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1. Introduction

It is well recognized that integral inequalities in general provide an effective tool to the study
of quantitative as well as qualitative properties of solutions of differential and integral equations.
Among these, the following Opial’s inequality has been one of the most useful few and has contin-
uously drawn people’s attentions over the past few decades.

Theorem (Opial [17]). If f € L0, }h] satisfies f(0) = f(h) =0 and f(x) > 0 for all x € (0,h),
then

h / norh / )
/0 |f(w)!\f(x)!dx§1/0 |7 (@) da .

Over the years, Opial’s inequality has been generalized to many different situations and settings.
For example, in [3, 22] it was generalized to the case of many functions of 1 variable, in [9, 10, 11,
18, 19] to the case of many functions of many variables, and in [5, 6, 7, 12, 13, 14, 18, 21] to the case
involving higher order derivatives. Meanwhile, in [4], Agarwal first introduced and established some

general Opial-type inequalities involving general p-derivatives, that is, for the class of differential

(n)

operators D," | which properly contains the class of disconjugate linear operators

L:=D" +3 a;(t)yD" .

i=1

Anastassiou [1] then established for the first time Opial-type inequalities for general linear differ-
ential operators, and his results have later on been generalized in many directions by Anastassiou-
Pecari¢ [2] and Koliha-Pecari¢ [16].

This work is a further generalization of the works in [2] and [16].

Let I C R be a closed interval, a € I, n € N, and we consider linear differential operators

m—1

L;=D"™+ Z biat)DY, ¢ia€CI), i=1,....,n.
a=0

Let G;(x,t) be the Green’s function for L;. For any h € C(I), it is well-known (see, e.g. [15]) that
foreachi=1,...,n,

yi(z) == /z Gi(x, t)h(t)dt

is the unique solution for the initial value problem

Liy=nh
yD(a)=0, j=01,....m—1.
Collectively, if we consider L = Ly ® --- ® L,, as operating on C(I) x --- x C(I) (n copies), then

y = (Y1 Yn)

is the unique solution for the initial value problem

Ly=h
y(j)(a‘):()) j:Oala"'am_la

where h = (h,...,h) and for each j, y() = (ygj), ... 7ygj)).
In [16], the case n = 1 was considered and estimates for the integral

/w U(s)|y(s)|”|n(s)|"ds

for any function 0 < U € C(I) and any real numbers «, 3 > 0 were established. These provide
valuable information to the unique solution of the aforesaid initial value problem for the case



n = 1. In this paper, we extend the results of [16] to the case where n > 1, and also obtain discrete
analogues which are equally useful in discrete initial value problems. As a far-reaching application,
these are applied to obtain estimates of fractional derivatives.

2. General Weighted Opial-type Inequalities

In the sequel, let I be a closed and bounded interval in R, and @ € I. Let N € N be a fixed
integer and for the sake of simplicity, the index 7 will always run from 1 to N.

The following is a generalization of Theorem 2.4 in [16] and Theorem 1, Theorem 2, and
Corollary 1 in [2].
Theorem 2.1. Let K; € C(I x I) be positive, and y;, h € C(I) satisfy

lyi(t)] < ‘/t Ki(t,5)|h(s)|ds‘ forallt eI .

N

Then for any constants p; > 0, p:= >.p; >0, ¢ > 0, r > max{1,q}, and any u,v € C(I) with
i=1

u >0 and v >0,

ptgq

r

x

< A(xz)

t)|h(t)|"dt

- N
| [ wolno ] o as

for all x € I, where

a

)

A(z) = (ﬁ)

Pi(t) :/ v(s) T K(t, s)7Tds .

Proof. Consider first £ > a. By assumption and Holder’s Inequality with indices -5, r,
t
|yi(t)| S/ Ki(t, s)|h(s)|ds
a
t
:/ o(s)" F Kt s)u(s)* [h(s)|ds
¢ t 1 - r—1 t 1
< (/ v(s)fﬁKi(t,s)ﬁds) " (/ v(s)‘h(s)rds)r
a . , ) % a
()| (/ o()|(s)]"ds)"
hence N N
t 2 p1<r—1)
[Tl < ([ wo)luo) as) 1 (0l
i=1 a
Therefore, by applying Holder’s Inequality with indices Tﬁq, g,
/ H )" - [h()|at
i (r t ] »
/ Hyp o (/ v(s)’h(s)Vds)r h(t))dt
a
r q N pi(r—1) t z
= / u(t)u(t)*7H|Pi(t) g (/ |h(s)|" ds) o(t)7 |“dt
a =1
x . . N pi(r=1)  T=¢ z t 2 N
< (/ u(t) =ity [P dt) (/ (/ v(s)|h(s) |ds) ®)|h \dt)
a i=1 a a



for any x > a. Let

W(t) = / os)|h(s)|"ds
Then

[ ([ vl as) ol a]” = ([ wiviom)

