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Abstract

In this paper, we generalize some existing discrete Gronwall–Bellman–Ou-Iang-type inequalities
to more general situations. These are in turn applied to study the boundedness, uniqueness, and con-
tinuous dependence of solutions of certain discrete boundary value problem for difference equations.
© 2005 Elsevier Inc. All rights reserved.

Keywords: Discrete Gronwall–Bellman–Ou-Iang-type inequalities; Boundary value problems

1. Introduction

In studying the boundedness behavior of the solutions of certain second order dif-
ferential equations, Ou-Iang established the following Gronwall–Bellman-type integral
inequality which is now known as Ou-Iang’s inequality in the literature.
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Theorem A. (Ou-Iang [13]) If u and f are non-negative functions on [0,∞) satisfying

u2(x) � k2 + 2

x∫
0

f (s)u(s) ds

for all x ∈ [0,∞), where k � 0 is a constant, then

u(x) � k +
x∫

0

f (s) ds

for all x ∈ [0,∞).

Unlike many other types of integral inequalities, Ou-Iang-type inequalities or more
generally, Gronwall–Bellman–Ou-Iang-type inequalities provide explicit bounds on the
unknown function, and this special feature makes such inequalities especially important in
many practical situations. In fact, over the years, such inequalities and their generalizations
to various settings have proven to be very effective in the study of many qualitative as well
as quantitative properties of solutions of differential equations. These include, among oth-
ers, the global existence, boundedness, uniqueness, stability, and continuous dependence
on initial data (see, for example, [1–3,5,6,8,10–12,14–17]). For example, in the process of
establishing a connection between stability and the 2nd law of thermodynamics, Dafermos
established the following result.

Theorem B. (Dafermos [7]) If u ∈ L∞[0, r] and f ∈ L1[0, r] are non-negative functions
satisfying

u2(x) � M2u2(0) + 2

x∫
0

[
Nf (s)u(s) + Ku2(s)

]
ds

for all x ∈ [0, r], where M,N,K are non-negative constants, then

u(r) �
[
Mu(0) + N

r∫
0

f (s) ds

]
eKr .

More recently, Pachpatte established the following more general inequality:

Theorem C. (Pachpatte [16]) Suppose u,f,g are continuous non-negative functions on
[0,∞) and w a continuous non-decreasing function on [0,∞) with w(r) > 0 for r > 0. If

u2(x) � k2 + 2

x∫
0

(
f (s)u(s) + g(s)u(s)w

(
u(s)

))
ds

for all x ∈ [0,∞), where k � 0 is a constant, then

u(x) � Ω−1

[
Ω

(
k +

x∫
f (s) ds

)
+

x∫
g(s) ds

]

0 0
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for all x ∈ [0, x1], where

Ω(r) :=
r∫

1

ds

w(s)
, r > 0,

Ω−1 is the inverse of Ω , and x1 ∈ [0,∞) is chosen in such a way that Ω(k+∫ x

0 f (s) ds)+∫ x

0 g(s) ds ∈ Dom(Ω−1) for all x ∈ [0, x1].

On the other hand, Lipovan observed the following Gronwall–Bellman–Ou-Iang-type
inequality which is a handy tool in the study of the global existence of solutions to certain
integral equations and functional differential equations.

Theorem D. (Lipovan [9]) Suppose u,f are continuous non-negative functions on
[x0,X), w a continuous non-decreasing function on [0,∞) with w(r) > 0 for r > 0, and
α : [x0,X) → [x0,X) a continuous non-decreasing function with α(x) � x on [x0,X). If

u(x) � k +
α(x)∫

α(x0)

f (s)w
(
u(s)

)
ds

for all x ∈ [x0,X), where k � 0 is a constant, then

u(x) � Ω−1

[
Ω(k) +

α(x)∫
α(x0)

f (s) ds

]

for all x ∈ [x0, x1), where Ω is defined as in Theorem C, and x1 ∈ [x0,X) is chosen in such
a way that Ω(k) + ∫ α(x)

α(x0)
f (s) ds ∈ Dom(Ω−1) for all x ∈ [x0, x1).

Very recently, in the process of studying the boundedness, uniqueness, and continuous
dependence of the solutions of some boundary value problem, Cheung [5] established the
following

Theorem E. (Cheung [5]) Let I := [x0,X) ⊂ R, J := [y0, Y ) ⊂ R, and Δ := I × J ⊂ R
2.

