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Abstract. In this paper we consider the solution of Hermitian positive definite block-Toeplitz
systems with small size blocks. We propose and study block diagonal and Schur complement pre-
conditioners for such block-Toeplitz matrices. We show that for some block-Toeplitz matrices, the
spectra of the preconditioned matrices are uniformly bounded except for a fixed number of outliers
and this fixed number depends only on the size of block. Hence conjugate gradient type meth-
ods, when applied to solving these preconditioned block-Toeplitz systems with small size blocks,
converge very fast. Recursive computation of such block diagonal and Schur complement precon-
ditioners are considered by using the nice matrix representation of the inverse of a block-Toeplitz
matrix. Applications to block-Toeplitz systems arising from least squares filtering problems and
queueing networks are presented. Numerical examples are given to demonstrate the effectiveness of
the proposed method.
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1. Introduction. In this paper we consider the solution of a Hermitian positive
definite block-Toeplitz (BT) system with small size blocks

An,mX = B (1.1)

where X and B are mn-by-m matrices and

An,m =













A0 A−1 · · · A1−n

A1 A0
. . .

...
...

. . .
. . . A−1

An−1 · · · A1 A0













where each Aj is an m-by-m matrix with Aj = A∗
−j and m is much smaller than n.

Here “∗” denotes the conjugate transpose. This kind of linear systems arises from
many applications such as the multichannel least squares filtering in time series [33],
signal and image processing [27] and queueing system [15]. We will discuss these
applications, in particular the least squares filtering problems and queueing networks
in Section 5.

Recent research on using the preconditioned conjugate gradient method as an
iterative method for solving n-by-n Toeplitz systems has brought much attention. One
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of the main important results of this methodology is that the complexity of solving a
large class of Toeplitz systems can be reduced to O(n log n) operations provided that
a suitable preconditioner is chosen under certain conditions on the Toeplitz matrix
[10]. Circulant preconditioners [5, 6, 11, 13, 14, 24, 32, 37, 40], banded-Toeplitz
preconditioners [7] and multigrid methods [8, 17] have been proposed and analyzed.
In these papers, the diagonals of the Toeplitz matrix are assumed to be the Fourier
coefficients of a certain generating function.

In the literature, there are some papers [25, 28, 29, 34, 35, 36, 38] discussing
about iterative block-Toeplitz solvers. In [28, 35, 36], they considered n-by-n block
Toeplitz matrices with m-by-m blocks generated by a Hermitian matrix-valued gen-
erating function and analyzed the associated problem of preconditioning using pre-
conditioners generated a nonnegative definite, not essentially singular, matrix-valued
functions. In [25, 29, 34], they considered block-Toeplitz-Toeplitz-block matrices and
studied block band-Toeplitz preconditioners. In [38], multigrid methods were ap-
plied to solving block-Toeplitz-Toeplitz-block systems. In the above methods, the
underlying generating functions are assumed to be known in order to construct the
preconditioners.

In this paper, we also consider block-Toeplitz matrices An,m generated by a
matrix-valued function:

Fm(θ) = [fu,v(θ)]1≤u,v≤m,

where fu,v(θ) are 2π-periodic functions. Under this assumption, the block Aj of An,m

is given by

Aj =
1

2π

∫ π

−π

Fm(θ)e−ijθdθ.

When Fm(θ) is nonnegative definite and is not essentially singular, the associated
block-Toeplitz matrix An,m is positive definite [28, 35]. For such block-Toeplitz ma-
trices, Serra [35] has investigated block-Toeplitz preconditioners and studied the spec-
tral property of these preconditioned matrices. He proved that if the block-Toeplitz
preconditioner is generated by Gm(θ), the generalized Rayleigh quotient, related to
matrix functions Fm(θ) and Gm(θ) is contained in a set of the form (c1, c2) with 0 < c1

and c2 < ∞, then the preconditioned conjugate gradient (PCG) method requires only
a constant number of iterations in order to solve, within a preassigned accuracy, the
given block-Toeplitz system.

In [31], Ng et al. have proposed to use recursive-based PCG methods for solving
Toeplitz systems. The idea is to use a principal submatrix of a Toeplitz matrix as
a preconditioner. The inverse of the preconditioner can be constructed recursively
by using the Gohberg-Semencul formula. They have shown that this method is com-
petitive with the method of circulant preconditioners. In this paper, we study block
diagonal and Schur complement preconditioners for block-Toeplitz systems. We note
that there is a natural partitioning of the block-Toeplitz matrix in 2-by-2 blocks as
follows:

An,m =

(

A(1,1) A(1,2)

A(2,1) A(2,2)

)

. (1.2)

Here A(1,1) and A(2,2) are the principal submatrices of An,m. They are also block-
Toeplitz matrices generated by the same generating function of An,m. Therefore it is
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natural and important to examine if the corresponding system

(

A(1,1) A(1,2)

A(2,1) A(2,2)

) (

X1

X2

)

=

(

B1

B2

)

(1.3)

can be solved efficiently by exploiting this partitioning. Here we consider precondi-
tioning An,m by a block diagonal matrix

Bn,m =

(

A(1,1) 0
0 A(2,2)

)

.

Since both A(1,1) and A(2,2) are block-Toeplitz matrices generated by the same gen-
erating function Fm(θ), we particularly consider Bn,m in the following form:

Bn,m =

(

An/2,m 0
0 An/2,m

)

.

Here without loss of generality, we may assume n is even. We note that if An,m

is positive definite, then Bn,m is also positive definite and the eigenvalues of the
preconditioned matrix B−1

n,mAn,m lie in the interval (0, 2).
On the other hand, the Schur complement arises when we use a block factorization

of (1.2). The linear system (1.3) becomes

(

I 0

A(2,1)(A(1,1))−1 I

) (

A(1,1) A(1,2)

0 Sn,m

) (

X1

X2

)

=

(

B1

B2

)

, (1.4)

where

Sn,m = A(2,2) − A(2,1)(A(1,1))−1A(1,2).

We see that the method requires the formation of the Schur complement matrix.
Therefore we consider approximating Sn,m by A(2,2) = An/2,m and study the precon-
ditioner of the form:

Cn,m =

(

I 0
A(2,1)(A(1,1))−1 I

) (

A(1,1) A(1,2)

0 A(2,2)

)

=

(

A(1,1) A(1,2)

A(2,1) A(2,2) + A(2,1)(A(1,1))−1A(1,2)

)

. (1.5)

We note that if An,m is positive definite, then Cn,m is also positive definite and the
eigenvalues of the preconditioned matrix C−1

n,mAn,m are inside of the interval (0, 1].
In particular, there are at least mn/2 eigenvalues of the preconditioned matrix being
equal to one.

