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Abstract

In this paper, we propose an Interactive Hidden Markov Model (IHMM). In a tradi-

tional HMM, the observable states are affected directly by the hidden states, but not vice

versa. In the proposed IHMM, the transitions of hidden states depend on the observable

states. We also develop an efficient estimation method for the model parameters. Numer-

ical examples on the sales demand data and economic data are given to demonstrate the

applicability of the model.
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1 Introduction

In the world of data and information, data sequences (or time series) occur frequently in many

applications. To analyze a data sequence, it is of practical importance to select an appropriate

model for the data. Numerical data sequences have been well studied in (Brockwell and Davis,

1991) [2]. Mathematical tools such as Fourier transform and spectral analysis are employed

frequently in the analysis of numerical data sequences. For categorical data sequences, there

are many situations that one would like to employ Markov models as a mathematical tool,

see for instance in (Raftery, 1985) [14], (Li and Kwok 1990) [11], Aggoun and Benkherouf [1],

(MacDonald and Zucchini, 1997) [12] and (Ching et al., 2004c) [8]. A number of applications

such as inventory control, customer classification, marketing, bioinformatics, economics and

finance, can be found in the literature (Ching et al., 2002) [4], (Ching et al., 2004a) [6], (Ching

et al., 2004b) [7], (Ching et al., 2004c) [8], [3] (Ching and Ng), Siu et al. [15], [16] and

(Waterman, 1995) [21]. Take for example, in the sales demand prediction, products are classified

into several states such as, very high sales volume, high sales volume, low sales volume and

very low sales volume. In these applications and many others, one would like to (i) characterize

categorical data sequences for the purpose of comparison and classification process; or (ii) to

model categorical data sequences, and, hence to make predictions in the control and planning

processes. It has been shown that Markov models can be a promising approach for these

purposes [4].

A well-known class of models is the Hidden Markov Model (HMM). HMMs have been

widely adopted by practitioners in various fields, for instance, speech recognition (MacDonald

and Zucchini, 1997) [12] and bioinformatics (Waterman, 1995) [21]. A tutorial paper providing

a comprehensive discussion on the model can be found in (Rabiner, 1989) [13]. The monograph

by (Elliott et al., 1994) [9] provides a comprehensive discussion on HMMs. Higher-order HMMs

have also been proposed in (Siu et al., 2005) [15]. In a traditional HMM, the observable states

are affected directly by the hidden states, but not vice versa. Here, we propose a HMM such

that the transitions of hidden states depend on the observable states. Our model can be related
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to a discrete-time version of the class of the first-order Self-Exciting Threshold Auto-Regressive

(SETAR) models first proposed by (Tong, 1977, 1978, 1983) [17, 18, 19] for modelling non-linear

time series taking numerical values. In particular, when the observable state can determine the

hidden state with probability one, our model can be considered a discrete-state analogy of

the class of the first-order SETAR models. The monograph by (Tong, 1990) [20] provides an

excellent and original discussion of the SETAR models and other important non-linear time

series models.

Much of the literature focus on the modelling of continuous-state non-linear time series.

There is a relatively little work on modelling the non-linear behavior of categorical time series.

In the continuous-state case, the idea of threshold autoregressive model is to provide a piecewise

linear approximation to a non-linear autoregressive time series model by dividing the state

space into several regimes via the threshold principle. Here, we also provide a first-order

approximation of the non-linear behavior of categorical time series by dividing the state-space

of the Markov chain process into several regimes, say two regimes.

The rest of the paper is organized as follows. In Section 2, we present the idea of the

interactive hidden Markov model through an example. We then propose an estimation method

for the model parameters required in our model. In Section 3, we give the general interactive

HMM. In Section 4, numerical examples on the sales demand data and economic data are given

to demonstrate the applicability of the model. Finally, concluding remarks are given in Section

5.

2 The Interactive Hidden Markov Model

We present an Interactive Hidden Markov Model (IHMM) for modelling categorical sales vol-

umes, where the transitions of hidden states depend on the current observable state through a

numerical example. We extend the results to give a general model in next section.
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2.1 An Example

Suppose we are given a categorical data sequence of six possible sales volumes (1,2,3,4,5,6) in

steady-state as follows:

1, 2, 1, 2, 1, 2, 2, 4, 2, 5, 6, 2, 1, . . . .