Suppose u ∈ C(Δ,R+). If k � 0 is a constant and a, b ∈ C(Δ,R+), α,γ ∈ C1(I, I ), β, δ ∈
C1(J, J ), and w ∈ C(R+,R+) are functions satisfying

(i) α,β, γ, δ are non-decreasing with α,γ � idI and β, δ � idJ ;
(ii) w is non-decreasing with w(r) > 0 for r > 0; and

(iii) for any (x, y) ∈ Δ,

u2(x, y) � k2 + 2

α(x)∫ β(y)∫
a(s, t)u(s, t) dt ds
α(x0) β(y0)
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+ 2

γ (x)∫
γ (x0)

δ(y)∫
δ(y0)

b(s, t)u(s, t)w
(
u(s, t)

)
dt ds,

then

u(x, y) � Φ−1[Φ(
k + A(x,y)

) + B(x, y)
]

for all (x, y) ∈ [x0, x1] × [y0, y1], where

A(x,y) :=
α(x)∫

α(x0)

β(y)∫
β(y0)

a(s, t) dt ds,

B(x, y) :=
γ (x)∫

γ (x0)

δ(y)∫
δ(y0)

b(s, t) dt ds,

Φ(r) :=
r∫

1

ds

w(s)
, r > 0,

Φ(0) := lim
r→0+ Ω(r),

and (x1, y1) ∈ Δ is chosen in such a way that Φ(k + A(x,y)) + B(x, y) ∈ Dom(Φ−1) for
all (x, y) ∈ [x0, x1] × [y0, y1].

Among various generalizations of Ou-Iang’s inequality, discretization is also an inter-
esting direction. The point is, similar to the noteworthy contributions of the continuous
versions of the inequality to the study of differential equations, one naturally expects that
discrete versions of the inequality should also play an important role in the study of differ-
ence equations. In this respect, fewer results have been established. Recent results in this
direction include the works of Pachpatte [16], Pang and Agarwal [18], and the following
very recent result of Cheung [4].

Theorem F. (Cheung [4]) Suppose u :Ω → R+ is a function on a 2-dimensional lattice
Ω , k � 0 is a constant, a, b :Ω → R+, and w ∈ C(R+,R+) are functions satisfying

(i) w is non-decreasing with w(r) > 0 for r > 0; and
(ii) for any (m,n) ∈ Ω ,

u2(m,n) � k2 +
m−1∑
s=m0

n−1∑
t=n0

a(s, t)u(s, t) +
m−1∑
s=m0

n−1∑
t=n0

b(s, t)u(s, t)w
(
u(s, t)

)
,

then

u(m,n) � Φ−1[Φ(
k + A(m,n)

) + B(m,n)
]
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for all (m,n) ∈ Ω(m1,n1), where

A(m,n) :=
m−1∑
s=m0

n−1∑
t=n0

a(s, t), B(m,n) :=
m−1∑
s=m0

n−1∑
t=n0

b(s, t),

Φ is defined as in Theorem E, and (m1, n1) ∈ Ω is chosen such that Φ(k + A(m,n)) +
B(m,n) ∈ DomΦ−1 for all (m,n) ∈ Ω(m1,n1).

In this paper, we establish some new discrete Gronwall–Bellman–Ou-Iang-type inequal-
ities with explicit bounds on unknown functions. The purpose here is three-fold. One, these
generalize Theorem F together with other existing results of Cheung [5] and Pachpatte
[16]. Two, these serve as discrete analogues of Gronwall–Bellman–Ou-Iang-type integral
inequalities. Three, these furnish a handy tool for the study of qualitative as well as quanti-
tative properties of solutions of difference equations. We illustrate this by applying our new
inequalities to study the boundedness, uniqueness, and continuous dependence properties
of the solutions of a discrete boundary value problem.

2. Discrete Gronwall–Bellman–Ou-Iang-type inequalities

Throughout this paper, I := [m0,M) ∩ Z and J := [n0,N) ∩ Z are two fixed lattices of
integral points in R, where m0, n0 ∈ Z, M,N ∈ Z ∪ {∞}. Let Ω := I × J ⊂ Z

2, R+ :=
[0,∞), and for any (s, t) ∈ Ω , the sub-lattice [m0, s] × [n0, t] ∩ Ω of Ω will be denoted
as Ω(s,t).

If U is a lattice in Z (respectively Z
2), the collection of all R-valued functions on U is

denoted by F(U), and that of all R+-valued functions by F+(U). For the sake of conve-
nience, we extend the domain of definition of each function in F(U) and F+(U) trivially
to the ambient space Z (respectively Z

2). So for example, a function in F(U) is regarded
as a function defined on Z (respectively Z

2) with support in U . As usual, the collection
of all continuous functions of a topological space X into a topological space Y will be
denoted by C(X,Y ).

