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Abstract

In this paper, we are interested in solving Markovian queueing systems having Poisson
batch arrivals, exponential servers and negative customers. Preconditioned conjugate
gradient method is applied to solving the steady-state probability distribution of queueing
system. Preconditioner were constructed by exploiting near-Toeplitz structure of the
generator matrix and the Gohberg-Semumcul formula. We proved the preconditioned
system has its spectrum clustered around one. Numerical results are given to demonstrate
the efficient of our method.
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1 Introduction

In this paper, we are interested in solving the steady-state probability distribution of queueing
systems having Poisson batch arrivals, exponential servers and negative customers. The idea of
negative customer was first discussed by Gelenbe in the modelling of neural networks [4, 5]. To
understand the role of a negative customer we consider the following examples. One may con-
sider a communication network in which messages are transmitted in a packet-switching mode.
An arrival of a negative customer represents a server fails during a transmission. Therefore part
of the messages will be lost. Another example, in a manufacturing system where a negative
arrival represents a cancellation of a job. These lead to many applications in the modelling of
manufacturing systems, telecommunication systems and many others such as reliability models
[8]. Theoretical results including the stability analysis has been discussed by Gelenbe et al.
[4, 5, 6].
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Here we consider the queueing system studied by Ching [2]. The input of the queueing
system is assumed to be an exogenous Poisson batch arrival process with mean batch inter-
arrival time λ−1. The batch size of each arrival is assumed to follow a given discrete probability
distribution ai, i = 1, 2, . . . ,. where λi = aiλ for i ≥ 1 and ai is the probability that the batch
size is i. We note that λi is the batch arrival rate for a batch of size i and we have

λ =
∞∑

k=1

λk.

In the queueing model, it is assumed that there are s identical independent exponential servers
of mean service rate µ. The queueing discipline is First-Come-First-Served (FCFS) and it is
a block customer clear as there is only a waiting space of size (n − s − 1). Arrived customers
(tasks) will be cleared from the system when the waiting space is full. Moreover, if the arrival
batch size is larger than the waiting place left, then only part of the arrival batch will be
accepted, the other customers will be treated as overflows and will be cleared from the system.
For the arrival process of negative customers, it is also assumed as a Poisson process with
mean rate τ . The number of customers to be killed is assumed to follow a discrete probability
distribution bi, i = 1, 2, . . . ,. Here we assume that if the arrived negative customer is supposed
to kill i customers in the system and the number of customers in the system is less than i, then
the queue becomes empty. The killing strategy is to remove the customers in the front of the
queue. We let τi = biτ where bi is the probability that the number of customers to be killed is
i and we have

τ =

∞∑

k=1

τk.

The generator matrix of the queueing system is given by

Hn =




λ −u1 −u2 −u3 · · · · · · · · · −un−1

−λ1 λ + τ + µ −2µ − τ1 −τ2 −τ3 · · · · · · −τn−1

−λ2 −λ1 λ + τ + 2µ
. . .

. . .
. . .

...
... −λ2

. . .
. . . −sµ − τ1 −τ2

. . .
...

...
...

. . .
. . . λ + τ + sµ

. . .
. . . −τ3

...
...

. . .
. . .

. . .
. . .

. . . −τ2

−λn−2 −λn−3 −λn−4 · · · −λ2 −λ1 λ + τ + sµ −sµ − τ1

v1 −v2 −v3 · · · · · · −vn−2 −vn−1 τ + sµ




where

u1 = τ, ui = τ −

i−1∑

k=1

τk, i = 2, 3, . . . ,

and vi is defined such that the ith column sum is zero. Clearly Hn has zero column sum,
positive diagonal entries and non-positive off diagonal entries. From Perron and Frobenius
theory [14, p. 30], Hn has a one-dimensional null-space with a positive null vector. Let pi be
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the stationary probability that there are i customers in the system. The stationary probability
vector p = (p1, p2, . . . , pn)t of the queueing system is the normalized null-vector of the generator
matrix Hn. More precisely, p satisfies

Hnp = 0, pi ≥ 0 and

n∑

i=1

pi = 1.

