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Periodic solutions forp-Laplacian Rayleigh equations
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Abstract

By employing Mawhin’s continuation theorem, the existence of thep-Laplacian delay Rayleigh
equation

(ϕp(x ′(t)))′ + f (x ′(t)) + βg(x(t − τ(t))) = e(t)

under various assumptions is obtained.
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1. Introduction

Consider thep-Laplacian Rayleigh differential equation

(ϕp(x ′(t)))′ + f (x ′(t)) + βg(x(t − τ (t))) = e(t), (1.1)

where p > 1 is a constant,ϕp : R → R, ϕp(u) = |u|p−2u is a one-dimensionalp-Lapla-
cian; β > 0 is a constant, f, g, e, τ ∈ C(R, R), e, τ are periodic with periodT , e(t) �≡ 0,∫ T

0 e(s)ds = 0, andτ (t) ≥ 0 for t ∈ [0, T ].
While there are plenty of results on the existence of periodic solutions for various types of

delay differential equation (see [1,8,10–12] and references therein), studies of delay Rayleigh
equations is relatively infrequent. The main difficulty lies in the middle termf (x ′(t)) of (1.1),
the existence of which obstructs the usual method of findinga priori bounds for delay Duffing or
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Li énard equations from working. In [9], Wang and Cheng discussed a delay Rayleigh equation
of the form

x ′′(t) + f (x ′(t)) + g(x(t − τ (t))) = e(t), (1.2)

and estimated the existence of periodic solutions to the equation by using Mawhin’s continuation
theorem. Recently, S.P. Lu, W.G. Ge and Z.X. Zheng (see [6,7]) continued to study(1.2) and
improved the resultof Wang and Cheng. Now as thep-Laplacian(ϕp(x ′(t)))′ of a functionx(t)
frequently comes into play in many practical situations (for example, it is used to describe fluid
mechanical and nonlinearelastic mechanical phenomena), and in fact, sincex ′′(t) = ϕ2(x ′(t))′,
the p-Laplacian is a natural generalization of the usual Laplacian, it is natural to try to consider
the existenceof solutions ofp-Laplacian equations, that is, differential equations with the leading
term ap-Laplacian. So for example, it should be interesting to consider the aforesaid Eq.(1.2)
with x ′′(t) replaced by(ϕp(x ′(t)))′. Theobvious difficulty for the study of generalp-Laplacian
equations, withp �= 2, is that (ϕp(x ′(t)))′ is no longer linear and so Mawhin’s continuation
theorem does not apply directly. As far as we are aware, theproblem of the existence of solutions
for p-Laplacian delay equations had not been studied until, very recently, Cheung and Ren [2,3]
investigatedp-Laplacian Liénard equations and established sufficient conditions for the existence
of periodic solutions of these equations. In this paper, following the line of Cheung and Ren in [2,
3], we consider the p-Laplacian differential equation(1.1) and obtain sufficient conditions for
the existenceof periodic solutions of(1.1).

2. Preparation

We first recall Mawhin’s continuation theorem which our study is based upon.
Let X and Y be real Banach spaces andL : D(L) ⊂ X → Y be a Fredholm operator

with index zero; hereD(L) denotes the domain ofL. This means that ImL is closed inY
and dim KerL = dim(Y/Im L) < +∞. Consider the supplementary subspacesX1, Y1, of X ,
Y respectively, such thatX = Ker L ⊕ X1, Y = Im L ⊕ Y1, and let P : X → Ker L and
Q : Y → Y1 be the natural projections. Clearly, KerL ∩ (D(L) ∩ X1) = {0}; thus the restriction
L P := L|D(L)∩X1 is invertible. Denote byK the inverse ofL P .

Let Ω be an open bounded subset ofX with D(L) ∩ Ω �= φ. A mapN : Ω → Y is said to be
L-compact inΩ if QN(Ω ) is bounded and the operatorK (I − Q)N : Ω → X is compact.

Lemma 2.1 (Gaines and Mawhin [4]). Suppose that X and Y are two Banach spaces, and
L : D(L) ⊂ X → Y is a Fredholm operator with index zero. Furthermore, Ω ⊂ X is an
open bounded set and N : Ω → Y is L-compact on Ω . If:

(1) Lx �= λNx,∀x ∈ ∂Ω ∩ D(L), λ ∈ (0, 1);
(2) Nx �∈ Im L,∀x ∈ ∂Ω ∩ Ker L; and
(3) deg{J QN,Ω ∩ Ker L, 0} �= 0, where J : Im Q → Ker L is an isomorphism,

then the equation Lx = Nx has a solution in Ω
⋂

D(L).