If U is a lattice in Z, the difference operator Δ on f ∈F(Z) or F+(Z) is defined as

Δf (n) := f (n + 1) − f (n), n ∈ U,

and if V is a lattice in Z
2, the partial difference operators Δ1 and Δ2 on u ∈ F(Z2) or

F+(Z2) are defined as

Δ1u(m,n) := u(m + 1, n) − u(m,n), (m,n) ∈ V,

Δ2u(m,n) := u(m,n + 1) − u(m,n), (m,n) ∈ V.

For any ϕ,ψ ∈ C(R+,R+) and any constant β > 0, define

Φβ(r) :=
r∫

1

ds

ϕ(s1/β)
, Ψβ(r) :=

r∫
1

ds

ψ(s1/β)
, r > 0,

Φβ(0) := lim+ Φβ(r), Ψβ(0) := lim+ Ψβ(r).

r→0 r→0
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Note that we allow Φβ(0) and Ψβ(0) to be −∞ here.

Theorem 2.1. Suppose u ∈ F+(Ω). If c � 0, α > 0 are constants and b ∈ F+(Ω),
ϕ ∈ C(R+,R+) are functions satisfying

(i) ϕ is non-decreasing with ϕ(r) > 0 for r > 0; and
(ii) for any (m,n) ∈ Ω ,

uα(m,n) � c +
m−1∑
s=m0

n−1∑
t=n0

b(s, t)ϕ
(
u(s, t)

)
, (1)

then

u(m,n) �
{
Φ−1

α

[
Φα(c) + B(m,n)

]}1/α (2)

for all (m,n) ∈ Ω(m1,n1), where

B(m,n) :=
m−1∑
s=m0

n−1∑
t=n0

b(s, t),

Φ−1
α is the inverse of Φα , and (m1, n1) ∈ Ω is chosen such that Φα(c) + B(m,n) ∈

Dom(Φ−1
α ) for all (m,n) ∈ Ω(m1,n1).

Proof. It suffices to consider the case c > 0, for then the case c = 0 can be arrived at by
continuity argument. Denote by g(m,n) the right-hand side of (1). Then g > 0, u � g1/α

on Ω , and g is non-decreasing in each variable. Hence for any (m,n) ∈ Ω ,

Δ1g(m,n) = g(m + 1, n) − g(m,n) =
n−1∑
t=n0

b(m, t)ϕ
(
u(m, t)

)

�
n−1∑
t=n0

b(m, t)ϕ
(
g1/α(m, t)

)
� ϕ

(
g1/α(m,n − 1)

) n−1∑
t=n0

b(m, t). (3)

Therefore, by the Mean-Value Theorem for integrals, for each (m,n) ∈ Ω , there exists
g(m,n) � ξ � g(m + 1, n) such that

Δ1(Φα ◦ g)(m,n) = Φα

(
g(m + 1, n)

) − Φα

(
g(m,n)

)

=
g(m+1,n)∫
g(m,n)

ds

ϕ(s1/α)
= 1

ϕ(ξ1/α)
Δ1g(m,n).

Since ϕ is non-decreasing, ϕ(ξ1/α) � ϕ(g1/α(m,n)) and so by (3),

Δ1(Φα ◦ g)(m,n) � 1

ϕ(g1/α(m,n))
Δ1g(m,n) � ϕ(g1/α(m,n − 1))

ϕ(g1/α(m,n))

n−1∑
b(m, t)
t=n0



714 W.-S. Cheung, J. Ren / J. Math. Anal. Appl. 319 (2006) 708–724
�
n−1∑
t=n0

b(m, t)

for all (m,n) ∈ Ω . Therefore,

m−1∑
s=m0

Δ1(Φα ◦ g)(s, n) �
m−1∑
s=m0

n−1∑
t=n0

b(s, t) = B(m,n).

On the other hand, it is elementary to check that

m−1∑
s=m0

Δ1(Φα ◦ g)(s, n) = Φα ◦ g(m,n) − Φα ◦ g(m0, n),

thus

Φα ◦ g(m,n) � Φα ◦ g(m0, n) + B(m,n) = Φα(c) + B(m,n).

Since Φ−1
α is increasing on DomΦ−1

α , this yields

g(m,n) � Φ−1
α

[
Φα(c) + B(m,n)

]
for all (m,n) ∈ Ω(m1,n1). Hence the assertion. �
Remarks.

(i) When α = 1, Theorem 2.1 reduces to Theorem 2.1 in [4].
(ii) In many cases the non-decreasing function ϕ satisfies

∞∫
1

ds

ϕ(s1/α)
= ∞.

For example, ϕ = constant > 0, ϕ(s) = sα , ϕ(s) = sα/2, etc., are such functions. In
such cases Φα(∞) = ∞ and so we may take m1 = M , n1 = N . In particular, inequality
(2) holds for all (m,n) ∈ Ω .