The main results of this paper is that if the generating function Fm(θ) is Hermitian
positive definite, and is spectrally equivalent to

Gm(θ) = [gu,v]1≤u,v≤m

where gu,v are trigonometric polynomials, then the spectra of the preconditioned
matrices B−1

n,mAn,m and C−1
n,mAn,m are uniformly bounded except for a fixed number

of outliers where the number of outliers depends only on m. Hence the conjugate
gradient type methods, when applied to solving these preconditioned block-Toeplitz
systems, converge very quickly, especially when m is small.
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We remark the construction of our preconditioners does not require the underly-
ing matrix generating functions. However, the inverse of block-Toeplitz matrix A(1,1)

is required. Using the same idea in [31], we employ Gohberg-Semencul formula to
represent the form of the inverse of A(1,1), and apply a recursive method to construct
the inverse of A(1,1). It is important to note that we do not directly use the Gohberg-
Semencul formula to generate the solution of the original block-Toeplitz system. We
remark that the solution results are not accurate when the block-Toeplitz matrices
are ill-conditioned. Indeed we use the Gohberg-Semencul formula to generate a pre-
conditioner, and then use the preconditioned conjugate gradient method with this
preconditioner to compute the solution of the original system iteratively.

The outline of this paper is as follows. In §2, we analyze the spectra of the
preconditioned matrices. In §3, we describe the recursive algorithms for block diagonal
and Schur complement preconditioners. Numerical results are given in §4 to illustrate
the effectiveness of our approach. Finally, concluding remarks are given in §5 to
address further research issues.

2. Analysis of Preconditioners. In this section, we analyze the spectra of the
preconditioned matrices B−1

m,nAn,m and C−1
n,mAn,m.

We first note that since An,m is positive definite, we have the following results
given in [1, pp.374-377].

Lemma 2.1. Let x and y be mn/2-vector. Define

γ = sup
x,y

x∗A
(1)
n/2,my

√

x∗An/2,mx1 · y∗An/2,my
.

If An,m is Hermitian and positive definite, then γ < 1. In particular, we have

γ2 = sup
y

y∗A2,1
n/2,mA−1

n/2,mA1,2
n/2,my

y∗An/2,my
.

Using Lemma 2.1 and the assumption that An,m is Hermitian and positive defi-
nite, we have the following results.

• The eigenvalues of the preconditioned matrix B−1
n,mAn,m lie inside the interval

(0, 2). Also if µ is an eigenvalue of B−1
n,mAn,m, then 2−µ is also an eigenvalue

of B−1
n,mAn,m.

• The eigenvalues of C−1
n,mAn,m are inside the interval (0, 1]. Moreover, at least

mn/2 eigenvalues of C−1
n,mAn,m are equal to 1.

We then show that the eigenvalues of B−1
n,mAn,m and C−1

n,mAn,m are uniformly
bounded except for a fixed number of outliers for some generation functions Fm(θ).
We first let

En(θ) = [eu,v(θ)]1≤u,v≤n where eu,v(θ) = e−i(u−v)θ.

The block-Toeplitz matrix An,m can be expressed in terms of its generating function:

An,m =
1

2π

∫ π

−π

En(θ) ⊗ Fm(θ)dθ. (2.1)

Similarly, the block diagonal preconditioner can be expressed as follows:

Bn,m =
1

2π

∫ π

−π

(

En/2(θ) 0
0 En/2(θ)

)

⊗ Fm(θ)dθ. (2.2)
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We note that there exists a permutation matrix Pn,m such that

P t
n,mAn,mPn,m = Ãn,m =

1

2π

∫ π

−π

Fm(θ) ⊗ En(θ)dθ

and

P t
n,mBn,mPn,m = B̃n,m =

1

2π

∫ π

−π

Fm(θ) ⊗

(

En/2(θ) 0
0 En/2(θ)

)

dθ.

It is clear that Ãn,m and B̃n,m are Toeplitz-block (TB) matrices, and the spectra of

An,m and Ãn,m, and Bn,m and B̃n,m are the same. Since the spectra of B−1
n,mAn,m

and B̃−1
n,mÃn,m are the same, it suffices to study the spectral properties of B̃−1

n,mÃn,m.
We give the following two lemmas.
Lemma 2.2. Let A = [ai,j ]1≤i,j≤n and B = [bi,j ]1≤i,j≤m. Then for any m-by-n

matrices X = (x1,x2, . . . ,xn) and Y = (y1,y2, . . . ,yn), we have

vec(X)∗(A ⊗ B)vec(Y ) =
n

∑

u=1

n
∑

v=1

au,vx
∗
uByv (2.3)

where

vec(X) =











x1

x2

...
xn











and vec(Y ) =











y1

y2

...
yn











.

Lemma 2.3. Let x = (x1,x2, . . . ,xm) with

xl = (x(l−1)n+1, x(l−1)n+2, . . . , xln)t (1 ≤ l ≤ m),

and

p1(θ) = (p̌11(θ), p̌21(θ), . . . , p̌m1(θ))
t and p2(θ) = (p̌12(θ), p̌22(θ), . . . , p̌m2(θ))

t

with

p̌j1(θ) =

n′

∑

l=1

x(j−1)n+le
−i(l−1)θ and p̌j2(θ) = e−in′θ

n−n′

∑

l=1

x(j−1)n+n′+le
−i(l−1)θ.