We note that Hn has a one-dimensional null-space, the probability vector p can then be solved
by considering the following linear system (see [2, 3]):

Qnx = (Hn + ene
t
n)x = en (1)

where en = (0, 0, . . . , 0, 1)t is an unit vector. The probability distribution vector p is obtained
by normalizing x. Thus let us concentrate on solving the non-homogeneous systems of the form

Qnx = en. (2)

We remark that Qt
n is an irreducibly diagonally dominant matrix, therefore if the system (2)

is solved by classical iterative methods such as the Jacobi or the Gauss-Seidel methods, both
methods will be convergent for all initial guesses.

Many useful system performance indicators of the queueing system (the blocking probability
of the system and the expected number of customers in the system) can be written down in
terms of the probability distribution vector p. Therefore fast numerical algorithms for solving
the queue systems are essential not only because the size of the problems can be large, but
also in real applications the problems have to be solved in real-time. Moreover, In choosing
optimal system parameters, one has to solve the above large system of linear equations for a
large number of times. Hence a reduction in computational time will be crucial.

2 Properties of the Generator Matrix

In this section, we explore the near-Toeplitz structure of the generator matrix Hn. In fact by
modifying the entries of the first row, the last row and the first s entries of the main diagonal of
Hn, one can turn the generator matrix into a Toeplitz matrix. The matrix Hn can be written
as the sum of a Toeplitz matrix Tn and a low rank matrix, the same is the matrix Qn, i.e.,

Qn = Tn + Rn. (3)

This property is important in developing fast numerical algorithm for solving the steady-state
probability distribution. We call a matrix as Toeplitz matrix if it has constant diagonals, i.e.

Tn =




t0 t−1 t−2 · · · t2−n t2−n

t1 t0 t−1 · · · · · · t1−n
...

. . .
. . .

. . .
. . .

...
...

. . .
. . .

. . .
. . .

...

tn−2 · · · · · ·
. . .

. . . t−1

tn−1 tn−2 · · · · · · t1 t0




. (4)
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In general, the sequence of n×n Toeplitz matrices is generated by a function f(θ) ∈ [−π, π] in
Wiener class(This means it has a Fourier series with absolutely summable Fourier coefficient).
We let Tn[f ] to be the n×n Toeplitz matrix with (j, k)-th entry given by the (j − k)th Fourier
coefficient of f(θ), i.e.,

tk =
1

2π

∫ π

−π

f(θ)e−ikθdθ, k = 0,±1,±2, . . . .

If the Toeplitz matrix Tn is generated by the function f(θ), we denote as Tn = Tn[f ].

3 The Gohberg-Semumcul Formula

In this section, we introduce a useful formula for computing the inverse of a Toeplitz matrix.
We denote e

(k)
n be the n × 1 unit vectors, where the subscript denotes the length of the vector

and the superscript denotes the position of the nonzero element. Let

Zn = (e(2)
n , e(3)

n , . . . , e(n)
n , 0) and Jn = (e(n)

n , e(n−1)
n , . . . , e(2)

n , e(1)
n ).

then for any n × 1 vector a = (a1, a2, . . . , an)t, we use the vectors ā and a to denote Zna and
Zt

na respectively, i.e.,

ā = (0, a1, a2, . . . , an−1)
t and a = (a2, a3, . . . , an, 0)t.

We denote L(a) as the lower-triangular Toeplitz matrix with its first column entries being
given by a with its first row being given by (a1, a2, . . . , an)t, and U(a) as the upper-triangular
Toeplitz matrix with its first row being given by (an, an−1, . . . , a1)

t, i.e.,

L(a) =




a1 0
a2 a1
...

. . .
. . .

an · · · a2 a1


 and U(a) =




an an−1 · · · a1

. . .
. . .

...
an an−1

0 an


 . (5)

Let xn = (x1, x2, . . . , xn)t and yn = (y1, y2, . . . , yn)
t be the solutions of the linear systems

Tnxn = e(1)
n (6)

Tnyn = e(n)
n . (7)

It is well-known that the inverse of a Toeplitz matrix can be written as a sum of multiplica-
tions of lower-triangular and upper-triangular Toeplitz matrices [7]. If the linear system (6) is
solvable, then the inverse of Tn can be constructed by using the famous Gohberg-Semumcul
formula [7].