Theorem 2.2. Suppose u ∈ F+(Ω). If k � 0, p > 1 are constants and a, b ∈ F+(Ω),
ϕ ∈ C(R+,R+) are functions satisfying

(i) ϕ is non-decreasing with ϕ(r) > 0 for r > 0; and
(ii) for any (m,n) ∈ Ω ,

up(m,n) � k +
m−1∑
s=m0

n−1∑
t=n0

a(s, t)u(s, t) +
m−1∑
s=m0

n−1∑
t=n0

b(s, t)u(s, t)ϕ
(
u(s, t)

)
, (4)

then

u(m,n) �
{
Φ−1 [

Φp−1
(
k1−1/p + A(m,n)

) + B(m,n)
]}1/(p−1) (5)
p−1



W.-S. Cheung, J. Ren / J. Math. Anal. Appl. 319 (2006) 708–724 715
for all (m,n) ∈ Ω(m1,n1), where

A(m,n) :=
m−1∑
s=m0

n−1∑
t=n0

a(s, t), B(m,n) :=
m−1∑
s=m0

n−1∑
t=n0

b(s, t),

and (m1, n1) ∈ Ω is chosen such that Φp−1(k
1−1/p + A(m,n)) + B(m,n) ∈ DomΦ−1

p−1
for all (m,n) ∈ Ω(m1,n1).

Proof. Similar to the proof of Theorem 2.1, it suffices to consider the case k > 0. Denote
by f (s, t) the right-hand side of (4). Then f > 0, u � f 1/p on Ω , and f is non-decreasing
in each variable. Hence for any (m,n) ∈ Ω ,

Δ1f (m,n) = f (m + 1, n) − f (m,n)

=
n−1∑
t=n0

a(m, t)u(m, t) +
n−1∑
t=n0

b(m, t)u(m, t)ϕ
(
u(m, t)

)

�
n−1∑
t=n0

a(m, t)f 1/p(m, t) +
n−1∑
t=n0

b(m, t)f 1/p(m, t)ϕ
(
f 1/p(m, t)

)

� f 1/p(m,n − 1)

[
n−1∑
t=n0

a(m, t) +
n−1∑
t=n0

b(m, t)ϕ
(
f 1/p(m, t)

)]
,

or

Δ1f (m,n)

f 1/p(m,n − 1)
�

n−1∑
t=n0

a(m, t) +
n−1∑
t=n0

b(m, t)ϕ
(
f 1/p(m, t)

)
.

Therefore, for any (m,n) ∈ Ω ,

m−1∑
s=m0

Δ1f (s, n)

f 1/p(s, n − 1)
�

m−1∑
s=m0

n−1∑
t=n0

a(s, t) +
m−1∑
s=m0

n−1∑
t=n0

b(s, t)ϕ
(
f 1/p(s, t)

)

= A(m,n) +
m−1∑
s=m0

n−1∑
t=n0

b(s, t)ϕ
(
f 1/p(s, t)

)
.

On the other hand, by the non-decreasing property of f in each variable, it is easy to check
that

m−1∑
s=m0

Δ1f (s, n)

f 1/p(s, n − 1)

= f (m,n)

f 1/p(m − 1, n − 1)
− f (m − 1, n)

f 1/p(m − 1, n − 1)
+ f (m − 1, n)

f 1/p(m − 2, n − 1)

− f (m − 2, n)

1/p
+ · · · + f (m0 + 1, n)

1/p
− f (m0, n)

1/p
f (m − 2, n − 1) f (m0, n − 1) f (m0, n − 1)
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= f (m,n)

f 1/p(m − 1, n − 1)

+
m−m0−1∑

s=1

f (m − s, n)

[
1

f 1/p(m − s − 1, n − 1)
− 1

f 1/p(m − s, n − 1)

]

− f (m0, n)

f 1/p(m0, n − 1)

� f (m,n)

f 1/p(m,n)
− f (m0, n)

f 1/p(m0, n − 1)

= f 1−1/p(m,n) − k1−1/p

for all (m,n) ∈ Ω . Hence we have

f 1−1/p(m,n) � k1−1/p + A(m,n) +
m−1∑
s=m0

n−1∑
t=n0

b(s, t)ϕ
(
f 1/p(s, t)

)

for all (m,n) ∈ Ω . In particular, since A is non-decreasing in each variable, for any fixed
(m,n) ∈ Ω(m1,n1),

f 1−1/p(m,n) = [
f 1/p(m,n)

]p−1

�
(
k1−1/p + A(m,n)

) +
m−1∑
s=m0

n−1∑
t=n0

b(s, t)ϕ
(
f 1/p(s, t)

)

for all (m,n) ∈ Ω(m,n). Now by applying Theorem 2.1 to the function f 1/p(m,n), we have

u(m,n) � f 1/p(m,n) �
{
Φ−1

p−1

[
Φp−1

(
k1−1/p + A(m,n)

) + B(m,n)
]}1/(p−1)

for all (m,n) ∈ Ω(m,n). In particular, this gives

u(m,n) �
{
Φ−1

p−1

[
Φp−1

(
k1−1/p + A(m,n)

) + B(m,n)
]}1/(p−1)

.

