PARTITIONS OF THE WONDERFUL GROUP COMPACTIFICATION

JIANG-HUA LU AND MILEN YAKIMOV

Abstract

We define and study a family of partitions of the wonderful compactification \bar{G} of a semi-simple algebraic group G of adjoint type. The partitions are obtained from subgroups of $G \times G$ associated to triples $\left(A_{1}, A_{2}, a\right)$, where A_{1} and A_{2} are subgraphs of the Dynkin graph Γ of G and $a: A_{1} \rightarrow A_{2}$ is an isomorphism. The partitions of \bar{G} of Springer and Lusztig correspond respectively to the triples $(\emptyset, \emptyset, \mathrm{id})$ and ($\Gamma, \Gamma, \mathrm{id}$)

1. Introduction

Let G be a connected semi-simple algebraic group over an algebraically closed field k. De Concini and Procesi [5, 6] constructed a wonderful compactification \bar{G} of G, which is a smooth irreducible $(G \times G)$-variety with finitely many $(G \times G)$-orbits. Let $G_{\text {diag }}$ be the diagonal subgroup of $G \times G$. In his study of parabolic character sheaves on \bar{G} in [14, 15], Lusztig introduced (by an inductive procedure) a partition of \bar{G} by finitely many $G_{\text {diag }}{ }^{-}$ stable pieces. The closure of a $G_{\text {diag }}$-stable piece was shown by X.-H. He [8] to be a union of such pieces. Let B be a Borel subgroup of G. Then \bar{G} is also partitioned into finitely many $(B \times B)$-orbits. The $(B \times B)$-orbits in \bar{G}, as well as their closures, were studied by T . Springer in [18]. In [8], X.-H. He gave a second description of Lusztig's $G_{\text {diag }}$-stable pieces using $(B \times B)$-orbits in \bar{G}, which then enabled him to give [9] an equivalent definition of Lusztig's character sheaves on \bar{G}. Further properties and applications of the $G_{\text {diag }}$-stable pieces were obtained by X.-H. He and J. F. Thomsen in [7, 9, 10].

Both $G_{\text {diag }}$ and $B \times B$ are special examples of subgroups $R_{\mathcal{A}}$ of $G \times G$ associated to triples $\left(A_{1}, A_{2}, a\right)$, where A_{1} and A_{2} are subgraphs of the Dynkin graph Γ of G, and a is an isomorphism from A_{1} to A_{2}. If $P_{A_{1}}$ and $P_{A_{2}}$ are the standard parabolic subgroups of G corresponding to A_{1} and A_{2} respectively, then, roughly speaking, $R_{\mathcal{A}}$ is a subgroup of $P_{A_{1}} \times P_{A_{2}}$, obtained by identifying the Levi subgroups of $P_{A_{1}}$ and $P_{A_{2}}$ via the map a. The precise definition of $R_{\mathcal{A}}$ is given in $\S 2.1$. For example, every stabilizer subgroup of $G \times G$ in \bar{G} is conjugate to a group of this form. Moreover, $G_{\text {diag }}$ is associated to the triple $(\Gamma, \Gamma, \mathrm{id})$ and $B \times B$ to the triple $(\emptyset, \emptyset, \mathrm{id})$, where \emptyset is the empty set.

In this paper, for any subgroup $R_{\mathcal{A}}$ of $G \times G$ associated to a triple $\left(A_{1}, A_{2}\right.$, a), we study a partition of \bar{G} into finitely many $R_{\mathcal{A}}$-stable pieces indexed by a subset of the Weyl group of $G \times G$. Our definition of the $R_{\mathcal{A}}$-stable pieces is based on our earlier paper [12] on $\left(R_{\mathcal{A}}, R_{\mathcal{C}}\right)$ double cosets in $G \times G$ for any pair of subgroups $R_{\mathcal{A}}$ and $R_{\mathcal{C}}$ associated to triples $\left(A_{1}, A_{2}, a\right)$ and ($\left.C_{1}, C_{2}, c\right)$. We give two additional descriptions of the $R_{\mathcal{A}}$-stable pieces, which for the case of $G_{\text {diag-stable pieces, reduce to Lusztig's inductive description in }[14,15] ~ a n d ~ H e ' s ~}^{\text {' }}$ description in [8] using $(B \times B)$-orbits. In particular, we show that the $R_{\mathcal{A}}$-stable pieces are smooth, irreducible, locally closed subsets of \bar{G}, fibered over flag varieties of Levi subgroups of G. We also show that the closure in \bar{G} of an $R_{\mathcal{A}}$-stable piece is a union of such pieces. We then describe the combinatorics for the closures of the $R_{\mathcal{A}}$-stable pieces, generalizing both the result of $\mathrm{He}[8]$ for the $G_{\mathrm{diag}^{-}}$-stable pieces and that of Springer for the $(B \times B)$-orbits. The closure relations of the $R_{\mathcal{A}}$-stable pieces are expressed in terms of intersections of the closures with the unique closed $(G \times G)$-orbit in the boundary of \bar{G}.

[^0]Our motivation for studying the $R_{\mathcal{A}}$-stable pieces in \bar{G} for an arbitrary triple $\left(A_{1}, A_{2}, a\right)$ comes from Poisson geometry. In [13], we study a class of Poisson structures on \bar{G} induced by Belavin-Drinfeld r-matrices [1]. The triples $\left(A_{1}, A_{2}, a\right)$ needed there are precisely the Belavin-Drinfeld triples for the r-matrices. The $R_{\mathcal{A}}$-stable pieces in \bar{G} as well as their closures are Poisson subvarieties of \bar{G} for the corresponding Poisson structures. To understand these Poisson structures, one needs to first understand the geometry of the $R_{\mathcal{A}}$-stable pieces.

In $\S 2-\S 5$, we in fact assume that G_{1} and G_{2} are any two reductive algebraic groups over an algebraically closed field, and that $R_{\mathcal{A}}$ and $R_{\mathcal{C}}$ are subgroups of $G_{1} \times G_{2}$ associated to two triples $\left(A_{1}, A_{2}, a\right)$ and $\left(C_{1}, C_{2}, c\right)$ for $G_{1} \times G_{2}$. The precise definitions of the subgroups $R_{\mathcal{A}}$ and $R_{\mathcal{C}}$ are given in $\S 2.1$. Each pair $\left(R_{\mathcal{A}}, R_{\mathcal{C}}\right)$ of such subgroups gives rise to a decomposition of $G_{1} \times G_{2}$ into $\left(R_{\mathcal{A}}, R_{\mathcal{C}}\right)$-stable subsets of the form $\left[v_{1}, v_{2}\right]_{\mathcal{A}, \mathcal{C}}$, where $\left(v_{1}, v_{2}\right)$ runs over a subset of the Weyl group for $G_{1} \times G_{2}$ (see (2.4) for detail). In $\S 4$, we give a description of the set $\left[v_{1}, v_{2}\right]_{\mathcal{A}, \mathcal{C}}$ as iterated fiber bundles. The closures of the sets $\left[v_{1}, v_{2}\right]_{\mathcal{A}, \mathcal{C}}$ in $G_{1} \times G_{2}$ are described in $\S 5$. In $\S 6$ and $\S 7$, the results in $\S 5$ are used to prove our main theorems on the $R_{\mathcal{A}}$-stable pieces in \bar{G} for a semi-simple algebraic group G of adjoint type. Precise statements of our results are summarized in $\S 2$. In the appendix we collect a few facts on the Bruhat order on Weyl groups that we use in the paper.

Acknowledgements. We would like to thank Sam Evens and Xuhua He for helpful answers to our questions. The first author was partially supported by HKRGC grants 703304 and 703405, and the second author by NSF grant DMS-0406057 and an Alfred P. Sloan research fellowship.

2. Notation and statements of results

2.1. Admissible quadruples. For $i=1,2$, let G_{i} be a connected reductive algebraic group over an algebraically closed field k. Let B_{i} and B_{i}^{-}be a fixed pair of opposite Borel subgroups of G_{i}. Set $T_{i}=B_{i} \cap B_{i}^{-}$, and let Γ_{i} be the set of simple roots determined by $\left(B_{i}, T_{i}\right)$. For $\alpha \in \Gamma_{i}$, denote by U_{i}^{α} the one-parameter unipotent subgroup of G_{i} defined by α. For a subset A_{i} of Γ_{i}, let $P_{A_{i}}$ and $P_{A_{i}}^{-}$be the standard parabolic subgroups of G_{i} containing respectively B_{i} and B_{i}^{-}. Let $M_{A_{i}}=P_{A_{i}} \cap P_{A_{i}}^{-}$be the common Levi factor of $P_{A_{i}}^{ \pm}$, and let $Z_{A_{i}}$ be the center of $M_{A_{i}}$. The unipotent radicals of $P_{A_{i}}$ and $P_{A_{i}}^{-}$will be denoted by $U_{A_{i}}$ and $U_{A_{i}}^{-}$ respectively. Let W_{i} be the Weyl group of Γ_{i} and $W_{A_{i}}$ the subgroup of W_{i} generated by reflections defined by simple roots in A_{i}. Let $W_{i}^{A_{i}}$ and ${ }^{A_{i}} W_{i}$ be the sets of minimal length representatives of cosets from $W_{i} / W_{A_{i}}$ and $W_{A_{i}} \backslash W_{i}$ respectively. For each $w_{i} \in W_{i}$, we also fix a choice \dot{w}_{i} of a representative of w_{i} in the normalizer of T_{i} in G_{i}. The length function on W_{i} will be denoted by l. If a group G acts on a set $X, g \cdot x$ denote the action of $g \in G$ on $x \in X$. For an element $g \in G$, the map $G \rightarrow G: h \mapsto g h g^{-1}$ will be denoted by Ad_{g}. The identity element of a group will be denoted by e or 1 .

For subsets A_{i} of the Dynkin graphs $\Gamma_{i}, i=1,2$, we call a bijective map $a: A_{1} \rightarrow A_{2}$ an isomorphism, if it preserves the type of each arrow.

Definition 2.1. An admissible quadruple for $G_{1} \times G_{2}$ is a quadruple $\mathcal{A}=\left(A_{1}, A_{2}, a, K\right)$ consisting of subsets A_{1} of Γ_{1} and A_{2} of Γ_{2}, an isomorphism $a: A_{1} \rightarrow A_{2}$, and a closed subgroup K of $M_{A_{1}} \times M_{A_{2}}$ of the form

$$
\begin{equation*}
K=\left\{\left(m_{1}, m_{2}\right) \in M_{A_{1}} \times M_{A_{2}} \mid \theta_{a}\left(m_{1} Z_{1}\right)=m_{2} Z_{2}\right\} \tag{2.1}
\end{equation*}
$$

where, for $i=1,2, Z_{i}$ is a closed subgroup of $Z_{A_{i}}$ and $\theta_{a}: M_{A_{1}} / Z_{1} \rightarrow M_{A_{2}} / Z_{2}$ is an isomorphism mapping T_{1} / Z_{1} to T_{2} / Z_{2} and U_{1}^{α} to $U_{2}^{a(\alpha)}$ for each $\alpha \in A_{1}$. Here we identify U_{1}^{α} and $U_{2}^{a(\alpha)}$ with their images in $M_{A_{1}} / Z_{1}$ and $M_{A_{2}} / Z_{2}$ respectively. Given an admissible quadruple $\mathcal{A}=\left(A_{1}, A_{2}, a, K\right)$ of $G_{1} \times G_{2}$, define

$$
\begin{equation*}
R_{\mathcal{A}}=K\left(U_{A_{1}} \times U_{A_{2}}\right) \subset P_{A_{1}} \times P_{A_{2}}, \quad R_{\mathcal{A}}^{-}=K\left(U_{A_{1}}^{-} \times U_{A_{2}}\right) \subset P_{A_{1}}^{-} \times P_{A_{2}} \tag{2.2}
\end{equation*}
$$

Note that when $G_{1}=G_{2}=G$, the diagonal subgroup $G_{\text {diag }}$ and $B \times B$ for a Borel subgroup B are examples of the groups $R_{\mathcal{A}}$. If further G is of adjoint type, all stabilizer subgroups of $G \times G$ in the De Concini-Procesi [5] compactification \bar{G} of G are conjugate to groups of the type $R_{\mathcal{A}}^{-}$(see $\S 2.3$).
2.2. An $\left(R_{\mathcal{A}}, R_{\mathcal{C}}\right)$-stable partition of $G_{1} \times G_{2}$. In [12] we obtained a classification of ($R_{\mathcal{A}}, R_{\mathcal{C}}$)-double cosets of $G_{1} \times G_{2}$ for two arbitrary admissible quadruples $\mathcal{A}=\left(A_{1}, A_{2}, a, K\right)$ and $\mathcal{C}=\left(C_{1}, C_{2}, c, L\right)$ for $G_{1} \times G_{2}$. Given $v_{1} \in W_{1}^{C_{1}}, v_{2} \in{ }^{A_{2}} W_{2}$, set
(2.3) $C_{2}\left(v_{1}, v_{2}\right)=\left\{\beta \in C_{2} \mid\left(v_{2}^{-1} a v_{1} c^{-1}\right)^{n} \beta\right.$ is defined and is in C_{2} for $\left.n=1,2, \ldots\right\}$.

In other words, $C_{2}\left(v_{1}, v_{2}\right)$ is the largest subset of C_{2} that is stable under $v_{2}^{-1} a v_{1} c^{-1}$. We proved [12] that each $\left(R_{\mathcal{A}}, R_{\mathcal{C}}\right)$-double coset of $G_{1} \times G_{2}$ is of the form $R_{\mathcal{A}}\left(\dot{v}_{1}, \dot{v}_{2} m_{2}\right) R_{\mathcal{C}}$ for some $v_{1} \in W_{1}^{C_{1}}, v_{2} \in{ }^{A_{2}} W_{2}$ and $m_{2} \in M_{C_{2}\left(v_{1}, v_{2}\right)}$. Two such double cosets $R_{\mathcal{A}}\left(\dot{v}_{1}, \dot{v}_{2} m_{2}\right) R_{\mathcal{C}}$ and $R_{\mathcal{A}}\left(\dot{v}_{1}^{\prime}, \dot{v}_{2}^{\prime} m_{2}^{\prime}\right) R_{\mathcal{C}}$ coincide if and only if $v_{i}^{\prime}=v_{i}$ for $i=1,2$, and m_{2} and m_{2}^{\prime} are in the same ($v_{2}^{-1} a v_{1} c^{-1}$)-twisted conjugacy class in $M_{C_{2}\left(v_{1}, v_{2}\right)}$, see Theorem 3.1 for details.

For $v_{1} \in W_{1}^{C_{1}}$ and $v_{2} \in{ }^{A_{2}} W_{2}$, let

$$
\begin{equation*}
\left[v_{1}, v_{2}\right]_{\mathcal{A}, \mathcal{C}}=R_{\mathcal{A}}\left(v_{1}, v_{2} M_{C_{2}\left(v_{1}, v_{2}\right)}\right) R_{\mathcal{C}} \subset G_{1} \times G_{2} \tag{2.4}
\end{equation*}
$$

Then by the above result from [12], we have the decomposition

$$
\begin{equation*}
G_{1} \times G_{2}=\bigsqcup_{v_{1} \in W_{1}^{C_{1}}, v_{2} \in \in_{2} W_{2}}\left[v_{1}, v_{2}\right]_{\mathcal{A}, \mathcal{C}} \tag{2.5}
\end{equation*}
$$

Here and below \bigsqcup stands for disjoint union. Note that (2.5) is constructed in such a way that the $\left(R_{\mathcal{A}}, R_{\mathcal{C}}\right)$-double cosets of $G_{1} \times G_{2}$ corresponding to the same discrete parameters $v_{1} \in W_{1}^{C_{1}}$ and $v_{2} \in{ }^{A_{2}} W_{2}$ but possibly different continuous parameters $m_{2} \in M_{C_{2}\left(v_{1}, v_{2}\right)}$ are put together in a single stratum. Alternatively we have the decomposition

$$
\begin{equation*}
\left(G_{1} \times G_{2}\right) / R_{\mathcal{C}}=\bigsqcup_{v_{1} \in W_{1}^{C_{1}}, v_{2} \in A_{2} W_{2}}\left[v_{1}, v_{2}\right]_{\mathcal{A}, \mathcal{C}} / R_{\mathcal{C}} \tag{2.6}
\end{equation*}
$$

of $\left(G_{1} \times G_{2}\right) / R_{\mathcal{C}}$ into $R_{\mathcal{A}}$-stable subsets.
The main objects of study in this paper are the sets $\left[v_{1}, v_{2}\right]_{\mathcal{A}, \mathcal{C}}$ for $v_{1} \in W_{1}^{C_{1}}, v_{2} \in{ }^{A_{2}} W_{2}$. We describe their geometry, as well as their closure relations. The results are then applied to the wonderful group compactifications.

The following theorem summarizes our results for the decompositions (2.5) and (2.6), see Corollary 4.9, Proposition 4.10, Proposition 4.11, and Theorem 5.2.

Theorem 2.2. Given any two admissible quadruples \mathcal{A} and \mathcal{C} for $G_{1} \times G_{2}$, the following hold for every $v_{1} \in W_{1}^{C_{1}}$ and $v_{2} \in{ }^{A_{2}} W_{2}$.
(i) $\left[v_{1}, v_{2}\right]_{\mathcal{A}, \mathcal{C}}$ is locally closed, smooth, and irreducible. Its projection $\left[v_{1}, v_{2}\right]_{\mathcal{A}, \mathcal{C}} / R_{\mathcal{C}}$ to $\left(G_{1} \times G_{2}\right) / R_{\mathcal{C}}$ fibers over the flag variety $M_{A_{1}} /\left(M_{A_{1}} \cap P_{A_{1}\left(v_{1}, v_{2}\right)}\right)$ with fibers isomorphic to the product of $M_{C_{2}\left(v_{1}, v_{2}\right)} / Y_{2}$ and the affine space of dimension

$$
\operatorname{dim} U_{A_{1}\left(v_{1}, v_{2}\right)}-\operatorname{dim}\left(U_{1} \cap v_{1}\left(U_{C_{1}}\right)\right)+l\left(v_{2}\right)
$$

where $A_{1}\left(v_{1}, v_{2}\right)=v_{1} c^{-1} C_{2}\left(v_{1}, v_{2}\right) \subset A_{1}$, and $Y_{2}=\left\{m \in M_{C_{2}} \mid(e, m) \in L\right\} \subset Z_{C_{2}}$.
(ii) Alternatively the set $\left[v_{1}, v_{2}\right]_{\mathcal{A}, \mathcal{C}}$ is given by

$$
\begin{equation*}
\left[v_{1}, v_{2}\right]_{\mathcal{A}, \mathcal{C}}=R_{\mathcal{A}}\left(B_{1} \times B_{2}\right)\left(v_{1}, v_{2}\right) R_{\mathcal{C}} . \tag{2.7}
\end{equation*}
$$

(iii) The Zariski closure of $\left[v_{1}, v_{2}\right]_{\mathcal{A}, \mathcal{C}}$ in $G_{1} \times G_{2}$ consists of those $\left[w_{1}, w_{2}\right]_{\mathcal{A}, \mathcal{C}}$ with $w_{1} \in$ $W_{1}^{C_{1}}$ and $w_{2} \in{ }^{A_{2}} W_{2}$ for which there exist $x_{1} \in W_{A_{1}}$ and $y_{1} \in W_{C_{1}}$ such that

$$
x_{1} w_{1} y_{1} \leq v_{1} \quad \text { and } \quad a\left(x_{1}\right) w_{2} c\left(y_{1}\right) \leq v_{2} .
$$

(iv) If $\mathcal{A}^{\prime}=\left(A_{1}, A_{2}, a, L^{\prime}\right)$ and $\mathcal{C}=\left(C_{1}, C_{2}, c, L^{\prime}\right)$ are two other admissible quadruples containing the same triples $\left(A_{1}, A_{2}, a\right)$ and $\left(C_{1}, C_{2}, c\right)$, then there exist $t_{2}, s_{2} \in T_{2}$ such that

$$
\left[v_{1}, v_{2}\right]_{\mathcal{A}^{\prime}, \mathcal{C}^{\prime}}=\left(e, t_{2}\right)\left[v_{1}, v_{2}\right]_{\mathcal{A}, \mathcal{C}}\left(e, s_{2}\right), \quad \forall v_{1} \in W_{1}^{C_{1}}, v_{2} \in{ }^{A_{2}} W_{2}
$$

Example 2.3. When $\mathcal{A}=\mathcal{C}=\left(\emptyset, \emptyset\right.$, id, $\left.T_{1} \times T_{2}\right)$ so that $R_{\mathcal{A}}=R_{\mathcal{C}}=B_{1} \times B_{2}$, we have

$$
\left[v_{1}, v_{2}\right]_{\mathcal{A}, \mathcal{C}}=\left(B_{1} \times B_{2}\right)\left(v_{1}, v_{2}\right)\left(B_{1} \times B_{2}\right), \quad \forall\left(v_{1}, v_{2}\right) \in W_{1} \times W_{2}
$$

Thus (2.5) reduces to the Bruhat decomposition

$$
G_{1} \times G_{2}=\bigsqcup_{v_{1} \in W_{1}, v_{2} \in W_{2}}\left(B_{1} \times B_{2}\right)\left(v_{1}, v_{2}\right)\left(B_{1} \times B_{2}\right) .
$$

Part (iii) of Theorem 2.2 in this case is the well-known statement for the closures of Bruhat cells.
2.3. Partitions of the wonderful group compactification. Now we specialize to the case when G_{1} and G_{2} are both isomorphic to a connected semisimple algebraic group G of adjoint type. All data for G will be denoted as in $\S 2.1$, omitting the index i. In particular, B and B^{-}will be two fixed opposite Borel subgroups of $G, T=B \cap B^{-}$, and Γ will be the set of simple roots determined by (B, T).