For any positive definite Toeplitz matrix Tn, if xn and yn are the solutions of (6) and (7),
we must have x1 6= 0, see for instance [9] and the inverse of Tn can be represented in terms of
xn and yn by using Gohberg-Semumcul formula [7]:

T−1
n =

1

x1
[L(xn)U(yn) − L(ȳn)U(xn)]. (8)
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When x1 is zero, Ben-Artzi and Shalom [1], Labahn and Shalom [11], Ng, Rost and Wen [13]
and Heinig [9] have studied the representation. Furthermore, if the nonsingular matrix Tn is
well-conditioned, Gohberg-Semumcul formula is numerically forward stable, Wen et al. [15].

The following lemma gives the relationships between the solutions of (6) and (7) from the
size of n to the size of 2n.

Lemma 1 [16] Let Tn = (ti−j)ij be a non-singular Toeplitz matrix and we denote

cn = (t0, t1, . . . , tn−1)
t and rn = (t0, t−1, . . . , t1−n)t.

Suppose that xn and yn satisfy the equations (6) and (7) respectively and x1 6= 0 then the
following equations are solvable:

L(xn)un = −U(cn)xn and U(yn)vn = −L(Jnrn)yn. (9)

Here
un = (u1, u2, . . . , un)

t and vn = (v1, v2, . . . , vn)t.

Moreover, if we define P2n as

P2n =

(
P

1,1
2n P

1,2
2n

P
2,1
2n P

2,2
2n

)
(10)

with
P

1,1
2n = P

2,2
2n = Tn, P

2,1
2n = L(un) + U(cn) and P

1,2
2n = L(Jnrn) + U(vn) (11)

then we have
P2nx

(P )
2n = e

(1)
2n and P2ny

(P )
2n = e

(2n)
2n .

Here x
(P )
2n =

(
xn

0

)
and y

(P )
2n =

(
0
yn

)
.

If the Toeplitz matrix T2n is generated by the function f(θ), we denote the matrix P2n

obtained by Lemma 1 as P2n[f ]. We remark it is not necessary to obtain the solutions un and
vn using (9) in order to construct the inverse of P2n. In fact, we have the following formula:

P−1
2n =

1

x1
[L(x

(P )
2n )U(y

(P )
2n ) − L(x̄

(P )
2n )U(y(P )

2n
)]. (12)

4 Construction of Preconditioner and Convergence Anal-

ysis

In this section, we construct an approximate inverse-free preconditioner for Toeplitz system.
We need the following definitions before our discussions.
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4.1 On the Diagonal-off Decay of the Matrices

Definition 1 [12] Let A = [ai,j ]i,j∈I be a matrix, where the index set I can be Z, N, or
{1, 2, . . . , N}.

1. A belongs to the space Eγ if

|ai,j| ≤ ce−γ|i−j| for γ > 0 (13)

and some constant c > 0.

2. A belongs to the space Qη if

|ai,j| ≤ c(1 + |i − j|)−η for η > 1, (14)

and some constant c > 0.

With these definitions, we have the following results about the off-diagonal decay of the
entries of A−1.

Theorem 1 [10] Let A : l2(I ) → l2(I ) be an invertible matrix, where I = Z,N or {1, 2, . . . , N}.

1. If A ∈ Eγ, then A−1 ∈ Eγ1
for some γ1 ∈ (0, γ).

2. If A ∈ Qη, then A−1 ∈ Qη.

Lemma 2 Let tj(j = 0, 1, 2, . . .) be a sequence with its entries satisfying (13) or (14) for some
c > 0. Then the sequence {tj} is absolutely summable, i.e.,

∑∞
k=0 |tj | is bounded, and for any

given ǫ > 0, there exists a constant K > 0 independent of n, such that for all n > K,

n∑

k=K

|tj| < ǫ. (15)

We note that there is a natural partitioning of a Toeplitz matrix into 2×2 blocks as follows:

T2n =

(
T

1,1
2n T

1,2
2n

T
2,1
2n T

2,2
2n

)
(16)

where T
1,1
2n = T

2,2
2n = Tn are principal submatrices of T2n, T

1,2
2n and T

2,2
2n are also n× n Toeplitz

matricies. We propose to use P2n defined in (10) as a preconditioner for T2n.

