
On Multi-dimensional Markov Chain

Models

Wai-Ki Ching Shu-Qin Zhang

Advanced Modeling and Applied Computing Laboratory

Department of Mathematics

The University of Hong Kong

Pokfulam Road, Hong Kong.

E-mail: wching@hkusua.hku.hk sqzhang@hkusua.hku.hk.

and

Michael K. Ng

Department of Mathematics,

Hong Kong Baptist University

Kowloon Tong, Kowloon, Hong Kong

E-mail: mng@math.hkbu.edu.hk.

Abstract

Markov chain models are commonly used to model categorical data sequences.

In this paper, we propose a multi-dimensional Markov chain model for modeling

high dimensional categorical data sequences. In particular, the models are practical

when there are limited data available. We then test the model with some practical

sales demand data. Numerical results indicate the proposed model when compared

to the existing models has comparable performance but has much less number of

model parameters.
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1 Introduction

Categorical data sequences have many applications in both applied sciences and engineer-

ing sciences such as inventory control [3, 4, 5], data mining [7], bioinformatics [6] and

many other applications [11]. Very often, one has to consider multiple Markov chains

(data sequences) at the same time. This is because very often the chains (sequences) can

be correlated and therefore the information of other chains can contribute to the chain

considered. Thus by exploring these relationships, one can develop better models for bet-

ter prediction rules. We note that the conventional Markov chain model for s categorical

data sequences of m states has ms states. It is a high dimensional Markov chain process.

The number of parameters (transition probabilities) increases exponentially with respect

to the number of categorical sequences. This huge number of parameters discourages peo-

ple from using such kind of Markov chain models. In view of this, Ching et al. proposed a

first-order multivariate Markov chain model in [4] for this concerned problem. They then

applied the model to the prediction of sales demands of multiple products. Their model

involves O(s2m2 + s2) number of parameters where s is the number of sequences and m is

the number of possible states. They also developed efficient estimation methods for the

model parameters. In [6], the multivariate Markov chain model was then used in building

stochastic networks for gene expression sequences. An application of the multivariate

Markov chain model to modelling credit risk has been also discussed in [14].

In this paper, we propose simplified multivariate Markov models based on [4] for

modelling multiple categorical data sequences. The models can capture both the intra-

and inter-transition probabilities among the sequences but the number of parameters

is only O(sm2 + s2). We also develop parameter estimation methods based on linear

programming for estimating the model parameters. We then apply the model and the

method to sales demand data sequences. Numerical results indicate that the new models

have good prediction accuracy when compared to the model in [4].

The rest of the paper is organized as follows. In Section 2, we propose a new simplified

multivariate Markov model and discuss some important properties of the model. In

Section 3, we present the method for the estimation of model parameters. In Section 4,

we discuss further modification of the model for the case when the observed sequences are

very short. In Section 5, we apply the new simplified model and the numerical method

to the sales demand data. Finally, concluding remarks are given in Section 6 to address

further research issues.
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2 The Multivariate Markov Chain Model

In this section, we first propose our new simplified multivariate Markov chain model and

then some of its properties. In the new multivariate Markov chain model, we assume that

there are s categorical sequences and each has m possible states in M . We also adopt

the following notations. Let x(k)
n be the state probability distribution vector of the kth

Sequence at time n. If the kth Sequence is in State j with probability one at time n then

we write

x(k)
n = ej = (0, . . . , 0, 1

︸︷︷︸

jth entry

, 0 . . . , 0)T .

Moreover, we assume the following relationship among the sequences:

x
(j)
n+1 = λjjP

(jj)x(j)
n +

s∑

k=1,k 6=j

λjkx
(k)
n , for j = 1, 2, . . . , s (1)

where

λjk ≥ 0, 1 ≤ j, k ≤ s and
s∑

k=1

λjk = 1, for j = 1, 2, . . . , s. (2)

Equation (1) simply means that the state probability distribution of the jth chain at

time (n + 1) depends only on the weighted average of P (jj)x(j)
n and the state probability

distribution of other chains at time n. Here P (jj) is the one-step transition probability

matrix of the jth Sequence. In matrix form, one may write

xn+1 ≡











x
(1)
n+1

x
(2)
n+1
...

x
(s)
n+1











=











λ11P
(11) λ12I · · · λ1sI

λ21I λ22P
(22) · · · λ2sI

...
...

...
...