For $J \subset \Gamma$, let $\pi_{J}: M_{J} \rightarrow M_{J} / Z_{J}$ be the natural projection. By abuse of notation, we will denote by J the quadruple $\left(J, J, \mathrm{id}, L_{J}\right)$, where

$$
L_{J}=\left\{\left(m_{1}, m_{2}\right) \in M_{J} \times M_{J} \mid \pi_{J}\left(m_{1}\right)=\pi_{J}\left(m_{2}\right)\right\}
$$

So

$$
\begin{equation*}
R_{J}^{-}=L_{J}\left(U_{J}^{-} \times U_{J}\right)=\left\{\left(p_{1}, p_{2}\right) \in P_{J}^{-} \times P_{J} \mid \pi_{J}\left(p_{1}\right)=\pi_{J}\left(p_{2}\right)\right\} \tag{2.8}
\end{equation*}
$$

Recall that the wonderful compactification \bar{G} of G is a smooth irreducible projective $(G \times G)$-variety containing G as an open $(G \times G)$-orbit. It was defined and studied (in the more general framework of symmetric spaces) by De Concini and Procesi [5] in the complex case and by De Concini and Springer [6] for the general case of an algebraically closed field k. The $(G \times G)$-orbits on \bar{G} are parameterized by the subsets J of Γ. A base point h_{J} of the $(G \times G)$-orbit corresponding to $J \subset \Gamma$ has stabilizer subgroup R_{J}^{-}.

The partitions (2.5) induce partitions of \bar{G} as follows. Given an arbitrary admissible quadruple $\mathcal{A}=\left(A_{1}, A_{2}, a, K\right)$ for $G \times G$, by setting

$$
\begin{equation*}
\left[J, v_{1}, v_{2}\right]_{\mathcal{A}}=R_{\mathcal{A}}(B \times B)\left(v_{1}, v_{2}\right) \cdot h_{J}, \quad J \subset \Gamma, v_{1} \in W^{J}, v_{2} \in{ }^{A_{2}} W \tag{2.9}
\end{equation*}
$$

we obtain the following partition of the wonderful compactification

$$
\begin{equation*}
\bar{G}=\bigsqcup_{J \subset \Gamma, v_{1} \in W^{J}, v_{2} \in A^{2} W}\left[J, v_{1}, v_{2}\right]_{\mathcal{A}}, \tag{2.10}
\end{equation*}
$$

cf. (2.6) and (ii) of Theorem 2.2. We will refer to the sets $\left[J, v_{1}, v_{2}\right]_{\mathcal{A}}$ in (2.10) as $R_{\mathcal{A}}$-stable pieces of \bar{G}. If the subgroup K in \mathcal{A} is changed to K^{\prime}, the partition (2.10) is changed by an overall left translation by (e, t) for some $t \in T$ (see (iv) of Theorem 2.2 and Proposition 4.11).

Example 2.4. Let \mathcal{A} be the trivial admissible quadruple $(\emptyset, \emptyset, \operatorname{Id}, T \times T)$. Then $R_{\mathcal{A}}=B \times B$ and we recover Springer's partition [18] of \bar{G} by $(B \times B)$-orbits:

$$
\begin{equation*}
\bar{G}=\bigsqcup_{J \subset \Gamma, v_{1} \in W^{J}, v_{2} \in W}(B \times B)\left(v_{1}, v_{2}\right) \cdot h_{J} \tag{2.11}
\end{equation*}
$$

On the other hand, let \mathcal{A} be the quadruple $\Gamma_{\text {diag }}:=\left(\Gamma, \Gamma, \mathrm{id}, G_{\text {diag }}\right)$ where $G_{\text {diag }}$ is the diagonal subgroup of $G \times G$. By [8], we recover Lusztig's partition [14, 15] of \bar{G} :

$$
\begin{equation*}
\bar{G}=\bigsqcup_{J \subset \Gamma, v_{1} \in W^{J}}\left[J, v_{1}, 1\right]_{\Gamma_{\text {diag }}}=G_{\text {diag }}(B \times B)\left(v_{1}, 1\right) \cdot h_{J} . \tag{2.12}
\end{equation*}
$$

For a general admissible quadruple \mathcal{A} for $G \times G$, our partition (2.10) is a discrete interpolation between Springer's partition (2.11) and Lusztig's partition (2.12) of \bar{G}.

The closure relations of the strata in (2.10) can be derived directly from part (iii) in Theorem 2.2. This is stated in Proposition 7.3. However, we give a more elegant description of the closures using the unique closed $(G \times G)$-orbit on the boundary of \bar{G}, namely the orbit $(G \times G) . h_{\emptyset} \cong G / B^{-} \times G / B$, where \emptyset is the empty subset of Γ. More precisely, for any $J \subset \Gamma$ and $v_{1} \in W^{J}, v_{2} \in{ }^{A_{2}} W$, let $\overline{\left[J, v_{1}, v_{2}\right]_{\mathcal{A}}}$ be the closure of $\left[J, v_{1}, v_{2}\right]_{\mathcal{A}}$ in \bar{G}, and set

$$
\partial_{\emptyset} \overline{\left[J, v_{1}, v_{2}\right]_{\mathcal{A}}}=\overline{\left[J, v_{1}, v_{2}\right]_{\mathcal{A}}} \cap(G \times G) \cdot h_{\emptyset} .
$$

The following is a summary of Theorem 7.4 and Theorem 7.6.
Theorem 2.5. Let \mathcal{A} be an admissible quadruple for $G \times G$. Let $I, J \subset \Gamma, v_{1} \in W^{J}, v_{1}^{\prime} \in W^{I}$, and $v_{2}, v_{2}^{\prime} \in{ }^{A_{2}} W$. Then
(i) $\left[I, v_{1}^{\prime}, v_{2}^{\prime}\right]_{\mathcal{A}} \subset \overline{\left[J, v_{1}, v_{2}\right]_{\mathcal{A}}}$ if and only if $I \subset J$ and $\left[\emptyset, v_{1}^{\prime}, v_{2}^{\prime}\right]_{\mathcal{A}} \subset \partial_{\emptyset} \overline{\left[J, v_{1}, v_{2}\right]_{\mathcal{A}}}$;
(ii) $\left[I, v_{1}^{\prime}, v_{2}^{\prime}\right]_{\mathcal{A}} \subset\left[J, v_{1}, v_{2}\right]_{\mathcal{A}}$ if and only if $I \subset J$ and there exist $x \in W_{A_{1}}$ and $z \in W_{J}$ such that $x v_{1}^{\prime} \geq v_{1} z$ and $a(x) v_{2}^{\prime} \leq v_{2} z$.
Example 2.6. Consider the case when $\mathcal{A}=(\emptyset, \emptyset, \operatorname{Id}, T \times T)$, so that $R_{\mathcal{A}}=B \times B$. Theorem 2.5 implies that for any $I, J \subset \Gamma, v_{1} \in W^{J}, v_{1}^{\prime} \in W^{I}$, and $v_{2}, v_{2}^{\prime} \in W$,

$$
(B \times B)\left(v_{1}^{\prime}, v_{2}^{\prime}\right) \cdot h_{I} \subset \overline{(B \times B)\left(v_{1}, v_{2}\right) \cdot h_{J}}
$$

if and only if $I \subset J$ and there exists $z \in W_{J}$ such that $v_{1}^{\prime} \geq v_{1} z$ and $v_{2}^{\prime} \leq v_{2} z$. This description of the $(B \times B)$-orbit closures in \bar{G}, which is simpler than what is given in [18], was independently obtained in [11]. When $\mathcal{A}=\Gamma_{\text {diag }}$ as in Example 2.4, Theorem 2.5 implies that for any $I, J \subset \Gamma, v_{1} \in W^{J}, v_{1}^{\prime} \in W^{I}$,

$$
G_{\text {diag }}(B \times B)\left(v_{1}^{\prime}, 1\right) \cdot h_{I} \subset \overline{G_{\text {diag }}(B \times B)\left(v_{1}, 1\right) \cdot h_{J}}
$$

if and only if $I \subset J$ and there exists $x \leq z \in W_{J}$ such that $x v_{1}^{\prime} \geq v_{1} z$. It follows from [8, Corollary 3.4] (see Lemma 8.7 in the Appendix) that the above description of the closures of the $G_{\text {diag-stable subsets }}$ is the same as that given in [8] by X.-H. He.
3. $\left(R_{\mathcal{A}}, R_{\mathcal{C}}\right)$-DOUBLE COSETS IN $G_{1} \times G_{2}$ AND THEIR STABLIZER SUBGROUPS

In this section, we first recall some results from [12].
3.1. Classification of $\left(R_{\mathcal{A}}, R_{\mathcal{C}}\right)$-double cosets in $G_{1} \times G_{2}$. Fix two arbitrary admissible quadruples $\mathcal{A}=\left(A_{1}, A_{2}, a, K\right)$ and $\mathcal{C}=\left(C_{1}, C_{2}, c, L\right)$ for $G_{1} \times G_{2}$. In [12] we obtained a classification of the ($R_{\mathcal{A}}, R_{\mathcal{C}}$)-double cosets of $G_{1} \times G_{2}$.

For $v_{1} \in W_{1}^{C_{1}}$ and $v_{2} \in{ }^{A_{2}} W_{2}$, recall the definition (2.3) of the set $C_{2}\left(v_{1}, v_{2}\right) \subset C_{2}$. Similarly, let

$$
\begin{equation*}
A_{1}\left(v_{1}, v_{2}\right)=\left\{\alpha \in A_{1} \mid\left(v_{1} c^{-1} v_{2}^{-1} a\right)^{n} \alpha \text { is defined and is in } A_{1} \text { for } n=1,2, \ldots\right\} \tag{3.1}
\end{equation*}
$$ so $A_{1}\left(v_{1}, v_{2}\right)$ is the largest subset of A_{1} that is stable under $v_{1} c^{-1} v_{2}^{-1} a$. Note that

$$
\begin{equation*}
v_{2}^{-1} a \text { and } c v_{1}^{-1}: \quad A_{1}\left(v_{1}, v_{2}\right) \longrightarrow C_{2}\left(v_{1}, v_{2}\right) \tag{3.2}
\end{equation*}
$$

are isomorphisms. Define

$$
\begin{align*}
K_{\left(v_{1}, v_{2}\right)}= & \left(M_{A_{1}\left(v_{1}, v_{2}\right)} \times M_{C_{2}\left(v_{1}, v_{2}\right)}\right) \cap \operatorname{Ad}_{\left(e, \dot{v}_{2}\right)}^{-1} K \tag{3.3}\\
L_{\left(v_{1}, v_{2}\right)}= & \left(M_{A_{1}\left(v_{1}, v_{2}\right)} \times M_{C_{2}\left(v_{1}, v_{2}\right)}\right) \cap \operatorname{Ad}_{\left(\dot{v}_{1}, e\right)} L \tag{3.4}\\
Q_{\left(v_{1}, v_{2}\right)}= & \left\{\left(m, m^{\prime}\right) \in M_{C_{2}\left(v_{1}, v_{2}\right)} \times M_{C_{2}\left(v_{1}, v_{2}\right)} \mid \exists n \in M_{A_{1}\left(v_{1}, v_{2}\right)}\right. \tag{3.5}\\
& \text { such that } \left.(n, m) \in K_{\left(v_{1}, v_{2}\right)} \text { and }\left(n, m^{\prime}\right) \in L_{\left(v_{1}, v_{2}\right)}\right\}
\end{align*}
$$

and let $Q_{\left(v_{1}, v_{2}\right)}$ act on $M_{C_{2}\left(v_{1}, v_{2}\right)}$ from the left by

$$
\begin{equation*}
\left(m, m^{\prime}\right) \cdot m_{2}:=m m_{2}\left(m^{\prime}\right)^{-1}, \quad\left(m, m^{\prime}\right) \in Q_{\left(v_{1}, v_{2}\right)}, m_{2} \in M_{C_{2}\left(v_{1}, v_{2}\right)} \tag{3.6}
\end{equation*}
$$

Theorem 3.1. [12] Let $\mathcal{A}=\left(A_{1}, A_{2}, a, K\right)$ and $\mathcal{C}=\left(C_{1}, C_{2}, c, L\right)$ be two admissible quadruples for $G_{1} \times G_{2}$. Then every $\left(R_{\mathcal{A}}, R_{\mathcal{C}}\right)$-double coset of $G_{1} \times G_{2}$ is of the form

$$
R_{\mathcal{A}}\left(\dot{v}_{1}, \dot{v}_{2} m_{2}\right) R_{\mathcal{C}} \quad \text { for some } v_{1} \in W_{1}^{C_{1}}, v_{2} \in{ }^{A_{2}} W_{2}, m_{2} \in M_{C_{2}\left(v_{1}, v_{2}\right)}
$$

Two such double cosets $R_{\mathcal{A}}\left(\dot{v}_{1}, \dot{v}_{2} m_{2}\right) R_{\mathcal{C}}$ and $R_{\mathcal{A}}\left(\dot{v}_{1}^{\prime}, \dot{v}_{2}^{\prime} m_{2}^{\prime}\right) R_{\mathcal{C}}$ coincide if and only if $v_{i}^{\prime}=v_{i}$

In [12] we dealt with a slightly more general class of the groups $R_{\mathcal{A}}$ for which the projections $K \rightarrow M_{A_{i}}$, for $i=1,2$, do not have to be surjective.

Recall from (2.4) that given any two admissible quadruples \mathcal{A} and \mathcal{C} for $G_{1} \times G_{2}$, we have

$$
\left[v_{1}, v_{2}\right]_{\mathcal{A}, \mathcal{C}}=R_{\mathcal{A}}\left(v_{1}, v_{2} M_{C_{2}\left(v_{1}, v_{2}\right)}\right) R_{\mathcal{C}} \subset G_{1} \times G_{2}
$$

for $v_{1} \in W_{1}^{C_{1}}$ and $v_{2} \in{ }^{A_{2}} W_{2}$. Theorem 3.1 immediately implies:
Corollary 3.2. For any two admissible quadruples \mathcal{A} and \mathcal{C} for $G_{1} \times G_{2}$,

$$
G_{1} \times G_{2}=\bigsqcup_{\left(v_{1}, v_{2}\right) \in W_{1}^{C_{1}} \times{ }^{A_{2} W_{2}}}\left[v_{1}, v_{2}\right]_{\mathcal{A}, \mathcal{C}} \quad \text { (disjoint union) }
$$

Lemma 3.3. For any $v_{1} \in W_{1}^{C_{1}}$ and $v_{2} \in{ }^{A_{2}} W_{2}$,

$$
\begin{equation*}
\left[v_{1}, v_{2}\right]_{\mathcal{A}, \mathcal{C}}=R_{\mathcal{A}}\left(v_{1}, v_{2}\left(B_{2} \cap M_{C_{2}\left(v_{1}, v_{2}\right)}\right)\right) R_{\mathcal{C}} \tag{3.7}
\end{equation*}
$$

and $R_{\mathcal{A}}\left(v_{1}, v_{2} T_{2}\right) R_{\mathcal{C}}$ is dense in $\left[v_{1}, v_{2}\right]_{\mathcal{A}, \mathcal{C}}$, where $T_{2}=B_{2} \cap B_{2}^{-}$.
Proof. It is easy to see that $\sigma_{\left(v_{1}, v_{2}\right)}=\operatorname{Ad}_{\dot{v}_{2}}^{-1} \theta_{a} \operatorname{Ad}_{\dot{v}_{1}} \theta_{c}^{-1}$ defines an automorphism of $G_{C_{2}\left(v_{1}, v_{2}\right)}$. The action of $Q_{\left(v_{1}, v_{2}\right)}$ on $M_{C_{2}\left(v_{1}, v_{2}\right)}$ descends to an action on $G_{C_{2}\left(v_{1}, v_{2}\right)}$. The orbits of the latter are exactly the $\sigma_{\left(v_{1}, v_{2}\right)}$-twisted conjugacy classes of $G_{C_{2}\left(v_{1}, v_{2}\right)}$. (Here and below for a group F and $\sigma \in \operatorname{Aut}(F)$, by a σ-twisted conjugacy class of F we mean an orbit of the action $g . x=g x(\sigma(g))^{-1}$ of F on itself.) Lemma 3.3 now follows from the following results in [16] and [20, Lemma 7.3]: If G is a connected reductive algebraic group, $\sigma \in \operatorname{Aut}(G)$, and B is a σ-stable Borel subgroup G, then
(1) all σ-twisted conjugacy classes of G meet B;
(2) for every maximal torus T of G inside B the union of all σ-twisted conjugacy classes that meet T is a Zariski open subset of G.
3.2. Stabilizer subgroups. For $\left(g_{1}, g_{2}\right) \in G_{1} \times G_{2}$, set

$$
\begin{equation*}
\operatorname{Stab}_{\mathcal{A}, \mathcal{C}}\left(g_{1}, g_{2}\right)=R_{\mathcal{A}} \cap \operatorname{Ad}_{\left(g_{1}, g_{2}\right)} R_{\mathcal{C}} \tag{3.8}
\end{equation*}
$$

An explicit description of the subgroups $\operatorname{Stab}_{\mathcal{A}, \mathcal{C}}\left(g_{1}, g_{2}\right)$ was given in [12]. We only recall some facts about these groups that will be used in this paper (see the proof of Proposition 4.8).

