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Abstract

Markov chain models are commonly used to model categorical data sequences.
In this paper, we propose a multi-dimensional Markov chain model for modeling
high dimensional categorical data sequences. In particular, the models are practical
when there are limited data available. We then test the model with some practical
sales demand data. Numerical results indicate the proposed model when compared
to the existing models has comparable performance but has much less number of

model parameters.
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1 Introduction

Categorical data sequences have many applications in both applied sciences and engineer-
ing sciences such as inventory control [3, 4, 5], data mining [7], bioinformatics [6] and
many other applications [11]. Very often, one has to consider multiple Markov chains
(data sequences) at the same time. This is because very often the chains (sequences) can
be correlated and therefore the information of other chains can contribute to the chain
considered. Thus by exploring these relationships, one can develop better models for bet-
ter prediction rules. We note that the conventional Markov chain model for s categorical
data sequences of m states has m® states. It is a high dimensional Markov chain process.
The number of parameters (transition probabilities) increases exponentially with respect
to the number of categorical sequences. This huge number of parameters discourages peo-
ple from using such kind of Markov chain models. In view of this, Ching et al. proposed a
first-order multivariate Markov chain model in [4] for this concerned problem. They then
applied the model to the prediction of sales demands of multiple products. Their model
involves O(s?*m? + s?) number of parameters where s is the number of sequences and m is
the number of possible states. They also developed efficient estimation methods for the
model parameters. In [6], the multivariate Markov chain model was then used in building
stochastic networks for gene expression sequences. An application of the multivariate
Markov chain model to modelling credit risk has been also discussed in [14].

In this paper, we propose simplified multivariate Markov models based on [4] for
modelling multiple categorical data sequences. The models can capture both the intra-
and inter-transition probabilities among the sequences but the number of parameters
is only O(sm? + s%). We also develop parameter estimation methods based on linear
programming for estimating the model parameters. We then apply the model and the
method to sales demand data sequences. Numerical results indicate that the new models
have good prediction accuracy when compared to the model in [4].

The rest of the paper is organized as follows. In Section 2, we propose a new simplified
multivariate Markov model and discuss some important properties of the model. In
Section 3, we present the method for the estimation of model parameters. In Section 4,
we discuss further modification of the model for the case when the observed sequences are
very short. In Section 5, we apply the new simplified model and the numerical method
to the sales demand data. Finally, concluding remarks are given in Section 6 to address

further research issues.



2 The Multivariate Markov Chain Model

In this section, we first propose our new simplified multivariate Markov chain model and
then some of its properties. In the new multivariate Markov chain model, we assume that
there are s categorical sequences and each has m possible states in M. We also adopt
the following notations. Let x®) be the state probability distribution vector of the kth
Sequence at time n. If the kth Sequence is in State j with probability one at time n then
we write

x® =e; =(0,...,0, 1 ,0...,0)".

jth entry

Moreover, we assume the following relationship among the sequences:

xfﬁl = )\, PUx\) 4 > Apx™ o for j=1,2,...,s (1)
k=1,k#j
where .\
Nip>0, 1<jk<s and Y Ap=1, for j=1,2,...,s. (2)
k=1

Equation (1) simply means that the state probability distribution of the jth chain at
time (n + 1) depends only on the weighted average of PU7)x() and the state probability
distribution of other chains at time n. Here PU9) is the one-step transition probability

matrix of the jth Sequence. In matrix form, one may write

X;l_i)_l /\HP(H) )\12[ e )\15[ Xg)
(2) (22) ... (2)
Xn+1 /\21[ )\22P )\251 Xy
Xnt1 = :Jr - : : : : : =@xn (3)
x¢) Ml Aol oo AGPE x(8)

For Model (3), we have the following proposition which can be considered as a gener-

alized version of the Perron-Frobenius Theorem [10, pp. 508-511].

Theorem 1 (Perron-Frobenius Theorem) Let A be a nonnegative and irreducible
square matriz of order m. Then

(i) A has a positive real eigenvalue, A, equal to its spectral radius, i.e. X\ = maxy |\g(A)]
where A\ (A) denotes the kth eigenvalue of A.

(i) There corresponds an eigenvector z, its entries being real and positive, such that
Az = \z.

(iii) X is a simple eigenvalue of A.