λs1I λs2I · · · λssP
(ss)





















x(1)
n

x(2)
n

...

x(s)
n











≡ Qxn (3)

For Model (3), we have the following proposition which can be considered as a gener-

alized version of the Perron-Frobenius Theorem [10, pp. 508-511].

Theorem 1 (Perron-Frobenius Theorem) Let A be a nonnegative and irreducible

square matrix of order m. Then

(i) A has a positive real eigenvalue, λ, equal to its spectral radius, i.e. λ = maxk |λk(A)|

where λk(A) denotes the kth eigenvalue of A.

(ii) There corresponds an eigenvector z, its entries being real and positive, such that

Az = λz.

(iii) λ is a simple eigenvalue of A.
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Proposition 1 Suppose that P (jj) (1 ≤ j ≤ s) and Λ = [λjk]
T are irreducible. Then

there is a vector

x = (x(1),x(2), . . . ,x(s))T

such that x = Qx and
m∑

i=1

[x(j)]i = 1, 1 ≤ j ≤ s.

Proof: From (2), each column sum of the following matrix

Λ =











λ1,1 λ2,1 · · · λs,1

λ1,2 λ2,2 · · · λs,2

...
...

...
...

λ1,s λ2,s · · · λs,s











is equal one. Since Λ is nonnegative and irreducible, from the Perron-Frobenius Theorem,

there exists a vector

y = (y1, y2, . . . , ys)
T

such that

(y11m, y21m, . . . , ys1m)Q = (y11m, y21m, . . . , ys1m).

and hence 1 is an eigenvalue of Q.

Next we note that all the eigenvalues of Q are less than or equal to one [4]. Since

the spectral radius of Q is always less than or equal to any matrix norm of Q and Q is

irreducible, there is exactly one eigenvalue of Q equal to one. This implies that

lim
n→∞

Qn = vuT ,

for certain non-zero vector u and v. Therefore

lim
n→∞

xn+1 = lim
n→∞

Qxn = lim
n→∞

Qnx0 = vuT x0 = αv.

Here α is a positive number since x 6= 0 and is nonnegative. This implies that xn tends

to a stationary vector as n goes to infinity. Finally, we note that if x0 is a vector such

that
m∑

i=1

[x
(j)
0 ]i = 1, 1 ≤ j ≤ s,

then Qx0 and x are also vectors having this property. Hence the result follows.

We remark that in the above proposition we only require a mild condition that [λij ] to

be irreducible. While in [4], the authors assume that λij are all positive. We note that x

is not a probability distribution vector, but x(j) is a probability distribution vector. The

above proposition suggests one possible way to estimate the model parameters λjk. The

idea is to find λjk which minimizes ||Qx̂− x̂|| under certain vector norm || · ||.
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3 Estimations of Model Parameters

In this section, we propose simple methods for the estimations of P (jj) and λjk. For

each data sequence, one can estimate the transition probability matrix by the following

method [4, 5, 6]. Given a data sequence, one can get the transition frequencies from one

arbitrary state to the other states. Hence we can construct the elements in the transition

frequency matrix for the data sequence. After making a normalization, the estimates of

the transition probability matrices can also be obtained. We note that one has to estimate

O(s × m2) transition frequency matrices for the multivariate Markov chain model. The

vector x can be estimated from proportion of the occurrence of each state in each of the

sequences. According to the idea at the end of last section, if we take ||.|| to be ||.||∞ we

can get the values of λjk by solving the following optimization problem ([4, 5, 6]):







min
λ

max
i

∣
∣
∣
∣
∣
∣



λjjP̂
(jj)x̂(j) +

m∑

k=1,k 6=j

λjkx̂
(k) − x̂(j)





i

∣
∣
∣
∣
∣
∣

subject to
s∑

k=1

λjk = 1, and λjk ≥ 0, ∀k.

(4)

Problem (4) can be formulated as s linear programming problems as follows, see for in-

stance [8, (p. 221)]. For each j:

min
λ

wj

subject to

















wj

wj

...

wj











≥ x̂(j) − B











λj1

λj2

...

λjs











,











wj

wj

...

wj











≥ −x̂(j) + B











λj1

λj2

...

λjs











,

wj ≥ 0,
s∑

k=1

λjk = 1, λjk ≥ 0, ∀j,

(5)

5



where

B = [x̂(1) | x̂(2) | · · · |P̂ jjx̂(j)| · · · | x̂(s)].

We remark that other vector norms such as ||.||2 and ||.||1 can also be used but they have

different characteristics. The former will result in a quadratic programming problem while

||.||1 will still result in a linear programming problem, see for instance [8, (pp. 221-226)].