For $v_{1} \in W_{1}^{C_{1}}$ and $v_{2} \in{ }^{A_{2}} W_{2}$, let $A_{2}\left(v_{1}, v_{2}\right)=a A_{1}\left(v_{1}, v_{2}\right) \subset A_{2}$.
Proposition 3.4. [12] For $q=\left(\dot{v}_{1}, \dot{v}_{2} m\right)$, where $v_{1} \in W_{1}^{C_{1}}, v_{2} \in{ }^{A_{2}} W_{2}$, and $m \in M_{C_{2}\left(v_{1}, v_{2}\right)}$, $\operatorname{Stab}_{\mathcal{A}, \mathcal{C}}(q) \subset P_{A_{1}\left(v_{1}, v_{2}\right)} \times P_{A_{2}\left(v_{1}, v_{2}\right)}$, and $\operatorname{Stab}_{\mathcal{A}, \mathcal{C}}(q)=\operatorname{Stab}_{\mathcal{A}, \mathcal{C}}^{\mathrm{red}}(q) \operatorname{Stab}_{\mathcal{A}, \mathcal{C}}^{\mathrm{uni}}(q)$, where

$$
\begin{aligned}
\operatorname{Stab}_{\mathcal{A}, \mathcal{C}}^{\mathrm{red}}(q) & =\operatorname{Stab}_{\mathcal{A}, \mathcal{C}}(q) \cap\left(M_{A_{1}\left(v_{1}, v_{2}\right)} \times M_{A_{2}\left(v_{1}, v_{2}\right)}\right) \\
& =\left(M_{A_{1}\left(v_{1}, v_{2}\right)} \times M_{A_{2}\left(v_{1}, v_{2}\right)}\right) \cap K \cap \operatorname{Ad}_{\left(\dot{v}_{1}, \dot{v}_{2} m\right)} L
\end{aligned}
$$

and $\operatorname{Stab}_{\mathcal{A}, \mathcal{C}}^{\mathrm{uni}}(q)=\operatorname{Stab}_{\mathcal{A}, \mathcal{C}}(q) \cap\left(U_{A_{1}\left(v_{1}, v_{2}\right)} \times U_{A_{2}\left(v_{1}, v_{2}\right)}\right)$ has dimension equal to

$$
\operatorname{dim}\left(U_{1} \cap v_{1}\left(U_{C_{1}}\right)\right)+\operatorname{dim}\left(U_{A_{2}} \cap v_{2}\left(U_{2}\right)\right)
$$

4. An inductive description and the geometry of the sets $\left[v_{1}, v_{2}\right]_{\mathcal{A}, \mathcal{C}}$

In this section, we modify the inductive arguments in [12] to give an inductive description of the sets $\left[v_{1}, v_{2}\right]_{\mathcal{A}, \mathcal{C}}$. Consequently, we will be able to describe the sets $\left[v_{1}, v_{2}\right]_{\mathcal{A}, \mathcal{C}}$ as iterated bundles. Our arguments generalize those of Lusztig's in [14, 15] for the special case when $G_{1}=G_{2}=G$ and $R_{\mathcal{A}}$ is the diagonal subgroup of G.
4.1. Construction of new admissible quadruples. For $i=1,2$ and $E_{i}, F_{i} \subset \Gamma_{i}$, let

$$
E_{i} W_{i}^{F_{i}}={ }^{E_{i}} W_{i} \cap W_{i}^{F_{i}} .
$$

Given an admissible quadruple $\mathcal{C}=\left(C_{1}, C_{2}, c, L\right)$ for $G_{1} \times G_{2}$, a subset E_{1} of Γ_{1}, and any $y_{1} \in{ }^{E_{1}} W_{1}^{C_{1}}$, we construct another admissible quadruple $\mathcal{C}^{\left(E_{1}, y_{1}\right)}$ for $G_{1} \times G_{2}$ as follows: set

$$
\begin{aligned}
& C_{1}^{\left(E_{1}, y_{1}\right)}=E_{1} \cap y_{1}\left(C_{1}\right), \quad C_{2}^{\left(E_{1}, y_{1}\right)}=c\left(C_{1} \cap y_{1}^{-1}\left(E_{1}\right)\right) \\
& L^{\left(E_{1}, y_{1}\right)}=\left(M_{C_{1}^{\left(E_{1}, y_{1}\right)}} \times M_{C_{2}^{\left(E_{1}, y_{1}\right)}}\right) \cap \operatorname{Ad}_{\left(\dot{y}_{1}, e\right)} L .
\end{aligned}
$$

Lemma 4.1. In the above setting the following hold:
(i) The quadruple $\mathcal{C}^{\left(E_{1}, y_{1}\right)}:=\left(C_{1}^{\left(E_{1}, y_{1}\right)}, C_{2}^{\left(E_{1}, y_{1}\right)}, c y_{1}^{-1}, L^{\left(E_{1}, y_{1}\right)}\right)$ is an admissible quadruple for $G_{1} \times G_{2}$.
(ii) Let $R_{\mathcal{C}^{\left(E_{1}, y_{1}\right)}}$ be the subgroup of $G_{1} \times G_{2}$ defined by $\mathcal{C}^{\left(E_{1}, y_{1}\right)}$ as in Definition 2.1. Then $\left(P_{E_{1}} \times G_{2}\right) \cap \operatorname{Ad}_{\left(\dot{y}_{1}, e\right)} R_{\mathcal{C}} \subset R_{\mathcal{C}^{\left(E_{1}, y_{1}\right)}}$.

Proof. Part (i) follows directly from the definition of admissible quadruples. To prove (ii), let $\left(p, g_{2}\right) \in P_{E_{1}} \times G_{2}$ be such that $\left(\dot{y}_{1}^{-1} p \dot{y}_{1}, g_{2}\right) \in R_{\mathcal{C}}$. For notational simplicity, set

$$
D_{1}=C_{1} \cap y_{1}^{-1}\left(E_{1}\right)=y_{1}^{-1}\left(C_{1}^{\left(E_{1}, y_{1}\right)}\right), \quad D_{2}=c\left(D_{1}\right)=C_{2}^{\left(E_{1}, y_{1}\right)}
$$

Then by [12, (4.11) in Lemma 4.2],

$$
\begin{equation*}
\dot{y}_{1}^{-1} p \dot{y}_{1} \in P_{C_{1}} \cap \operatorname{Ad}_{\dot{y}_{1}}^{-1} P_{E_{1}}=M_{D_{1}}\left(U_{D_{1}} \cap \operatorname{Ad}_{\dot{y}_{1}}^{-1} U_{C_{1}^{\left(E_{1}, y_{1}\right)}}\right) \subset P_{D_{1}} \tag{4.1}
\end{equation*}
$$

It follows from [12, (3) in Lemma 3.4] that $g_{2} \in P_{c\left(D_{1}\right)}=P_{D_{2}}=P_{C_{2}^{\left(E_{1}, y_{1}\right)}}$, and

$$
\begin{align*}
\left(\dot{y}_{1}^{-1} p \dot{y}_{1}, g_{2}\right) \in\left(P_{D_{1}} \times P_{D_{2}}\right) \cap R_{\mathcal{C}} & =\left(\left(P_{D_{1}} \times P_{D_{2}}\right) \cap L\right)\left(U_{C_{1}} \times U_{C_{2}}\right) \tag{4.2}\\
& \subset\left(\left(M_{D_{1}} \times M_{D_{2}}\right) \cap L\right)\left(U_{D_{1}} \times U_{D_{2}}\right) . \tag{4.3}
\end{align*}
$$

Thus by (4.1), $\left(\dot{y}_{1}^{-1} p \dot{y}_{1}, g_{2}\right) \in\left(\left(M_{D_{1}} \times M_{D_{2}}\right) \cap L\right)\left(\operatorname{Ad}_{\dot{y}_{1}}^{-1} U_{C_{1}^{\left(E_{1}, y_{1}\right)}} \times U_{D_{2}}\right)$ and hence $\left(p, g_{2}\right) \in$ $R_{\mathcal{C}^{\left(E_{1}, y_{1}\right)}}$.
4.2. The first step of the induction. Fix two admissible quadruples \mathcal{A} and \mathcal{C} for $G_{1} \times G_{2}$. Given $v_{1} \in W_{1}^{C_{1}}$ and $v_{2} \in{ }^{A_{2}} W_{2}$, we will use Lemma 4.1 to construct a sequence of admissible quadruples for $G_{1} \times G_{2}$ which will be used to give an inductive description of $\left[v_{1}, v_{2}\right]_{\mathcal{A}, \mathcal{C}} / R_{\mathcal{C}} \subset$ $\left(G_{1} \times G_{2}\right) / R_{\mathcal{C}}$. In this subsection, we present the first step of the inductive description.

Consider the projection

$$
\rho_{0}:\left(G_{1} \times G_{2}\right) / R_{\mathcal{C}} \longrightarrow\left(G_{1} \times G_{2}\right) /\left(P_{C_{1}} \times P_{C_{2}}\right)
$$

By [12, Proposition 8.1 and Proposition 4.1], every $R_{\mathcal{A}}$-orbit in $\left(G_{1} \times G_{2}\right) /\left(P_{C_{1}} \times P_{C_{2}}\right)$ contains exactly one point of the form $\left(x_{1}, x_{2}\right) \cdot\left(P_{C_{1}} \times P_{C_{2}}\right)$, where

$$
\begin{equation*}
x_{2} \in{ }^{A_{2}} W_{2}^{C_{2}} \quad \text { and } \quad x_{1} \in{ }^{a^{-1}\left(A_{2} \cap x_{2}\left(C_{2}\right)\right)} W_{1}^{C_{1}} \tag{4.4}
\end{equation*}
$$

Let Ω_{0} be the set that consists of all pairs $\left(x_{1}, x_{2}\right)$ satisfying (4.4). For $\left(x_{1}, x_{2}\right) \in \Omega_{0}$, let

$$
\begin{aligned}
& \mathcal{O}^{\left(x_{1}, x_{2}\right)}=R_{\mathcal{A}}\left(x_{1}, x_{2}\right) \cdot\left(P_{C_{1}} \times P_{C_{2}}\right) \subset\left(G_{1} \times G_{2}\right) /\left(P_{C_{1}} \times P_{C_{2}}\right) \\
& \mathcal{X}^{\left(x_{1}, x_{2}\right)}=\rho_{0}^{-1}\left(\mathcal{O}^{\left(x_{1}, x_{2}\right)}\right) \subset\left(G_{1} \times G_{2}\right) / R_{\mathcal{C}}
\end{aligned}
$$

Then clearly,

$$
\mathcal{X}^{\left(x_{1}, x_{2}\right)}=\left\{\left(r_{1} \dot{x}_{1}, r_{2} \dot{x}_{2} m\right) \cdot R_{\mathcal{C}} \mid\left(r_{1}, r_{2}\right) \in R_{\mathcal{A}}, m \in M_{C_{2}}\right\}
$$

By letting $E_{1}=a^{-1}\left(A_{2} \cap x_{2}\left(C_{2}\right)\right)$ and $y_{1}=x_{1}$ in Lemma 4.1, we get the admissible quadruple

$$
\begin{equation*}
\mathcal{C}^{\left(x_{1}, x_{2}\right)}:=\mathcal{C}^{\left(E_{1}, x_{1}\right)}=\left(C_{1}^{\left(x_{1}, x_{2}\right)}, C_{2}^{\left(x_{1}, x_{2}\right)}, c^{\left(x_{1}, x_{2}\right)}, L^{\left(x_{1}, x_{2}\right)}\right) \tag{4.5}
\end{equation*}
$$

and the corresponding subgroup $R_{\mathcal{C}^{\left(x_{1}, x_{2}\right)}}$ of $G_{1} \times G_{2}$, where in particular,

$$
\begin{align*}
& C_{1}^{\left(x_{1}, x_{2}\right)}=a^{-1}\left(A_{2} \cap x_{2}\left(C_{2}\right)\right) \cap x_{1}\left(C_{1}\right), \tag{4.6}\\
& C_{2}^{\left(x_{1}, x_{2}\right)}=c\left(C_{1} \cap x_{1}^{-1} a^{-1}\left(A_{2} \cap x_{2}\left(C_{2}\right)\right)\right), \tag{4.7}\\
& c^{\left(x_{1}, x_{2}\right)}=c x_{1}^{-1}: \quad C_{1}^{\left(x_{1}, x_{2}\right)} \longrightarrow C_{2}^{\left(x_{1}, x_{2}\right)} . \tag{4.8}
\end{align*}
$$

Lemma 4.2. For any $\left(x_{1}, x_{2}\right) \in \Omega_{0}$, the map $f_{0}: \mathcal{X}^{\left(x_{1}, x_{2}\right)} \rightarrow\left(G_{1} \times G_{2}\right) / R_{\mathcal{C}^{\left(x_{1}, x_{2}\right)}}$ given by

$$
\begin{equation*}
f_{0}: \quad\left(r_{1} \dot{x}_{1}, \quad r_{2} \dot{x}_{2} m\right) \cdot R_{\mathcal{C}} \longmapsto\left(r_{1}, \quad r_{2} \dot{x}_{2} m\right) \cdot R_{\mathcal{C}^{\left(x_{1}, x_{2}\right)}}, \quad\left(r_{1}, r_{2}\right) \in R_{\mathcal{A}}, m \in M_{C_{2}} \tag{4.9}
\end{equation*}
$$

is a well-defined $R_{\mathcal{A}}$-equivariant morphism of algebraic varieties.
Proof. Assume that $\left(r_{1} \dot{x}_{1}, r_{2} \dot{x}_{2} m\right) . R_{\mathcal{C}}=\left(r_{1}^{\prime} \dot{x}_{1}, r_{2}^{\prime} \dot{x}_{2} m^{\prime}\right) . R_{\mathcal{C}}$ for $\left(r_{1}, r_{2}\right),\left(r_{1}^{\prime}, r_{2}^{\prime}\right) \in R_{\mathcal{A}}$ and $m, m^{\prime} \in M_{C_{2}}$. Then

$$
\begin{equation*}
\left(\left(r_{1}^{\prime}\right)^{-1} r_{1},\left(r_{2}^{\prime}\right)^{-1} r_{2}\right) \in R_{\mathcal{A}} \quad \text { and } \quad\left(\dot{x}_{1}^{-1}\left(r_{1}^{\prime}\right)^{-1} r_{1} \dot{x}_{1},\left(m^{\prime}\right)^{-1} \dot{x}_{2}^{-1}\left(r_{2}^{\prime}\right)^{-1} r_{2} \dot{x}_{2} m\right) \in R_{\mathcal{C}} \tag{4.10}
\end{equation*}
$$

It follows from (4.10) that $\left(r_{2}^{\prime}\right)^{-1} r_{2} \in P_{A_{2}} \cap x_{2}\left(P_{C_{2}}\right) \subset P_{A_{2} \cap x_{2}\left(C_{2}\right)}$, which, together with (4.10) and [12, (3) of Lemma 3.4], imply that $\left(r_{1}^{\prime}\right)^{-1} r_{1} \in P_{a^{-1}\left(A_{2} \cap x_{2}\left(C_{2}\right)\right)}$. By (ii) of Lemma 4.1, we know that $\left(\left(r_{1}^{\prime}\right)^{-1} r_{1},\left(m^{\prime}\right)^{-1} \dot{x}_{2}^{-1}\left(r_{2}^{\prime}\right)^{-1} r_{2} \dot{x}_{2} m\right) \in R_{\mathcal{C}^{\left(x_{1}, x_{2}\right)}}$. Thus f_{0} is well-defined.

Clearly f_{0} is $R_{\mathcal{A}}$-equivariant. To see that f_{0} is a morphism, note that since the fiber of ρ_{0} over the point $\left(\dot{x}_{1}, \dot{x}_{2}\right) \cdot\left(P_{C_{1}} \times P_{C_{2}}\right)$ is $\left(\dot{x}_{1}, \dot{x}_{2}\right)\left(P_{C_{1}} \times P_{C_{2}}\right) / R_{\mathcal{C}}$, we have

$$
\mathcal{X}^{\left(x_{1}, x_{2}\right)} \cong R_{\mathcal{A}} \times_{R_{1}}\left(\dot{x}_{1}, \dot{x}_{2}\right)\left(P_{C_{1}} \times P_{C_{2}}\right) / R_{\mathcal{C}}
$$

where $R_{1}=R_{\mathcal{A}} \cap \operatorname{Ad}_{\left(\dot{x}_{1}, \dot{x}_{2}\right)}\left(P_{C_{1}} \times P_{C_{2}}\right)$ is the stabilizer subgroup of $R_{\mathcal{A}}$ at the point $\left(\dot{x}_{1}, \dot{x}_{2}\right) .\left(P_{C_{1}} \times P_{C_{2}}\right)$. Let $Y_{2}=\left\{m \in M_{C_{2}} \mid(e, m) \in L\right\} \subset Z_{C_{2}}$. Then the inclusion map of $\{e\} \times M_{C_{2}} \hookrightarrow P_{C_{1}} \times P_{C_{2}}$ induces an isomorphism

$$
\phi_{1}: \quad\left(\dot{x}_{1}, \dot{x}_{2}\right)\left(\{e\} \times M_{C_{2}}\right) /\left(\{e\} \times Y_{2}\right) \xrightarrow{\cong}\left(\dot{x}_{1}, \dot{x}_{2}\right)\left(P_{C_{1}} \times P_{C_{2}}\right) / R_{\mathcal{C}} .
$$

Note that $\{e\} \times Y_{2} \subset L^{\left(x_{1}, x_{2}\right)} \subset R_{\mathcal{C}^{\left(x_{1}, x_{2}\right)}}$ so we have the projection

$$
\phi_{2}: \quad\left(G_{1} \times G_{2}\right) /\left(\{e\} \times Y_{2}\right) \rightarrow\left(G_{1} \times G_{2}\right) / R_{\mathcal{C}^{\left(x_{1}, x_{2}\right)}}
$$

Consider the morphism

$$
\begin{aligned}
\phi_{3}: & R_{\mathcal{A}} \times\left(G_{1} \times G_{2}\right) /\left(\{e\} \times Y_{2}\right) \longrightarrow\left(G_{1} \times G_{2}\right) /\left(\{e\} \times Y_{2}\right): \\
& \left(\left(r_{1}, r_{2}\right),\left(g_{1}, g_{2}\right)\left(\{e\} \times Y_{2}\right)\right) \longmapsto\left(r_{1} \dot{x}_{1}^{-1} g_{1}, r_{2} g_{2}\right)\left(\{e\} \times Y_{2}\right) .
\end{aligned}
$$

The composition of ϕ_{3} with ϕ_{2} gives rises to a morphism

$$
R_{\mathcal{A}} \times\left(\dot{x}_{1}, \dot{x}_{2}\right)\left(\{e\} \times M_{C_{2}}\right) /\left(\{e\} \times Y_{2}\right) \longrightarrow\left(G_{1} \times G_{2}\right) / R_{\mathcal{C}^{\left(x_{1}, x_{2}\right)}} .
$$

Let R_{1} act on $\left(\dot{x}_{1}, \dot{x}_{2}\right)\left(\{e\} \times M_{C_{2}}\right) /\left(\{e\} \times Y_{2}\right)$ so that the isomorphism ϕ_{1} is R_{1}-equivariant. Then the well-definedness of f_{0} implies that

$$
f_{0}: \quad \chi^{\left(x_{1}, x_{2}\right)} \cong R_{\mathcal{A}} \times_{R_{1}}\left(\dot{x}_{1}, \dot{x}_{2}\right)\left(\{e\} \times M_{C_{2}}\right) /\left(\{e\} \times Y_{2}\right) \longrightarrow\left(G_{1} \times G_{2}\right) / R_{\mathcal{C}^{\left(x_{1}, x_{2}\right)}}
$$

is a morphism of varieties.

Let now $v_{1} \in W_{1}^{C_{1}}$ and $v_{2} \in{ }^{A_{2}} W_{2}$. By [3, Proposition 2.7.5] (see Lemma 8.2 in the Appendix), v_{2} can be uniquely written as

$$
\begin{equation*}
v_{2}=x_{2} u_{2}, \quad \text { where } \quad x_{2} \in{ }^{A_{2}} W_{2}^{C_{2}}, \text { and } u_{2} \in^{C_{2} \cap x_{2}^{-1}\left(A_{2}\right)} W_{C_{2}} \tag{4.11}
\end{equation*}
$$

Given the decomposition $v_{2}=x_{2} u_{2}$, write v_{1} as

$$
\begin{equation*}
v_{1}=u_{1} x_{1}, \quad \text { where } \quad x_{1} \in^{a^{-1}\left(A_{2} \cap x_{2}\left(C_{2}\right)\right)} W_{1}^{C_{1}}, \quad \text { and } u_{1} \in W_{a^{-1}\left(A_{2} \cap x_{2}\left(C_{2}\right)\right)}^{C_{1}^{\left(x_{1}, x_{2}\right)}} \tag{4.12}
\end{equation*}
$$

with $C_{1}^{\left(x_{1}, x_{2}\right)}$ given in (4.6). Here and below, for $i=1,2$ and $E_{i} \subset D_{i} \subset \Gamma_{i}$, we let

$$
W_{D_{i}}^{E_{i}}=W_{D_{i}} \cap W_{i}^{E_{i}}
$$

It is easy to see that $\left[v_{1}, v_{2}\right]_{\mathcal{A}, \mathcal{C}} / R_{\mathcal{C}} \subset \chi^{\left(x_{1}, x_{2}\right)}$. Since $u_{1} \in W_{a^{-1}\left(A_{2} \cap x_{2}\left(C_{2}\right)\right)}^{C_{1}^{\left(x_{1}, x_{2}\right)}} \subset W_{1}^{C_{1}^{\left(x_{1}, x_{2}\right)}}$, we have the set

$$
\left[u_{1}, v_{2}\right]_{\mathcal{A}, \mathcal{C}\left(x_{1}, x_{2}\right)} / R_{\mathcal{C}^{\left(x_{1}, x_{2}\right)}}=R_{\mathcal{A}}\left(u_{1}, v_{2} M_{C_{2}^{\left(x_{1}, x_{2}\right)}\left(u_{1}, v_{2}\right)}\right) \cdot R_{\mathcal{C}^{\left(x_{1}, x_{2}\right)}} \subset\left(G_{1} \times G_{2}\right) / R_{\mathcal{C}^{\left(x_{1}, x_{2}\right)}}
$$

where $C_{2}^{\left(x_{1}, x_{2}\right)}\left(u_{1}, v_{2}\right)$ is the largest subset of $C_{2}^{\left(x_{1}, x_{2}\right)}$ that is stable under the map

$$
v_{2}^{-1} a u_{1}\left(c^{\left(x_{1}, x_{2}\right)}\right)^{-1}=v_{2}^{-1} a v_{1} c^{-1}
$$