If An,m is generated by Fm(θ), then we have

xtB̃n,mx =
1

2π

∫ π

−π

[p1(θ)
tFm(θ)p1(θ) + p2(θ)

tFm(θ)p2(θ)]dθ (2.4)

and

xtÃn,mx = xtB̃n,mx +
1

2π

∫ π

−π

[p1(θ)
tFm(θ)p2(θ) + p2(θ)

tFm(θ)p1(θ)]dθ. (2.5)
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Proof. We construct X = (xt
1,x

t
2, . . . ,x

t
m), i.e., x = vec(X). Using Lemma 2.2,

we obtain

vec(X)∗Ãn,mvec(X) =
1

2π

∫ π

−π

m
∑

u=1

m
∑

v=1

fu,v(θ)x∗
uEn(θ)xvdθ (2.6)

and

vec(X)∗B̃n,mvec(X) =
1

2π

∫ π

−π

m
∑

u=1

m
∑

v=1

fu,v(θ)x
∗
u

(

En/2(θ) 0
0 En/2(θ)

)

xvdθ. (2.7)

We note that

x∗
u

(

En/2(θ) 0
0 En/2(θ)

)

xv

=

n/2
∑

j=1

x(u−1)n+j

n/2
∑

l=1

x(v−1)n+lejl(θ) +

n
∑

j=n/2+1

x(u−1)n+j

n
∑

l=n/2+1

x(v−1)n+lejl(θ)

=

n/2
∑

j=1

x(u−1)n+je
−i(j−1)

n/2
∑

l=1

x(v−1)n+le
i(l−1) +

n
∑

j=n/2+1

x(u−1)n+je
−i(j−1)

n
∑

l=n/2+1

x(v−1)n+le
i(l−1)

= p̌u1(θ)p̌v1(θ) + p̌u2(θ)p̌v2(θ).

By using (2.7), one can obtain (2.4) directly. Similarly by using (2.6), (2.5) can also
be derived.

Next we show that the eigenvalues of B−1
n,mAn,m are uniformly bounded except for

a fixed number of outliers when Fm(θ) is Hermitian positive definite, and is spectrally
equivalent to Gm(θ) = [gu,v]1≤u,v≤m where gu,v are trigonometric polynomials. We
remark that the fixed number of outliers depends on m.

Theorem 2.4. Let Fm(θ) be Hermitian positive definite. Suppose Fm(θ) is spec-
trally equivalent to Gm(θ) = [gu,v]1≤u,v≤m where gu,v are trigonometric polynomials
and s is the largest degree of the polynomials in Gm(θ). Then there exist two positive
numbers α and β (α < β) independent of n such that for all n > 2s′ (s′ = ⌈s/2⌉), at
most 2ms′ eigenvalues of B̃−1

n,mÃn,m (or B−1
n,mAn,m) are outside the interval [α, β].

Proof. We note that there exist positive numbers γ1 and γ2 such that

0 < γ1 ≤
x∗Fm(θ)x

x∗Gm(θ)x
≤ γ2, ∀x ∈ IR

mn, ∀θ ∈ [0, 2π]. (2.8)

We define the following two sets Υ and Ω as follows:

Υ = {r : r = jn+n/2−s′, jn+n/2−s′+1, · · · , jn+n/2+s′−1 for j = 0, 1, · · · , m−1}

and

Ω = {z = (z1, z2, . . . , zmn)t | zk = 0 for k ∈ Υ}.
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We note that Ω is a (mn − 2ms′)-dimensional subspace in IRmn. It follows that for
x ∈ Ω and pu(θ) (u = 1, 2) defined in Lemma 2.3, we have

∫ π

−π

p1(θ)
tGm(θ)p2(θ)dθ =

∫ π

−π

m
∑

u=1

m
∑

v=1

p̌u1(θ)fu,v(θ))p̌v2(θ)dθ

=

∫ π

−π

m
∑

u=1

m
∑

v=1

fu,v(θ)e
in/2θ

n/2
∑

j=1

x(u−1)n+je
−i(j−1)θ

n/2
∑

j=1

x(v−1)n+n/2+je
i(j−1)θdθ

=

m
∑

u=1

m
∑

v=1

∫ π

−π

fu,v(θ)e
i(2s′+1)θ

n/2−s′

∑

j=1

x(u−1)n+je
−ijθ ·

·

n/2−s′

∑

j=1

x(v−1)n+j+s′ei(n/2−s′−1+j)θdθ = 0 (2.9)

and
∫ π

−π

p2(θ)
tGm(θ)p1(θ)dθ =

∫ π

−π

m
∑

u=1

m
∑

v=1

p̌u2(θ)(θ)fu,v(θ))p̌v1(θ)(θ)dθ

=

∫ π

−π

m
∑

u=1

m
∑

v=1

fu,v(θ)e
−n/2θ

n/2
∑

j=1

x(u−1)n+n/2+je
−i(j−1)θ

n/2
∑

l=1

x(v−1)n+le
i(l−1)θdθ

=
m

∑

u=1

m
∑

v=1

∫ π

−π

fu,v(θ)e
−i(2s′+1)θ

n/2−s′

∑

j=1

x(u−1)n+n/2+s′+je
−i(n/2−s′−1+j)θ ·

·

n/2−s′

∑

l=1

x(v−1)n+le
ijθdθ = 0. (2.10)

Since Fm(θ) − γ1Gm(θ) is positive semi-definite, we have
∫ π

−π

p1(θ)
t[Fm − γ1Gm(θ)](θ)p1(θ) + p2(θ)

t[Fm(θ) − γ1Gm(θ)]p2(θ)dθ

≥

∫ π

−π

p1(θ)
t[Fm − γ1Gm(θ)](θ)p2(θ) + p2(θ)

t[Fm(θ) − γ1Gm(θ)]p1(θ)dθ.

(2.11)

By using Lemma 2.3, (2.9), (2.10) and (2.11), we get

∣

∣

∣

∣

∣

xtT̃n,mx − xtB̃n,mx

xtB̃n,mx

∣

∣

∣

∣

∣

=

∣

∣

∣

∫ π

−π
(p1(θ)Fm(θ)p2(θ) + p2(θ)Fm(θ)(p1(θ)dθ

∣

∣

∣

∣

∣

∣

∫ π

−π(p1(θ)Fm(θ)p1(θ) + p2(θ))Fm(θ)(p2(θ)dθ
∣

∣

∣

=

∣

∣

∣

∫ π

−π
p1(θ)[Fm(θ) − γ1Gm(θ)]p2(θ) + p2(θ)[Fm(θ) − γ1Gm(θ)]p1(θ)dθ

∣

∣

∣

∣

∣

∣

∫ π

−π
p1(θ)Fm(θ)p1(θ) + p2(θ)Fm(θ)p2(θ)dθ

∣

∣

∣

.