The next result is useful in obtaininga priori bounds of periodic solutions.

Lemma 2.2 ([5]). Let s ∈ C(R, R) be periodic with period T and maxt∈[0,T ] |s(t)| ≤ α for
some constant α ∈ [0, T ]. Then for any u ∈ C1(R, R) which is periodic with period T , we have∫ T

0
|u(t) − u(t − s(t))|2 dt ≤ 2α2

∫ T

0
|u′(t)|2 dt .
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In order to apply Mawhin’s continuation theorem to study the existence ofT -periodic
solutions for(1.1), we rewrite (1.1)in the following form:{

x ′
1(t) = ϕq(x2(t)) = |x2(t)|q−2x2(t)

x ′
2(t) = − f (ϕq(x2(t))) − βg(x1(t − τ (t))) + e(t),

(2.1)

whereq > 1 is a constant with1
p + 1

q = 1. Clearly, if x(t) = (x1(t), x2(t))� is a T -periodic
solution to(2.1), thenx1(t) must be aT -periodic solution to(1.1). Thus, the problem of finding
a T -periodic solution for(1.1)reduces to finding one for(2.1).

Now, we setCT = {φ ∈ C(R, R) : φ(t + T ) ≡ φ(t)} with norm |φ|0 = maxt∈[0,T ] |φ(t)|,
X = Y = {x = (x1(·), x2(·)) ∈ C(R, R

2) : x(t) ≡ x(t + T )} with norm ‖x‖ =
max{|x1|0, |x2|0}. Clearly,X andY are Banach spaces. Meanwhile, let

L : D(L) ⊂ X → Y, Lx = x ′ =
(

x ′
1

x ′
2

)

N : X → Y, Nx =
(

ϕq(x2)

− f (ϕq(x2(t))) − βg(x1(t − τ (t))) + e(t)

)
.

It is easy to see that KerL = R
2 and ImL = {y ∈ Y : ∫ T

0 y(s) ds = 0}. So L is a Fredholm
operator with index zero. LetP : X → Ker L andQ : Y → Im Q ⊂ R

2 be defined by

Px = 1

T

∫ T

0
x(s) ds; Qy = 1

T

∫ T

0
y(s) ds,

and letK denote the inverse ofL|Ker P∩D(L). Obviously, KerL = Im Q = R
2 and

[K y](t) =
∫ T

0
G(t, s)y(s) ds (2.2)

where

G(t, s) =




s

T
, 0 ≤ s < t ≤ T .

s − T

T
, 0 ≤ t ≤ s ≤ T .

By (2.2), N is L-compact onΩ , whereΩ is an open, bounded subset ofX .

For the sake of convenience, denote by|x |w := (
∫ T

0 |x(s)|wds)1/w for w ≥ 1; we list the
following assumptions which will be useful in the study of the existence ofT -periodic solutions
to Eq.(1.1)in Section3.

[H1] There exist constantsσ > 0 and n ∈ N such that f (x)x ≥ σ |x |n+1 ∀x ∈ R (or
f (x)x ≤ −σ |x |n+1 ∀x ∈ R).

[H2] There exist constantsσ > 0 and n ∈ N such that f (x) ≥ σ |x |n ∀x ∈ R (or
f (x) ≤ −σ |x |n ∀x ∈ R).

[H3] There exists a constantd > 0 such that xg(x) > 0 (or xg(x) < 0) and|g(x)| >
|e|0
β

for
|x | > d.

[H4] There exists a constantl > 0 such that|g(u1) − g(u2)| ≤ l|u1 − u2| ∀u1, u2 ∈ R.
[H5] There exist constantsr ∈ [0,+∞) andm ∈ N such that lim|u|→+∞ |g(u)|

|u|m = r .
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3. Main results

Theorem 3.1. Suppose f (0) = 0 and [H1], [H3], [H4] hold. Suppose further that there exist
k ∈ Z and δ ≥ 0 such that maxt∈[0,T ] |τ (t) − kT | ≤ δ. If:

(1) n = 1 and σ >
√

2lδβ,

or
(2) n > 1,

then Eq. (1.1)has at least one T -periodic solution.