Lemma 3 Let an 2n× 2n positive definite Toeplitz matrix T2n generated by a strictly positive
absolute value function f(θ) with its diagonal entries satisfying (13) or (14) for some c > 0.
Then for any given ǫ0 > 0, there exists a constant K > 0 independent of n, such that for all
n > K,

‖P2,1
2n − T

2,1
2n ‖1 < ǫ0 and ‖P2,1

2n −T
2,1
2n ‖∞ < ǫ0. (17)

and
‖P1,2

2n − T
1,2
2n ‖1 < ǫ0 and ‖P1,2

2n −T
1,2
2n ‖∞ < ǫ0. (18)

Here P
2,1
2n and P

1,2
2n defined in 10 and T

2,1
2n and T

1,2
2n defined in (16).
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Theorem 2 Let an 2n×2n positive definite Toeplitz matrix T2n generated by a strictly positive
absolute value function f(θ) with its diagonal entries satisfying (13) or (14) for some c > 0.
Then for any given ǫ0 > 0, there exists a constant K > 0 independent of n, such that for all
n > K,

‖T2n −P2n‖2 < ǫ0. (19)

Here P2n defined in (10). Moreover, for any given ǫ1 > 0, there exists a constant K1 > 0 such
that for all n > K1,

‖P−1
2n − T−1

2n ‖2 < ǫ1. (20)

Now we consider the more interesting case that the generating function f(θ) to have zeros.
Suppose that the generating function f(θ) ∈ C2π be non-negative and have finite zeros. Let
θk(k = 1, 2, . . . , m) be all roots of f(θ) in [−π, π) with order aj . One can write

f(θ) = h(θ)w(θ), −π ≤ θ < π (21)

where w(θ) =
∏m

k=1(1 − cos(θ − θk))
ak and |h(θ)| > 0. It is easy to see that Tn[w] is a unit

lower triangular Toeplitz matrix with bandwidth a =
∑m

k=1 ak. By straightforward calculation,
we obtain

Tn[f ] = Tn[w]Tn[h] + Gn (22)

where Gn has only non-zeros entries in its first a columns and therefore its rank is less than a.

Theorem 3 Let an 2n × 2n positive definite Toeplitz matrix T2n be generated by f(θ) in (21)
with its diagonal entries satisfying (13) or (14) for some c > 0. Then for any given ǫ0 > 0,
there exists a constant K > 0 independent of n, such that for all n > K, at most a eigenvalues
of

T2n[f ] − T2n[w]P2n[h]

have absolute value exceeding ǫ0.

We recall that the matrix Qn in the queueing problem can be written as the sum of a
Toeplitz matrix Tn with the generating function f(θ) and a matrix with rank s + 1. Also the
function f(θ) can be written the form in (22). Denote P2n = P2n[h]−1T [w]−1, using the above
theorem, we show that P−1

2n Q2n can be written as P−1
2n Q2n = I2n + F2n + K2n, where I2n is

the identity matrix, F2n is a matrix with small 2-norm, and K2n is a matrix with small rank
s + a + 1. We have the following theorem.

Theorem 4 Let Q2n be the matrix in 3, and T2n is generated by f(θ) in (21) with its diagonal
entries satisfying (13) or (14) for some c > 0. We denote P2n = P2n[h]−1T [w]−1. Then for
any given ǫ0 > 0, there exists a constant K > 0 independent of n, such that for all n > K, at
most s + a + 1 eigenvalues of P−1

2n Q2n have absolute value exceeding ǫ0.
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5 Numerical Results

In this section, we apply GMRES algorithm to solve the equation (2) using Pn as a precond-
tioner. The generating function f(θ) of the Toeplitz matrix in (3) is implicit in practical, we
remark it is not necessary to construct f(θ) first, our scheme is to solve the equation (6) and
(7) and obtain the solution xn/2 and yn/2, then P−1

n can be constructed by (12). The solution
of xn/2 and yn/2 involved in the preconditioner P−1

n can be recursively generated by solving (6)
and (7) until the size of the linear system is sufficiently small. The algorithm is described in
Table 1. The total cost of the recursive computation is roughly bounded by O(n log n).

Procedure Input(Tk,k) Output(xk, yk)
If k ≤ N , then

solve two linear systems

Tkxk = e
(1)
k and Tkyk = e

(k)
k .

exactly by direct methods;
else

compute xk/2 and yk/2 by calling the procedure with the input matrix Tk/2

and the integer k/2; construct P−1
k/2 by using the output xk/2 and yk/2 via the

formula in (12);
solve the two linear systems

Tkxk = e
(1)
k and Tkyk = e

(k)
k .

by using GMRES with Pk as the preconditioner;
end.