We note that the complexity of solving a linear programming problem or a quadratic

programming problem is O(n3L) where n is the number of variables and L is the number

of binary bits needed to record all the data of the problem [9].

4 The Sales Demand Data Sequences

In this section, we present some numerical results based on the sales demand data of a

soft-drink company in Hong Kong [4]. Products are categorized into six possible states

according to sales volume. All products are labeled as either very fast-moving (very high

sales volume), fast-moving, standard, slow-moving, very slow-moving (low sales volume) or

no sales volume. The company has an important customer and would like to predict sales

demand for this customer in order to minimize its inventory build-up and to maximize the

demand satisfaction for this customer. Before developing a marketing strategy to deal

with this customer, it is of great importance for the company to understand the sales

pattern of this customer. Our multi-dimensional Markov chain model can be applied

to model the sale demand data sequences and make predictions on the volume of the

products in future based on the current and previous situations.

We first estimate all the transition probability matrices P (jj) by using the method

proposed in Section 3 and we also have the estimates of the state distribution of the five

products [4]. We use the multivariate Markov model to predict the next state x̂t at time

t, which can be taken as the state with the maximum probability, i.e.,

x̂t = j, if [x̂t]i ≤ [x̂t]j , ∀1 ≤ i ≤ m.

To evaluate the performance and effectiveness of our multivariate Markov chain model, a

prediction result is measured by the prediction accuracy r defined as

r =
1

T
×

T∑

t=n+1

δt × 100%,

where T is the length of the data sequence and

δt =







1, if x̂t = xt

0, otherwise.
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Another way to compare the performance of the models is to use the BIC (Bayesian

Information Criterion) [12] which is defined as

BIC = −2L + q log n,

where

L =
s∑

j=1

(
m∑

i0,k1,···ks=1

n
(j)
i0,k1,···,ks

log(
m∑

l=1

s∑

k=1

λjkp
(jk)
i0,kl

)),

is the log-likelihood of the model,

n
(j)
i0,k1,k2,···,ks

=
∑

x
(j)
n+1(i0)x

1
n(k1)x

2
n(k2) · · ·x

s
n(ks)

Here q is the number of independent parameters, and n is the length of the sequence. The

less the value of BIC, the better the model is.

For the sake of comparison, we give numerical results of our new simplified model and

the model proposed by Ching et al. [4] in Table 1. Although the results are more or less

competitive when compared to the model in [4], it involves less variables. In Table 2, we

give the BIC of the models. One can see that the simplified multivariate Markov model is

much better than the multivariate Markov model in [4] in fitting the sales demand data.

We remark that when ||.||1 is used instead of ||.||∞, in the LP, we still get the same results

for the prediction accuracy and BIC.

Models A B C D E

The Multivariate Markov Model in [4] 50% 45% 63% 52% 55%

The Simplified Model 46% 46% 63% 52% 54%

Table 1. The Prediction Accuracy.

Models BIC

The Multivariate Markov Model in [4] 8.0215e+003

The Simplified Model 3.9878e+003

Table 2. The BIC.

5 A Simplified Model for Very Short Sequences

In this section, we consider the case when the length of the observed data sequences are

very short. In this case, we have two problems:

(a) the estimation of the transition probability matrices may have large error; and
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(b) the steady-state may not be reached.

For Problem (a) we propose to replace the transition probability matrix P (ii) in Model

(3) by the following rank-one matrix

(x̂(i))T (1, 1, . . . , 1). (6)

For Problem (b), the weights λij should be chosen such that the multivariate Markov

process converges very fast to the stationary distributions. The convergence rate of the

process depends on the second largest eigenvalue in modulus of the matrix Q in (3). The

reason is that the evolution process of the multivariate Markov chain is equivalent to the

iterations of the power method. From numerical experience, the second largest eigenvalue

depends very much on the value of λii. We modified our simplified model for very short

sequences by adding the extra constraints

0 ≤ λii ≤ β. (7)

They serve the purpose of controlling the second largest eigenvalue of Q and hence the

convergence rate of the multivariate Markov chain.

Here we give an analysis of the simplified model with the assumptions (6) and (7) by

further assuming that

P = P (ii) = (x̂)T (1, 1, . . . , 1) for all i = 1, 2, . . . , s.

In this case, for λij > 0 the steady-state probability distributions x̂ is an invariant. The

problem here is how to assign λij such that the second largest eigenvalue of Q is small.