Hence

@ N @ p+q
/a u(t)([[|yi(t)|pi>|h(t)|thSA(x)(/a o(s)|h(s)]ds)

for any > a. The case for © < a can be obtained immediately from the relation

[ s == [ s,

Hence the theorem. 0O
Corollary 2.1. Let K; € C(I x I) be positive, and y;, h € C(I) satisfy

lyi(t)] < ‘/at Ki(t,8)|h(8)|d8‘ forallt eI .

N

Then for any constants p; > 0, p:= > . p; >0, ¢ >0, withp+ q > 1, and any u,v € C(I) with
i=1

u>0andv >0,

x

Pidt

< A(z)

Vﬁwwmqﬂmw

v t)]h(t)]”*th‘

a

for all x € I, where

q N\t | [© i 7g m(p+q y [PFe
A(-r) = (m) /a P H ’Ql P ,
‘ 1 ptq
Qi(t) = / v(s) " 7Fa1 K;(t, s)Pra-1ds .
Proof. 1t follows from Theorem 2.1 by taking r = p + ¢ > max{1, ¢}. .

Theorem 2.2. Under the same conditions as in Corollary 2.1, for any u,v € C(I) with u > 0
and v > 0,

N

/ ") [T @ttt

i=1

< [l IR &S

(t)|dt

/ H\yz

for all x € I, where

Qi(t) = / o(s)~LK(s, £)ds

Proof. For any t > aand any i =1,..., N,

i 1) /Kts |@—/()Uﬂm 9)[1(s)|ds < Qi (O) vl ocllBlle

thus
N

[ lw)

i=1

N
< olg il TT @i
=1



So for all z > a,

. N
RCRITG

K2

R

/ u(t) - [T Qi) - ozl - [R(t)[*dt
a i—1
N

P ()| dt

IN

3

([ s TTouora) ol puiee

The case for < a can be obtained by the relation

[ es== [ ¢as.

This section deals with discrete analogs of the results in Section 2.
As above, N € N is a fixed integer and 7 runs 1 to N. Let m € N be another fixed integer.
The following results generalize the main results of [8].

Theorem 3.1. For any i = 1,...,N and o,8 =0,...,m — 1, let Kgﬁ > 0 and a’,, bg be real
numbers such that

3. Discrete Versions

a—1
lal ] <> Kislbal -
B=0
N
Then for any constants p; > 0, p:= > p; >0, ¢ > 0, r > max{1, ¢}, and any U, > 0 and V,, > 0,
i=1
m—1 N , B m—1 ptq
> Ua(TTIabl ) bal” < G (D2 Valbal™) ©
a=0 =1 B=0
where
Cl =0 ’
1\«
C, = L(i) (l—Ca,1)7§ , a=2,3,...,m,
p+aqgip+gq
m-t 4 N pi(r—1y1 =2
Ay = [Z U Va T [P } , and
a=0 i=1

a—1 1 ]
L= SV T (R
B=0
Proof. Forany it =1,...,Nand a =0,...,m — 1,

a—1
i i Di
L < (30 Kilbsl)
B=0

|

! S pi
= (Zvﬂ rKaﬁvﬁWbﬂD
B=0

a—1 . pi(r—1) a—1 Pi
< {Zvﬁ (KT ZVB“’BH
B=0 B=0
Thus
N ) N a—1 1 . 111(77‘—1) a—1 %
[Thear < {TT[ Vs~ (Ko™ ] > Vslbsl"}
i=1 i=1 =0 B=0
N pe(re1) a—1 P
= {TIE= = - {3 vl
i=1 B=0



and so

i
—
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L
3k

Valbsl']