Since (m,n) ∈ Ω(m1,n1) is arbitrary, this concludes the proof of the theorem. �
Remarks.

(i) When p = 2, Theorem 2.2 reduces to Theorem F.
(ii) Similar to the previous remark, in many cases Φp−1(∞) = ∞ and so in these situa-

tions, inequality (5) holds for all (m,n) ∈ Ω .

In case Ω degenerates into a 1-dimensional lattice, Theorem 2.2 takes the following
simpler form which is a generalization of a result of Pachpatte in [16].

Corollary 2.3. Suppose u ∈ F+(I ). If k � 0, p > 1 are constants and a, b ∈ F+(I ),
ϕ ∈ C(R+,R+) are functions satisfying
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(i) ϕ is non-decreasing with ϕ(r) > 0 for r > 0; and
(ii) for any m ∈ I ,

up(m) � k +
m−1∑
s=m0

a(s)u(s) +
m−1∑
s=m0

b(s)u(s)ϕ
(
u(s)

)
,

then

u(m) �
{

Φ−1
p−1

[
Φp−1

(
k1−1/p +

m−1∑
s=m0

a(s)

)
+

m−1∑
s=m0

b(s)

]}1/(p−1)

for all m ∈ [m0,m1]∩ I , where m1 ∈ I is chosen such that Φp−1(k
1−1/p +∑m−1

s=m0
a(s))+∑m−1

s=m0
b(s) ∈ DomΦ−1

p−1 for all m ∈ [m0,m1] ∩ I .

Proof. It follows immediately from Theorem 2.2 by setting Ω = I ×{n0} for some n0 ∈ Z,
and extending the functions a(s), b(s), u(s) to a(s, n0), b(s, n0) and u(s, n0) respectively
in the obvious way. �

Theorem 2.2 can easily be applied to generate other useful discrete inequalities in more
general situations. For example, we have

Theorem 2.4. Suppose u ∈ F+(Ω). If k � 0, p > q > 0 are constants and a, b ∈ F+(Ω),
ϕ ∈ C(R+,R+) are functions satisfying

(i) ϕ is non-decreasing with ϕ(r) > 0 for r > 0; and
(ii) for any (m,n) ∈ Ω ,

up(m,n) � k +
m−1∑
s=m0

n−1∑
t=n0

a(s, t)uq(s, t) +
m−1∑
s=m0

n−1∑
t=n0

b(s, t)uq(s, t)ϕ
(
u(s, t)

)
,

(6)

then

u(m,n) �
{
Φ−1

p−q

[
Φp−q

(
k1−q/p + A(m,n)

) + B(m,n)
]}1/(p−q) (7)

for all (m,n) ∈ Ω(m1,n1), where A(m,n), B(m,n) are defined as in Theorem 2.2, and
(m1, n1) ∈ Ω is chosen such that Φp−q(k1−q/p + A(m,n)) + B(m,n) ∈ DomΦ−1

p−q for
all (m,n) ∈ Ω(m1,n1).

Proof. For any r > 0, define

ψ(r) := ϕ
(
r1/q

)
. (8)

Then clearly ψ satisfies condition (i) of Theorem 2.2. By (6),

up(m,n) � k +
m−1∑ n−1∑

a(s, t)uq(s, t) +
m−1∑ n−1∑

b(s, t)uq(s, t)ψ
(
uq(s, t)

)

s=m0 t=n0 s=m0 t=n0
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for all (m,n) ∈ Ω . Writing v = uq , this becomes

vp/q(m,n) � k +
m−1∑
s=m0

n−1∑
t=n0

a(s, t)v(s, t) +
m−1∑
s=m0

n−1∑
t=n0

b(s, t)v(s, t)ψ
(
v(s, t)

)
.