≤

∣

∣

∣

∫ π

−π p1(θ)[Fm(θ) − γ1Gm(θ)]p1(θ) + p2(θ)[Fm(θ) − γ1Gm(θ)]p2(θ)dθ
∣

∣

∣

∣

∣

∣

∫ π

−π
p1(θ)Fm(θ)p1(θ) + p2(θ)Fm(θ)p2(θ)dθ

∣

∣

∣

≤ 1 −
γ1

γ2
∀x ∈ Ω.
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Therefore, we have

α =
γ1

γ2
≤

xtÃn,mx

xtB̃n,mx
≤ 2 −

γ1

γ2
= β, ∀x ∈ Ω.

It implies that there are at most 2ms′ eigenvalues of B̃−1
n,mÃn,m outside the interval

[α, β].
In [35], Serra explicitly constructed Gm(θ) by using eigen-decomposition of Fm(θ):

Fm(θ) = Q(θ)∗Λ(θ)Q(θ)

where Λ(θ) is a diagonal matrix containing the eigenvalues λj(Fm(θ)) (j = 1, . . . , m)
of Fm(θ). Suppose λj(Fm(θ)) has a zero at θj of even order νj . Then Gm(θ) is
constructed in the following way:

Gm(θ) =

m
∑

j=1

Q(θj)
∗Γ(θ)Q(θj),

where Γ(θ) is a diagonal matrix with

[Γ(θ)]kk =

{

(2 − 2 cos(θ))νj/2, k = j
1, otherwise.

It is clear that each entry of Gm(θ) is a polynomial. The largest degree of the poly-
nomials in Gm(θ) depends on the orders of the zeros of the eigenvalues of Fm(θ). It
has been shown that Fm(θ) is spectrally equivalent to Gm(θ), see for instance [35].

Similarly, we one show the eigenvalues of C−1
n,mAn,m are uniformly bounded except

for a fixed number of outliers, where this fixed number depends on m.
Theorem 2.5. Let Fm(θ) be Hermitian positive definite. Suppose Fm(θ) is spec-

trally equivalent to Gm(θ) = [gu,v]1≤u,v≤m where gu,v are trigonometric polynomials
and s is the largest degree of the polynomials in Gm(θ). Then exist two positive num-
bers α and β (α < β) independent of n such that for all n > 2s′ (s′ = ⌈s/2⌉), at most
ms′ eigenvalues of C̃−1

n,mÃn,m (or C−1
n,mAn,m) are outside the interval [α, β].

Proof. According to Theorems 2.2 and 2.3, when the eigenvalues of B−1
n,mAn,m

are equal to 1 − λ, the eigenvalues of C−1
n,mAn,m are given by 1 − λ2. Using Theorem

2.4, we can find two positive numbers α = (γ1/γ2)
2 and β = 1 such that the result

holds.

3. Recursive Computation of B−1
n,m and C−1

n,m. In the previous section, we
have shown that both Bn,m and Cn,m are good preconditioners for An,m. However,
the inverses of Bn,m and Cn,m involves the inverse of An/2,m. The computational
cost is still expensive. In this section, we present a recursive method to construct the
preconditioners Bn,m and Cn,m efficiently.

We remark that the inverse of a Toeplitz matrix can be reconstructed by a low
number of columns. Gohberg and Semencul [18] and Trench [39] showed that if the
(1,1)th entry of the inverse of a Toeplitz matrix is nonzero, then the first and last
columns of the inverse of the Toeplitz matrix are sufficient for this purpose. In [39] a
recursion formula was given in [18]. A nice matrix representation of the inverse well-
known as Gohberg-Semencul formula was presented. In [21], an inversion formula was
exhibited which works for every nonsingular Toeplitz matrix and uses the solutions
of two equations, (the so-called fundamental equations,) where the right-hand-side of

8



one of them is a shifted column of the Toeplitz matrix. Later Ben-Artzi and Shalom
[2], Labahn and Shalom [26], Ng et al. [30] and Heinig [20] studied the representation
when the (1,1)th entry of the inverse of a Toeplitz matrix is zero. In [31], we have
used the matrix representation of the inverse of a Toeplitz matrix to construct effective
preconditioners for Toeplitz matrices.

For block-Toeplitz matrices, Gohberg and Heinig [19] also extended the Gohberg-
Semencul formula to handle this case. It was shown that if An,m is nonsingular and
the following equations are solvable:

An,mU (n) = E(n) and An,mV (n) = F (n) (3.1)

with

U (n) =













U
(n)
1

U
(n)
2
...

U
(n)
n













, V (n) =













V
(n)
1

V
(n)
2
...

V
(n)
n













, E(n) =











Im

0
...
0











, F (n) =











0
...
0

Im











.

Here U
(n)
j and V

(n)
j are m-by-m matrices and Im is the identity matrix. Assume that

U
(n)
1 and V

(n)
n are nonsingular, the inverse of An,m can be expressed as follows:

A−1
n,m = Ψn,mWn,mΨ∗

n,m − Φn,mZn,mΦ∗
n,m (3.2)

where Ψn,m and Φn,m are mn-by-mn lower triangular block Toeplitz matrices given
respectively by

Ψn,m =



















U
(n)
1 0 · · · 0 0

U
(n)
2 U

(n)
1 0 0

... U
(n)
2 U

(n)
1 0

...

U
(n)
n−1

. . .
. . . 0

U
(n)
n U

(n)
n−1 · · · U

(n)
2 U

(n)
1



















and

Φn,m =



















0 0 · · · 0 0

V
(n)
1 0 0 0
... V

(n)
1 0 0

...

V
(n)
n−2

. . .
. . . 0

V
(n)
n−1 V

(n)
n−2 · · · V

(n)
1 0



















.

Moreover, Wn,m and Zn,m are block-diagonal matrices:

Wn,m =













(U
(n)
1 )−1 0

(U
(n)
1 )−1

. . .

0 (U
(n)
1 )−1
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Zn,m =













(V
(n)
n )−1 0

(V
(n)
n )−1

. . .

0 (V
(n)

n )−1













.

For the preconditioners B−1
n,m and C−1

n,m, the inverse of An/2,m can be represented
by the formula in (3.2). This formula can be obtained by solving the following two
linear systems:

An/2,mU (n/2) = E(n/2) and An/2,mV (n/2) = F (n/2).