(vabm) Valbal’] "
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a=0 i=1 a=0
Write B
Xo =Y Vslbsl",
B=0
then
AX, = Vu|ba|"
and
m—1 a—1 P q m—1 . q 7+1 . pig
[ (S valbsl) Walbal ] = [ (Xa)iaxa]" < [Cnxa ™) = CiXr
a=0 =0 a=0

by Lemma 2 in [7]. Thus

Ua(Hla \pu)lb 1< O A X C’%Am(mzlvmbﬂr“)ptq
B8=0

a=0 i=1

m—1

[
Corollary 3.2. For any i = 1,...,N and o, = 0,...,m — 1, let K/ 5 > 0 and af,, bg be real

numbers such that )
ae

lal| <> Kiglbgl -
B=0

N
Then for any constants p; >0, p:= > p; >0, ¢ >0, with p+¢ > 1, and any U, > 0 and V,, > 0,

i=1

m—1 ) g m—1
Ua(H (G417 ) al? < CHTT A S Vilbsl?*
a=0 =1 B=0
where
Ci1=0,
1 7 »
oyl 0o amssem,
p+q p+gq
pta pi(p+g—1) =
mf[ZUa Vo ? H( PP and
=1
a—1
Py = S
B=0
Proof. Tt follows from Theorem 3.1 by setting r = p + ¢ > max{1, ¢}. 0

Remark. Let {u,} be a sequence of real numbers,

Aoua = Uq ,
Aug = Aty = tgq1 —

Ua

) - - )
Aug =A"Uugyr1 — A" Uy, 1=2,3,...



if we write
{angiua, i=1,...,N—-1

bo = al = ANy,

then clearly there exist K 5 > 0 such that

a—1
jat| <> Kiglbsl
B=0

and so Theorem 3.1 and Corollary 3.2 apply. In particular, observe that these generalize the main
result of Alzer in [8].

4. Applications to Fractional Derivatives
We first recall the following basic notations and facts (see, e.g. [20]): For any z > 0,

C™[0,z] = {functions on [0, z] with continuous mth order derivative},
AC[0,z] = {absolutely continuous functions on [0, z]},
AC™[0,x] = {functions f € C™[0,x] with f(»~1) € ACI0, 2]},
L£(0,z) = {Lebesgue integrable functions on (0, z)},
L£>(0,z) = {Lebesgue measurable functions that are essentially bounded on [0, z]}.
Let « > 0 and f € £(0,z). The Riemann-Liouville fractional integral 1*f of f of order « is

defined by

) ;:ﬁ/o (t— )" f(s)ds, tel0,a], (4.1)

where T' is the usual Gamma function. Note that the RHS of (4.1) exists for almost all ¢ € [0, ],
and I*f € £(0,x) (see [20]). The Riemann-Liouville fractional derivative of f of order « is defined
by

d

Do) = ()" 1m0 = r s () [ o ssyas.

where m = [a] + 1, [a] = the largest integral part of «, provided that the derivative exists. As a
convention, we define
Dfi=f,
I°f:=f,
I=¢f:=D*f fora>0,
D™f =1 forO<a<l1.
Observe that Riemann-Liouville fractional derivatives are generalizations of regular derivatives,

that is, if @ € N, then
def
D=L
/ ds®
Let m = [@] + 1. A function f € £(0,z) is said to have an integrable fractional derivative D* f
if
D kfeCl0,z], k=1,....,m
De=1f e AC[0,z] .

Lemma 4.1. Let v > pu > 0. If f € £L(0,2) has an integrable fractional derivative D f, and
D"7If(0)=0 forallj=1,...,[v]+1,

then
D*11) = o /0 (t — s)~P=1D" f(s)ds

for all t € [0, z].



Proof. By the Index Law for fractional derivatives [20],

["HDVf = I"R[Vf =M f = DA

Hence the result. O
N
Theorem 4.1. Let p;, q, p;, v, r (i =1,...,N) be real numbers such that p; >0, p:= > p; >0,
i=1
q>0,v>p;+1>0 foralli=1,...,N, and
1 .
r >max{1,q,7 1= L...,N}.
V=
Suppose f € L(0,x) has an integrable fractional derivative D” f € £L>°(0,x), and
D"7If(0)=0 forallj=1,...,[v]+1,
then for any u,v € C[0,z] with uw > 0 and v > 0,
x N x ptq
| uwlr s T o< aw)| [ ool a] (12)
0 iy 0
where
q * r T q N pi(r=1) =4
Ax:(71 /utﬁvt7W Pi(t)| ™« dt}T ,
@ = () { ] w00 IIire

(t — s)4+ = max{t — 5,0} .