Here

1= very high, 2= high, 3= moderate high, 4= moderate low, 5= low, 6=very low.

They are the observable states. Suppose there are two hidden states: good economic situation

(A) and bad economic situation (B). In good economic situation, the probability distribution

of the sales volume is assumed to follow the distribution:

(
1

4
,
1

4
,
1

4
,
1

4
, 0, 0).

While in the bad economic situation, the probability distribution of the sales volume is assumed

to follow the distribution:

(0, 0,
1

4
,
1

4
,
1

4
,
1

4
).

In our model, we assume that the economic situation is unobservable, but the sales volume

(observable state) can infer the economic situation.

Here, we aim at modelling the dynamics of the sales demand data sequences by a Markov

chain.

In the Markov chain, the states are A, B, 1, 2, 3, 4, 5 and 6. We assume that when the

observable state is i, the probabilities that the hidden state is A and B in next time step are

given by αi and 1 − αi, respectively. The transition probability matrix governing the Markov
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chain is given by the following matrix:

P2 =



















































0 0 1
4

1
4

1
4

1
4

0 0

0 0 0 0 1
4

1
4

1
4

1
4

α1 1 − α1 0 0 0 0 0 0

α2 1 − α2 0 0 0 0 0 0

α3 1 − α3 0 0 0 0 0 0

α4 1 − α4 0 0 0 0 0 0

α5 1 − α5 0 0 0 0 0 0

α6 1 − α6 0 0 0 0 0 0



















































.

2.2 Estimation of Parameters

In order to define the IHMM, one has to estimate α = (α1, α2, α3, α4, α5, α6) from an observed

data sequence. We first consider the two-step transition probability matrix:

P 2
2 =



















































α1+α2+α3+α4

4
1 − α1+α2+α3+α4

4
0 0 0 0 0 0

α3+α4+α5+α6

4
1 − α3+α4+α5+α6

4
0 0 0 0 0 0

0 0 α1

4
α1

4
1
4

1
4

1
4
− α1

4
1
4
− α1

4

0 0 α2

4
α2

4
1
4

1
4

1
4
− α2

4
1
4
− α2

4

0 0 α3

4
α3

4
1
4

1
4

1
4
− α3

4
1
4
− α3

4

0 0 α4

4
α1

4
1
4

1
4

1
4
− α4

4
1
4
− α4

4

0 0 α5

4
α5

4
1
4

1
4

1
4
− α5

4
1
4
− α5

4

0 0 α6

4
α6

4
1
4

1
4

1
4
− α6

4
1
4
− α6

4



















































.
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We then extract the one-step transition probability matrix of the observable states from P 2
2 as

follows:

P̃2 =



































α1

4
α1

4
1
4

1
4

1
4
− α1

4
1
4
− α1

4

α2

4
α2

4
1
4

1
4

1
4
− α2

4
1
4
− α2

4

α3

4
α3

4
1
4

1
4

1
4
− α3

4
1
4
− α3

4

α4

4
α1

4
1
4

1
4

1
4
− α4

4
1
4
− α4

4

α5

4
α5

4
1
4

1
4

1
4
− α5

4
1
4
− α5

4

α6

4
α6

4
1
4

1
4

1
4
− α6

4
1
4
− α6

4



































.

The advantage of looking at the matrix P̃2 is that it gives the information of one-step transition

from one observable state to another observable state. Even though, in this case, we do not

have a closed form solution for the stationary distribution of the process. There are four

parameters to be estimated. To estimate the parameter αi, we first estimate the one-step

transition probability matrix from the observed sequence. This can be done by counting the

transition frequency of the states in the observed sequence as in [4, 6, 12]. Suppose the estimates

for this example is given by P̂2. We expect P̃2 ≈ P̂2 and, hence, αi can be obtained by solving

the following minimization problem:

min
αi

||P̃2 − P̂2||
2
F

subject to:

0 ≤ αi ≤ 1.

Here, ||.||F is the Frobenius norm, i.e.

||A||2F =
n
∑

i=1

n
∑

i=1

A2
ij .