Since p/q > 1, it follows from Theorem 2.2 that

v(m,n) �
{
Ψ −1

p/q−1

[
Ψp/q−1

(
k1−1/(p/q) + A(m,n)

) + B(m,n)
]}1/(p/q−1)

= {
Ψ −1

(p−q)/q

[
Ψ(p−q)/q

(
k(p−q)/p + A(m,n)

) + B(m,n)
]}q/(p−q)

for all (m,n) ∈ Ω(m1,n1). Now it is elementary to check by the definition of ψ in (8) that

Ψ(p−q)/q(r) = Φp−q(r),

thus we have

v(m,n) �
{
Φ−1

p−q

[
Φp−q

(
k(p−q)/p + A(m,n)

) + B(m,n)
]}q/(p−q)

for all (m,n) ∈ Ω(m1,n1), or

u(m,n) = v1/q(m,n)

�
{
Φ−1

p−q

[
Φp−q

(
k(p−q)/p + A(m,n)

) + B(m,n)
]}1/(p−q)

for all (m,n) ∈ Ω(m1,n1), where (m1, n1) ∈ Ω is chosen such that Φp−q(k(p−q)/p +
A(m,n)) + B(m,n) ∈ DomΦ−1

p−q for all (m,n) ∈ Ω(m1,n1). �
An important special case of Theorem 2.4 is the following

Corollary 2.5. Suppose u ∈ F+(Ω). If k � 0, p > 1 are constants and a, b ∈ F+(Ω),
ϕ ∈ C(R+,R+) are functions satisfying

(i) ϕ is non-decreasing with ϕ(r) > 0 for r > 0; and
(ii) for any (m,n) ∈ Ω ,

up(m,n) � k +
m−1∑
s=m0

n−1∑
t=n0

a(s, t)up−1(s, t)

+
m−1∑
s=m0

n−1∑
t=n0

b(s, t)up−1(s, t)ϕ
(
u(s, t)

)
,

then

u(m,n) � Φ−1
1

[
Φ1

(
k1/p + A(m,n)

) + B(m,n)
]

for all (m,n) ∈ Ω(m1,n1), where A(m,n), B(m,n) are defined as in Theorem 2.2, and
(m1, n1) ∈ Ω is chosen such that Φ1(k

1/p + A(m,n)) + B(m,n) ∈ DomΦ−1
1 for all

(m,n) ∈ Ω(m ,n ).
1 1
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Proof. The assertion follows immediately from Theorem 2.4 by taking q = p−1 > 0. �
In particular, we have the following useful consequence.

Corollary 2.6. Suppose u ∈ F+(Ω). If k � 0, p > 1 are constants and a, b ∈ F+(Ω) are
functions such that for any (m,n) ∈ Ω ,

up(m,n) � k +
m−1∑
s=m0

n−1∑
t=n0

a(s, t)up−1(s, t) +
m−1∑
s=m0

n−1∑
t=n0

b(s, t)up(s, t),

then

u(m,n) �
(
k1/p + A(m,n)

)
expB(m,n)

for all (m,n) ∈ Ω , where A(m,n), B(m,n) are defined as in Theorem 2.2.

Proof. Assume first that k > 0. Let ϕ be the identity mapping of R+ onto itself. Then all
conditions of Corollary 2.5 are satisfied. Note that in this cases Φ1 = ln and so Φ−1

1 = exp.
In particular, Φ−1

1 is defined everywhere on R. By Corollary 2.5, we have

u(m,n) � exp
[
ln

(
k1/p + A(m,n)

) + B(m,n)
] = [

k1/p + A(m,n)
]

expB(m,n)

for all (m,n) ∈ Ω . Finally, as this is true for all k > 0, by continuity, this should also hold
for the case k = 0. �

In case Ω degenerates into a 1-dimensional lattice, Corollary 2.6 takes the following
simpler form which generalizes another result of Pachpatte in [17].

Corollary 2.7. Suppose u ∈ F+(I ). If k � 0, p > 1 are constants and a, b ∈ F+(I ) are
functions such that for any m ∈ I ,

up(m) � k +
m−1∑
s=m0

a(s)up−1(s) +
m−1∑
s=m0

b(s)up(s),

then

u(m) �
[
k1/p +

m−1∑
s=m0

a(s)

]
m−1∏
s=m0

expb(s)

for all m ∈ I .

Proof. Analogous to that of Corollary 2.3 and apply Corollary 2.6. �
Another special situation of Corollary 2.6 is the following 2-dimensional discrete ver-

sion of Ou-Iang’s inequality.
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Corollary 2.8. Suppose u ∈ F+(Ω). If k � 0, p > 1 are constants and b ∈ F+(Ω) is a
function such that for any (m,n) ∈ Ω ,

up(m,n) � k +
m−1∑
s=m0

n−1∑
t=n0

b(s, t)up(s, t),

then

u(m,n) � k1/p expB(m,n)

for all (m,n) ∈ Ω , where B(m,n) is as defined in Theorem 2.2.

Proof. This follows immediately from Corollary 2.6 by setting a ≡ 0. �
In case Ω degenerates into a 1-dimensional lattice, Corollary 2.8 takes the following

simpler form which is a generalized 1-dimensional discrete analogue of Ou-Iang’s inequal-
ity.