For simplicity of discussion, we assume one possible form for [Λ] as follows:

λij =







λ if i = j
1−λ
m−1

if i 6= j

where 0 < λ < 1. With these assumptions, we have the tensor product form for

Q = I ⊗ λP + (Λ − λI) ⊗ I.

Since the eigenvalues of P are given by 1 and 0 and the eigenvalues of Λ are given by

1 and λ −
1 − λ

m − 1
.

Here 1 is a simple eigenvalue in both cases. The eigenvalues of Q are then then given by

1, 1 − λ,
λ − 1

m − 1
, and

λm − 1

m − 1
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where 1 and 1−λ are the two simple eigenvalues. The second largest eigenvalue of Q can

be minimized by solving the following maxmin problem:

min
0<λ<1

{

max

{

1 − λ,
λ − 1

m − 1
,
λm − 1

m − 1

}}

.

It is straight forward to check that the optimal value is

λ∗ =
m

2m − 1

and the optimal second largest eigenvalue in this case is

m

2m − 1
.

6 Concluding Remarks

In this paper, we proposed simplified multivariate Markov chain models for modelling

categorical date sequences. The models are then applied to demand predictions. We also

proposed a simplified model for the case when the observed data sequences are too short

so that the steady-state may not be reached and the estimations of the transition probabil-

ity matrices may not accurate. The followings are some possible extensions of our models.

(i) Our multivariate Markov chain model is of first-order, one may further generalize the

model to a higher-order multivariate Markov model, see for instance [7, 11]. We expect

better prediction of sales demand can be achieved by using higher-order model.

(ii) Further research can also be done in extending the model to handle the case of “neg-

ative correlations”. In the proposed models here, all the parameters λij are assumed to

be non-negative, i.e. the sequences j is “positively correlated” to the sequence i. It is

interesting to allow λij to be free.
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7 Appendix

Sales Demand Sequences of the Five Products (Taken from [4])
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Product A: 6 6 6 6 2 6 2 6 2 2 6 2 6 6 2 6 2 4 4 4 5 6 6 1 2 2 6 6 6 2 6 2 6 6 2 6 2 2 6 2 1 2 2 6 6 6 2 1 2 6 2 6 6 2 2 6 2 2 2 6 2 6 2 2 2 2 2 6

2 2 6 6 6 6 1 2 2 6 2 2 2 2 6 2 2 2 2 3 3 2 3 2 6 6 6 6 2 6 2 6 6 2 6 2 6 6 2 6 6 2 2 3 4 3 3 1 3 1 2 1 6 1 6 6 1 6 6 2 6 2 6 2 2 2 6 6 1 6 2 6 1 2 1

6 2 6 2 2 2 2 6 6 1 6 6 2 2 6 2 2 2 3 4 4 4 6 4 6 1 6 6 1 6 6 6 6 1 6 2 2 2 6 6 6 6 2 6 6 2 2 6 2 6 2 2 2 6 2 2 2 6 6 6 6 3 2 2 6 2 2 2 2 2 2 6 2 6 2

2 2 6 2 2 6 6 2 6 6 6 2 2 2 3 3 3 4 1 6 6 1 6 6 1 6 1 6 6 6 6 1 6 6 6 2 1 2 2 2 2 2 2 3 6 6 6 6 6 2 6

Product B: 1 6 6 1 6 1 1 1 1 1 1 6 6 6 1 2 1 6 6 1 1 1 6 6 2 1 6 6 1 1 1 6 1 2 1 6 2 2 2 2 2 6 1 6 6 1 2 1 6 6 6 1 1 1 6 6 1 1 1 1 6 1 1 2 1 6 1 6

1 1 6 2 6 2 6 6 6 3 6 6 1 6 6 2 2 2 3 2 2 6 6 6 1 1 6 2 6 6 2 6 2 6 6 1 3 6 6 1 1 1 2 2 3 2 2 6 2 2 2 1 6 1 6 1 1 6 2 1 1 1 2 2 1 6 1 1 1 1 2 6 1 1 1

1 6 1 6 1 2 1 6 1 6 6 1 6 1 2 2 2 2 3 3 2 2 2 6 6 6 6 2 1 1 6 1 1 1 6 1 6 1 6 1 6 1 1 6 6 2 1 1 6 6 1 1 2 6 2 6 6 6 1 2 6 1 6 1 1 1 1 6 1 6 1 1 6 6 1