We remark that other matrix norms can also be used as the objective function.
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3 The General Interactive HMM

In this section, we present our method to a general interactive HMM for the case of m hidden

states and n observable states. First, by following Elliott et al. (1994), we shall present model

dynamics for the general interactive HMM by making use of the canonical representation of the

state spaces of the hidden and observable Markov chain processes. Then, we shall demonstrate

the least-squares method for estimating the general interactive IHMM.

3.1 Model Dynamics

Fix a complete probability space (Ω,F ,P), where P is a real-world probability.

Let T denote the time index set {0, 1, 2, . . .} of our model. Suppose X := {Xt}t∈T

and Y := {Yt}t∈T denote a discrete-time hidden Markov chain and a discrete-time

observable Markov chain on (Ω,F ,P) with space {x1, x2, . . . , xm} and {y1, y2, . . . , yn},

respectively. We suppose that X0 is known or its distribution is given. Without

loss of generality, we suppose that the state spaces of X and Y are represented

by the canonical bases SX := (e1, e2, . . . , em) and SY := (f1, f2, . . . , fn) in Rm and Rn,

respectively, where em := (0, . . . , 1, . . . , 0) ∈ Rm and fn := (0, . . . , 1, . . . , 0) ∈ Rn. In

other words, X and Y take values in SX and SY , respectively. Define the following

transition probabilities:

pij := P(Yt = fj|Xt = ei) , i = 1, 2, . . . , m , j = 1, 2, . . . , n , (1)

and

αjk := P(Xt+1 = ek|Yt = fj) , j = 1, 2, . . . , n , k = 1, 2, . . . , m . (2)
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Then, we define the following transition probability matrices:

P =





















p11 p12 · · · p1n

p21 p22 · · · p2n

...
...

...
...

pm1 pm2 · · · pmn





















, (3)

and

α =





















α11 α12 · · · α1m

α21 α22 · · · α2m

...
...

...
...

αn1 αn2 · · · αnm





















(4)

For each t ∈ T , let FX
t and FY

t denote the P-augmentations of the σ-algebras gen-

erated by {X0, X1, . . . , Xt} and {Y0, Y1, . . . , Yt}, respectively. Write Gt for the enlarged

σ-algebras FX
t ∨ FY

t , for each t ∈ T . Define another enlarged filtration Ĝ := {Ĝt}t∈T

as follows:

Ĝ0 := FX
0 ∨ N ,

Ĝt+1 := FY
t ∨ FX

t+1 ∨N , t ∈ T , (5)

where N is the collection of all P null sets.

Following Elliott et al. (1994), we provide semi-martingale representations of

the model dynamics of the general IHMM in the sequel. Note that

P(Yt = fj |Ĝt) = P(Yt = fj |Xt) . (6)

Then,

E(Yt|Xt) = P T Xt , (7)

where E(·) is an expectation under P and P T is the transpose of the matrix P .
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Let Vt := Yt − P TXt, for each t ∈ T . Then,

E(Vt|Ĝt) = E(Yt − P TXt|Xt) = 0 . (8)

Hence, we have the following semi-martingale representation for Y :

Yt = P TXt + Vt , (9)

where {Vt}t∈T is a Rn-valued, (P, Ĝ) martingale increment process.

Let Wt+1 := Xt+1−αT Yt, for each t ∈ T . Then, similarly, we also have the following

semi-martingale representation for X:

Xt+1 = αTYt + Wt+1 , t ∈ T , (10)

where αT is the transpose of the matrix α and {Wt} is a Rm-valued, (P,G) martingale

increment process.

From (9) and (10), it can be seen that the causal relationships between the hid-

den and observable states are bilateral. This can improve the prediction accuracy

because the bilateral causal relationships provide more information for inference

and prediction than only one direction causal relationship. The improvement of

accuracy of prediction and inference provides a practical motivation for introducing

the bilateral causal relationships. In this case, (10) describes the situation that the

observation Yt is used to infer or predict the hidden state Xt+1 in the next period

with the random error Wt+1.

3.2 Estimation method

Now, we shall present the least-squares method for the estimation of the general IHMM.

Case I: P is Known

9



Using the same trick as in the example of Section 2, the one-step transition probability

matrix of the observable states is given by:

P̃2 = αP

(P is called the emission matrix) i.e.

[P̃2]ij =
m
∑

k=1

αikpkj i, j = 1, 2, . . . , n.