Table 1: Recursive Algorithm to obtain xn/2 and yn/2 in order to construct the preconditioner
matrix Pn.

We show our numerical results for two sets of queueing parameters which is tested in [2]:

1. λj = 1
2j−1 , j = 1, 2, . . ., and τj = 0.7744

jj , j = 1, 2, . . ..

2. λj = 1
2j−1 , j = 1, 2, . . ., and τj = 90

(πj)4
, j = 1, 2, . . ..

For each case, we tried three different choices of number of servers s : s = 1, 2 and 4. The
service rate µ is set to µ = 1. Also, we note that in both cases

λ =
∞∑

k=1

λk = 2 and τ =
∞∑

k=1

τk = 1.

The initial guess for both methods is the unit vector (0, ..., 0, 1)t. The stopping criterion for
all the methods is

‖rk‖2

‖r0‖2
< 10−6,
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Table 2: Number of iterations for λj = 1
2j−1 and τj = 0.7744

jj .

s = 1 s = 2 s = 4

n In Pn P̃n in [2] In Pn P̃n in [2] In Pn P̃n in [2]
32 31 7 8 32 10 9 32 11 10
64 36 5 8 64 8 10 64 11 11
128 116 5 8 104 6 10 128 11 11
256 227 5 8 146 5 10 253 8 12
512 447 5 8 294 5 10 491 8 12
1024 ∗∗ 5 8 ∗∗ 5 10 ∗∗ 8 12
2048 ∗∗ 5 8 ∗∗ 5 10 ∗∗ 8 12
4096 ∗∗ 5 8 ∗∗ 5 10 ∗∗ 8 12

Table 3: Number of iterations for λj = 1
2j−1 and τj = 90

(πj)4
.

s = 1 s = 2 s = 4

n In Pn P̃n in [2] In Pn P̃n in [2] In Pn P̃n in [2]
32 32 5 7 32 8 8 32 11 9
64 35 4 7 64 7 8 64 11 9
128 37 3 7 92 4 8 128 10 9
256 37 2 7 92 4 8 256 9 9
512 37 2 7 92 3 8 ∗∗ 8 9
1024 37 2 7 92 2 8 ∗∗ 8 9
2048 37 2 7 92 2 8 ∗∗ 8 9
4096 37 2 7 92 2 8 ∗∗ 8 9

where rk is the residual at the kth iteration.
We use Matlab to test our algorithm on the above examples. The tables (2) and (3) give

the number of iterations required for convergence by using different methods and precondition-
ers. Here In, Pn and P̃n mean the GMRES method is used without preconditioner, with our
preconditioner and with preconditioner in [2] respectively. The symbol “**” means that the
method does not converge in 500 iterations. According to Tables (2) and (3), we see that the
number of iterations for the non-preconditioned systems (column “In”) increases when the size

n increases. However, the number of iterations for the preconditioner P̃n increases or almost
keep constant when the size n increases. While the number of iterations for our preconditioner
Pn decreases or almost keep constant. Numerical results show that our preconditioner is very
efficient.
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6 Appendix

6.1 Proof of Lemma 2

Proof: At first, we consider the case |tj | ≤ ce−γ|j|, we have

n∑

k=p

|tj| ≤
n∑

k=p

ce−γj =
1

1 − e−γ
ce−γp(1 − e−γ(n−p+1)) <

ce−γp

1 − e−γ

Therefore, let p = 0, we obtain {tj} is absolutely summable. Let

K > −γ−1 ln(c−1(1 − e−γ)ǫ),

we obtain (15).
When |tj| ≤ c(|j| + 1)−η, we have

n∑

k=p

|tj| ≤

n∑

k=p

c(|j| + 1)−η ≤

∞∑

k=p

c(|j| + 1)−η ≤ c

∫ ∞

p−1

(x + 1)−ηdx ≤
cp1−η

η − 1

We know {tj} is absolutely summable. Let

K >

(
c

(η − 1)ǫ

)1/(η−1)

then (15) holds.