An argument similar to that in the proof of [12, Lemma 5.3] shows that $C_{2}^{\left(x_{1}, x_{2}\right)}\left(u_{1}, v_{2}\right)=$ $C_{2}\left(v_{1}, v_{2}\right)$. The following Proposition 4.3 now follows directly from Theorem 3.1.
Proposition 4.3. Let $v_{1} \in W_{1}^{C_{1}}$ and $v_{2} \in{ }^{A_{2}} W_{2}$ have the decompositions (4.12) and (4.11). Then $\left[v_{1}, v_{2}\right]_{\mathcal{A}, \mathcal{C}}$ consists of those $\left(g_{1}, g_{2}\right) \in G_{1} \times G_{2}$, for which

$$
\left(g_{1}, g_{2}\right) \cdot R_{\mathcal{C}} \in \mathcal{X}^{\left(x_{1}, x_{2}\right)} \quad \text { and } \quad f_{0}\left(\left(g_{1}, g_{2}\right) \cdot R_{\mathcal{C}}\right) \in\left[u_{1}, v_{2}\right]_{\mathcal{A}, \mathcal{C}^{\left(x_{1}, x_{2}\right)}} / R_{\mathcal{C}^{\left(x_{1}, x_{2}\right)}}
$$

Moreover, $f_{0}:\left[v_{1}, v_{2}\right]_{\mathcal{A}, \mathcal{C}} / R_{\mathcal{C}} \rightarrow\left[u_{1}, v_{2}\right]_{\mathcal{A}, \mathcal{C}\left(x_{1}, x_{2}\right)} / R_{\mathcal{C}^{\left(x_{1}, x_{2}\right)}}$ induces a one-to-one correspondence between the $R_{\mathcal{A}}$-orbits in $\left[v_{1}, v_{2}\right]_{\mathcal{A}, \mathcal{C}} / R_{\mathcal{C}}$ and the $R_{\mathcal{A}}$-orbits in $\left[u_{1}, v_{2}\right]_{\mathcal{A}, \mathcal{C}^{\left(x_{1}, x_{2}\right)}} / R_{\mathcal{C}^{\left(x_{1}, x_{2}\right)}}$.
4.3. Inductive description of the sets $\left[v_{1}, v_{2}\right]_{\mathcal{A}, \mathcal{C}} / R_{\mathcal{C}}$. Given $v_{1} \in W_{1}^{C_{1}}$ and $v_{2} \in{ }^{A_{2}} W_{2}$, by repeating the construction in $\S 4.2$, we get a sequence

$$
\mathcal{C}^{(i)}=\left(C_{1}^{(i)}, C_{2}^{(i)}, c^{(i)}, L^{(i)}\right), \quad i=0,1,2, \ldots
$$

of admissible quadruples for $G_{1} \times G_{2}$ and a sequence $u_{1}^{(i)} \in W_{1}^{C_{1}^{(i)}}, i=0,1,2, \ldots$ which gives rise to the sequence of double cosets

$$
\mathcal{Z}^{(i)}=\left[u_{1}^{(i)}, v_{2}\right]_{\mathcal{A}, \mathcal{C}^{(i)}} / R_{\mathcal{C}^{(i)}} \subset\left(G_{1} \times G_{2}\right) / R_{\mathcal{C}^{(i)}}, \quad i=0,1,2, \ldots
$$

Here $\mathcal{C}^{(0)}=\mathcal{C}, u_{1}^{(0)}=v_{1}, \mathcal{Z}^{(0)}=\left[v_{1}, v_{2}\right]_{\mathcal{A}, \mathcal{C}} / R_{\mathcal{C}}, \mathcal{C}^{(1)}=\mathcal{C}^{\left(x_{1}, x_{2}\right)}$ as in (4.5), and $u_{1}^{(1)}=u_{1}$ as in (4.12). In general, once $\left(\mathcal{C}^{(i)}, u_{1}^{(i)}\right)$ is given, $\left(\mathcal{C}^{(i+1)}, u_{1}^{(i+1)}\right)$ is constructed from $\left(\mathcal{C}^{(i)}, u_{1}^{(i)}\right)$ in the same way as $\left(\mathcal{C}^{\left(x_{1}, x_{2}\right)}, u_{1}\right)$ was from $\left(\mathcal{C}, v_{1}\right)$ in $\S 4.2$. Namely, first decompose v_{2} as the unique product $v_{2}=x_{2}^{(i)} u_{2}^{(i)}$ with

$$
\begin{equation*}
x_{2}^{(i)} \in{ }^{A_{2}} W_{2}^{C_{2}^{(i)}}, u_{2}^{(i)} \in{ }^{C_{2}^{(i)} \cap\left(x_{2}^{(i)}\right)^{-1}\left(A_{2}\right)} W_{C_{2}^{(i)}} \tag{4.13}
\end{equation*}
$$

Then decompose $u_{1}^{(i)}$ as the unique product $u_{1}^{(i)}=u_{1}^{(i+1)} x_{1}^{(i)}$, where

$$
x_{1}^{(i)} \in^{a^{-1}\left(A_{2} \cap x_{2}^{(i)}\left(C_{2}^{(i)}\right)\right)} W_{1}^{C_{1}^{(i)}}, \quad u_{1}^{(i+1)} \in W_{a^{-1}\left(A_{2} \cap x_{2}^{(i)}\left(C_{2}^{(i)}\right)\right)}^{a^{-1}\left(A_{2}^{(i)}\left(C_{1}^{(i)}\right) \cap x_{1}^{(i)}\left(C_{1}^{(i)}\right)\right.}
$$

The admissible quadruple $\mathcal{C}^{(i+1)}$ is constructed as in $\S 4.1$ by taking \mathcal{C} to be $\mathcal{C}^{(i)}, E_{1}$ to be $a^{-1}\left(A_{2} \cap x_{2}^{(i)}\left(C_{2}^{(i)}\right)\right)$ and y_{1} to be $x_{1}^{(i)}$.

For $i \geq 0$, let ρ_{i} be the natural projection

$$
\rho_{i}: \quad\left(G_{1} \times G_{2}\right) / R_{\mathcal{C}^{(i)}} \longrightarrow\left(G_{1} \times G_{2}\right) /\left(P_{C_{1}^{(i)}} \times P_{C_{2}^{(i)}}\right)
$$

$$
\begin{aligned}
& \mathcal{O}^{(i)}:=R_{\mathcal{A}}\left(x_{1}^{(i)}, x_{2}^{(i)}\right) \cdot\left(P_{C_{1}^{(i)}} \times P_{C_{2}^{(i)}}\right), \text { and } \\
& \mathcal{X}^{(i)}:=\rho_{i}^{-1}\left(\mathcal{O}^{(i)}\right) \subset\left(G_{1} \times G_{2}\right) / R_{\mathcal{C}^{(i)}} .
\end{aligned}
$$

Then $\mathcal{X}^{(i)}$ is a locally closed subset of $\left(G_{1} \times G_{2}\right) / R_{\mathcal{C}^{(i)}}$. By Lemma 4.2 and Proposition 4.3, we have a well-defined $R_{\mathcal{A}}$-equivariant morphism $f_{i}: \mathcal{X}^{(i)} \longrightarrow\left(G_{1} \times G_{2}\right) / R_{\mathcal{C}^{(i+1)}}$ such that

$$
\begin{equation*}
\mathcal{Z}^{(i)} \subset \mathcal{X}^{(i)} \quad \text { and } \quad \mathcal{Z}^{(i)}=f_{i}^{-1}\left(\mathcal{Z}^{(i+1)}\right), \quad \forall i \geq 0 \tag{4.14}
\end{equation*}
$$

Let $i_{0} \geq 0$ be the smallest integer such that $C_{2}^{\left(i_{0}+1\right)}=C_{2}^{\left(i_{0}\right)}$. It is then easy to see that

$$
\begin{equation*}
\mathcal{C}^{\left(i_{0}\right)}=\mathcal{C}^{(\infty)}:=\left(A_{1}\left(v_{1}, v_{2}\right), C_{2}\left(v_{1}, v_{2}\right), c v_{1}^{-1}, L_{\left(v_{1}, v_{2}\right)}\right) \text { and } u_{1}^{(i)}=e, \quad \forall i \geq i_{0}+1 \tag{4.15}
\end{equation*}
$$

where $L_{\left(v_{1}, v_{2}\right)}$ is given by (3.4). Set $\mathcal{Z}^{(\infty)}=\mathcal{Z}^{\left(i_{0}+1\right)}$ and $\mathcal{X}^{(\infty)}=\mathcal{X}^{\left(i_{0}+1\right)}$. It follows from (4.15) that

$$
\mathcal{Z}^{(i)}=\mathcal{Z}^{(\infty)}=\mathcal{X}^{(\infty)}=\left[e, v_{2}\right]_{\mathcal{A}, \mathcal{C}(\infty)} / R_{\mathcal{C}^{(\infty)}}, \quad \forall i \geq i_{0}+1
$$

Proposition 4.4. For every $i \geq 0, \mathcal{Z}^{(i)}$ is locally closed in $\left(G_{1} \times G_{2}\right) / R_{\mathcal{C}^{(i)}}$.
Proof. By the inductive description of the sets $\mathcal{Z}^{(i)}$ in (4.14), if for some $i \geq 0, \mathcal{Z}^{(i+1)}$ is locally closed in $\left(G_{1} \times G_{2}\right) / R_{\mathcal{C}^{(i+1)}}$, then $\mathcal{Z}^{(i)}$ is locally closed in $\left(G_{1} \times G_{2}\right) / R_{\mathcal{C}^{(i)}}$ because f_{i} is a morphism. Since $\mathcal{Z}^{(\infty)}=\mathcal{X}^{(\infty)}$ is locally closed in $\left(G_{1} \times G_{2}\right) / R_{\mathcal{C}(\infty)}$, it follows that $\mathcal{Z}^{(i)}$ is locally closed in $\left(G_{1} \times G_{2}\right) / R_{\mathcal{C}^{(i)}}$ for every $i \geq 0$.

$$
\begin{gathered}
\text { Let } \rho_{\infty}:=\rho_{i_{0}+1}:\left(G_{1} \times G_{2}\right) / R_{\mathcal{C}(\infty)} \rightarrow\left(G_{1} \times G_{2}\right) /\left(P_{A_{1}\left(v_{1}, v_{2}\right)} \times P_{C_{2}\left(v_{1}, v_{2}\right)}\right) \text {, and } \\
\mathcal{O}^{(\infty)}:=\mathcal{O}^{\left(i_{0}+1\right)}=R_{\mathcal{A}}\left(e, v_{2}\right) \cdot\left(P_{A_{1}\left(v_{1}, v_{2}\right)} \times P_{C_{2}\left(v_{1}, v_{2}\right)}\right)
\end{gathered}
$$

so that $\mathcal{Z}^{(\infty)}=\mathcal{X}^{(\infty)}=\rho_{\infty}^{-1}\left(\mathcal{O}^{(\infty)}\right)$. Then we have the projection $\rho_{\infty}: \mathcal{Z}^{(\infty)} \rightarrow \mathcal{O}^{(\infty)}$. Note that the stabilizer subgroup of $R_{\mathcal{A}}$ at the point

$$
\left(e, v_{2}\right) \cdot\left(P_{A_{1}\left(v_{1}, v_{2}\right)} \times P_{C_{2}\left(v_{1}, v_{2}\right)}\right) \in\left(G_{1} \times G_{2}\right) /\left(P_{A_{1}\left(v_{1}, v_{2}\right)} \times P_{C_{2}\left(v_{1}, v_{2}\right)}\right)
$$

is

$$
\begin{equation*}
R_{\mathcal{A}} \cap\left(P_{A_{1}\left(v_{1}, v_{2}\right)} \times v_{2}\left(P_{C_{2}\left(v_{1}, v_{2}\right)}\right)\right) \subset R_{\mathcal{A}} \cap\left(P_{A_{1}\left(v_{1}, v_{2}\right)} \times P_{A_{2}\left(v_{1}, v_{2}\right)}\right) \tag{4.16}
\end{equation*}
$$

where $A_{2}\left(v_{1}, v_{2}\right)=a A_{1}\left(v_{1}, v_{2}\right)$. For notational simplicity, set

$$
\begin{equation*}
R_{\left(v_{1}, v_{2}\right)}=R_{\mathcal{A}} \cap\left(P_{A_{1}\left(v_{1}, v_{2}\right)} \times P_{A_{2}\left(v_{1}, v_{2}\right)}\right) \tag{4.17}
\end{equation*}
$$

Then we have the projection $\rho_{\infty}^{\prime}: \mathcal{O}^{(\infty)} \rightarrow R_{\mathcal{A}} / R_{\left(v_{1}, v_{2}\right)}$ induced by the inclusion map in (4.16). Thus we have the sequence of $R_{\mathcal{A}}$-equivariant morphisms

$$
\begin{equation*}
\left[v_{1}, v_{2}\right]_{\mathcal{A}, \mathcal{C}} / R_{\mathcal{C}}=\mathcal{Z}^{(0)} \xrightarrow{f_{0}} \mathcal{Z}^{(1)} \xrightarrow{f_{1}} \cdots \xrightarrow{f_{i_{0}-1}} \mathcal{Z}^{\left(i_{0}\right)} \xrightarrow{f_{i_{0}}} \mathcal{Z}^{(\infty)} \xrightarrow{\rho_{\infty}} \mathcal{O}^{(\infty)} \xrightarrow{\rho_{\infty}^{\prime}} R_{\mathcal{A}} / R_{\left(v_{1}, v_{2}\right)} \tag{4.18}
\end{equation*}
$$

Lemma 4.5. The quotient $R_{\mathcal{A}} / R_{\left(v_{1}, v_{2}\right)}$ is isomorphic to the flag variety $M_{A_{1}} /\left(M_{A_{1}} \cap\right.$ $\left.P_{A_{1}\left(v_{1}, v_{2}\right)}\right)$ of $M_{A_{1}}$, and the fibers of the fibration $\rho_{\infty}^{\prime} \circ \rho_{\infty}: \mathcal{Z}^{(\infty)} \rightarrow R_{\mathcal{A}} / R_{\left(v_{1}, v_{2}\right)}$ are isomorphic to the product $\left(U_{2} \cap v_{2}\left(U_{2}^{-}\right)\right) \times\left(M_{C_{2}\left(v_{1}, v_{2}\right)} / Y_{2}\right)$, where $Y_{2}=\left\{m \in M_{C_{2}} \mid(e, m) \in\right.$ $L\} \subset Z_{C_{2}}$.
Proof. Consider the group homomorphism

$$
p: \quad R_{\mathcal{A}} \longrightarrow M_{A_{1}}: \quad\left(r_{1}, r_{2}\right) \longmapsto m_{1} \quad \text { if } \quad r_{1}=m_{1} u_{1} \quad \text { for } \quad m_{1} \in M_{A_{1}}, u_{1} \in U_{A_{1}}
$$

Since p is surjective, the action of $R_{\mathcal{A}}$ on $M_{A_{1}} /\left(M_{A_{1}} \cap P_{A_{1}\left(v_{1}, v_{2}\right)}\right)$ through the homomorphism p is transitive. The stabilizer subgroup of $R_{\mathcal{A}}$ at the point $e .\left(M_{A_{1}} \cap P_{A_{1}\left(v_{1}, v_{2}\right)}\right)$ is $R_{\left(v_{1}, v_{2}\right)}$ by $\left[12,(3.7)\right.$ in Lemma 3.4]. Thus $R_{\mathcal{A}} / R_{\left(v_{1}, v_{2}\right)}$ is isomorphic to $M_{A_{1}} /\left(M_{A_{1}} \cap P_{A_{1}\left(v_{1}, v_{2}\right)}\right)$. It is easy to see that the fibers of ρ_{∞} are isomorphic to $M_{C_{2}\left(v_{1}, v_{2}\right)} / Y_{2}$ and the fibers of ρ_{∞}^{\prime} are isomorphic to $U_{2} \cap v_{2}\left(U_{2}^{-}\right)$.
4.4. The set $\left[v_{1}, v_{2}\right]_{\mathcal{A}, \mathcal{C}} / R_{\mathcal{C}}$ as an iterated fiber bundle. Assume the setting from $\S 4.3$. We will show in this subsection that each morphism $f_{i}: \mathcal{Z}^{(i)} \rightarrow \mathcal{Z}^{(i+1)}$ in (4.18) has fibers isomorphic to an affine space.
Notation 4.6. Fix $m \in M_{C_{2}\left(v_{1}, v_{2}\right)}$. For $i \geq 0$, let $z_{m}^{(i)}=\left(\dot{u}_{1}^{(i)}, \dot{v}_{2} m\right) . R_{\mathcal{C}^{(i)}} \in \mathcal{Z}^{(i)}$ and

$$
S_{m}^{(i)}=R_{\mathcal{A}} \cap \operatorname{Ad}_{\left(\dot{u}_{1}^{(i)}, \dot{v}_{2} m\right)} R_{\mathcal{C}^{(i)}}
$$

be the stabilizer subgroup of $R_{\mathcal{A}}$ at $z_{m}^{(i)} \in \mathcal{Z}^{(i)}$. Set

$$
F_{m}^{(i)}=f_{i}^{-1}\left(z_{m}^{(i+1)}\right) \subset \mathcal{Z}^{(i)}
$$

Lemma 4.7. For any $m \in M_{C_{2}\left(v_{1}, v_{2}\right)}$ and $i \geq 0, S_{m}^{(i)} \subset S_{m}^{(i+1)}$,

$$
\begin{equation*}
F_{m}^{(i)}=S_{m}^{(i+1)} \cdot z_{m}^{(i)} \cong S_{m}^{(i+1)} / S_{m}^{(i)} \tag{4.19}
\end{equation*}
$$

Proof. Let $i \geq 0$. Since $f_{i}\left(z_{m}^{(i)}\right)=z_{m}^{(i+1)}$ and since f_{i} is $R_{\mathcal{A}}$-equivariant, we clearly have $S_{m}^{(i)} \subset S_{m}^{(i+1)}$, and $S_{m}^{(i+1)} . z_{m}^{(i)} \subset F_{m}^{(i)}$. It suffices to prove (4.19) for $i=0$, and we only need to show that $F_{m}^{(0)} \subset S_{m}^{(1)} . z_{m}^{(0)}$.

Recall that $\mathcal{C}^{(1)}=\mathcal{C}^{\left(x_{1}, x_{2}\right)}$ as in (4.5), and $u^{(1)}=u_{1}$ as in the $v_{1}=u_{1} x_{1}$ decomposition in (4.12). To show that $F_{m}^{(0)} \subset S_{m}^{(1)} \cdot z_{m}^{(0)}$, assume that $\left(r_{1}, r_{2}\right) \in R_{\mathcal{A}}$ and $m^{\prime} \in M_{C_{2}\left(v_{1}, v_{2}\right)}$ are such that $\left(r_{1} \dot{v}_{1}, r_{2} \dot{v}_{2} m^{\prime}\right) \cdot R_{\mathcal{C}} \in F_{m}^{(0)}$. Then

$$
R_{\mathcal{A}}\left(\dot{u}_{1}, \dot{v}_{2} m^{\prime}\right) \cdot R_{\mathcal{C}^{\left(x_{1}, x_{2}\right)}}=R_{\mathcal{A}}\left(\dot{u}_{1}, \dot{v}_{2} m\right) \cdot R_{\mathcal{C}^{\left(x_{1}, x_{2}\right)}}
$$