These two systems can be solved efficiently by using the preconditioned conjugate gra-
dient (PCG) method with Bn/2,m or Cn/2,m as preconditioners. The inverse of An/4,m

involved in the preconditioners Bn/2,m and Cn/2,m can be recursively generated by
using (3.2) until the size of the linear system is sufficiently small. The procedures of
recursive computation of Bn,m and Cn,m are described as follows:

Procedure Input(An,m,n) Output(U (n), V (n))
If k ≤ N , then

solve two linear systems

Ak,mU (k) = E(k) and Ak,mV (k) = F (k)

exactly by direct methods;
else

compute U (k/2) and V (k/2) by calling the procedure with the input matrix
Ak/2,m and the integer k/2; construct A−1

k/2,m by using the output U (k/2)

and V (k/2) via the formula in (3.2);
solve the two linear systems

Ak,mU (k) = E(k) and Ak,mV (k) = F (k)

by using the preconditioned conjugate gradient method with Bk,m (or Ck,m)
as the preconditioner.

We remark that if each block of the block-Toeplitz matrix An,m is Hermitian, then
we only need to solve one linear system An,mU (n) = E(n) in order to represent the
inverse of the block-Toeplitz matrix. In this case, the solution V (n) can be obtained
by using U (n):

V (n) =













U
(n)
n

U
(n)
n−1
...

U
(n)
1













.

3.1. Computational Cost. The main computational cost of the method comes
from the matrix-vector multiplications An,mX , B−1

n,mX (or C−1
n,mX) in each PCG

iteration, where X is an mn-by-m vector. We note that An,mX can be computed
in 2m 2n-length FFTs by first embedding An,m into a 2mn-by-2mn block-circulant
matrix and then carrying out the multiplication by using the decomposition of the
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block-circulant matrix. Let Sn,m be the circulant matrix with m-by-m matrix block
element, one can find a permutation matrix Pn,m such that

Sn,m = (Si,j)m×m = P t
n,mWn,mPn,m

is a circulant-block matrix, where Si,j be n-by-n circulant matrix. Let Si,j(:, 1) de-
notes the first column of the matrix Si,j , it is known that Si,j can be diagonalized in
n log n length FFT, i.e. Si,j = F ∗Λi,jF , where F and F ∗ are the Fourier transform
matrix and the inverse Fourier transform matrix, and Λi,j = diag(F ·Si,j(:, 1)). Thus
we obtain

Sn,m = (I ⊗ F ∗)











Λ11 Λ11 · · · Λ1m

Λ21 Λ22 · · · Λ2m

...
...

...
...

Λm1 Λm2 · · · Λmm











(I ⊗ F )

= (I ⊗ F ∗)P tDP (I ⊗ F )

where D = diag(D1, D2, · · · , Dn) is a block diagonal matrix, and [Dk]ij = [Λij ]kk,
i.e., the (i, j)th entry of Dk is equal to the (k, k)th entry of Λij . Therefore, the
block-circulant matrix-vector multiplication can be obtained by

Sn,mX = P (I ⊗ F ∗)P tDP (I ⊗ F )P tX.

We note that it requires O(m2n log n) operations to compute the block diagonal matrix
D, the block diagonal matrix-vector multiplication requires O(m3n) operations. Thus
the overall multiplication requires O(m2n logn+m3n). For the preconditioner Bn,m or
Cn,m, we need to compute matrix-vector products A−1

n/2,mY , where Y is an mn/2-by-

m vector. According to (3.2), the inverse of a block-Toeplitz matrix can be written as
the product of lower-triangular block-Toeplitz matrices. Therefore, the matrix-vector
multiplication A−1

n/2,mY can be computed by using FFTs by embedding such lower-

triangular block-Toeplitz matrices into a block-circulant matrices. Such matrix-vector
multiplication requires O(m2n log n + m3n) operations.

Now we estimate the total cost of recursive computation for solving two linear
systems

An,mU (n) = E(n) and An,mV (n) = F (n).

For simplicity, we assume n = 2ℓ. Suppose the number of iterations required for
convergence in solving the two mnj-by-mnj linear systems

Anj ,mU (nj) = E(nj) and Anj ,mV (nj) = F (nj) where nj = 2ν−j+1

are given by cj for j = 1, . . . , L. We note that the smallest size of the system is equal
to N = n/2ν−L. Therefore the total cost of the recursive computations of Bn,m (or

Cn,m) is about
∑L

j=1 cjfj where fj denotes the cost of each PCG iteration where the
size of the system is nj . Since the cost of a nj-length FFT is roughly twice the cost
of a njm/2-length FFT, and the cost of each PCG iteration is O(m2nj log nj +m3nj)
operations. Hence the total cost of the recursive computation is roughly bounded by
O(maxj{cj(m

2n log n + m3n)}).
Next, we compute the operations required for the circulant preconditioners. For

the block-circulant matrix Sn,m, the solution of Sn,mZ = B can be obtain by:

Z = S−1
n,mB = P (I ⊗ F ∗)P tD−1P (I ⊗ F )P tB
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n B C M
128 9 4 10
256 9 5 10
512 10 5 10

Table 4.1

Number of iterations required for convergence.

In order to compute the inverse of D, O(m2n logn + m3n) operations are required.
Moreover, the matrix-vector multiplication requires O(m3n) operations, thus S−1

n,mB
can be computed in O(m2n log n + m3n) operations, which is the same complexity
of our proposed method. In next section, we show that our proposed method is
competitive to circulant preconditioners.

4. Numerical Results. In this section, we test our proposed method. The
initial guess is the zero vector. The stopping criteria is

‖rq‖2/‖r0‖2 ≤ 1 × 10−7,

where rq is the residual vector at the q-the iteration of the PCG method. We use
Matlab 6.1 to conduct the numerical tests. We remark that our preconditioners are
constructed recursively. For instance, when we solve A256,mU (256) = E(256), the
preconditioners are constructed by solving A128,mU (128) = E(128) and A64,mU (64) =
E(64) using the preconditioned conjugate gradient method with the stopping criteria
being τ , and using the direct solver for A32,mU (32) = E(32). In all the tests, the
coarsest level is set to be n = 32.

In the first test, we consider the following example of generating function [35]:
(

20 sin2(θ/2) |θ|5/2

|θ|5/2 20 sin2(θ/2)

)

.

Tables 4.1 shows the corresponding numbers of iterations required for the convergence
using our proposed preconditioners B and C. As a comparison, the numbers of
iterations by using the preconditioner M studied in [35] are also listed. Our proposed
preconditioners are competitive to the preconditioner studied in [35]. We also remark
that the construction of our proposed preconditioners does not require the knowledge
of the underlying matrix generating function of block-Toeplitz matrices.