6.2 Proof of Lemma 3

Proof: We only consider the case T2n ∈ Eγ, i.e. |tj| ≤ ce−γ|j|, the other case can be similar.
Notice that xn is the first column of Tn, we deduce that

L[xn] ∈ Eγ1

and
xn,k ≤ c1e

−γ1k

with 0 < γ1 ≤ γ,
L[xn]−1 ∈ Eγ2

and
(L[xn]−1)j,k ≤ c2e

−γ2|j−k|

with 0 < γ2 ≤ γ1. From Lemma 2, there exist two constants M1, M2, M3 independent of n,
such that

2n−1∑

k=0

|tk| < M1,
n∑

k=1

|xn| < M2 and ‖L[xn]−1‖1 ≤ M3.
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Thus, for any given ε, there exist constant N1, such that for all n > N1,

2n−1∑

k=N1

|tk| < ε.

Also there exist constant N2, such that for all n > N2,

n∑

k=N2

|xn| < ε.

We denote
x̃n = (0, . . . , 0, xn−N1+2, xn−N1+3, . . . , xn)t

and

E1 =

(
0 Ê1

0 0

)

with

Ê1 =




tN1
tN1−1 · · · t2

tN1

. . .
...

. . . tN1−1

0 tN1


 .

For the above analysis, if n > N1 + N2, we have

‖U[cn] − E1‖1 < ε, ‖E1‖1 < M1, ‖x̃n‖1 < ε and ‖xn‖1 < M2.

Thus, using E1xn = E1x̃n, we have

‖U[cn]xn‖1 = ‖(U[cn] −E1)xn + E1x̃n‖1 ≤ ‖(U[cn] − E1)xn + E1x̃n‖1

≤ ‖(U[cn] −E1)‖1‖xn‖1 + ‖E1‖1‖x̃n‖1 < (M1 + M2)ε. (23)

Thus we obtain

‖un‖1 = ‖ − L(xn)−1U[cn]xn‖1 ≤ ‖L(xn)−1‖1‖U[cn]xn‖1 ≤ M3(M1 + M2)ε.

Denote
t2 = (tn, tn+1, . . . , t2n−1)

t,

then we have

‖P2,1
2n − T

2,1
2n ‖1 = ‖L[t2] − L[un]‖1 ≤ ‖t2‖1 + ‖un‖1 ≤ ε + M3(M1 + M2)ε.

By letting

ε0 =
1

M(M1 + M2) + x1
ǫ,
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(17) holds. Similarly, we obtain
‖P2,1

2n − T
2,1
2n ‖∞ < ε0.

We note that the structure of
Jn(P

1,2
2n − T

1,2
2n )Jn

is similar to that of P
2,1
2n − T

2,1
2n and

Jn(P1,2
2n − T

1,2
2n )Jn = (P1,2

2n − T
1,2
2n )t.

Therefore the proof of (18) is very similar to the proof of (17).

6.3 Proof of Theorem 2

Proof: Denote E = T2n −P2n, we have

E = T2n − P2n =

(
0 P

1,2
2n − T

1,2
2n

P
2,1
2n − T

2,1
2n 0

)
.

where P
2,1
2n and P

1,2
2n defined in (10) and T

2,1
2n and T

1,2
2n defined in (16). According to Lemma

(3), we get
‖E‖1 = max{‖P2,1

2n −T
2,1
2n ‖1, ‖P

1,2
2n − T

1,2
2n ‖1} < ǫ0

and
‖E‖∞ = max{‖P2,1

2n − T
2,1
2n ‖∞, ‖P1,2

2n − T
1,2
2n ‖∞} < ǫ0.

Therefore, we obtain
‖E‖2 ≤

√
‖E‖1‖E‖∞ < ǫ0.

We note that T−1
2n and P−1

2n is bounded, thus it is similarly to induce that (20) is also hold.

6.4 Proof of 3

Proof: Notice that h(θ) > 0, from Theorem 2 we know for any given ǫ > 0, there exists a
constant K > 0 independent of n, such that for all n > K, we have

‖T2n[h] − P2n[h]‖2 < ǫ.

Let ǫ0 = ‖T2n[w]‖2ǫ, we have

T2n[f ] − T2n[w]P2n[h] = T2n[w] (T2n[h] − P2n[h]) + G2n

where rank(G2n) ≤ a and
‖T2n[w] (T2n[h] − P2n[h]) ‖2 < ǫ0.

This means that
T2n[f ] − T2n[w]P2n[h]

is the sum of a matrix with small 2-norm and a matrix with rank a. The result holds.
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