Proposition 1 Suppose that PU) (1 < j < s) and A = [N\x| are irreducible. Then

there is a vector

such that x = Qx and
Y xW =1, 1<j<s.

i=1

Proof: From (2), each column sum of the following matrix

ALl A21 o Aga
e
)\1,5 )\2 s )\s,s

is equal one. Since A is nonnegative and irreducible, from the Perron-Frobenius Theorem,

there exists a vector
y = (1,42, 9"
such that
(W11, Y2, -5 Ysln)Q = (Y11, Y2l - Ys i)
and hence 1 is an eigenvalue of Q).
Next we note that all the eigenvalues of @ are less than or equal to one [4]. Since

the spectral radius of ) is always less than or equal to any matrix norm of ) and @ is

irreducible, there is exactly one eigenvalue of () equal to one. This implies that

lim Q" = vu’,

n—oo
for certain non-zero vector u and v. Therefore
lim x,1; = lim @x, = lim Q"xy = vulxy = av.
n—oo n—oo n—oo
Here « is a positive number since x # 0 and is nonnegative. This implies that x,, tends

to a stationary vector as m goes to infinity. Finally, we note that if xq is a vector such
that

Skl =1, 1< <5,
i=1
then @xy and x are also vectors having this property. Hence the result follows. O

We remark that in the above proposition we only require a mild condition that [\;;] to
be irreducible. While in [4], the authors assume that \;; are all positive. We note that x
is not a probability distribution vector, but xU) is a probability distribution vector. The
above proposition suggests one possible way to estimate the model parameters A;,. The

idea is to find \;;, which minimizes ||@Q% — %X|| under certain vector norm || - ||.

4



3 Estimations of Model Parameters

In this section, we propose simple methods for the estimations of PU7) and Aji. For
each data sequence, one can estimate the transition probability matrix by the following
method [4, 5, 6]. Given a data sequence, one can get the transition frequencies from one
arbitrary state to the other states. Hence we can construct the elements in the transition
frequency matrix for the data sequence. After making a normalization, the estimates of
the transition probability matrices can also be obtained. We note that one has to estimate
O(s x m?) transition frequency matrices for the multivariate Markov chain model. The
vector X can be estimated from proportion of the occurrence of each state in each of the
sequences. According to the idea at the end of last section, if we take ||.|| to be ||.||co We

can get the values of \j, by solving the following optimization problem ([4, 5, 6]):

min max
A i

/\jjp(jj)f((j) + Z )\jkg((k) )
k=1,k#j ;
subject to (4)

Z )\jk; = 1, and /\jk Z O, Vk.
k=1

Problem (4) can be formulated as s linear programming problems as follows, see for in-
stance [8, (p. 221)]. For each j:

min w;
A
subject to
wj )\jl
Yz B A2 ,
W Ajs
w; Aj1
. 5

Yils xo 4| M o
w; Ajs

Y Ak=1 A >0, VY,

k=1



where
B=[x0|x® | ... |PixD| ... | %),

We remark that other vector norms such as ||.||2 and ||.||; can also be used but they have
different characteristics. The former will result in a quadratic programming problem while
||.]|1 will still result in a linear programming problem, see for instance [8, (pp. 221-226)].
We note that the complexity of solving a linear programming problem or a quadratic
programming problem is O(n®L) where n is the number of variables and L is the number
of binary bits needed to record all the data of the problem [9].

4 The Sales Demand Data Sequences

In this section, we present some numerical results based on the sales demand data of a
soft-drink company in Hong Kong [4]. Products are categorized into six possible states
according to sales volume. All products are labeled as either very fast-moving (very high
sales volume), fast-moving, standard, slow-moving, very slow-moving (low sales volume) or
no sales volume. The company has an important customer and would like to predict sales
demand for this customer in order to minimize its inventory build-up and to maximize the
demand satisfaction for this customer. Before developing a marketing strategy to deal
with this customer, it is of great importance for the company to understand the sales
pattern of this customer. Our multi-dimensional Markov chain model can be applied
to model the sale demand data sequences and make predictions on the volume of the
products in future based on the current and previous situations.

We first estimate all the transition probability matrices PU7) by using the method
proposed in Section 3 and we also have the estimates of the state distribution of the five
products [4]. We use the multivariate Markov model to predict the next state X; at time

t, which can be taken as the state with the maximum probability, i.e.,
x =g, if [x; < [fit]j,V1 <i<m.

To evaluate the performance and effectiveness of our multivariate Markov chain model, a

prediction result is measured by the prediction accuracy r defined as

1 T
r=—=X Z 5t X 100%,
T t=n+1
where T is the length of the data sequence and

]_, lf )A(t = Xz
o = .
0, otherwise.



Another way to compare the performance of the models is to use the BIC (Bayesian

Information Criterion) [12] which is defined as
BIC = —2L + qlogn,

where

S

L= Z( Z zo k;l ks 1Og Z Z jkpgékk)l

J=1 ig,k1,ks=1 =1 k=1

is the log-likelihood of the model,

D, = SoxL (o) ak (k)22 (k) - - - a5 (k)

Here ¢ is the number of independent parameters, and n is the length of the sequence. The

less the value of BIC, the better the model is.

For the sake of comparison, we give numerical results of our new simplified model and

the model proposed by Ching et al. [4] in Table 1. Although the results are more or less

competitive when compared to the model in [4], it involves less variables. In Table 2, we

give the BIC of the models. One can see that the simplified multivariate Markov model is

much better than the multivariate Markov model in [4] in fitting the sales demand data.