In the second test, we consider the following four examples.
Example 1:

F3(θ) =





2θ4 + 1 |θ|3 θ4

|θ|3 3θ4 + 1 |θ|
θ4 |θ| 2θ4 + 1





Example 2:

F3(θ) =





θ4 + 1 |θ|3 |θ|
|θ|3 2θ4 + 1 θ2

|θ| θ2 5|θ|





Example 3:

F2(θ) =

(

8θ2 (sin θ)4

(sin θ)4 8θ2

)
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Example 4:

F3(θ) =





|θ| (sin θ)4 0
(sin θ)4 θ2 (sin θ)8

0 (sin θ)8 θ4





These generating functions are Hermitian matrix-valued functions. Also the gen-
erated block-Toeplitz matrices are positive definite. In Example 1, the generated
block-Toeplitz matrices are well-conditioned. For Examples 2-5, the generating func-
tions are singular at some points and therefore the corresponding block-Toeplitz ma-
trices are ill-conditioned.

In Tables 4.2–4.5, we give the number of iterations required for convergence by
using Bn,m and Cn,m as the preconditioners.

Here we set τ = 1×10−7 in the recursive calculation of the preconditioner and the
maximum number of iterations to be 1000. If the method does not converge within
1000 iterations, we specify “> 1000” in the tables. According to Tables 4.2–4.5, we
see that the number of iterations for the non-preconditioned systems (the column “I”)
increases when the size n increases. However, the number of iterations for the precon-
ditioned systems (the columns “B” and “C”) decreases or almost keep constant when
the size n increases in Examples 1–3. The performance of Schur complement precon-
ditioners C is generally better than that of block diagonal preconditioners B. We
also compare our preconditioners with block-circulant preconditioners, the columns
“S” and “T” are the number of iterations required for the Strang and the T. Chan
block-circulant preconditioners respectively. We note that the Strang block-circulant
preconditioner may not be positive definite for the ill-conditioned matrix. Indeed
there are several negative eigenvalues of the Strang block-circulant preconditioners in
Examples 3 and 4. Even the Strang circulant preconditioned system converges, the
solution may not be correct. We also see from Tables 4.4 and 4.5 that the T. Chan
block-circulant preconditioner does not work.

In [11, 13], Chan et al. have constructed “best” circulant preconditioners by
approximating the generating function with the convolution product that matches the
zeros of the generating function. They showed that these circulant preconditioners
are effective for ill-conditioned Toeplitz matrices. Here we also construct such “best”
block-circulant preconditioners (the column “Ki” and i refers to the order of the
kernel that we used) and test their performance. We note from Tables 4.2–4.5 that
our proposed preconditioners perform quite well. For Example 4, the method with
“best” block-circulant preconditioners do not converge within 1000 iterations.

Also we report the computational times required for convergence in Examples
1–4 in Tables 4.6–4.9 respectively. If the number of iterations is more than 1000, we
specify “∗∗” in the tables. We see that the computational times required by the block
diagonal preconditioner and the Schur complement preconditioner are less than those
of the block-circulant preconditioners especially when n is large. We also note from
the tables that the performance of the Schur complement preconditioner is better
than that of the block diagonal preconditioner.

To illustrate the fast convergence of the proposed method, in Table 4.10, we
calculate the number of eigenvalues within the small interval for n = 128 in Examples
1–4. We find that the spectra of the preconditioned matrices C−1

n,mAn,m and B−1
n,mAn,m

are more close to 1 than those of circulant preconditioners and no preconditioner.
Finally, we report that the numbers of iterations are about the same even when

the stopping criteria τ of the preconditioned conjugate gradient method at each level
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n I B C S T K4 K6 K8

64 111 13 6 13 12 12 12 12
128 124 12 6 13 12 12 13 13
256 133 9 4 13 12 13 13 13
512 135 8 4 13 13 12 13 12
1024 138 5 2 13 13 13 13 13
2048 139 2 1 13 13 13 13 13
4096 140 2 1 13 13 13 13 13

Table 4.2

Number of iterations required for convergence in Example 1.

n I B C S T K4 K6 K8

64 114 12 6 11 11 11 12 12
128 172 12 6 12 12 11 12 12
256 256 12 6 12 13 11 12 13
512 371 13 6 12 13 12 13 13
1024 526 13 6 12 14 12 13 14
2048 740 13 6 12 15 12 13 14
4096 > 1000 13 7 12 15 12 12 14

Table 4.3

Number of iterations required for convergence in Example 2.

n I B C S T K4 K6 K8

64 165 9 4 10 23 13 14 16
128 354 9 5 10 30 12 13 15
256 742 10 5 11 40 12 12 13
512 > 1000 10 5 11 54 12 12 13
1024 > 1000 10 5 11 > 1000 12 12 13
2048 > 1000 10 5 11 > 1000 12 12 13
4096 > 1000 10 6 11 > 1000 13 13 15

Table 4.4

Number of iterations required for convergence in Example 3.

n I B C S T K4 K6 K8

64 585 19 9 46 > 1000 22 > 1000 27
128 > 1000 20 10 > 1000 > 1000 > 1000 > 1000 > 1000
256 > 1000 24 11 > 1000 > 1000 > 1000 > 1000 > 1000
512 > 1000 30 13 > 1000 > 1000 > 1000 > 1000 > 1000
1024 > 1000 36 16 > 1000 > 1000 > 1000 > 1000 > 1000
2048 > 1000 39 25 > 1000 > 1000 > 1000 > 1000 > 1000
4096 > 1000 43 23 > 1000 > 1000 > 1000 > 1000 > 1000

Table 4.5

Number of iterations required for convergence in Example 4.

in the recursive calculation of the proposed preconditioners is 1× 10−3, 1× 10−4 and
1 × 10−7 for the proposed preconditioners.

Next we consider two applications to block-Toeplitz systems arising from multi-
channel least squares filtering and queueing networks.