Proof. Consider theoperator equation

Lx = λNx, λ ∈ (0, 1). (3.1)

Let Ω1 = {x ∈ X : Lx = λNx, λ ∈ (0, 1)}. If x(t) =
(

x1(t)
x2(t)

)
∈ Ω1, thenfrom (3.1)we have{

x ′
1(t) = λϕq(x2(t)) = λ|x2(t)|q−2x2(t)

x ′
2(t) = −λ f (ϕq(x2(t))) − λβg(x1(t − τ (t))) + λe(t).

(3.2)

From the first equation of(3.2), we have

x2(t) = ϕp

(
1

λ
x ′

1(t)

)
. (3.3)

Let t andt be, respectively, the global maximum point and global minimum point ofx1(t) on
[0, T ]; thenx ′

1(t) = 0 and there existsε > 0 such thatx ′
1(t) is decreasing fort ∈ (t − ε, t + ε).

By (3.3), x2(t) = 0 andx2(t) is also decreasing fort ∈ (t − ε, t + ε) which yieldsx ′
2(t) ≤ 0.

From f (0) = 0 and the second equation of(3.2), we have

−βg(x1(t − τ (t))) + e(t) ≤ 0,

i.e.,

g(x1(t − τ (t))) ≥ e(t)

β
≥ −|e|0

β
. (3.4)

Similarly, we get

g(x1(t − τ (t))) ≤ e(t)

β
≤ |e|0

β
. (3.5)

If g(x1(t−τ (t))) ≥ |e|0
β

, thenfrom(3.5)there is apointη ∈ [0, T ] suchthatg(x1(η−τ (η))) =
|e|0
β

. So by assumption[H3] we find

|x1(η − τ (η))| ≤ d. (3.6)

On the other hand, ifg(x1(t − τ (t))) <
|e|0
β

, Eq. (3.4) implies that|g(x1(t − τ (t)))| <
|e|0
β

which together with assumption[H3] guarantees that

|x1(t − τ (t))| ≤ d. (3.7)

Combining the above, we seethat there is always a pointξ ∈ [0, T ] suchthat

|x1(ξ − τ (ξ))| ≤ d.
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Write ξ−τ (ξ) = kT +t∗ whenk ∈ Z andt∗ ∈ [0, T ]. Then by|x1(t)| ≤ | ∫ t
t∗ |x ′

1(s)|ds|+|x1(t∗)|
for all t ∈ [0, T ], we have

|x1|0 ≤ |x1(t
∗)| +

∫ T

0
|x ′

1(s)| ds ≤ d + |x ′
1|1. (3.8)

On the other hand, substituting(3.3)into the second equation of(3.2), weobtain[
ϕp

(
1

λ
x ′

1(t)

)]′
+ λ f

(
ϕq

(
ϕp

(
1

λ
x ′

1(t)

)))
+ λβg(x1(t − τ (t))) = λe(t),

or

[ϕp(x ′
1(t))]′ + λp f

(
1

λ
x ′

1(t)

)
+ λpβg(x1(t − τ (t))) = λpe(t). (3.9)

Multiplying both sides of Eq.(3.9)by x ′
1(t) and integrating over[0, T ], we have∫ T

0
[ϕp(x ′

1(t))]′x ′
1(t) dt + λp

∫ T

0
f

(
1

λ
x ′

1(t)

)
x ′

1(t) dt

+ λp
∫ T

0
βg(x1(t − τ (t)))x ′

1(t) dt = λp
∫ T

0
e(t)x ′

1(t) dt . (3.10)

If we write w(t) = ϕp(x ′
1(t)), then

∫ T
0 [ϕp(x ′

1(t))]′x ′
1(t) dt = ∫ T

0 ϕq(w(t)) dw(t) = 0. Hence
(3.10)reduces to∫ T

0
f

(
1

λ
x ′

1(t)

)
x ′

1(t) dt = −
∫ T

0
βg(x1(t − τ (t)))x ′

1(t)dt +
∫ T

0
e(t)x ′

1(t) dt . (3.11)

From[H1], we have∣∣∣∣
∫ T

0
f

(
1

λ
x ′

1(t)

)
x ′

1(t) dt

∣∣∣∣ =
∫ T

0

∣∣∣∣ f

(
1

λ
x ′

1(t)