We remark that when |[.||; is used instead of ||.||s, in the LP, we still get the same results

for the prediction accuracy and BIC.

Models A B C D E
The Multivariate Markov Model in [4] | 50% 45% 63% 52% 55%
The Simplified Model 46% 46% 63% 52% 54%

Table 1. The Prediction Accuracy.

Models

BIC

The Multivariate Markov Model in [4]
The Simplified Model

8.0215e+003
3.9878e+-003

Table 2. The BIC.

5 A Simplified Model for Very Short Sequences

In this section, we consider the case when the length of the observed data sequences are

very short. In this case, we have two problems:

(a) the estimation of the transition probability matrices may have large error; and



(b) the steady-state may not be reached.

For Problem (a) we propose to replace the transition probability matrix P in Model

(3) by the following rank-one matrix
ENT(1,1,..,1), (6)

For Problem (b), the weights \;; should be chosen such that the multivariate Markov
process converges very fast to the stationary distributions. The convergence rate of the
process depends on the second largest eigenvalue in modulus of the matrix @ in (3). The
reason is that the evolution process of the multivariate Markov chain is equivalent to the
iterations of the power method. From numerical experience, the second largest eigenvalue
depends very much on the value of A\;. We modified our simplified model for very short

sequences by adding the extra constraints
0< i < 6. (7)

They serve the purpose of controlling the second largest eigenvalue of ) and hence the
convergence rate of the multivariate Markov chain.
Here we give an analysis of the simplified model with the assumptions (6) and (7) by

further assuming that
P="P% = (x)7(1,1,...,1) foralli=1,2,...,s.

In this case, for A\;; > 0 the steady-state probability distributions X is an invariant. The
problem here is how to assign \;; such that the second largest eigenvalue of @) is small.

For simplicity of discussion, we assume one possible form for [A] as follows:

\ {)\ if =
ij = T
o i i

where 0 < A < 1. With these assumptions, we have the tensor product form for
Q=I1\NP+ (A= A)®I.

Since the eigenvalues of P are given by 1 and 0 and the eigenvalues of A are given by

1—A
1 and A———.
m—1
Here 1 is a simple eigenvalue in both cases. The eigenvalues of () are then then given by
A—1 Am —1
1, 1—-)\, ——, and mn
m—1 m—1



where 1 and 1 — A are the two simple eigenvalues. The second largest eigenvalue of () can

be minimized by solving the following maxmin problem:

. A—1 m—1
min {max{ 1 — A\, , .
0<A<1 m—1 m-—1

It is straight forward to check that the optimal value is

. m
C2m—1

)\*

and the optimal second largest eigenvalue in this case is

m
2m —1

6 Concluding Remarks

In this paper, we proposed simplified multivariate Markov chain models for modelling
categorical date sequences. The models are then applied to demand predictions. We also
proposed a simplified model for the case when the observed data sequences are too short
so that the steady-state may not be reached and the estimations of the transition probabil-

ity matrices may not accurate. The followings are some possible extensions of our models.

(i) Our multivariate Markov chain model is of first-order, one may further generalize the
model to a higher-order multivariate Markov model, see for instance [7, 11]. We expect

better prediction of sales demand can be achieved by using higher-order model.

(i) Further research can also be done in extending the model to handle the case of “neg-
ative correlations”. In the proposed models here, all the parameters \;; are assumed to
be non-negative, i.e. the sequences j is “positively correlated” to the sequence i. It is

interesting to allow A;; to be free.
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7 Appendix

Sales Demand Sequences of the Five Products (Taken from [4])




Product A: 66662626226266262444566122666262662622621226662126266226222626222226
226666122622226222233232666626266262662662234331312161661662626222661626121
626222266166226222344464616616666162226666266226262226222666632262222226262
226226626662223334166166161666616662122222236666626

Product B: 16616111111666121661116621661116121622222616612166611166111161121616
116262666366166222322666116266262661366111223226222161611621112216111126111
161612161661612222332226666211611161616161166211661126266612616111161611661
661616611662222222226666166616616611613335166666666

Product C: 6666666266666662666626662266666661626666666626612616616266666662666?2
661666666633632122166161666666166616666666666626666666622662612666266266261
626212662262622626662226626622612126622661221626221156361661226162661626266
616166222123616161616661166666166616116666666616616

Product D: 62222334445433626663443333326634444342622622663454463666262662264454
343446266226266266266262635554443626626262262662644444463662626262662222222
223335545333626622622226232236322344445544662626222222255445526266262622334
454443436262222222222234444544432226222626262222232

Product E: 62222334445433626623443443322634444342322633663454533266262662264444
445446266226266266266262634444444626626266662622644444463362226262222222222
223645555246626622622226232236322344445543362622263222255444436266262622334
454444436262226222222234444544432226662626262222222

6=very fast-moving, 5 = fast-moving, 4 = standard, 3 = slow-moving, 2 = very slow-moving and 1= no sales volume.
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