chinese Academy of Sciences, Beijing 100080, China

E-mail address: xsun@math.ac.cn