Here, we assume that αij are unknown and that the probabilities pij are given. Suppose [Q]ij is

the one-step transition probability matrix estimated from the observed sequence. Then, for each

fixed i, αij, j = 1, 2, . . . , m can be obtained by solving the following constrained least-square

problem:

min
αik







n
∑

j=1

(

m
∑

k=1

αikpkj − [Q]ij

)2






subject to:
m
∑

k=1

αik = 1 and αik ≥ 0 .

Case II: P is Unknown

Suppose all the probabilities Pij are also unknown. One can use the bi-level programming

technique to solve for all the model parameters.

Initialize p
(0)
ij ; e = 1; h = 1;

Solve α
(h)
ik

min
α

(h)
ik







n
∑

j=1

(

m
∑

k=1

α
(h)
ik p

(h−1)
kj − [Q]ij

)2






subject to:
m
∑

k=1

α
(h)
ik = 1 and α

(h)
ik ≥ 0;

Solve p
(h)
ik

min
p
(h)
ik







n
∑

j=1

(

m
∑

k=1

α
(h)
ik p

(h)
kj − [Q]ij

)2





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subject to:
n
∑

k=1

p
(h)
ik = 1 and p

(h)
ik ≥ 0

While e < tolerance,

h := h + 1;

Solve α
(h)
ik

min
α

(h)
ik







n
∑

j=1

(

m
∑

k=1

α
(h)
ik p

(h−1)
kj − [Q]ij

)2






subject to:
m
∑

k=1

α
(h)
ik = 1 and α

(h)
ik ≥ 0

Solve p
(h)
ik

min
p
(h)
ik







n
∑

j=1

(

m
∑

k=1

α
(h)
ik p

(h)
kj − [Q]ij

)2






subject to:
n
∑

k=1

p
(h)
ik = 1 and p

(h)
ik ≥ 0

e := (||α(h) − α(h−1)||22 + ||P (h) − P (h−1)||22)/N ;

end.

We remark that N = O(mn) or N = 2mn −m− n is the total number of the eval-

uated parameters. Thus, the value of e is the average tolerance for each evaluated

parameter in either α(h) or P (h).

4 Practical Numerical Examples

In this section, we present an application of the IHMM model to both the production planning

problem [4, 5, 6] and economic data. In the first experiment, based on the prior knowledge

on the numerical data in the production planning problem, we can obtain both the product
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of the soft-drink company and the corresponding true unobservable sequence for some sales

periods. Therefore, we consider two different scenarios to illustrate the performance of the

proposed IHMM, i.e., case I: P is known and case II: P is unknown. In the second experiment,

we investigate the use of the IHMM to extract information on the unobservable states of Hong

Kong economy during the periods from 1994 to 2004 from the observable data on the Hong

Kong sovereign ratings data by FitchRatings and the one-week Hong Kong Inter-Bank Offered

Rate (HIBOR) from DataStream.

4.1 Production Planning Analysis

A soft-drink company in Hong Kong faces an in-house problem of production planning and

inventory control. The company needs to find the interplay between the storage space require-

ment and the overall growing sales demand. There are product categories due to the sales

volume. All products are labeled as either very high sales volume (state 1), high sales volume

(state 2), moderate high sales volume (state 3), moderate low sale volume (state 4), low sales

volume (state 5) or very low sales volume (state 6). Such labeling is useful from both marketing

and production planning points of view. Based on some prior knowledge on the dataset, some

unobservable environmental effects on the sales volume data are known in advance. This exter-

nal effects can be roughly classified as two hidden states, say 1 (bad economic condition or hot

weather) and 2 (good economic condition or cold weather). The binary hidden sequence can

be obtained. In our experiment, only the sales volume sequence is used for training the model

parameters. The hidden information will be used later for validating our estimated matrix, α

and P . The categorical sequence for the demands of the product of the soft-drink company

and the corresponding unobservable sequence for some sales periods are given in Tables 3 and

4.

To evaluate the performance and effectiveness of the IHMM, a prediction result

on the hidden sequence (H1, H2, . . . , HT) given observable sales demand sequence

(O1, O2, . . . , OT). For the traditional HMM, there is a standard algorithm to estimate
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the most likely hidden sequence [13]. While for our IHMM, given the observable

state one estimate the hidden state by using the one having the highest probability

(matrix P ). The prediction accuracy r defined as:

r =

∑T
t=1 δt

T
,

where T is the length of the data sequence, and

δt =











1, if H̃t = Ht (correct prediction)

0, otherwise.