Application I: Multichannel least squares filtering is a data processing method that

14



n I B C S T K4 K6 K8

64 0.51 0.28 0.38 0.21 0.20 0.20 0.20 0.20
128 0.70 0.50 0.38 0.28 0.26 0.26 0.28 0.28
256 1.13 0.78 0.49 0.59 0.54 0.59 0.59 0.59
512 2.15 1.31 0.99 1.21 1.21 1.11 1.21 1.11
1024 4.72 2.19 0.99 3.05 3.05 3.05 3.05 3.05
2048 11.63 4.79 1.18 10.94 10.94 10.94 10.94 10.94
4096 29.04 5.23 3.21 27.37 27.37 27.37 27.37 27.37

Table 4.6

Computational times required for convergence in Example 1.

n I B C S T K4 K6 K8

64 0.52 0.26 0.21 0.18 0.18 0.18 0.20 0.20
128 0.97 0.50 0.38 0.26 0.26 0.24 0.26 0.26
256 2.18 1.04 0.73 0.54 0.59 0.50 0.54 0.60
512 5.92 2.13 1.49 1.11 1.21 1.11 1.20 1.21
1024 17.98 5.70 2.94 2.82 3.29 2.82 3.05 3.29
2048 61.94 11.64 7.08 10.10 12.63 10.10 10.94 11.78
4096 ** 34.02 22.50 25.27 31.58 25.27 25.27 29.48

Table 4.7

Computational times required for convergence in Example 2.

n I B C S T K4 K6 K8

64 0.75 0.20 0.14 0.16 0.38 0.21 0.23 0.26
128 1.99 0.38 0.32 0.22 0.65 0.26 0.28 0.33
256 6.04 0.87 0.61 0.50 1.81 0.54 0.54 0.59
512 ** 1.64 1.24 1.02 5.01 1.11 1.11 1.21
1024 ** 4.39 2.45 2.58 ** 2.82 2.82 3.05
2048 ** 8.95 5.90 9.25 ** 10.10 10.10 10.94
4096 ** 26.17 19.29 23.16 ** 27.37 27.37 31.58

Table 4.8

Computational times required for convergence in Example 3.

n I B C S T K4 K6 K8

64 2.67 0.41 0.31 0.75 ** 0.36 ** 0.44
128 ** 0.83 0.64 ** ** ** ** **
256 ** 2.08 1.34 ** ** ** ** **
512 ** 4.92 3.22 ** ** ** ** **
1024 ** 15.79 7.83 ** ** ** ** **
2048 ** 34.91 29.50 ** ** ** ** **
4096 ** 112.53 73.93 ** ** ** ** **

Table 4.9

Computational times required for convergence in Example 4.

makes use of the signals from each of m channels. We represent this multichannel data
by xt, where xt is a column vector whose elements are the signals from each channel.
Since we are interested in digital processing methods, we suppose that the signals
are sampled at discrete, equally spaced time points which are represented by the time
index t. Without loss of generality, we require that t takes on successive integer values.
If we let xit represents the signal coming from the ith channel (i = 1, 2, · · · , m), the
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I B C S T K4 K6 K8

Example 1 2.60% 94.27% 98.44% 77.34% 30.99% 93.23% 87.76% 77.08%
Example 2 4.43% 94.79% 98.44% 84.90% 46.62% 94.27% 94.01% 85.16%
Example 3 0.00% 95.31% 99.22% 89.84% 56.64% 84.38% 81.64% 78.91%
Example 4 0.52% 93.23% 98.18% 81.77% 51.30% 79.95% 73.44% 70.05%

Table 4.10

The percentages of the number of eigenvalues within the interval of [0.99, 1.01] for n = 128.

multichannel signal can be written as

xt = (x1,t, x2,t, · · · , xm,t)
T .

The filter is represented by the coefficients

S1, S2, . . . , Sn

where each coefficient Sk (k = 1, 2, · · · , n) is an n-by-m matrix. The multichannel
signal xt received by the array system represents the input to the filter and the
resulting output of the filter is a multichannel signal, which we denote by the column
vector

yt = (y1,t, x2,t, · · · , xm,t)
T .

The relationship between input xt and output yt is given by the convolution formula

yt = S1xt + S2xt−1 + · · · + Snxt−n+1.

The determination of the filter coefficients is based on the concept of a desired output
denoted by a column vector

zt = (z1,t, z2,t, · · · , zm,t)
T .

On each channel (i = 1, 2, · · · , m), there will be an error between the desired output
zt and the actual output yt. The mean square value of this error is given by

E [(zt − yt)
2].

The sum of the mean square errors for all the channels is

m
∑

i=1

E [(zt − yt)
2].

The least squares determination of the filter coefficients requires that this sum is
minimum. This minimization leads to a set of linear equations











R0 R1 · · · Rn−1

R1 R0 · · · Rn−2

...
...

. . .
...

Rn−1 Rn−2 · · · R0





















S1

S2

...
Sn











=











G1

G2

...
Gn











, (4.1)

where

Rj = E [xtx
T
t−j ] and Gj = E [ztx

T
t−j+1].
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Fig. 4.1. Color image and data vectors.

Here Rj is an m-by-m matrix and is the autocorrelation coefficients of the input signal
xt and Gj is an n-by-m matrix and is the cross-correlation coefficients between the
desired output zt and the input signal xt.

In the test, a 128-by-128 color image is used to generate the data points. We
consider the pixel value of the color image to be xt (t = 1, 2, . . . , 1282), see Figure
4.1. We remark that color can be regarded as a set of three images in their primary
color components: red, green and blue. In the least squares filtering, there are three
channels, i.e., m = 3. Our task is to generate the multichannel least squares filters
such that the sum of the mean square errors for all the channels

m
∑

i=1

E{xt+1 − [S1xt + S2xt−1 + · · · + Snxt−n+1]
2}

is minimum. Such least squares filters have been commonly used in color image pro-
cessing for coding and enhancement [27]. Table 4.11 shows the number of iterations
required for convergence. Notice that the generating function of the block-Toeplitz
matrices are unknown in this case. However, the construction of the proposed precon-
ditioners only requires the entries of An,m and does not require the explicit knowledge
of the generating function Fm(θ) of An,m. We find that the generated block-Toeplitz
matrices are very ill-conditioned. Therefore, the number of iterations required for
convergence without preconditioning is very large, but the performance of the pre-
conditioners Bn,m and Cn,m are very good.

We also generate more synthetic multichannel data sets to test the performance of
our proposed method for larger m. Table 4.12 shows the number of iterations required
for convergence. The results show that our proposed preconditioner performs quite
well.