Proof. First observe that
(i) since v > p; + 1, K; € C([0,2]?) for all i;
(ii) since r > ﬁ for all ¢, we have

—pi—1 ‘
w > —1 foralli
r—
and so for any fixed t € [0, z],
(v—pi=1)r/(r-1)
r t—
Kot )77 = L0

F(y — Mi)"/(’“*l)

is integrable over [0, t]. Since v > 0 and is continuous, P;(t) is well-defined;
(iii) since v > 0, and by assumption DY f € £>(0, z), v(t)|D”f(t)|r is integrable over [0, z], so the
RHS of (4.2) is well-defined.

By Lemma 4.1, for each i =1,..., N,

1 t
Dt f(t :7/ t — )" HiIDY f(s)ds
0= = [ -9 (5
for all t € [0, z]. Letting
h=D"f,
yi:Duif7
(t—s) !
Kit,8177 OSLSSIE,



we have .
o) < | [ Kite.s) )
0
forall i =1,...,N and all ¢ € [0, z]. Hence by Theorem 1, for any u,v € C|0, z],

- N
JRECILCIR N {20

p+a

pidtgA(a;)[/Ozv(t)|h(t)|’°dt} o

that is

ptq

Prdt < A(z) [/Oxv(t)|DVf(t)|rdt} i

. N
| woipesol I 1o
i=1

Remark. Note that Theorem 4.1 reduces to Theorem 4.2 in [16] when N = 1.
An interesting special case of Theorem 4.2 is the following

Corollary 4.2. Under the same conditions as in Theorem 4.1,

r—1,pilr=1
-

N
N H( . T:q pa' i+r—q|/r
/ |D f(t ‘qH’D‘”f(t) PidtSizl o .(N r—q > .x[i=1 ipit+T—ql/
=1 II P(v = pa)Pe

where for each i =1,..., N, o; := vr — u;r — 1.
Proof. By taking w = v =1 in Theorem 4.1, we have

| sl me

pt+aq

)" dt < A(x) [/O$|DVf(t)|Tdt] "

where

q V pi—1 r pi(r=1) r—gq
e
p+q L(v — i)
z N pi(r=1) r—gq
/ ’I"—l T"_il) —aq dt} =

—

~
Il
—

L(v — ;)P

r—1,p0=D

—=

~.

== L

N
—
o\&
°
S
[ =
=]
i
Q
3
QL
——
Bl

L(v — py)Pi

r—1,pi=1

= o
; r—gq [ owpitr=d/r
. N . z = y
Ly — pi)P > opitT—q
i=1

T
S

=0

@
Il
-

hence the result follows.
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Appendix

Direct proof of Corollary 2.1.
Proof. t > a:

lya(t)|” < (/: K, (t, s)|h(s)|ds)

Pi

Ppi

[/at U(S)*ﬁKi(t, s)v(s)ﬁ ’h(s) ‘ds}

¢ 1 ptg pled ¢ e P
< {{/ v(s)_p+q—l Ki(t7s)p+q_1 ds} pa {/ v(s)‘h(8)|p+qd8} p+q}

(Holder with indices 212 p + q)

p+q—1’°
N N + pi(p+g—1) t P
()" vs_r;—li,s%s?o v(s serqsm
Em@|<gyl<> Kt o)tas) ][ [ o)) as)
" N
e (TT I Yo as
< /x [u(tyo(t)~ [U (/t ()" K (1 )P ds e
v(t)vqﬂ]h(t)]q(/atv(s)|h(s)‘p+qu)piq}dt
< {/:u(t)%"v(t)ﬁ f‘[ (/atv(s)p+31Ki(t,s)piZq1ds) pi(p;mdt}ﬁ“
. {/ax v(t)|h(t)|p+q(/atv(s)|h(s)|p+qu>Zdt}piq
(Holder with indices pT'HZ, p%:q) .
Let .
B(1) = / o(s)|h(s)|" s .
Then
@' (t) = v(t) |h(1)[" .
So ) L
{/ v(t)\h(t)\”q(/a u(s)|h(s)y”+qu)5dt}"”
- {/w@/(t)é(t)gdt v
= {ﬁ@(x)%}”
- () o
Hence i N i
/ u(t)(H|yi(t)|pi)|h(t)|thgCA(x)/ v(s)|h(s)["Tds .
a 1l a

The case for z < a can be obtained immediately from the relation

[ es== [ ¢as.

11