4.1.1 Prediction of Demands

We compare the performance of our proposed model and the first-order Hidden Markov model

in two scenarios. In both scenarios, we assume that the total number of hidden states is

provided and the model parameters of the first-order HMM can be estimated by using the

Viterbi algorithm, forward-backward algorithm and the EM Algorithm in (Rabiner, 1989) [13].

More precisely, the estimation method on the model parameters ensures that the probability

P (O|λt) is higher than or equal to P (O|λt−1), where O is the observation sequence and λt is

the model at time t. The only difference is that the emission probability matrix P (0) is known

in advance in the first case, but not in the latter case. While initialization for the emission

probability matrix P (0) is required in the second case. For the first-order HMM parameters

estimation, let us denote matrix A be the hidden state transition probability matrix. Here, we

choose the initial transition probability matrix A to be a uniform transition probability matrix

for both cases. In order to make a fair comparison, the stopping criterion of the first-order

hidden Markov model is chosen as:

(||A(t−1) − A(t)||22 + ||P (t−1) − P (t)||22)/M < e

where e is the tolerance and M = m2 + mn is the total number of the evaluated parameters.
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Table 1: The average results for both the HMM and the interactive HMM given P .

T Prediction Accuracy in % Computational Time (in sec)

IHMM 1-HMM IHMM 1-HMM

538 61.71 55.39 0.2 0.7581

4.1.2 Case I: P is known

Based on the proposed estimation method presented in previous section, α can be estimated

by one iteration with given P . On the other hand, if the transition probability matrix A(0) are

initialized, we iteratively estimate matrix A until it reaches the stopping criterion. Here, we

intend to take the most stable or convergent matrix A, and we choose the tolerance e to be

equal to 1.00e − 20. The results are reported in Table 1.

Here IHMM represents the interactive HMM and 1-HMM represents the first-order HMM.

From Table 1, we notice that the prediction results of our model is over 6% better than that

of the first-order HMM while the computational time in the interactive HMM is less than one

third of the first-order HMM. This shows that if the emission probability matrix is given and

the data fulfill our model assumptions, our proposed model outperforms the ordinary first-order

HMM on the data.

4.1.3 Case II: P is unknown

Based on the proposed estimation method presented in previous section, both α and P can be

estimated iteratively. On the other hand, if the initial A(0) is given, the model parameters of

the first-order HMM can be also estimated by using the Viterbi Algorithm, forward-backward

Algorithm and EM Algorithm in (Rabiner, 1989) [13]. However, the estimation method in both

models cannot guarantee the global minimum solution, the obtained local minimum solution

is determined by the initial value of P (0) and the value of tolerance. Here, if the value of

the tolerance is set to be too large, the algorithm will be terminated before convergence is
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Table 2: The average results for both the HMM and the interactive HMM.

T Prediction Accuracy in % Computational Time (in sec) No. of Iteration

IHMM 1-HMM IHMM 1-HMM IHMM 1-HMM

538 60.19 50.84 5.0208 52.3135 22.0000 326.0100

obtained. Thus, we have chosen the tolerance e to be equal to 1.00e − 18 times the total

number of unknown parameters. Further, we repeat the estimation process 100 times with

different initial matrix P (0). The average results are reported in Table 2.

From Table 2, we observe that the average prediction result of our model is over 9% better

than that of the first-order HMM while both the computational time and the number of iter-

ations of the interactive HMM are less than one-tenth of those of the first-order HMM. This

shows that our proposed model provides a significant improvement for the first-order HMM

based on the data set. On the other hand, the average predication accuracy of the first-order

HMM is very close to the random chosen one (50%). The main reason may be due to the

structural property of the hidden and observation sequences. Based on both sequences, we

found that the transition matrix A can be estimated from α̂P̂ and it is equal to:







0.5287 0.4713

0.4691 0.5309







which is close to the uniform distribution matrix. Here, α̂ij can be estimated by counting the

transition frequency from the observation state i at time t to the hidden state j at time t + 1

after normalization. Here P̂ can be obtained similarly. We observe that even the matrix A

can be well estimated, the true hidden sequence can hardly be obtained owing to the close

probability value for either staying at the same hidden state or jumping to another hidden

state.
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Table 3: The observable demand sequence and parameters for the soft drink

1 4 4 1 4 1 1 1 1 1 1 4 4 4 4 4 4 4 4 4 2 4 4 4 4 4 4 1 2 1 4 4 1 1 1 4 4 2 1 4 4 2 4 4 4 4 2 4 4 4 2 2 4 4 1 1 1 4 1 2

1 4 2 2 2 4 4 4 4 4 4 4 1 4 2 4 4 4 2 2 4 1 4 4 1 2 1 4 4 4 1 4 4 4 4 4 2 4 4 1 2 4 1 4 1 1 4 4 1 1 1 1 4 1 1 2 1 4 1 4

2 4 4 4 4 4 4 4 2 4 4 1 4 1 1 4 2 4 2 4 4 4 3 4 4 2 4 4 1 4 4 4 4 4 4 4 4 4 1 4 4 2 2 2 3 2 2 4 4 3 3 4 3 2 1 2 2 1 4 4

1 4 4 1 1 4 2 4 4 2 4 2 4 4 1 1 4 4 4 4 4 4 1 4 4 4 1 4 3 4 4 1 1 1 2 2 3 2 2 4 2 4 4 4 4 4 4 4 4 4 4 2 4 4 2 2 1 4 1 4

1 1 4 2 1 1 1 4 4 4 4 4 4 2 2 4 4 2 4 1 2 2 1 4 1 1 1 1 2 4 1 1 1 2 4 4 4 2 4 4 2 4 4 2 4 1 1 4 1 4 1 2 1 4 1 4 4 1 4 4

2 4 2 1 2 4 4 2 2 4 2 4 1 2 2 2 2 3 3 2 2 2 4 4 4 2 2 4 2 4 4 4 2 2 2 4 4 2 4 2 1 1 4 1 1 1 4 1 4 1 4 4 4 2 2 4 1 2 1 2

4 4 2 2 1 4 1 1 4 4 2 1 1 4 4 1 1 4 4 1 2 2 1 4 2 4 2 2 1 1 2 4 2 4 4 4 1 2 4 1 4 1 1 5 4 3 4 1 4 4 1 2 2 4 1 4 1 1 4 1

4 1 1 4 4 1 4 4 1 2 4 4 1 4 2 4 2 4 4 4 1 4 4 1 4 4 1 1 4 4 2 2 2 2 2 1 4 4 2 2 2 1 2 3 4 1 4 1 2 2 2 2 4 4 4 4 1 4 4 4

1 4 1 4 1 4 4 4 1 1 4 4 4 4 4 4 1 4 4 1 1 4 1 3 3 3 5 4 1 4 4 4 1 4 1 1 4 4 4 4 1 4 4 4 4 4 4 4 4 4 4 4 4 1 4 4 1 4

Table 4: The unobservable effect for the soft drink

1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1

1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2

2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2

2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1

1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 2

2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2

2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1

1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1

1 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2

4.2 Analysis of Economic Data

In this subsection, we investigate the use of the IHMM for extracting information about the

Hong Kong economy, in particular, the unobservable states of the Hong Kong economy, from the

observable economic data, namely, the Hong Kong sovereign ratings data from FitchRatings and

the one-week Hong Kong Inter-bank Offered Rate (HIBOR) from DataStream. We investigate

the impact of the presence of the interactive effect in the HMM on the extraction of the

economic states by comparing the economic states implied by the IHMM with those implied

by the traditional HMM without interactive effect over the eleven-year period. We also discuss

the economic implications of the results based on the Hong Kong economy during that period.
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Table 5 displays the Hong Kong sovereign ratings data and the one-week HIBOR data with the

corresponding dates used in our study.
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Table 5: Observable Economic Data

Date One-week HIBOR HK Sovereign ratings

16 May 2004 0.06 AA-

24 Apr 2003 1.56 AA-

25 Jun 2001 3.75 AA-

21 Sept 2000 6.25 A+

14 Nov 1996 5.25 A+

24 Nov 1995 5.62 A+

26 Oct 1995 5.25 A+

09 Aug 1995 5.38 A+

10 Aug 1994 4.19 AA-

In either the IHMM or the HMM, we need to convert the observable economic data into

discrete states. For the HK sovereign ratings data, there are two states, namely, H = AA- and