Corollary 2.9. Suppose u ∈ F+(I ). If k � 0, p > 1 are constants and b ∈ F+(I ) is a
function such that for any m ∈ I ,

up(m) � k +
m−1∑
s=m0

b(s)up(s),

then

u(m) � k1/p
m−1∏
s=m0

expb(s)

for all m ∈ I .

Proof. It follows from Corollary 2.5 by setting a ≡ 0, or by imitating the proof of Corol-
lary 2.3 and applying Corollary 2.8. �
Remark. It is evident that the results above can be generalized to obtain explicit bounds for
functions satisfying certain discrete sum inequalities involving more retarded arguments.
It is also clear that these results can be extended to functions on higher dimensional lattices
in the obvious way. As details of these are rather algorithmic, they will not be carried out
here.

3. Applications to boundary value problems

In this section, we shall illustrate how the results obtained in Section 2 can be applied to
study the boundedness, uniqueness, and continuous dependence of the solutions of certain
boundary value problems for difference equations involving 2 independent variables.

We consider the following
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Boundary Value Problem (BVP):

Δ12z
p(m,n) = F

(
m,n, z(m,n)

)
satisfying

z(m,n0) = f (m), z(m0, n) = g(n), f (m0) = g(n0) = 0,

where p > 1, F ∈F(Ω × R), f ∈F(I ), and g ∈ F(J ) are given.

Our first result deals with the boundedness of solutions.

Theorem 3.1. Consider (BVP). If∣∣F(m,n, v)
∣∣ � b(m,n)|v|p (9)

and ∣∣f (m)
∣∣p + ∣∣g(n)

∣∣p � kp (10)

for some k � 0, where b ∈ F+(Ω), then all solutions of (BVP) satisfy∣∣z(m,n)
∣∣ � k expB(m,n), (m,n) ∈ Ω,

where B(m,n) is defined as in Theorem 2.1. In particular, if B(m,n) is bounded on Ω ,
then every solution of (BVP) is bounded on Ω .

Proof. Observe first that z = z(m,n) solves (BVP) if and only if it satisfies the sum-
difference equation

zp(m,n) = f p(m) + gp(n) +
m−1∑
s=m0

n−1∑
t=n0

F
(
s, t, z(s, t)

)
. (11)

Hence by (9) and (10),

∣∣z(m,n)
∣∣p � kp +

m−1∑
s=m0

n−1∑
t=n0

b(s, t)
∣∣z(s, t)∣∣p

for all (m,n) ∈ Ω . An application of Corollary 2.8 to the function |z(m,n)| gives the
assertion immediately. �

The next result is about uniqueness.

Theorem 3.2. Consider (BVP). If∣∣F(m,n, v1) − F(m,n, v2)
∣∣ � b(m,n)

∣∣vp

1 − v
p

2

∣∣
for some b ∈ F+(Ω), then (BVP) has at most one solution on Ω .

Proof. Let z(m,n) and z(m,n) be two solutions of (BVP) on Ω . By (11), we have
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∣∣zp(m,n) − zp(m,n)
∣∣ �

m−1∑
s=m0

n−1∑
t=n0

∣∣F (
s, t, z(s, t)

) − F
(
s, t, z(s, t)

)∣∣

�
m−1∑
s=m0

n−1∑
t=n0

b(s, t)
∣∣zp(s, t) − zp(s, t)

∣∣.
An application of Corollary 2.8 to the function |zp(s, t) − zp(s, t)|1/p shows that∣∣zp(s, t) − zp(s, t)

∣∣1/p � 0 for all (s, t) ∈ Ω.

Hence z = z on Ω . �
Finally, we investigate the continuous dependence of the solutions of (BVP) on the

function F and the boundary data f and g. For this we consider the following variation of
(BVP):

(BVP): Δ12z
p(m,n) = F

(
m,n, z(m,n)

)
with

z(m,n0) = f (m), z(m0, n) = g(n), f (m0) = g(n0) = 0,

where p > 1, F ∈ F(Ω × R), f ∈ F(I ), and g ∈ F(J ) are given.

Theorem 3.3. Consider (BVP) and (BVP). If

(i) |F(m,n, v1) − F(m,n, v2)| � b(m,n)|vp

1 − v
p

2 | for some b ∈F+(Ω);
(ii) |(f p(m) − f p(m)) + (gp(n) − gp(n))| � ε/2; and

(iii) for all solutions z(m,n) of (BVP),

m−1∑
s=m0

n−1∑
t=n0

∣∣F (
s, t, z(s, t)

) − F
(
s, t, z(s, t)

)∣∣ � ε

2

for all (m,n) ∈ Ω and v1, v2 ∈ R, then∣∣zp(m,n) − zp(m,n)
∣∣ � ε exp

(
pB(m,n)

)
,

where B(m,n) is as defined in Theorem 2.1. Hence zp depends continuously on F,f ,
and g. In particular, if z does not change sign, it depends continuously on F , f and g.