By applying Theorem 3.1 to the quadruples $\left(\mathcal{A}, \mathcal{C}^{\left(x_{1}, x_{2}\right)}\right)$, noting that the largest subset of A_{1} that is stable under $u_{1}\left(c^{\left(x_{1}, x_{2}\right)}\right)^{-1} v_{2}^{-1} a=v_{1} c^{-1} v_{2}^{-1} a$ is $A_{1}\left(v_{1}, v_{2}\right)$ and that

$$
\left(M_{A_{1}\left(v_{1}, v_{2}\right)} \times M_{C_{2}\left(v_{1}, v_{2}\right)}\right) \cap \operatorname{Ad}_{\left(\dot{u}_{1}, e\right)} L^{\left(x_{1}, x_{2}\right)}=L_{\left(v_{1}, v_{2}\right)},
$$

we obtain that there exist $m_{1} \in M_{A_{1}\left(v_{1}, v_{2}\right)}$ and $n, n^{\prime} \in M_{C_{2}\left(v_{1}, v_{2}\right)}$ with $\left(m_{1}, n\right) \in K_{\left(v_{1}, v_{2}\right)}$ and $\left(m_{1}, n^{\prime}\right) \in L_{\left(v_{1}, v_{2}\right)}$ such that $m^{\prime}=n m\left(n^{\prime}\right)^{-1}$, where $K_{\left(v_{1}, v_{2}\right)}$ and $L_{\left(v_{1}, v_{2}\right)}$ are respectively given by (3.3) and (3.4). Thus

$$
\begin{aligned}
\left(r_{1} \dot{v}_{1}, r_{2} \dot{v}_{2} m^{\prime}\right) \cdot R_{\mathcal{C}} & =\left(r_{1} \dot{v}_{1}, r_{2} \dot{v}_{2} n m\left(n^{\prime}\right)^{-1}\right) \cdot R_{\mathcal{C}}=\left(r_{1} m_{1} \dot{v}_{1}, r_{2} \dot{v}_{2} n m\right) \cdot R_{\mathcal{C}} \\
& =\left(r_{1}, r_{2}\right)\left(m_{1}, \operatorname{Ad}_{\dot{v}_{2}}(n)\right)\left(\dot{v}_{1}, \dot{v}_{2} m\right) \cdot R_{\mathcal{C}}=\left(r_{1}^{\prime}, r_{2}^{\prime}\right) z_{m}^{(0)}
\end{aligned}
$$

where $\left(r_{1}^{\prime}, r_{2}^{\prime}\right)=\left(r_{1}, r_{2}\right)\left(m_{1}, \operatorname{Ad}_{\dot{v}_{2}}(n)\right) \in R_{\mathcal{A}}$. On the other hand, since $\left(r_{1} \dot{v}_{1}, r_{2} \dot{v}_{2} m^{\prime}\right) \cdot R_{\mathcal{C}} \in$ $F_{m}^{(0)}$, we have

$$
z_{m}^{(1)}=\left(r_{1} \dot{u}_{1}, r_{2} \dot{v}_{2} m^{\prime}\right) \cdot R_{\mathcal{C}^{\left(x_{1}, x_{2}\right)}}=\left(r_{1} \dot{u}_{1}, r_{2} \dot{v}_{2} n m\left(n^{\prime}\right)^{-1}\right) \cdot R_{\mathcal{C}^{\left(x_{1}, x_{2}\right)}}=\left(r_{1}^{\prime}, r_{2}^{\prime}\right) z_{m}^{(1)}
$$

so $\left(r_{1}^{\prime}, r_{2}^{\prime}\right) \in S_{m}^{(1)}$, and thus $\left(r_{1} \dot{v}_{1}, r_{2} \dot{v}_{2} m^{\prime}\right) . R_{\mathcal{C}} \in S_{m}^{(1)} . z_{m}^{(0)}$. Hence $F_{m}^{(0)} \subset S_{m}^{(1)} . z_{m}^{(0)}$.
Proposition 4.8. For each $i \geq 0$, the fibers of the morphism $f_{i}: \mathcal{Z}^{(i)} \rightarrow \mathcal{Z}^{(i+1)}$ are isomorphic to the affine space of dimension

$$
\begin{equation*}
\operatorname{dim}\left(U_{1} \cap u_{1}^{(i+1)}\left(U_{C_{1}^{(i+1)}}\right)\right)-\operatorname{dim}\left(U_{1} \cap u_{1}^{(i)}\left(U_{C_{1}^{(i)}}\right)\right) \tag{4.20}
\end{equation*}
$$

Proof. Let $i \geq 0$ and $m \in M_{C_{2}\left(v_{2}, v_{2}\right)}$. By Proposition 3.4, we have the semi-direct product decompositions $S_{m}^{(i)}=S_{m}^{(i), \text { red }} S_{m}^{(i), \text { uni }}$, where

$$
S_{m}^{(i), \text { red }}=S_{m}^{(i)} \cap\left(M_{A_{1}\left(v_{1}, v_{2}\right)} \times M_{A_{2}\left(v_{1}, v_{2}\right)}\right), \quad S_{m}^{(i), \text { uni }}=S_{m}^{(i)} \cap\left(U_{A_{1}\left(v_{1}, v_{2}\right)} \times U_{A_{2}\left(v_{1}, v_{2}\right)}\right)
$$

It also follows from Proposition 3.4 that $S_{m}^{(i), \text { red }}=S_{m}^{(i+1), \text { red }}$. Thus by (4.19) and by Proposition 3.4, $F_{m}^{(i)} \cong S_{m}^{(i+1) \text {, uni }} / S_{m}^{(i) \text {,uni }}$ is isomorphic to an affine space of dimension (4.20).

For $v_{1} \in W_{1}^{C_{1}}$ and $v_{2} \in{ }^{A_{2}} W_{2}$, set

$$
X_{\left(v_{1}, v_{2}\right)} \stackrel{\text { def }}{=} R_{\left(v_{1}, v_{2}\right)}\left(v_{1}, v_{2} M_{C_{2}\left(v_{1}, v_{2}\right)}\right) \cdot R_{\mathcal{C}} \subset\left[v_{1}, v_{2}\right]_{\mathcal{A}, \mathcal{C}} / R_{\mathcal{C}}
$$

Corollary 4.9. For any $v_{1} \in W_{1}^{C_{1}}$ and $v_{2} \in{ }^{A_{2}} W_{2}$,
(i) $X_{\left(v_{1}, v_{2}\right)}$ is a smooth locally closed subset of $\left(G_{1} \times G_{2}\right) / R_{\mathcal{C}}$ isomorphic to the product of $M_{C_{2}\left(v_{1}, v_{2}\right)} / Y_{2}$ and the affine space of dimension $\operatorname{dim} U_{A_{1}\left(v_{1}, v_{2}\right)}-\operatorname{dim}\left(U_{1} \cap v_{1}\left(U_{C_{1}}\right)\right)+l\left(v_{2}\right)$, where $Y_{2}=\left\{m \in M_{C_{2}} \mid(e, m) \in L\right\} \subset Z_{C_{2}}$, and $l\left(v_{2}\right)$ is the length of v_{2}.
(ii) the action map of $R_{\mathcal{A}}$ on $\left[v_{1}, v_{2}\right]_{\mathcal{A}, \mathcal{C}}$ gives rise to an isomorphism

$$
R_{\mathcal{A}} \times_{R_{\left(v_{1}, v_{2}\right)}} X_{\left(v_{1}, v_{2}\right)} \longrightarrow\left[v_{1}, v_{2}\right]_{\mathcal{A}, \mathcal{C}} / R_{\mathcal{C}}
$$

In particular, $\left[v_{1}, v_{2}\right]_{\mathcal{A}, \mathcal{C}} / R_{\mathcal{C}}$ is a smooth irreducible locally closed subset of $\left(G_{1} \times G_{2}\right) / R_{\mathcal{C}}$.
Since $G_{1} \times G_{2} \rightarrow\left(G_{1} \times G_{2}\right) / R_{\mathcal{C}}$ is a locally trivial fibration, $\left[v_{1}, v_{2}\right]_{\mathcal{A}, \mathcal{C}}$ is a smooth irreducible locally closed subset of $G_{1} \times G_{2}$ which establishes the first part (i) of Theorem 2.2.

Proof. Consider the composition

$$
p_{0}=\rho_{\infty}^{\prime} \circ \rho_{\infty} \circ f_{i_{0}} \circ f_{i_{0}-1} \circ \cdots \circ f_{1} \circ f_{0}:\left[v_{1}, v_{2}\right]_{\mathcal{A}, \mathcal{C}} \longrightarrow R_{\mathcal{A}} / R_{\left(v_{1}, v_{2}\right)}
$$

It is easy to see that $X_{\left(v_{1}, v_{2}\right)}$ is precisely the fiber of p_{0} over the point $e . R_{\left(v_{1}, v_{2}\right)} \in R_{\mathcal{A}} / R_{\left(v_{1}, v_{2}\right)}$. Since p_{0} is $R_{\mathcal{A}}$-equivariant, by [17, Lemma 4], the action map of $R_{\mathcal{A}}$ on $\left[v_{1}, v_{2}\right]_{\mathcal{A}, \mathcal{C}}$ induces an isomorphism

$$
R_{\mathcal{A}} \times_{R_{\left(v_{1}, v_{2}\right)}} X\left(v_{1}, v_{2}\right) \longrightarrow\left[v_{1}, v_{2}\right]_{\mathcal{A}, \mathcal{C}}
$$

of $R_{\mathcal{A}}$-varieties. Since p_{0} is a fibration, $X_{\left(v_{1}, v_{2}\right)}$ is a smooth locally closed subset of ($G_{1} \times$ $\left.G_{2}\right) / R_{\mathcal{C}}$. The rest of the claim in 1) follows from Lemma 4.5 and Proposition 4.8.

4.5. Another description of the strata $\left[v_{1}, v_{2}\right]_{\mathcal{A}, \mathcal{C}} / R_{\mathcal{C}}$.

Proposition 4.10. For any $v_{1} \in W_{1}^{C_{1}}, v_{2} \in{ }^{A_{2}} W_{2}$, one has

$$
\begin{equation*}
\left[v_{1}, v_{2}\right]_{\mathcal{A}, \mathcal{C}} / R_{\mathcal{C}}=R_{\mathcal{A}}\left(B_{1} \times B_{2}\right)\left(v_{1}, v_{2}\right) \cdot R_{\mathcal{C}} . \tag{4.21}
\end{equation*}
$$

Proof. By Lemma 3.3, we have

$$
\begin{aligned}
& {\left[v_{1}, v_{2}\right]_{\mathcal{A}, \mathcal{C}} / R_{\mathcal{C}}=R_{\mathcal{A}}\left(v_{1}, v_{2}\left(B_{2} \cap M_{C_{2}\left(v_{1}, v_{2}\right)}\right)\right) \cdot R_{\mathcal{C}} \subset} \\
& \quad R_{\mathcal{A}}\left(v_{1}, v_{2} B_{2}\right) \cdot R_{\mathcal{C}}=R_{\mathcal{A}}\left(B_{1} \times B_{2}\right)\left(v_{1}, v_{2}\right) \cdot R_{\mathcal{C}}
\end{aligned}
$$

It remains to show that $R_{\mathcal{A}}\left(B_{1} \times B_{2}\right)\left(v_{1}, v_{2}\right) \cdot R_{\mathcal{C}} \subset\left[v_{1}, v_{2}\right]_{\mathcal{A}, \mathcal{C}} / R_{\mathcal{C}}$. Write $v_{2}=x_{2} u_{2}$ and $v_{1}=u_{1} x_{1}$ as in (4.11) and (4.12) and let $f_{0}: \mathcal{X}^{\left(x_{1}, x_{2}\right)} \rightarrow\left(G_{1} \times G_{2}\right) / R_{\mathcal{C}^{\left(x_{1}, x_{2}\right)}}$ be as in Lemma 4.2. Then

$$
\begin{aligned}
R_{\mathcal{A}}\left(B_{1} \times B_{2}\right)\left(v_{1}, v_{2}\right) \cdot R_{\mathcal{C}} & =R_{\mathcal{A}}\left(v_{1}, v_{2}\left(B_{2} \cap M_{C_{2}}\right)\right) \cdot R_{\mathcal{C}} \subset \mathcal{X}^{\left(x_{1}, x_{2}\right)} \\
f_{0}\left(R_{\mathcal{A}}\left(B_{1} \times B_{2}\right)\left(v_{1}, v_{2}\right) \cdot R_{\mathcal{C}}\right) & =R_{\mathcal{A}}\left(u_{1}, v_{2}\left(B_{2} \cap M_{C_{2}}\right)\right) \cdot R_{\mathcal{C}^{\left(x_{1}, x_{2}\right)}} \\
& =R_{\mathcal{A}}\left(u_{1}, v_{2}\left(B_{2} \cap M_{\left.\left.C_{2}^{\left(x_{1}, x_{2}\right)}\right)\right) \cdot R_{\mathcal{C}^{\left(x_{1}, x_{2}\right)}}}\right.\right. \\
& =R_{\mathcal{A}}\left(B_{1} \times B_{2}\right)\left(u_{1}, v_{2}\right) \cdot R_{\mathcal{C}^{\left(x_{1}, x_{2}\right)}}
\end{aligned}
$$

By Proposition 4.3, if $R_{\mathcal{A}}\left(B_{1} \times B_{2}\right)\left(u_{1}, v_{2}\right) \cdot R_{\mathcal{C}^{\left(x_{1}, x_{2}\right)}} \subset\left[u_{1}, v_{2}\right]_{\mathcal{A}, \mathcal{C}^{\left(x_{1}, x_{2}\right)}} / R_{\mathcal{C}^{\left(x_{1}, x_{2}\right)}}$, it would follow that $R_{\mathcal{A}}\left(B_{1} \times B_{2}\right)\left(v_{1}, v_{2}\right) \cdot R_{\mathcal{C}} \subset\left[v_{1}, v_{2}\right]_{\mathcal{A}, \mathcal{C}} / R_{\mathcal{C}}$. Consider the sequence of fibrations in (4.18). Since

$$
R_{\mathcal{A}}\left(B_{1} \times B_{2}\right)\left(e, v_{2}\right) \cdot R_{\mathcal{C}(\infty)}=R_{\mathcal{A}}\left(e, v_{2}\left(B_{2} \cap M_{C_{2}\left(v_{1}, v_{2}\right)}\right)\right) \cdot R_{\mathcal{C}^{(\infty)}}=\mathcal{Z}^{(\infty)}
$$

we see inductively that $R_{\mathcal{A}}\left(B_{1} \times B_{2}\right)\left(u_{1}^{(i)}, v_{2}\right) \cdot R_{\mathcal{C}^{(i)}} \subset \mathcal{Z}^{(i)}$ holds for all $i \geq 0$.
Proposition 4.11. Given two admissible triples $\mathcal{A}=\left(A_{1}, A_{2}, a, K\right)$ and $\mathcal{C}=\left(C_{1}, C_{2}, c, L\right)$, suppose that $\mathcal{A}^{\prime}=\left(A_{1}, A_{2}, a, K^{\prime}\right)$ and $\mathcal{C}=\left(C_{1}, C_{2}, c, L^{\prime}\right)$ are two other admissible quadruples containing the same triples $\left(A_{1}, A_{2}, a\right)$ and $\left(C_{1}, C_{2}, c\right)$. Then there exist $t_{2}, s_{2} \in T_{2}$ such that

$$
\left[v_{1}, v_{2}\right]_{\mathcal{A}^{\prime}, \mathcal{C}^{\prime}}=\left(e, t_{2}\right)\left[v_{1}, v_{2}\right]_{\mathcal{A}, \mathcal{C}}\left(e, s_{2}\right), \quad \forall v_{1} \in W_{1}^{C_{1}}, v_{2} \in{ }^{A_{2}} W_{2}
$$

Proof. Let K be given as in (2.1), and assume that

$$
K^{\prime}=\left\{\left(m_{1}, m_{2}\right) \in M_{A_{1}} \times M_{A_{2}} \mid \theta_{a}^{\prime}\left(m_{1} Z_{1}^{\prime}\right)=m_{2} Z_{2}^{\prime}\right\}
$$

where, for $i=1,2, Z_{1}^{\prime}$ is a closed subgroup of $Z_{A_{i}}$, and $\theta_{1}^{\prime}: M_{A_{1}} / Z_{1}^{\prime} \rightarrow M_{A_{2}} / Z_{2}^{\prime}$ is an isomorphism having the same properties as θ_{a}. The isomorphisms from $M_{A_{1}} / Z_{A_{1}}$ to $M_{A_{2}} / Z_{A_{2}}$ induced by θ_{a} and θ_{a}^{\prime} will still be denoted by the same symbols. Then our assumptions imply that the automorphism $\theta:=\left(\theta_{a}^{\prime}\right)^{-1} \theta_{a}$ of $M_{A_{1}} / Z_{A_{1}}$ is inner. Since θ leaves both $T_{1} / Z_{A_{1}}$ and $\left(B_{1} \cap M_{A_{1}}\right) / Z_{A_{1}}$) invariant, $\theta=\operatorname{Ad}_{t_{1}}$ for some $t_{1} \in T_{1}$. It follows that $K^{\prime}\left(B_{1} \times B_{2}\right)=\left(e, t_{2}\right) K\left(B_{1} \times B_{2}\right)$ for some $t_{2} \in T_{2}$. Similarly, $\left(B_{1} \times B_{2}\right) L^{\prime}=\left(B_{1} \times B_{2}\right) L\left(e, s_{2}\right)$ for some $s_{2} \in T_{2}$. Proposition 4.11 now follows from Proposition 4.10.

Example 4.12. Consider the case when $G_{1}=G_{2}=G$. Take $A_{1}=A_{2}=\Gamma$ and $a=\mathrm{id}$, where Γ is the set of all simple roots for a pair (B, T) of Borel subgroup B of G and maximal torus $T \subset B$. Take $R_{\mathcal{A}}=K=G_{\text {diag }}$ and for some $t \in T$, take $R_{\mathcal{A}^{\prime}}=K^{\prime}=\left\{\left(g, t g t^{-1}\right): g \in\right.$ $G\}$. Let $R_{\mathcal{C}}=R_{\mathcal{C}^{\prime}}=B \times B$. Then it is easy to see that

$$
R_{\mathcal{A}^{\prime}}(v, 1)(B \times B)=(e, t) R_{\mathcal{A}}(v, 1)(B \times B)
$$

for all v in the Weyl group of (G, T).

5. Closures of the sets $\left[v_{1}, v_{2}\right]_{\mathcal{A}, \mathcal{C}}$ In $G_{1} \times G_{2}$

5.1. The set $\left[v_{1}, v_{2}\right]_{\mathcal{A}, \mathcal{C}}$ for any $v_{1} \in W_{1}$ and $v_{2} \in W_{2}$. Let $\mathcal{A}=\left(A_{1}, A_{2}, a, K\right)$ and $\mathcal{C}=\left(C_{1}, C_{2}, c, L\right)$ be two arbitrary admissible quadruples for $G_{1} \times G_{2}$. Extending (4.21), let

$$
\begin{equation*}
\left[v_{1}, v_{2}\right]_{\mathcal{A}, \mathcal{C}}=R_{\mathcal{A}}\left(B_{1} \times B_{2}\right)\left(v_{1}, v_{2}\right)\left(B_{1} \times B_{2}\right) R_{\mathcal{C}} \subset G_{1} \times G_{2}, \quad \forall v_{1} \in W_{1}, v_{2} \in W_{2} \tag{5.1}
\end{equation*}
$$

Lemma 5.1. When $v_{1} \in W_{1}^{C_{1}}$,

$$
\begin{equation*}
\left(B_{1} \times B_{2}\right)\left(v_{1}, v_{2}\right)\left(B_{1} \times B_{2}\right) R_{\mathcal{C}}=\left(B_{1} \times B_{2}\right)\left(v_{1}, v_{2}\right) R_{\mathcal{C}}, \quad \forall v_{2} \in W_{2} \tag{5.2}
\end{equation*}
$$

Proof. Since $v_{1} \in W_{1}^{C_{1}}$, one has $B_{1} v_{1}\left(B_{1} \cap M_{C_{1}}\right)=B_{1} v_{1}$, and thus
$\left(B_{1} \times B_{2}\right)\left(v_{1}, v_{2}\right)\left(B_{1} \times B_{2}\right) R_{\mathcal{C}}=\left(B_{1} \times B_{2}\right)\left(v_{1}, v_{2}\right)\left(B_{1} \cap M_{C_{1}} \times\{e\}\right) R_{\mathcal{C}}=\left(B_{1} \times B_{2}\right)\left(v_{1}, v_{2}\right) R_{\mathcal{C}}$.

Thus when $v_{1} \in W_{1}^{C_{1}}$ and $v_{2} \in{ }^{A_{2}} W_{2}$, the set $\left[v_{1}, v_{2}\right]_{\mathcal{A}, \mathcal{C}}$ in (5.1) is the same as what we defined before. Our main result in this section is the following Theorem 5.2 which describes the closure of $\left[v_{1}, v_{2}\right]_{\mathcal{A}, \mathcal{C}}$ in $G_{1} \times G_{2}$ for any $v_{1} \in W_{1}, v_{2} \in W_{2}$. The proof of Theorem 5.2, which uses a series of lemmas proved in $\S 5.2$, will be given in $\S 5.3$. In this section, if X is a subset of $G_{1} \times G_{2}, \bar{X}$ always denotes the closure of X in $G_{1} \times G_{2}$.