6 6 1 6 1 6 6 1 1 6 6 2 2 2 2 2 2 2 2 2 6 6 6 6 1 6 6 6 1 6 6 1 6 6 1 1 6 1 3 3 3 5 1 6 6 6 6 6 6 6 6

Product C: 6 6 6 6 6 6 6 2 6 6 6 6 6 6 6 2 6 6 6 6 2 6 6 6 2 2 6 6 6 6 6 6 6 1 6 2 6 6 6 6 6 6 6 6 2 6 6 1 2 6 1 6 6 1 6 2 6 6 6 6 6 6 6 2 6 6 6 2

6 6 1 6 6 6 6 6 6 6 3 3 6 3 2 1 2 2 1 6 6 1 6 1 6 6 6 6 6 6 1 6 6 6 1 6 6 6 6 6 6 6 6 6 6 6 2 6 6 6 6 6 6 6 6 2 2 6 6 2 6 1 2 6 6 6 2 6 6 2 6 6 2 6 1

6 2 6 2 1 2 6 6 2 2 6 2 6 2 2 6 2 6 6 6 2 2 2 6 6 2 6 6 2 2 6 1 2 1 2 6 6 2 2 6 6 1 2 2 1 6 2 6 2 2 1 1 5 6 3 6 1 6 6 1 2 2 6 1 6 2 6 6 1 6 2 6 2 6 6

6 1 6 1 6 6 2 2 2 1 2 3 6 1 6 1 6 1 6 1 6 6 6 1 1 6 6 6 6 6 1 6 6 6 1 6 1 1 6 6 6 6 6 6 6 6 1 6 6 1 6

Product D: 6 2 2 2 2 3 3 4 4 4 5 4 3 3 6 2 6 6 6 3 4 4 3 3 3 3 3 2 6 6 3 4 4 4 4 3 4 2 6 2 2 6 2 2 6 6 3 4 5 4 4 6 3 6 6 6 2 6 2 6 6 2 2 6 4 4 5 4

3 4 3 4 4 6 2 6 6 2 2 6 2 6 6 2 6 6 2 6 6 2 6 2 6 3 5 5 5 4 4 4 3 6 2 6 6 2 6 2 6 2 2 6 2 6 6 2 6 4 4 4 4 4 4 6 3 6 6 2 6 2 6 2 6 2 6 6 2 2 2 2 2 2 2

2 2 3 3 3 5 5 4 5 3 3 3 6 2 6 6 2 2 6 2 2 2 2 6 2 3 2 2 3 6 3 2 2 3 4 4 4 4 5 5 4 4 6 6 2 6 2 6 2 2 2 2 2 2 2 5 5 4 4 5 5 2 6 2 6 6 2 6 2 6 2 2 3 3 4

4 5 4 4 4 3 4 3 6 2 6 2 2 2 2 2 2 2 2 2 2 2 3 4 4 4 4 5 4 4 4 3 2 2 2 6 2 2 2 6 2 6 2 6 2 2 2 2 2 3 2

Product E: 6 2 2 2 2 3 3 4 4 4 5 4 3 3 6 2 6 6 2 3 4 4 3 4 4 3 3 2 2 6 3 4 4 4 4 3 4 2 3 2 2 6 3 3 6 6 3 4 5 4 5 3 3 2 6 6 2 6 2 6 6 2 2 6 4 4 4 4

4 4 5 4 4 6 2 6 6 2 2 6 2 6 6 2 6 6 2 6 6 2 6 2 6 3 4 4 4 4 4 4 4 6 2 6 6 2 6 2 6 6 6 6 2 6 2 2 6 4 4 4 4 4 4 6 3 3 6 2 2 2 6 2 6 2 2 2 2 2 2 2 2 2 2

2 2 3 6 4 5 5 5 5 2 4 6 6 2 6 6 2 2 6 2 2 2 2 6 2 3 2 2 3 6 3 2 2 3 4 4 4 4 5 5 4 3 3 6 2 6 2 2 2 6 3 2 2 2 2 5 5 4 4 4 4 3 6 2 6 6 2 6 2 6 2 2 3 3 4

4 5 4 4 4 4 4 3 6 2 6 2 2 2 6 2 2 2 2 2 2 2 3 4 4 4 4 5 4 4 4 3 2 2 2 6 6 6 2 6 2 6 2 6 2 2 2 2 2 2 2

6=very fast-moving, 5 = fast-moving, 4 = standard, 3 = slow-moving, 2 = very slow-moving and 1= no sales volume.
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