Proof. Let z(m,n) and z(m,n) be solutions of (BVP) and (BVP), respectively. Then z

satisfies (11) and z satisfies the corresponding equation

zp(m,n) = f p(m) + gp(n) +
m−1∑
s=m0

n−1∑
t=n0

F
(
s, t, z(s, t)

)
.

Hence
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∣∣zp(m,n) − zp(m,n)
∣∣

�
∣∣(f p(m) − f p(m)

) + (
gp(n) − gp(n)

)∣∣
+

m−1∑
s=m0

n−1∑
t=n0

∣∣F (
s, t, z(s, t)

) − F
(
s, t, z(s, t)

)∣∣

� ε

2
+

m−1∑
s=m0

n−1∑
t=n0

∣∣F (
s, t, z(s, t)

) − F
(
s, t, z(s, t)

)∣∣

+
m−1∑
s=m0

n−1∑
t=n0

∣∣F (
s, t, z(s, t)

) − F
(
s, t, z(s, t)

)∣∣

� ε +
m−1∑
s=m0

n−1∑
t=n0

b(s, t)
∣∣zp(s, t) − zp(s, t)

∣∣
by assumptions (i), (ii) and (iii). Now by applying Corollary 2.8 to the function |zp(m,n)−
zp(m,n)|1/p , we have∣∣zp(m,n) − zp(m,n)

∣∣1/p � ε1/p expB(m,n)

for all (m,n) ∈ Ω , or∣∣zp(m,n) − zp(m,n)
∣∣ � ε exp

(
pB(m,n)

)
.

Now when restricted to any compact sub-lattice, B(m,n) is bounded, so∣∣zp(m,n) − zp(m,n)
∣∣ � ε · K

for some K > 0 for all (m,n) in this compact sub-lattice. Hence zp depends continuously
on F , f and g. �
Remark. The boundary value problem (BVP) is clearly not the only problem for which
the boundedness, uniqueness, and continuous dependence of its solutions can be studied
by using the results in Section 2. For example, one can arrive at similar results (with much
more complicated computations) for the following variation of the (BVP):

Δ12z
p(m,n) = F

(
m,n, z(m,n), z(m,n) · ϕ(∣∣z(m,n)

∣∣))
with

z(m,n0) = f (m), z(m0, n) = g(n), f (m0) = g(n0) = 0,

where p > 1, F ∈F(Ω × R
2), f ∈F(I ), g ∈F(J ), and ϕ ∈ C(R+,R+) are given.

Acknowledgment

The authors thank the referee for his/her valuable suggestions.



724 W.-S. Cheung, J. Ren / J. Math. Anal. Appl. 319 (2006) 708–724
References

[1] R. Bellman, The stability of solutions of linear differential equations, Duke Math. J. 10 (1943) 643–647.
[2] I. Bihari, A generalization of a lemma of Bellman and its application to uniqueness problems of differential

equations, Acta Math. Acad. Sci. Hungar. 7 (1956) 71–94.
[3] W.S. Cheung, On some new integrodifferential inequalities of the Gronwall and Wendroff type, J. Math.

Anal. Appl. 178 (1993) 438–449.
[4] W.S. Cheung, Some discrete nonlinear inequalities and applications to boundary value problems for differ-

ence equations, J. Difference Equ. Appl. 10 (2004) 213–223.
[5] W.S. Cheung, Some retarded Gronwall–Bellman–Ou-Iang-type inequalities and applications to initial

boundary value problems, preprint.
[6] W.S. Cheung, Q.H. Ma, Nonlinear retarded integral inequalities for functions in two variables, J. Concrete

Appl. Math., in press.
[7] C.M. Dafermos, The second law of thermodynamics and stability, Arch. Ration. Mech. Anal. 70 (1979)

167–179.
[8] H. Haraux, Nonlinear Evolution Equation: Global Behavior of Solutions, Lecture Notes in Math., vol. 841,

Springer-Verlag, Berlin, 1981.
[9] O. Lipovan, A retarded Gronwall-like inequality and its applications, J. Math. Anal. Appl. 252 (2000) 389–

401.
[10] Q.M. Ma, E.H. Yang, On some new nonlinear delay integral inequalities, J. Math. Anal. Appl. 252 (2000)

864–878.
[11] Q.M. Ma, E.H. Yang, Some new Gronwall–Bellman–Bihari type integral inequalities with delay, Period.

Math. Hungar. 44 (2002) 225–238.
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