Theorem 5.2. For any $v_{1} \in W_{1}, v_{2} \in W_{2}$,

$$
\begin{array}{cc}
\overline{\left[v_{1}, v_{2}\right]_{\mathcal{A}, \mathcal{C}}}=\quad\lfloor & \left\lfloor v_{1}^{\prime}, v_{2}^{\prime}\right]_{\mathcal{A}, \mathcal{C}} \quad \text { (disjoint union). } \tag{5.3}\\
v_{1}^{\prime} \in W_{1}^{C_{1}}, v_{2}^{\prime} \in A_{2} W_{2}: \\
\exists x_{1} \in W_{A_{1}}, y_{1} \in W_{C_{1}} \text { s.t. } \\
x_{1} v_{1}^{\prime} y_{1} \leq v_{1} \\
a\left(x_{1}\right) v_{2}^{\prime} c\left(y_{1}\right) \leq v_{2}
\end{array}
$$

Remark 5.3. A special case of (2.6) says that for any admissible quadruple \mathcal{C}, the $\left(B_{1} \times B_{2}\right)$ orbits in $\left(G_{1} \times G_{2}\right) / R_{\mathcal{C}}$ are precisely of the form $\left(B_{1} \times B_{2}\right)\left(v_{1}, v_{2}\right) . R_{\mathcal{C}}$, where $v_{1} \in W_{1}^{C_{1}}$ and $v_{2} \in W_{2}$. Combining Lemma 5.1 and Theorem 5.2, we see that for any ($B_{1} \times B_{2}$)-orbit \mathcal{O} in $\left(G_{1} \times G_{2}\right) / R_{\mathcal{C}}$, the closure of the set $R_{\mathcal{A}} \mathcal{O}$ in $\left(G_{1} \times G_{2}\right) / R_{\mathcal{C}}$ is a disjoint union of some sets of the form $R_{\mathcal{A}}\left(B_{1} \times B_{2}\right)\left(v_{1}, v_{2}\right) . R_{\mathcal{C}}$ with $v_{1} \in W_{1}^{C_{1}}$ and $v_{2} \in{ }^{A_{2}} W_{2}$.
5.2. The closures of $\left(B_{1} \times B_{2}, R_{\mathcal{C}}\right)$-double cosets in $G_{1} \times G_{2}$. In this section, we will describe the ($B_{1} \times B_{2}, R_{\mathcal{C}}$)-double cosets in the set

$$
\overline{\left(B_{1} \times B_{2}\right)\left(v_{1}, v_{2}\right)\left(B_{1} \times B_{2}\right) R_{\mathcal{C}}} \subset G_{1} \times G_{2}
$$

for any $v_{1} \in W_{1}, v_{2} \in W_{2}$. Note again that by Lemma $5.1,\left(B_{1} \times B_{2}\right)\left(v_{1}, v_{2}\right)\left(B_{1} \times B_{2}\right) R_{\mathcal{C}}$ is a single $\left(B_{1} \times B_{2}, R_{\mathcal{C}}\right)$-double coset when $v_{1} \in W_{1}^{C_{1}}$.

For $y_{1}, z_{1} \in W_{1}$, let

$$
\mathcal{W}_{1}\left(y_{1}, z_{1}\right)=\left\{x_{1} \in W_{1} \mid B_{1} x_{1} B_{1} \subset B_{1} y_{1} B_{1} z_{1} B_{1}\right\}
$$

The following Lemma 5.4 on $\mathcal{W}_{1}\left(x_{1}, z_{1}\right)$ can be either proved by induction on the length of z_{1} or can be seen as a direct consequence of the explicit description of $\mathcal{W}_{1}\left(y_{1}, z_{1}\right)$ in [2, Remark 3.19].

Lemma 5.4. Let $y_{1}, z_{1} \in W_{1}$ be arbitrary. Then every $x_{1} \in \mathcal{W}_{1}\left(y_{1}, z_{1}\right)$ is of the form $x_{1}=y_{1} u_{1}$ for some $u_{1} \in W_{1}, u_{1} \leq z_{1}$.

Lemma 5.5. Let $y_{1} \in W_{1}, y_{2} \in W_{2}$. Then every $\left(B_{1} \times B_{2}, R_{\mathcal{C}}\right)$-double coset in

$$
\left(B_{1} \times B_{2}\right)\left(y_{1}, y_{2}\right)\left(B_{1} \times B_{2}\right) R_{\mathcal{C}}
$$

is of the form $\left(B_{1} \times B_{2}\right)\left(y_{1}, u_{2}\right) R_{\mathcal{C}}$ for some $u_{2} \in W_{2}, u_{2} \leq y_{2}$.
Proof. Write $y_{2}=w_{2} z_{2}$, where $w_{2} \in W_{2}^{C_{2}}, z_{2} \in W_{C_{2}}$. Then

$$
\begin{aligned}
\left(B_{1} \times B_{2}\right)\left(y_{1}, y_{2}\right)\left(B_{1} \times B_{2}\right) R_{\mathcal{C}} & =\left(\left(B_{1} y_{1} B_{1}\right) \times\left(B_{2} w_{2} z_{2}\right)\right) R_{\mathcal{C}} \\
& =\left(\left(B_{1} y_{1} B_{1} c^{-1}\left(z_{2}^{-1}\right)\right) \times\left(B_{2} w_{2}\right)\right) R_{\mathcal{C}} \\
& =\left(\left(B_{1} y_{1} B_{1} c^{-1}\left(z_{2}^{-1}\right)\right) \times\left(B_{2} w_{2} B_{2}\right)\right) R_{\mathcal{C}} \\
& =\left(\left(B_{1} y_{1} B_{1} c^{-1}\left(z_{2}^{-1}\right) B_{1}\right) \times\left(B_{2} w_{2}\right)\right) R_{\mathcal{C}} \\
& =\bigcup_{x_{1} \in \mathcal{W}_{1}\left(y_{1}, c^{-1}\left(z_{2}^{-1}\right)\right)}\left(\left(B_{1} x_{1} B_{1}\right) \times\left(B_{2} w_{2}\right)\right) R_{\mathcal{C}} \\
& =\bigcup_{x_{1} \in \mathcal{W}_{1}\left(y_{1}, c^{-1}\left(z_{2}^{-1}\right)\right)}\left(B_{1} \times B_{2}\right)\left(x_{1}, w_{2}\right) R_{\mathcal{C}}
\end{aligned}
$$

By Lemma 5.4, every $x_{1} \in \mathcal{W}_{1}\left(y_{1}, c^{-1}\left(z_{2}^{-1}\right)\right)$ is of the form $x_{1}=y_{1} u_{1}$ for some $u_{1} \in W_{1}$ such that $u_{1} \leq c^{-1}\left(z_{2}^{-1}\right)$, i.e. $c\left(u_{1}^{-1}\right) \leq z_{2}$. For such an $x_{1} \in \mathcal{W}_{1}\left(y_{1}, c^{-1}\left(z_{2}^{-1}\right)\right)$,

$$
\left(B_{1} \times B_{2}\right)\left(x_{1}, w_{2}\right) R_{\mathcal{C}}=\left(B_{1} \times B_{2}\right)\left(y_{1}, w_{2} c\left(u_{1}^{-1}\right)\right) R_{\mathcal{C}}
$$

and $w_{2} c\left(u_{1}^{-1}\right) \leq w_{2} z_{2}=y_{2}$. This completes the proof the Lemma.
Lemma 5.6. For any $v_{1} \in W_{1}$ and $v_{2} \in W_{2}$, one has

$$
\overline{\left(B_{1} \times B_{2}\right)\left(v_{1}, v_{2}\right)\left(B_{1} \times B_{2}\right) R_{\mathcal{C}}}=\overline{\left(B_{1} \times B_{2}\right)\left(v_{1}, v_{2}\right)\left(B_{1} \times B_{2}\right)} R_{\mathcal{C}}
$$

Proof. The Lemma follows from [19, Lemma 2, P. 68] (see Lemma 8.1 in the Appendix) by noting that $R_{\mathcal{C}} /\left(\left(B_{1} \times B_{2}\right) \cap R_{\mathcal{C}}\right)$ is isomorphic to the full flag variety of $M_{C_{1}}$ (see Lemma $4.5)$ and is hence complete.

Lemma 5.7. For any $v_{1} \in W_{1}$ and $v_{2} \in W_{2}$, one has

$$
\begin{equation*}
\overline{\left(B_{1} \times B_{2}\right)\left(v_{1}, v_{2}\right)\left(B_{1} \times B_{2}\right) R_{\mathcal{C}}}=\bigcup_{\substack{w_{1} \in W_{1}, w_{2} \in W_{2} \\ \\ w_{1} \leq v_{1}, w_{2} \leq v_{2}}}\left(B_{1} \times B_{2}\right)\left(w_{1}, w_{2}\right) R_{\mathcal{C}} \tag{5.4}
\end{equation*}
$$

Proof. By Lemma 5.6 and the Bruhat decomposition,

$$
\overline{\left(B_{1} \times B_{2}\right)\left(v_{1}, v_{2}\right)\left(B_{1} \times B_{2}\right) R_{\mathcal{C}}}=\bigcup_{\substack{y_{1} \in W_{1}, y_{2} \in W_{2} \\ y_{1} \leq v_{1}, y_{2} \leq v_{2}}}\left(B_{1} \times B_{2}\right)\left(y_{1}, y_{2}\right)\left(B_{1} \times B_{2}\right) R_{\mathcal{C}}
$$

Let $y_{1} \in W_{1}, y_{2} \in W_{2}$ be such that $y_{1} \leq v_{1}, y_{2} \leq v_{2}$. By Lemma 5.5 , every $\left(B_{1} \times B_{2}, R_{\mathcal{C}}\right)$ double coset in $\left(B_{1} \times B_{2}\right)\left(y_{1}, y_{2}\right)\left(B_{1} \times B_{2}\right) R_{\mathcal{C}}$ is of the form $\left(B_{1} \times B_{2}\right)\left(y_{1}, u_{2}\right) R_{\mathcal{C}}$ with $u_{2} \in W_{2}, u_{2} \leq y_{2} \leq v_{2}$. Thus $\overline{\left(B_{1} \times B_{2}\right)\left(v_{1}, v_{2}\right)\left(B_{1} \times B_{2}\right) R_{\mathcal{C}}}$ is contained in the right hand side of (5.4). Conversely, let $w_{1} \in W_{1}, w_{2} \in W_{2}$ be such that $w_{1} \leq v_{1}, w_{2} \leq v_{2}$. Then

$$
\left(B_{1} \times B_{2}\right)\left(w_{1}, w_{2}\right) R_{\mathcal{C}} \subset\left(B_{1} \times B_{2}\right)\left(w_{1}, w_{2}\right)\left(B_{1} \times B_{2}\right) R_{\mathcal{C}} \subset \overline{\left(B_{1} \times B_{2}\right)\left(v_{1}, v_{2}\right)\left(B_{1} \times B_{2}\right)} R_{\mathcal{C}}
$$

Thus the right hand side of (5.4) is contained in $\overline{\left(B_{1} \times B_{2}\right)\left(v_{1}, v_{2}\right)\left(B_{1} \times B_{2}\right) R_{\mathcal{C}}}$.
Proposition 5.8. For any $v_{1} \in W_{1}$ and $v_{2} \in W_{2}$, one has the disjoint union

$$
\begin{aligned}
\overline{\left(B_{1} \times B_{2}\right)\left(v_{1}, v_{2}\right)\left(B_{1} \times B_{2}\right) R_{\mathcal{C}}}= & \quad \bigsqcup \quad\left(B_{1} \times B_{2}\right)\left(w_{1}, w_{2}\right) R_{\mathcal{C}} \\
& w_{1} \in W_{1}^{C_{1}}, w_{2} \in W_{2}: \\
& \exists u_{1} \in W_{C_{1}} \text { s.t. } \\
& w_{1} u_{1} \leq v_{1}, w_{2} c\left(u_{1}\right) \leq v_{2}
\end{aligned}
$$

Proof. Proposition 5.8 follows from Lemma 5.7 by decomposing the element $w_{1} \in W_{1}$ in the right hand side of (5.4) according to the decomposition $W_{1}=W_{1}^{C_{1}} W_{C_{1}}$ and by the fact that $\left(T_{1} \times T_{2}\right)\left(u_{1}, c\left(u_{1}\right)\right) R_{\mathcal{C}}=\left(T_{1} \times T_{2}\right) R_{\mathcal{C}}$ for any $u_{1} \in W_{C_{1}}$, where T_{1} and T_{2} are respectively the maximal tori of G_{1} and G_{2} as fixed in $\S 2.1$.

Corollary 5.9. For any $v_{1} \in W_{1}^{C_{1}}, v_{2} \in W_{2}$, one has the disjoint union

$$
\begin{aligned}
\overline{\left(B_{1} \times B_{2}\right)\left(v_{1}, v_{2}\right) R_{\mathcal{C}}}= & \quad \bigsqcup \\
& w_{1} \in W_{1}^{C_{1}}, w_{2} \in W_{2}: \\
& \exists u_{1} \in W_{C_{1}} \text { s.t. } \\
& w_{1} u_{1} \leq v_{1}, w_{2} c\left(u_{1}\right) \leq v_{2}
\end{aligned}
$$

Remark 5.10. By Lemma 8.3 in the Appendix, Corollary 5.9 is equivalent to the following description of closures of $\left(B_{1} \times B_{2}, R_{\mathcal{C}}^{-}\right)$-double cosets in $G_{1} \times G_{2}$ as given in [18, Lemma 2.2]: for $v_{1} \in W_{1}^{C_{1}}, v_{2} \in W_{2}$,

$$
\begin{aligned}
\overline{\left(B_{1} \times B_{2}\right)\left(v_{1}, v_{2}\right) R_{\mathcal{C}}^{-}}= & \bigsqcup \\
& w_{1} \in W_{1}^{C_{1}}, w_{2} \in W_{2}: \\
& \exists u_{1} \in W_{C_{1}} \text { s.t. } \\
& v_{1} u_{1}^{-1} \leq w_{1}, w_{2} c\left(u_{1}\right) \leq v_{2}
\end{aligned}
$$

Lemma 5.11. Let $w_{1} \in W_{1}, w_{2} \in W_{2}, v_{1}^{\prime} \in W_{1}^{C_{1}}$, and $v_{2}^{\prime} \in{ }^{A_{2}} W_{2}$. Suppose that

$$
\begin{equation*}
\left(R_{\mathcal{A}}\left(B_{1} \times B_{2}\right)\left(w_{1}, w_{2}\right) R_{\mathcal{C}}\right) \cap\left[v_{1}^{\prime}, v_{2}^{\prime}\right]_{\mathcal{A}, \mathcal{C}} \neq \emptyset \tag{5.5}
\end{equation*}
$$

Then there exist $x_{1} \in W_{A_{1}}$ and $y_{1} \in W_{C_{1}}$ such that

$$
x_{1} v_{1}^{\prime} y_{1} \leq w_{1} \quad \text { and } \quad a\left(x_{1}\right) v_{2}^{\prime} c\left(y_{1}\right) \leq w_{2}
$$

Proof. One sees from (5.5) that $\left(w_{1}, w_{2}\right) R_{\mathcal{C}} \subset\left(B_{1} \times B_{2}\right) R_{\mathcal{A}}\left(B_{1} \times B_{2}\right)\left(v_{1}^{\prime}, v_{2}^{\prime}\right)\left(B_{1} \times B_{2}\right) R_{\mathcal{C}}$. Since

$$
\left(B_{1} \times B_{2}\right) R_{\mathcal{A}}\left(B_{1} \times B_{2}\right)=\bigcup_{x_{1} \in W_{A_{1}}}\left(B_{1} \times B_{2}\right)\left(x_{1}, a\left(x_{1}\right)\right)\left(B_{1} \times B_{2}\right)
$$

we have

$$
\begin{aligned}
\left(w_{1}, w_{2}\right) R_{\mathcal{C}} & \subset \bigcup_{x_{1} \in W_{A_{1}}}\left(\left(B_{1} x_{1} B_{1} v_{1}^{\prime} B_{1}\right) \times\left(B_{2} a\left(x_{1}\right) B_{2} v_{2}^{\prime} B_{2}\right)\right) R_{\mathcal{C}} \\
& =\bigcup_{x_{1} \in W_{A_{1}}}\left(\left(B_{1} x_{1} B_{1} v_{1}^{\prime} B_{1}\right) \times\left(B_{2} a\left(x_{1}\right) v_{2}^{\prime} B_{2}\right)\right) R_{\mathcal{C}}
\end{aligned}
$$

where in the last step we used the fact that $l\left(a\left(x_{1}\right) v_{2}^{\prime}\right)=l\left(a\left(x_{1}\right)\right)+l\left(v_{2}^{\prime}\right)$. Thus there exists $x_{1} \in W_{A_{1}}$ such that $\left(w_{1}, w_{2}\right) \in\left(\left(B_{1} x_{1} B_{1} v_{1}^{\prime} B_{1}\right) \times\left(B_{2} a\left(x_{1}\right) v_{2}^{\prime} B_{2}\right)\right) R_{\mathcal{C}}$. Since

$$
R_{\mathcal{C}} \subset \bigcup_{y_{1} \in W_{C_{1}}}\left(\left(B_{1} y_{1} B_{1}\right) \times\left(B_{2} c\left(y_{1}\right) B_{2}\right)\right)
$$

there exists $y_{1} \in W_{C_{1}}$ such that

$$
\begin{aligned}
\left(w_{1}, w_{2}\right) & \in\left(B_{1} x_{1} B_{1} v_{1}^{\prime} B_{1} y_{1} B_{1}\right) \times\left(B_{2} a\left(x_{1}\right) v_{2}^{\prime} B_{2} c\left(y_{1}\right) B_{2}\right) \\
& =\left(B_{1} x_{1} B_{1} v_{1}^{\prime} y_{1} B_{1}\right) \times\left(B_{2} a\left(x_{1}\right) v_{2}^{\prime} B_{2} c\left(y_{1}\right) B_{2}\right)
\end{aligned}
$$

By Lemma 8.4 in the Appendix, $w_{1} \geq x_{1} v_{1}^{\prime} y_{1}$ and $w_{2} \geq a\left(x_{1}\right) v_{2}^{\prime} c\left(y_{1}\right)$.
5.3. Proof of Theorem 5.2. Fix $v_{1} \in W_{1}$ and $v_{2} \in W_{2}$. Let

$$
\mathcal{J}\left(v_{1}, v_{2}\right)=\left\{\left(v_{1}^{\prime}, v_{2}^{\prime}\right) \in W_{1}^{C_{1}} \times{ }^{A_{2}} W_{2} \mid \overline{\left[v_{1}, v_{2}\right]_{\mathcal{A}, \mathcal{C}}} \cap\left[v_{1}^{\prime}, v_{2}^{\prime}\right]_{\mathcal{A}, \mathcal{C}} \neq \emptyset\right\}
$$

Then

$$
\overline{\left[v_{1}, v_{2}\right]_{\mathcal{A}, \mathcal{C}}}=\bigsqcup_{\left(v_{1}^{\prime}, v_{2}^{\prime}\right) \in \mathcal{J}\left(v_{1}, v_{2}\right)} \overline{\left[v_{1}, v_{2}\right]_{\mathcal{A}, \mathcal{C}}} \cap\left[v_{1}^{\prime}, v_{2}^{\prime}\right]_{\mathcal{A}, \mathcal{C}}
$$

We will first show that

$$
\begin{align*}
& \mathcal{J}\left(v_{1}, v_{2}\right)=\left\{\left(v_{1}^{\prime}, v_{2}^{\prime}\right) \in W_{1}^{C_{1}} \times{ }^{A_{2}} W_{2} \mid\right. \tag{5.6}\\
&\left.\quad \exists x_{1} \in W_{A_{1}}, y_{1} \in W_{C_{1}} \text { s.t. } x_{1} v_{1}^{\prime} y_{1} \leq v_{1}, a\left(x_{1}\right) v_{2}^{\prime} c\left(y_{1}\right) \leq v_{2}\right\}
\end{align*}
$$

Indeed, by Lemma 8.1 in the Appendix,

$$
\overline{\left[v_{1}, v_{2}\right]_{\mathcal{A}, \mathcal{C}}}=R_{\mathcal{A}} \overline{\left(B_{1} \times B_{2}\right)\left(v_{1}, v_{2}\right)\left(B_{1} \times B_{2}\right) R_{\mathcal{C}}}
$$

Thus by Lemma 5.7,

$$
\begin{aligned}
\overline{\left[v_{1}, v_{2}\right]_{\mathcal{A}, \mathcal{C}}}= & \bigsqcup_{1} R_{\mathcal{A}}\left(B_{1} \times B_{2}\right)\left(w_{1}, w_{2}\right) R_{\mathcal{C}} \\
& w_{1} \in W_{1}, w_{2} \in W_{2}: \\
& w_{1} \leq v_{1}, w_{2} \leq v_{2}
\end{aligned}
$$

Suppose that $\left(v_{1}^{\prime}, v_{2}^{\prime}\right) \in \mathcal{J}\left(v_{1}, v_{2}\right)$. Then there exists $\left(w_{1}, w_{2}\right) \in W_{1} \times W_{2}$ with $w_{1} \leq v_{1}, w_{2} \leq$ v_{2} such that

$$
\left(R_{\mathcal{A}}\left(B_{1} \times B_{2}\right)\left(w_{1}, w_{2}\right) R_{\mathcal{C}}\right) \cap\left[v_{1}^{\prime}, v_{2}^{\prime}\right]_{\mathcal{A}, \mathcal{C}} \neq \emptyset
$$

By Lemma 5.11, there exist $x_{1} \in W_{A_{1}}, y_{1} \in W_{C_{1}}$ such that

$$
x_{1} v_{1}^{\prime} y_{1} \leq w_{1} \leq v_{1} \quad \text { and } \quad a\left(x_{1}\right) v_{2}^{\prime} c\left(y_{1}\right) \leq w_{2} \leq v_{2}
$$

Thus $\left(v_{1}^{\prime}, v_{2}^{\prime}\right)$ is in the set of the right hand side of (5.6). Conversely, suppose that $\left(v_{1}^{\prime}, v_{2}^{\prime}\right) \in$ $W_{1}^{C_{1}} \times{ }^{A_{2}} W_{2}$ are such that $x_{1} v_{1}^{\prime} y_{1} \leq v_{1}$ and $a\left(x_{1}\right) v_{2}^{\prime} c\left(y_{1}\right) \leq v_{2}$ for some $x_{1} \in W_{A_{1}}$ and $y_{1} \in W_{C_{1}}$. Let $w_{1}=x_{1} v_{1}^{\prime} y_{1}$ and $w_{2}=a\left(x_{1}\right) v_{2}^{\prime} c\left(y_{1}\right)$ so that

$$
v_{1}^{\prime}=x_{1}^{-1} w_{1} y_{1}^{-1} \quad \text { and } \quad v_{2}^{\prime}=a\left(x_{1}^{-1}\right) w_{2} c\left(y_{1}^{-1}\right)
$$

It follows that $\left(v_{1}^{\prime} T_{1}, v_{2}^{\prime} T_{2}\right)=\left(x_{1}^{-1} w_{1} y_{1}^{-1} T_{1}, a\left(x_{1}^{-1}\right) w_{2} c\left(y_{1}^{-1}\right) T_{2}\right)$ and hence

$$
\begin{equation*}
\left(v_{1}^{\prime} T_{1}, v_{2}^{\prime} T_{2}\right) \subset R_{\mathcal{A}}\left(B_{1} \times B_{2}\right)\left(w_{1}, w_{2}\right) R_{\mathcal{C}} \subset \overline{\left[v_{1}, v_{2}\right]_{\mathcal{A}, \mathcal{C}}} \tag{5.7}
\end{equation*}
$$

where $T_{i}=B_{i}^{-} \cap B_{i}$ for $i=1,2$. Thus $\overline{\left[v_{1}, v_{2}\right]_{\mathcal{A}, \mathcal{C}}} \cap\left[v_{1}^{\prime}, v_{2}^{\prime}\right]_{\mathcal{A}, \mathcal{C}} \neq \emptyset$, and so $\left(v_{1}^{\prime}, v_{2}^{\prime}\right) \in \mathcal{J}\left(v_{1}, v_{2}\right)$. This completes the Theorem 5.2.