L = A+. We convert the one-week HIBOR data (i.e. spot interest rates data) into to discrete

states according to the following rule:

st =



























1 if rt > rt−1

2 if rt = rt−1

3 if rt < rt−1

for t > 1

where st = 1, st = 2 and st = 3 represent an “up move”, “no move” and “down move” of the

spot interest rate at time t relative to the spot interest rate at time t − 1. We further assume

that the initial state of the spot interest rate at time t = 1 is 2 (i.e. s1 = 2). Then, we obtain

the following sequences of sovereign ratings data and spot interest rates.

Sovereign ratings: H, L, L, L, L, L, H, H, H.

Spot interest rates: 2, 1, 3, 1, 3, 1, 3, 3, 3.
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Table 6: The transformation from two states spaces into an enlarged state space.

Sovereign Ratings Spot interest rates Enlarged state

H 1 1

H 2 2

H 3 3

L 1 4

L 2 5

L 3 6

Here, the length of both data sequences T = 9. We assume that in both the IHMM and the

first-order HMM (i.e. the control model), there are three hidden states of economic conditions,

namely, “Recession”, “Neutral” and “Expansion”, which are represented by R, N and E,

respectively. Then, we adopt a transformation method to combine the state spaces of the

sovereign ratings and the spot interest rates into an enlarged state space. The transformation

and the enlarged state space are presented in Table 6.

Based on the states in the enlarged state space, the states of the combined observable

sequence over time are given by:

2, 4, 6, 4, 6, 4, 3, 3, 3

By the estimation method in Section 3.2, we obtain the estimated hidden sequence of HK

economy implied by the IHMM as follows:

E, N, E, N, E, N, R, R, R.

We also obtain the estimated hidden sequence of HK economy implied by the first-order HMM

as follows:

E, R, N, R, N, R, N, R, N.

From the hidden sequence of HK economy obtained by the IHMM, the economic conditions
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have gone through fluctuations between “Expansion” and “Neutral” from the third quarter of

1994 to the last quarter of 1996. In the third quarter of 2001, the economic condition has turned

to “Recession”. It remains in the state of “Recession” until the end of the second quarter of

2004. On the other hand, the hidden sequence of HK economy implied by the first-order HMM

reveals that the economic condition was “Expansion” in the third quarter of 1994 and that the

economic condition then fluctuates between “Recession” and “Neutral” during the period from

the third quarter of 1995 to the second quarter of 2004.

In view of the Hong Kong economy during the period from 1994 to 2004, the economic

conditions implied by the IHMM are more consistent with those implied by the traditional

HMM without incorporating the interactive effect. At the beginning of the 1990s, Hong Kong

has experienced a high economic growth. This growth sustained until the Asian financial crisis

in 1998. During the period from 1998 to 2003, Hong Kong experienced economic downturn,

which may be attributed to both internal and external factors. Internally, the unemployment

rate reached remarkably high level during that period and the internal consumption was weak.

A high level of deflation was recorded during that period. Due to the change in the public

housing policy in 1997, there was a serious drop in the prices of real estates. Some of the

real estates even diminished their values by around 60%. The Hong Kong real estates market

remains in downturn during the period from 1997 to 2003. This leads to recession in Hong Kong

economy during that period since the real estates market is one of the major components in

the Hong Kong economy. The outbreak of SARS and bird-flu during that period also seriously

harmed the Hong Kong economy. Externally, there were Asian financial crisis from 1997 to

1999, an unstable post-crisis period in 2000, and the September 11 terrorist attack in United

States in 2001. Since Hong Kong is an open economy, its economic condition is greatly affected

by the economic conditions in United States and all over the world.
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5 Summary

In this paper, we proposed an Interactive Hidden Markov Model (IHMM). Our model differs

from the traditional HMM in the way that the hidden states are also affected directly by the

observable states. We also developed an efficient estimation method for solving the model pa-

rameters. Numerical examples on the sales demand data and economic data have been given

to demonstrate both the efficiency and effectiveness of the proposed model.
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