Application II: We next apply the preconditioning method to solve the steady-
state probability distribution of a Markovian overflow queueing network with batch
arrivals of customers. This is a non-symmetric problem. It is the 2-queue overflow
network considered in [12, 15]. The network consists of two queues with exogenous
Poisson batch arrivals and exponential servers. Whenever queue 2 is full, the arriving
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n m I B C S T K4 K6 K8

16 3 166 18 9 168 22 36 39 50
32 3 725 26 13 >1000 21 32 36 43
64 3 725 26 13 >1000 15 29 31 37
128 3 >1000 60 30 >1000 42 >1000 >1000 >1000
256 3 >1000 85 40 > 1000 > 1000 >1000 >1000 >1000
512 3 > 1000 95 44 > 1000 > 1000 >1000 >1000 >1000
1024 3 > 1000 101 51 > 1000 > 1000 >1000 >1000 >1000

Table 4.11

Number of iterations required for convergence.

n m I B C S T K4 K6 K8

16 6 473 26 13 503 23 45 52 66
32 6 958 30 15 > 1000 28 42 43 56
64 6 > 1000 39 18 > 1000 28 39 41 50
128 6 > 1000 50 25 > 1000 44 > 1000 > 1000 > 1000
16 9 731 38 18 945 31 58 62 81
32 9 > 1000 42 21 > 1000 35 55 58 72
64 9 > 1000 53 25 > 1000 35 59 65 75
128 9 > 1000 70 35 > 1000 68 > 1000 > 1000 > 1000
16 12 989 44 22 > 1000 36 65 71 94
32 12 > 1000 50 25 > 1000 40 63 66 87
64 12 > 1000 64 31 > 1000 42 75 81 > 1000
128 12 > 1000 103 47 > 1000 > 1000 > 1000 > 1000 > 1000

Table 4.12

Number of iterations required for convergence.

customers will overflow to queue 1 if it is not yet full. Otherwise the customers will
be blocked and lost, see Figure 4.2.

�

µ1

��
��
s1 = 1 Queue 1

�

λ1

�

µ2

��
��
s2 = 1 Queue 2

λ2

�

�

Overflow

Fig. 4.2. The two-Queue overflow network.

For queue i (i = 1, 2), let λi be the exogenous input rate, µi the service rate, si

the number of servers, and ni − si−1 the buffer sizes. For simplicity, we let the batch
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size k of the arrivals follows the following distribution:

Prob(k = 1) = pi and Prob(k = 2) = 1 − pi where 0 < pi < 1.

We assume that when the batch size is 2 and there is only one waiting space left, the
queueing network still accepts one of the two customers. Then the generator matrix
for the queueing system is given by

K = Q1 ⊗ In2
+ In1

⊗ Q2 + diag(0, · · · , 0, 1) ⊗ R, (4.2)

where

Qi =

























λi −µi 0
−piλi λi + µi −µi

−(1 − pi)λi
. . .

. . .
. . .

−(1 − pi)λi −piλi λi + µi −µi

. . .
. . .

. . .

−(1 − pi)λi −piλi λi + µi −µi

0 −(1 − pi)λi −λi µi

























,

(4.3)

R =

















λ2 0
−p2λ2 λ2

−(1 − p2)λ2 −p2λ2
. . .

. . .
. . . λ2

0 −(1 − p2)λ2 −λ2 0

















(4.4)

and Ini
is the identity matrix of size li. For the case of pi = 1, the batch size is one,

cosine-based preconditioners have been constructed to solve the queueing problem, see
for instance [12, 15]. However, cosine-based preconditioners is not applicable when
the input is a batch arrival Poisson process. Since the generator matrix is singular,
we consider an equivalent linear system

(K + eet)p = e (4.5)

Here e = (0, 0, · · · , 0, 1)t and the (K + eet) in (4.5) is irreducibly diagonal dominant
and hence invertible. The steady-state distribution vector p is obtained by normaliz-
ing p.

We note that the matrix (K+eet) can be expressed as the sum of a block-Toeplitz
matrix

A = Q1 ⊗ In2
+ In1

⊗ Q2 + diag(µ1, 0, · · · , 0, λ1) ⊗ In2

and a low-rank matrix

L =











In2

0
...
0











(

−µ1In2
0 · · · 0

)

+











0
...
0

In2











(

0 · · · 0 −λ1In2
+ R + diag(0, · · · , 0, 1)

)

.
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To solve (4.5), we can use the Sherman-Morrison-Woodbury formula for the matrix
A + L to solve for the vector p. Since A is a block-Toeplitz matrix, our proposed
method can be applied. Although A is not symmetric, the representation of the
inverse of a nonsymmetric block-Toeplitz matrix is still defined (see the appendix).
Table 4.13 shows the number of iterations required for convergence using the proposed
method. We remark that the Strang preconditioner is singular in this application. We
see that performance of our preconditioners is efficient.

p n = m I B C T
0.4 4 16 10 5 10
0.4 8 30 12 6 13
0.4 16 54 14 7 16
0.4 32 87 16 8 20
0.8 4 14 10 5 10
0.8 8 31 13 6 14
0.8 16 57 15 7 18
0.8 32 103 17 8 23

Table 4.13

Number of Iterations required for the overflow queueing networks (n1 = n2 = n and p1 = p2 = p).

5. Concluding Remarks. In this paper, we propose block diagonal and Schur
complement preconditioners for block-Toeplitz matrices. We have proved that for
some block-Toeplitz coefficient matrices, the spectra of the preconditioned matrices
are uniformly bounded except for a fixed number of outliers, where the number of out-
liers depends on m. Therefore conjugate gradient method will converge very quickly
when applied to solving the preconditioned systems, especially when m is small. Ap-
plications to block-Toeplitz systems arising from least squares filtering problems and
queueing networks were discussed. The method can also be applied to solve other
non-symmetric problems arise in other queueing systems [15].
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Appendix. Let

Am,n =













A0 A−1 · · · A1−n

A1 A0
. . .

...
...

. . .
. . . A−1

An−1 · · · A1 A0













be a non-Hermitian block-Toeplitz matrix. We consider

Âm,n =













A∗
0 A∗

−1 · · · A∗
1−n

A∗
1 A∗

0

. . .
...

...
. . .

. . . A∗
−1

A∗
n−1 · · · A∗
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and

M (n) =















0
A1−n

...
A−2

A−1















and M̂n =















0
A∗

1−n
...

A∗
−2

A∗
−1















.

Suppose the following matrix equations

An,mU (n) = E(n) An,mV (n) = M (n)

and

Ân,mÛ (n) = E(n) Ân,mV̂ (n) = M̂ (n)

have the solutions:

U (n) =
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Then we have

A−1
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