For any $\left(v_{1}^{\prime}, v_{2}^{\prime}\right) \in \mathcal{J}\left(v_{1}, v_{2}\right)$, it follows from (5.7) that

$$
R_{\mathcal{A}}\left(v_{1}^{\prime}, v_{2}^{\prime} T_{2}\right) R_{\mathcal{C}}=R_{\mathcal{A}}\left(v_{1}^{\prime} T_{1}, v_{2}^{\prime} T_{2}\right) R_{\mathcal{C}} \subset \overline{\left[v_{1}, v_{2}\right]_{\mathcal{A}, \mathcal{C}}}
$$

By Lemma 3.3, $R_{\mathcal{A}}\left(v_{1}^{\prime}, v_{2}^{\prime} T_{2}\right) R_{\mathcal{C}}$ is dense in $\left[v_{1}^{\prime}, v_{2}^{\prime}\right]_{\mathcal{A}, \mathcal{C}}$. Hence $\left[v_{1}^{\prime}, v_{2}^{\prime}\right]_{\mathcal{A}, \mathcal{C}} \subset \overline{\left[v_{1}, v_{2}\right]_{\mathcal{A}, \mathcal{C}}}$, and $\overline{\left[v_{1}, v_{2}\right]_{\mathcal{A}, \mathcal{C}}} \cap\left[v_{1}^{\prime}, v_{2}^{\prime}\right]_{\mathcal{A}, \mathcal{C}}=\left[v_{1}^{\prime}, v_{2}^{\prime}\right]_{\mathcal{A}, \mathcal{C}}$. This completes the proof of Theorem 5.2.

6. The $\left(R_{\mathcal{A}}, R_{\mathcal{C}}^{-}\right)$-stable subsets $\left[v_{1}, v_{2}\right]_{\mathcal{A}, \mathcal{C}}$

6.1. The subsets $\left[v_{1}, v_{2}\right]_{\mathcal{A}, \mathcal{C}}^{-}$of $G_{1} \times G_{2}$. Let again \mathcal{A} and \mathcal{C} be two admissible quadruples for $G_{1} \times G_{2}$. Let $w_{0, \Gamma_{1}}$ and $w_{0, C_{1}}$ be the longest element in W_{1} and $W_{C_{1}}$ respectively. Associated to \mathcal{C}, we have the admissible quadruple $\mathcal{C}^{*} \stackrel{\text { def }}{=}\left(C_{1}^{*}, C_{2}^{*}, c^{*}, L^{*}\right)$, where

$$
\begin{equation*}
C_{1}^{*}=-w_{0, \Gamma_{1}}\left(C_{1}\right), \quad C_{2}^{*}=C_{2}, \quad c^{*}=c\left(w_{0, \Gamma_{1}} w_{0, C_{1}}\right)^{-1}, \quad L^{*}=\operatorname{Ad}_{\left(\dot{w}_{0, \Gamma_{1}} \dot{w}_{0, C_{1}}, e\right)} L \tag{6.8}
\end{equation*}
$$

It is easy to see that $R_{\mathcal{C}^{*}}=\operatorname{Ad}_{\left(\dot{w}_{0, \Gamma_{1}} \dot{w}_{0, C_{1}}, e\right)} R_{\mathcal{C}}^{-}$. Moreover,

$$
\begin{equation*}
W_{1}^{C_{1}}\left(w_{0, \Gamma_{1}} w_{0, C_{1}}\right)^{-1}=W_{1}^{C_{1}^{*}} \tag{6.9}
\end{equation*}
$$

Proposition 6.1. For $v_{1} \in W_{1}^{C_{1}}$ and $v_{2} \in{ }^{A_{2}} W_{2}$, let

$$
\left[v_{1}, v_{2}\right]_{\mathcal{A}, \mathcal{C}}^{-}=R_{\mathcal{A}}\left(v_{1}, v_{2} M_{C_{2}\left(v_{1}, v_{2}\right)}\right) R_{\mathcal{C}}^{-}=R_{\mathcal{A}}\left(B_{1} \times B_{2}\right)\left(v_{1}, v_{2}\right) R_{\mathcal{C}}^{-} \subset G_{1} \times G_{2}
$$

Then (i)

$$
G_{1} \times G_{2}=\bigsqcup_{v_{1} \in W_{1}^{C_{1}}, v_{2} \in^{A_{2} W_{2}}}\left[v_{1}, v_{2}\right]_{\mathcal{A}, \mathcal{C}}^{-} \quad \text { (disjoint union) }
$$

(ii) $\left[v_{1}, v_{2}\right]_{\mathcal{A}, \mathcal{C}}=R_{\mathcal{A}}\left(B_{1} \times B_{2}\right)\left(v_{1}, v_{2}\right) R_{\mathcal{C}}^{-}$for every $v_{1} \in W_{1}^{C_{1}}$ and $v_{2} \in{ }^{A_{2}} W_{2}$;
(iii) $\left[v_{1}, v_{2}\right]_{\mathcal{A}, \mathcal{C}}$ is locally closed, smooth, and irreducible. Its projection $\left[v_{1}, v_{2}\right]_{\mathcal{A}, \mathcal{C}} / R_{\mathcal{C}}^{-}$to $\left(G_{1} \times G_{2}\right) / R_{\mathcal{C}}^{-}$fibers over the flag variety $M_{A_{1}} /\left(M_{A_{1}} \cap P_{A_{1}\left(v_{1}, v_{2}\right)}\right)$ with fibers isomorphic to the product of $M_{C_{2}\left(v_{1}, v_{2}\right)} / Y_{2}$ and the affine space of dimension $\operatorname{dim} U_{A_{1}\left(v_{1}, v_{2}\right)}-l\left(v_{1}\right)+l\left(v_{2}\right)$, where Y_{2} is as in Theorem 2.2.
Proof. Let $v_{1}^{*}=v_{1}\left(w_{0, \Gamma_{1}} w_{0, C_{1}}\right)^{-1} \in W_{1}^{C_{1}^{*}}$. All the statements in Proposition 6.1 follow from the fact that

$$
\left[v_{1}, v_{2}\right]_{\mathcal{A}, \mathcal{C}}^{-}=R_{\mathcal{A}}\left(B_{1} \times B_{2}\right)\left(v_{1}^{*}, v_{2}\right)\left(B_{1} \times B_{2}\right) R_{\mathcal{C}^{*}}\left(\dot{w}_{0, \Gamma_{1}} \dot{w}_{0, C_{1}}, e\right)
$$

6.2. Closures of the sets $\left[v_{1}, v_{2}\right]_{\mathcal{A}, \mathcal{C}}$ in $G_{1} \times G_{2}$. For each $v_{1} \in W_{1}$ and $v_{2} \in W_{2}$, set

$$
\begin{equation*}
\left[v_{1}, v_{2}\right]_{\mathcal{A}, \mathcal{C}}^{-}=R_{\mathcal{A}}\left(B_{1} \times B_{2}\right)\left(v_{1}, v_{2}\right)\left(w_{0, C_{1}}\left(B_{1}^{-}\right) \times B_{2}\right) R_{\mathcal{C}}^{-} \subset G_{1} \times G_{2} \tag{6.10}
\end{equation*}
$$

It follows from Lemma 5.1 that

$$
\begin{equation*}
\left[v_{1}, v_{2}\right]_{\mathcal{A}, \mathcal{C}}=R_{\mathcal{A}}\left(B_{1} \times B_{2}\right)\left(v_{1}, v_{2}\right) R_{\mathcal{C}}^{-}, \quad \text { when } v_{1} \in W_{1}^{C_{1}}, v_{2} \in W_{2} \tag{6.11}
\end{equation*}
$$

Theorem 6.2. For any $v_{1} \in W_{1}$ and $v_{2} \in W_{2}$, with $\left[v_{1}, v_{2}\right]_{\mathcal{A}, \mathcal{C}}$ given in (6.10), one has

$$
\begin{aligned}
& \overline{\left[v_{1}, v_{2}\right]_{\mathcal{A}, \mathcal{C}}}=\quad\left\lfloor\quad\left[v_{1}^{\prime}, v_{2}^{\prime}\right]_{\mathcal{\mathcal { A }}, \mathcal{C}} .\right. \\
& v_{1}^{\prime} \in W_{1}^{C_{1}}, v_{2}^{\prime} \in{ }^{A_{2}} W_{2}: \\
& \exists x_{1} \in W_{A_{1}}, y_{1} \in W_{C_{1}} \text { s.t. } \\
& x_{1} v_{1}^{\prime} y_{1} w_{0, C_{1}} \geq v_{1} w_{0, C_{1}} \\
& a\left(x_{1}\right) v_{2}^{\prime} c\left(y_{1}\right) \leq v_{2}
\end{aligned}
$$

Proof. For $v_{1} \in W_{1}$, let again $v_{1}^{*}=v_{1}\left(w_{0, \Gamma_{1}} w_{0, C_{1}}\right)^{-1}$. Then again we have

$$
\left[v_{1}, v_{2}\right]_{\mathcal{A}, \mathcal{C}}^{-}=R_{\mathcal{A}}\left(B_{1} \times B_{2}\right)\left(v_{1}^{*}, v_{2}\right)\left(B_{1} \times B_{2}\right) R_{\mathcal{C}^{*}}\left(\dot{w}_{0, \Gamma_{1}} \dot{w}_{0, C_{1}}, e\right), \quad \forall v_{1} \in W_{1}, v_{2} \in W_{2}
$$

For $y_{1} \in W_{C_{1}}$, set $\left(y_{1}\right)_{*}=\left(w_{0, \Gamma_{1}} w_{0, C_{1}}\right) y_{1}\left(w_{0, \Gamma_{1}} w_{0, C_{1}}\right)^{-1} \in W_{C_{1}^{*}}$. Then by Theorem 5.2,

$$
\begin{aligned}
& \overline{\left[v_{1}, v_{2}\right]_{\mathcal{A}, \mathcal{C}}^{-}}=\quad \square \quad\left[v_{1}^{\prime}, v_{2}^{\prime}\right]_{\mathcal{\mathcal { A } , \mathcal { C }}}=\quad\left\lfloor\quad\left[v_{1}^{\prime}, v_{2}^{\prime}\right]_{\mathcal{\mathcal { A } , \mathcal { C }}} .\right. \\
& v_{1}^{\prime} \in W_{1}^{C_{1}}, v_{2}^{\prime} \in{ }^{A_{2}} W_{2}: \quad v_{1}^{\prime} \in W_{1}^{C_{1}}, v_{2}^{\prime} \in{ }^{A_{2}} W_{2}: \\
& \exists x_{1} \in W_{A_{1}}, y_{1} \in W_{C_{1}} \text { s.t. } \quad \exists x_{1} \in W_{A_{1}}, y_{1} \in W_{C_{1}} \text { s.t. } \\
& x_{1}\left(v_{1}^{\prime}\right)^{*}\left(y_{1}\right)_{*} \leq v_{1}^{*} \quad x_{1} v_{1}^{\prime} y_{1} w_{0, C_{1}} \geq v_{1} w_{0, C_{1}} \\
& a\left(x_{1}\right) v_{2}^{\prime} c\left(y_{1}\right) \leq v_{2} \quad a\left(x_{1}\right) v_{2}^{\prime} c\left(y_{1}\right) \leq v_{2}
\end{aligned}
$$

7. The $R_{\mathcal{A}}$-Stable pieces in \bar{G} and their closures

We retain the notation in $\S 2.3$. In particular, G is a semi-simple algebraic group of adjoint type, and \bar{G} denotes the De Concini-Procesi compactification of G. In this section, unless otherwise stated, if X is a subset of \bar{G}, \bar{X} always denotes the closure of X in \bar{G}.

For each $J \subset G$, recall that h_{J} is a point in \bar{G} such that the stabilizer subgroup of $G \times G$ at h_{J} is R_{J}^{-}given in (2.8). Let $\mathcal{A}=\left(A_{1}, A_{2}, a, K\right)$ be any admissible quadruple for $G \times G$. Then we have the decomposition of \bar{G} into $R_{\mathcal{A}}$-stable pieces

$$
\bar{G}=\bigsqcup_{J \subset \Gamma, v_{1} \in W^{J}, v_{2} \in^{A_{2} W}}\left[J, v_{1}, v_{2}\right]_{\mathcal{A}}
$$

where for $J \subset \Gamma$ and for $v_{1} \in W^{J}$ and $v_{2} \in{ }^{A_{2}} W$, the subset $\left[J, v_{1}, v_{2}\right]_{\mathcal{A}}$ of \bar{G} is defined by (2.9), namely

$$
\left[J, v_{1}, v_{2}\right]_{\mathcal{A}}=R_{\mathcal{A}}(B \times B)\left(v_{1}, v_{2}\right) \cdot h_{J}
$$

By part (iii) of Proposition 6.1, we have
Proposition 7.1. Let A be any admissible quadruple for $G \times G$. Then for any $J \subset \Gamma$ and $v_{1} \in W^{J}, v_{2} \in{ }^{A_{2}} W,\left[J, v_{1}, v_{2}\right]_{\mathcal{A}}$ is a locally closed smooth subset of \bar{G}. It fibers over the flag variety $M_{A_{1}} /\left(M_{A_{1}} \cap P_{A_{1}\left(v_{1}, v_{2}\right)}\right)$ with fibers isomorphic to the product of $M_{J\left(v_{1}, v_{2}\right)} / Z_{J}$ and the affine space of dimension $\operatorname{dim} U_{A_{1}\left(v_{1}, v_{2}\right)}-l\left(v_{1}\right)+l\left(v_{2}\right)$, where $J\left(v_{1}, v_{2}\right)$ is the smallest subset of J stable under v_{2}^{-1} av v_{1} and $A_{1}\left(v_{1}, v_{2}\right)=v_{1} J\left(v_{1}, v_{2}\right) \subset A_{1}$.

When $R_{\mathcal{A}}=G_{\text {diag }}$, the Proposition 7.1 coincides with the description of the geometry of Lusztig's $G_{\text {diag-stable pieces given in [8]. }}$.

In this section, we study the closures of the subsets $\left[J, v_{1}, v_{2}\right]_{\mathcal{A}}$ in \bar{G}.
7.1. The first description. For $J \subset \Gamma$ and $v_{1} \in W^{J}, v_{2} \in W$, let

$$
\left[J, v_{1}, v_{2}\right]=(B \times B)\left(v_{1}, v_{2}\right) \cdot h_{J} \subset \bar{G}
$$

The following Lemma 7.2 follows immediately from Lemma 8.1 in the Appendix.
Lemma 7.2. For any admissible triple \mathcal{A} for $G \times G$ and all $J \subset \Gamma, v_{1} \in W^{J}, v_{2} \in{ }^{A_{2}} W$,

$$
\overline{\left[J, v_{1}, v_{2}\right]_{\mathcal{A}}}=R_{\mathcal{A}} \overline{\left[J, v_{1}, v_{2}\right]}
$$

Proposition 7.3. Let \mathcal{A} be an admissible quadruple for $G \times G$. Then for any $J \subset \Gamma$ and $\left(v_{1}, v_{2}\right) \in W^{J} \times{ }^{A_{2}} W$,

$$
\overline{\left[J, v_{1}, v_{2}\right]_{\mathcal{A}}}=\bigsqcup_{I \subset J} \quad \begin{align*}
& v_{1}^{\prime} \in W^{I}, v_{2}^{\prime} \in A_{2} W \tag{7.1}\\
& \left.\exists x \in W_{A_{1}}, y \in W_{I}, z \in W_{J}^{I}, v_{2}^{\prime}\right]_{\mathcal{A}} . \\
& l\left(v_{2} z\right)=l\left(v_{2}\right)+l(z) \\
& x v_{1}^{\prime} y w_{0, I} \geq v_{1} z w_{0, I} \\
& a(x) v_{2}^{\prime} y \leq v_{2} z
\end{align*}
$$

Proof. It is well-known [5] that for $I_{1}, I_{2} \subset \Gamma$,

$$
\overline{(G \times G) \cdot h_{I_{1}}} \cap(G \times G) \cdot h_{I_{2}} \neq \emptyset
$$

if and only if $I_{2} \subset I_{1}$. Thus

$$
\overline{\left[J, v_{1}, v_{2}\right]_{\mathcal{A}}}=\bigsqcup_{I \subset J}\left(\overline{\left[J, v_{1}, v_{2}\right]_{\mathcal{A}}} \cap(G \times G) \cdot h_{I}\right) .
$$

Fix $I \subset J$. By Lemma 7.2,

$$
\overline{\left[J, v_{1}, v_{2}\right]_{\mathcal{A}}} \cap(G \times G) \cdot h_{I}=R_{\mathcal{A}}\left(\overline{\left[J, v_{1}, v_{2}\right]} \cap(G \times G) . h_{I}\right) .
$$

By [18, Lemma 2.3],

$$
\overline{\left[J, v_{1}, v_{2}\right]} \cap(G \times G) \cdot h_{I}=\bigsqcup_{\substack{z \in W_{J}^{I}, l\left(v_{2} z\right)=l\left(v_{2}\right)+l(z)}}{\overline{\left[I, v_{1} z, v_{2} z\right]}}^{I},
$$

where, for a subsets Y of $(G \times G) . h_{I}, \bar{Y}^{I}$ denotes the closure of Y in $(G \times G) . h_{I}$. Thus

$$
\overline{\left[J, v_{1}, v_{2}\right]_{\mathcal{A}}} \cap(G \times G) \cdot h_{I}=\bigsqcup_{\substack{z \in W_{J}^{I}, l\left(v_{2} z\right)=l\left(v_{2}\right)+l(z)}} R_{\mathcal{A}}{\overline{\left[I, v_{1} z, v_{2} z\right]}}^{I}
$$

By Lemma 8.1, $R_{\mathcal{A}}{\overline{\left[I, v_{1} z, v_{2} z\right]}}^{I}={\overline{R_{\mathcal{A}}\left[I, v_{1} z, v_{2} z\right]}}^{I}$ for every $z \in W_{J}^{I}$. The decomposition in (7.1) now follows from Theorem 6.2.

In the following $\S 7.2$ and $\S 7.3$, we will simplify the descriptions of the the closure relations in Proposition 7.3.
7.2. The second description. Recall that $(G \times G) . h_{\emptyset} \cong(G \times G) /\left(B_{-} \times B\right)$ is the unique closed $(G \times G)$-orbit in \bar{G}. For $J \subset \Gamma$ and $v_{1} \in W^{J}, v_{2} \in{ }^{A_{2}} W$, let

$$
\partial_{\emptyset} \overline{\left[J, v_{1}, v_{2}\right]_{\mathcal{A}}}=\overline{\left[J, v_{1}, v_{2}\right]_{\mathcal{A}}} \cap(G \times G) \cdot h_{\emptyset}
$$

Theorem 7.4. Let \mathcal{A} be an admissible quadruple for $G \times G$. Let $I, J \subset \Gamma, v_{1} \in W^{J}, v_{1}^{\prime} \in W^{I}$, and $v_{2}, v_{2}^{\prime} \in{ }^{A_{2}} W$. Then the following are equivalent:
(i) $\left[I, v_{1}^{\prime}, v_{2}^{\prime}\right]_{\mathcal{A}} \subset \overline{\left[J, v_{1}, v_{2}\right]_{\mathcal{A}}}$;
(ii) $I \subset J$ and $\partial_{\emptyset} \overline{\left[I, v_{1}^{\prime}, v_{2}^{\prime}\right]_{\mathcal{A}}} \subset \partial_{\emptyset} \overline{\left[J, v_{1}, v_{2}\right]_{\mathcal{A}}}$;
(iii) $I \subset J$ and $\left[\emptyset, v_{1}^{\prime}, v_{2}^{\prime}\right]_{\mathcal{A}} \subset \partial_{\emptyset} \overline{\left[J, v_{1}, v_{2}\right]_{\mathcal{A}}}$.

Proof. It is clear that (i) implies (ii). Since $\left[\emptyset, v_{1}^{\prime}, v_{2}^{\prime}\right]_{\mathcal{A}} \subset \partial_{\emptyset} \overline{\left[I, v_{1}^{\prime}, v_{2}^{\prime}\right]_{\mathcal{A}}}$, one sees that (ii) implies (iii). It remains to show that (iii) implies (i).

Assume (iii). By Proposition 7.3, there exist $x \in W_{A_{1}}$ and $z \in W_{J}$ with $l\left(v_{2} z\right)=$ $l\left(v_{2}\right)+l(z)$ such that $x v_{1}^{\prime} \geq v_{1} z$ and $a(x) v_{2}^{\prime} \leq v_{2} z$. Write $z=u y$ with $u \in W_{J}^{I}$ and $y \in W_{I}$. Then the set

$$
S=\left\{\left(x^{\prime}, y^{\prime}\right) \in W_{A_{1}} \times W_{I} \mid x^{\prime} v_{1}^{\prime} \geq v_{1} u y^{\prime}, \quad a\left(x^{\prime}\right) v_{2}^{\prime} \leq v_{2} u y^{\prime}\right\}
$$

is non-empty. Let $\left(x_{0}, y_{0}\right) \in W_{A_{1}} \times W_{I}$ be a minimal element in S. We claim that

$$
\begin{equation*}
\left(x_{0} v_{1}^{\prime}\right)^{I} \geq v_{1} u y_{0}\left(x_{0} v_{1}^{\prime}\right)_{I}^{-1} \quad \text { and } \quad a\left(x_{0}\right) v_{2}^{\prime} y_{0}^{-1} \leq v_{2} u \tag{7.2}
\end{equation*}
$$

where $\left(x_{0} v_{1}^{\prime}\right)^{I} \in W^{I}$ and $\left(x_{0} v_{1}^{\prime}\right)_{I} \in W_{I}$ are such that $x_{0} v_{1}^{\prime}=\left(x_{0} v_{1}^{\prime}\right)^{I}\left(x_{0} v_{1}^{\prime}\right)_{I}$. By Lemma 8.3, it would follow from (7.2) that

$$
x_{0} v_{1}^{\prime} y_{0}^{-1} w_{0, I} \geq v_{1} u w_{0, I} \quad \text { and } \quad a\left(x_{0}\right) v_{2}^{\prime} y_{0}^{-1} \leq v_{2} u
$$

and, since $l\left(v_{2} u\right)=l\left(v_{2}\right)+l(u)$, we would see by Proposition 7.3 that $\left[I, v_{1}^{\prime}, v_{2}^{\prime}\right]_{\mathcal{A}} \subset \overline{\left[J, v_{1}, v_{2}\right]_{\mathcal{A}}}$.

It remains to prove (7.2). We first show that $a\left(x_{0}\right) v_{2}^{\prime} y_{0}^{-1} \leq v_{2} u$. Indeed, since $a\left(x_{0}\right) v_{2}^{\prime} \leq$ $v_{2} u y_{0}$, it follows from Lemma 8.7 in the Appendix that there exists $y_{1} \leq y_{0}$ such that

$$
\begin{equation*}
v_{2} u=v_{2} u y_{0} y_{0}^{-1} \geq a\left(x_{0}\right) v_{2}^{\prime} y_{1}^{-1} \tag{7.3}
\end{equation*}
$$

Again by Lemma 8.7, there exists $y_{2} \leq y_{1}$ such that

$$
a\left(x_{0}\right) v_{2}^{\prime}=a\left(x_{0}\right) v_{2}^{\prime} y_{1}^{-1} y_{1} \leq v_{2} u y_{2}
$$

Since $y_{2} \leq y_{1} \leq y_{0}$, we have $x_{0} v_{1}^{\prime} \geq v_{1} u y_{0} \geq v_{1} u y_{2}$. Thus $\left(x_{0}, y_{2}\right) \in S$. Since $\left(x_{0}, y_{2}\right) \leq$ $\left(x_{0}, y_{0}\right)$ and since $\left(x_{0}, y_{0}\right)$ is minimal in S, we must have $y_{2}=y_{0}$. Hence $y_{1}=y_{0}$, and $a\left(x_{0}\right) v_{2}^{\prime} y_{0}^{-1} \leq v_{2} u$ by (7.3).

We now show that $l\left(x_{0} v_{1}^{\prime}\right)=l\left(x_{0}\right)+l\left(v_{1}^{\prime}\right)$. Indeed, if $l\left(x_{0} v_{1}^{\prime}\right)<l\left(x_{0}\right)+l\left(v_{1}^{\prime}\right)$, then by Lemma 8.6 in the Appendix, there exists $x_{1}<x_{0}$ such that $x_{1} v_{1}^{\prime}>x_{0} v_{1}^{\prime} \geq v_{1} u y_{0}$. Since $a\left(x_{1}\right) v_{2}^{\prime} \leq a\left(x_{0}\right) v_{2}^{\prime} \leq v_{2} u y_{0}$, we have $\left(x_{1}, y_{0}\right) \in S$. Since $\left(x_{1}, y_{0}\right)<\left(x_{0}, y_{0}\right)$, this is a contradiction to the minimality of $\left(x_{0}, y_{0}\right)$ in S. Hence $l\left(x_{0} v_{1}^{\prime}\right)=l\left(x_{0}\right)+l\left(v_{1}^{\prime}\right)$.

By Lemma 8.7 in the Appendix, there exists $y_{1} \leq\left(x_{1} v_{1}^{\prime}\right)_{I}$ such that

$$
\left(x_{0} v_{1}^{\prime}\right)^{I}=\left(x_{0} v_{1}^{\prime}\right)\left(x_{0} v_{1}^{\prime}\right)_{I}^{-1} \geq v_{1} u y_{0} y_{1}^{-1}
$$

By Lemma 8.8 in the Appendix, there exists $x_{2} \leq x_{0}$ such that $\left(x_{0} v_{1}^{\prime}\right)^{I} y_{1}=x_{2} v_{1}^{\prime}$. Now

$$
x_{2} v_{1}^{\prime}=\left(x_{0} v_{1}^{\prime}\right)^{I} y_{1} \geq v_{1} u y_{0} y_{1}^{-1} y_{1}=v_{1} u y_{0}
$$

and $a\left(x_{2}\right) v_{2}^{\prime} \leq a\left(x_{0}\right) v_{2}^{\prime} \leq v_{2} u y_{0}$. Hence $\left(x_{2}, y_{0}\right) \in S$. By the minimality of $\left(x_{0}, y_{0}\right)$ in S, we have $x_{2}=x_{0}$, so $y_{1}=\left(x_{1} v_{1}^{\prime}\right)_{I}$, and $\left(x_{0} v_{1}^{\prime}\right)^{I} \geq v_{1} u y_{0}\left(x_{1} v_{1}^{\prime}\right)_{I}^{-1}$. This proves (7.2).

As a corollary of (iii) in Theorem 7.4 and Proposition 7.3, we get the following second description of the closure relations on the $R_{\mathcal{A}}$-stable pieces in \bar{G}.
Corollary 7.5. Let \mathcal{A} be an admissible quadruple for $G \times G$. Then for any $J \subset \Gamma$ and $\left(v_{1}, v_{2}\right) \in W^{J} \times{ }^{A_{2}} W$,

$$
\overline{\left[J, v_{1}, v_{2}\right]_{\mathcal{A}}}=\bigsqcup_{I \subset J} \quad \begin{align*}
& v_{1}^{\prime} \in W^{I}, v_{2}^{\prime} \in A_{2} W: \tag{7.4}\\
& \exists x \in W_{A_{1}}, z \in W_{J} \text { s.t. } \\
& l\left(v_{2} z\right)=l\left(v_{2}\right)+l(z) \\
& \left.x v_{1}^{\prime} \geq v_{1} z, \quad a(x) v_{2}^{\prime} \leq v_{2}^{\prime}\right]_{\mathcal{A}} .
\end{align*}
$$

7.3. The third description. In this section, we show that the condition $l\left(v_{2} z\right)=l\left(v_{2}\right)+l(z)$ in (7.4) can be dropped. Namely, we have
Theorem 7.6. Let \mathcal{A} be an admissible quadruple for $G \times G$. Then for any $J \subset \Gamma$ and $\left(v_{1}, v_{2}\right) \in W^{J} \times{ }^{A_{2}} W$,

$$
\begin{equation*}
\overline{\left[J, v_{1}, v_{2}\right]_{\mathcal{A}}}=\bigsqcup_{I \subset J} \bigsqcup_{\substack{v_{1}^{\prime} \in W^{I}, v_{2}^{\prime} \in A_{2} W \\ \exists x \in W_{A_{1}}, z \in W_{J} \text { s.t. } \\ x v_{1}^{\prime} \geq v_{1} z, \quad a(x) v_{2}^{\prime} \leq v_{2} z}}\left[I, v_{1}^{\prime}, v_{2}^{\prime}\right]_{\mathcal{A}} . \tag{7.5}
\end{equation*}
$$

Proof. Fix $J \subset \Gamma$ and $\left(v_{1}, v_{2}\right) \in W^{J} \times{ }^{A_{2}} W$. It is enough to show that the right hand side of (7.5) is contained in the right hand side of (7.4). To this end, let $I \subset J$ and let $\left(v_{1}^{\prime}, v_{2}^{\prime}\right) \in W^{I} \times{ }^{A_{2}} W$ be such that there exist $x \in W_{A_{1}}$ and $z \in W_{J}$ with $x v_{1}^{\prime} \geq v_{1} z$ and $a(x) v_{2}^{\prime} \leq v_{2} z$. Choose such an $x \in W_{A_{1}}$ and let

$$
Z=\left\{z^{\prime} \in W_{J} \mid x v_{1}^{\prime} \geq v_{1} z^{\prime}, \quad a(x) v_{2}^{\prime} \leq v_{2} z^{\prime}\right\}
$$

Then $Z \neq \emptyset$. Let $z_{0} \in Z$ be a minimal element. We claim that $l\left(v_{2} z_{0}\right)=l\left(v_{2}\right)+l\left(z_{0}\right)$. Indeed, if $l\left(v_{2} z_{0}\right)<l\left(v_{2}\right)+l\left(z_{0}\right)$, then by Lemma 8.6 in the Appendix, there exists $z_{1}<z_{0}$ such that $v_{2} z_{1}>v_{2} z_{0}$. Thus $v_{2} z_{1}>a(x) v_{2}^{\prime}$. Since $v_{1} \in W^{J}$ and $z_{1}, z_{0} \in W_{J}$, we also have
$v_{1} z_{1} \leq v_{1} z_{0} \leq x v_{1}^{\prime}$. Thus $z_{1} \in Z$, which contradicts to the fact the z_{0} is a minimal element in Z. This shows that $l\left(v_{2} z_{0}\right)=l\left(v_{2}\right)+l\left(z_{0}\right)$, and thus $\left[I, v_{1}^{\prime}, v_{2}^{\prime}\right]_{\mathcal{A}}$ is contained in the right hand side of (7.4).
Remark 7.7. Note that in the proofs of Proposition 7.3, Corollary 7.5, and Theorem 7.6, we did not use the fact that $v_{2} \in{ }^{A_{2}} W$. In fact, the decomposition formulas (7.1), (7.4), and (7.5) hold for any $v_{1} \in W^{J}$ and $v_{2} \in W_{2}$. Thus the closure of $R_{\mathcal{A}} \mathcal{O}$ in \bar{G} for any ($B \times B$)-orbit \mathcal{O} in \bar{G} is a union of the sets of the form $\left[I, v_{1}^{\prime}, v_{2}^{\prime}\right]_{\mathcal{A}}$ for $I \subset \Gamma, v_{1}^{\prime} \in W^{I}$, and $v_{2}^{\prime} \in{ }^{A_{2}} W$. Proposition 7.3, Corollary 7.5, and Theorem 7.6 give three equivalent descriptions of the decomposition. See also Remark 5.3.

8. Appendix

8.1. A lemma from [19]. The following is [19, Lemma 2, P. 68]. We state it here for the convenience of the reader.

Lemma 8.1. Let G be an algebraic group acting on a variety V. Let H be a closed subgroup of G and let $U \subset V$ be a closet subset of V, invariant under the action of H. Assume that G / H is complete. Then G.U is closed.
8.2. A few facts on the Weyl group. Let G be a any connected reductive algebraic group over an algebraically closed field. Let T be a maximal torus of G, let B a Borel subgroup of G containing T, and let Γ be the set of simple roots for (B, T). Let W be the Weyl group of Γ. For the convenience of the reader, we collect in this section a few facts on W that are used in this paper. Recall that for two subsets A and C of Γ we denote ${ }^{A} W^{C}={ }^{A} W \cap W^{C}$.
Lemma 8.2. [3, Proposition 2.7.5] For any $A, C \subset \Gamma$, every $v \in{ }^{A} W$ can be uniquely written as a product $v=x u$, where $x \in{ }^{A} W^{C}$ and $u \in C \cap x^{-1}(A) W_{C}$.

For $C \subset \Gamma$, let $w_{0, C}$ be the longest element of W_{C}.
Lemma 8.3. [18, Page 79] Let $x, w \in W^{C}$ and $u \in W_{C}$. Then $x u^{-1} \leq w$ if and only if $x w_{0, C} \leq w u w_{0, C}$.
Proof. If $x u^{-1} \leq w$, then $x w_{0, C}=x u^{-1} u w_{0, C} \leq w u w_{0, C}$. Conversely, assume that $x w_{0, C} \leq$ $w u w_{0, C}$. Then there exist $w_{1} \leq w$ and $y \leq u w_{0, C}$ such that $x w_{0, C}=w_{1} y$. It follows from $y \leq u w_{0, C}$ that $y w_{0, C} \geq u$, so $u^{-1} \leq w_{0, C} y^{-1}$. Thus $x u^{-1} \leq x w_{0, C} y^{-1}=w_{1} \leq w$.

For $y, z \in W$, let $\mathcal{W}(y, z)=\{x \in W \mid B x B \subset B y B z B\}$.
Lemma 8.4. Let $y, z \in W$. Then $x \geq y z$ for any $x \in \mathcal{W}(y, z)$.
Proof. Let $x \in \mathcal{W}(y, z)$. Then $(y B z) \cap(B x B)=\left((y z)\left(z^{-1} B z\right)\right) \cap(B x B) \neq \emptyset$. By $z^{-1} B z=$ $\left(\left(z^{-1} B z\right) \cap B^{-}\right)\left(\left(z^{-1} B z\right) \cap B\right)$, we know that $\left(y z\left(\left(z^{-1} B z\right) \cap B^{-}\right)\right) \cap(B x B) \neq \emptyset$. Since

$$
\left(B y z B^{-}\right) \cap(B x B) \supset\left(y z B^{-}\right) \cap(B x B) \supset\left(y z\left(\left(z^{-1} B z\right) \cap B^{-}\right)\right) \cap(B x B)
$$

we know that $\left(B y z B^{-}\right) \cap(B x B) \neq \emptyset$. By [4], $y z \leq x$.
Lemma 8.5. [8, Lemma 3.3] For any $u, w \in W$, the subset $\{v w \mid v \leq u\}$ of W contains a unique maximal element $u_{1} w$. Moreover, $l\left(u_{1} w\right)=l\left(u_{1}\right)+l(w)$.
Lemma 8.6. If $u, w \in W$ are such that $l(u w)<l(u)+l(w)$, then there exists u_{1} such that $u_{1}<u$ and $u_{1} w>u w$.
Proof. The u_{1} such that $u_{1} w$ is the maximal element in the set $\{v w \mid v \leq u\}$ is as required.

Lemma 8.7. [8, Corollary 3.4] Let $u, w, w^{\prime} \in W$ and assume that $w^{\prime} \leq w$. Then
(i) there exists $u_{1} \leq u$ such that $w^{\prime} u_{1} \leq w u$;
(ii) there exists $u_{2} \leq u$ such that $w^{\prime} u \leq w u_{2}$.

Lemma 8.8. [8, Lemma 3.10] Let $J \subset \Gamma, w \in W^{J}$, and $u \in W$ be such that $l(u w)=$ $l(u)+l(w)$. Write $u w=x v$ with $x \in W^{J}$ and $v \in W_{J}$. Then for any $v^{\prime} \leq v$, there exists $u^{\prime} \leq u$ such that $u^{\prime} w=x v^{\prime}$.

References

[1] A. Belavin and V. Drinfeld, Triangular equations and simple Lie algebras, Math. Phys. Rev. 4 (1984), 93-165.
[2] A. Borel and J. Tits, Compléments à l'article: Groupes Réductifs, Publ. Math. Inst. Hautes Etud. Sci. 41 (1972) 253-276.
[3] R. W. Carter, Finite groups of Lie type. Conjugacy classes and complex characters. WileyInterscience Publ., Chichester, 1993.
[4] V. Deodhar, On some geometric aspects of Bruhat orderings, I. A finer decomposition of Bruhat cells, Invent. Math., 79 (1985), 499-511.
[5] C. De Concini and C. Procesi, Complete symmetric varieties, in Invariant theory (Montecatini, 1982), Lecture Notes in Math. 996 (1983), 1-44.
[6] C. De Concini and T. Springer, Compactification of symmetric spaces, Transformation Groups 4 (1999), 273-300.
[7] X. He, Unipotent variety in the group compactification, Adv. Math. 203 (2006), 109-131.
[8] X. He, The G-stable pieces of the wonderful compactification, preprint math.RT/0412302, to appear in Trans. Amer. Math. Soc.
[9] X. He, The character sheaves on the group compactification, preprint math.RT/0508068, to appear in Adv. Math.
[10] X. He and J. F. Thomsen, Closures of Steinberg fibers in twisted wonderful compactifications, preprint math.AG/050608, to appear in Trans. Groups.
[11] X. He and J. F. Thomsen, Geometry of $B \times B$-orbit closures in equivariant embeddings, preprint math.AG/0510088.
[12] J.-H. Lu and M. Yakimov, On a class of double cosets in reductive algebraic groups, International Mathematics Research Notices, 13 (2005), 761-797.
[13] J.-H. Lu and M. Yakimov, Group orbits and regular decompositions of Poisson manifolds, in preparation.
[14] G. Lusztig, Parabolic character sheaves I, Moscow Math J. 4 (2004), 153-179.
[15] G. Lusztig, Parabolic character sheaves II, Moscow Math J. 4 (2004), 869-896.
[16] S. Mohrdieck, Conjugacy classes of non-connected semisimple algebraic groups, Dissertation, Univ. Hamburg, 2000.
[17] P. Slodowy, Simple Singularities and Simple Algebraic Groups, Lecture Notes in Mathematics, 815, Springer-Verlag, Berlin, 1980.
[18] T. Springer, Intersection cohomology of $B \times B$-orbit closures in group compactifications, with an appendix by W. van der Kallen. Special issue in celebration of Claudio Procesi's 60th birthday, J. Algebra 258 (2002), 71-111.
[19] R. Steinberg, Conjugacy classes in algebraic groups. Notes by Vinay V. Deodhar, Lect. Notes in Math., Vol. 366. Springer-Verlag, Berlin-New York, 1974.
[20] R. Steinberg, Endomorphisms of linear algebraic groups, Mem. Amer. Math. Soc., 80, AMS, Providence, RI, 1968.

Department of Mathematics, The University of Hong Kong, Pokfulam Road, Hong Kong E-mail address: jhlu@maths.hku.hk

Department of Mathematics, University of California, Santa Barbara, CA 93106, U.S.A.
E-mail address: yakimov@math.ucsb.edu

[^0]: 2000 Mathematics Subject Classification. Primary 20G15; Secondary 14M17, 14L30.