)
x ′

1(t)

∣∣∣∣ dt ≥ λσ

∫ T

0

∣∣∣∣1

λ
x ′

1(t)

∣∣∣∣
n+1

dt

= σ

λn

∫ T

0
|x ′

1(t)|n+1 dt,

which together with(3.11), [H4], and Hölder’s inequality implies

σ

∫ T

0
|x ′

1(t)|n+1 dt

≤ λn
∣∣∣∣
∫ T

0
βg(x1(t − τ (t)))x ′

1(t) dt

∣∣∣∣ + λn
∣∣∣∣
∫ T

0
e(t)x ′

1(t) dt

∣∣∣∣
≤ β

∣∣∣∣
∫ T

0
g(x1(t))x ′

1(t) dt +
∫ T

0
[g(x1(t − τ (t))) − g(x1(t))]x ′

1(t) dt

∣∣∣∣
+

∣∣∣∣
∫ T

0
e(t)x ′

1(t) dt

∣∣∣∣
≤ lβ

∫ T

0
|x1(t − τ (t)) − x(t)||x ′

1(t)| dt +
∣∣∣∣
∫ T

0
e(t)x ′

1(t) dt

∣∣∣∣
≤ lβ|x ′

1|2
(∫ T

0
|x1(t) − x1(t − τ (t))|2 dt

) 1
2

+ |e|2|x ′
1|2. (3.12)
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Meanwhile, by assumption, there existk ∈ Z andδ > 0 such that maxt∈[0,T ] |τ (t) − kT | ≤ δ.
HenceLemma 2.2gives

(∫ T

0
|x1(t) − x1(t − τ (t))|2 dt

) 1
2

=
(∫ T

0
|x1(t) − x1(t − τ (t) + kT )|2 dt

) 1
2

≤ √
2δ|x ′

1|2. (3.13)

Substituting(3.13)into (3.12), andusing Hölder’s inequality, we have

σ

∫ T

0
|x ′

1(t)|n+1 dt

≤ √
2lδβ|x ′

1|22 + |e|2|x ′
1|2

≤ √
2lδβT (n−1)/(n+1)

(∫ T

0
|x ′

1(t)|n+1 dt

)2/(n+1)

+ |e|2T (n−1)/(2(n+1))

(∫ T

0
|x ′

1(t)|n+1 dt

)1/(n+1)

. (3.14)

Case 1. If n = 1 andσ >
√

2lδβ, it follows from(3.14)that

|x ′
1|2 ≤ |e|2

σ − √
2lδβ

:= M. (3.15)

So by(3.8)and Hölder’s inequality, we have

|x1|0 ≤ d + |x ′
1|1 ≤ d + T 1/2|x ′

1|2 ≤ d + T 1/2M. (3.16)

Case 2. For n > 1, as 1/(n + 1) < 2/(n + 1) < 1, it follows from (3.14)that there must be a
constantM∗ > 0 such that

∫ T
0 |x ′

1(t)|n+1 dt ≤ M∗. Thus by(3.8)and Hölder’s inequality,

|x1|0 ≤ d + |x ′
1|1 ≤ d + T n/(n+1)

(∫ T

0
|x ′

1(t)|n+1 dt

)1/(n+1)

≤ d + T n/(n+1)(M∗)1/(n+1). (3.17)

From(3.16)and(3.17), we see that in both cases there exists a constantM1 suchthat

|x1|0 ≤ M1. (3.18)

On the other hand, by the first equation of(3.2), we have∫ T

0
|x2(s)|q−2x2(s) ds = 0, (3.19)

which implies that there is a constantt2 ∈ [0, T ] suchthatx2(t2) = 0. So

|x2|0 ≤
∫ T

0
|x ′

2(s)| ds. (3.20)
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Now multiplying byx ′
2(t) on both sides of the second equation of(3.2)and integrating over

[0, T ], weobtain

|x ′
2|22 = −λ

∫ T

0
f (ϕq(x2(t)))x ′

2(t) dt − λ

∫ T

0
βg(x1(t − τ (t)))x ′

2(t) dt

+ λ

∫ T

0
e(t)x ′

2(t) dt

= −λ

∫ T

0
βg(x1(t − τ (t)))x ′

2(t) dt + λ

∫ T

0
e(t)x ′

2(t) dt

≤
∣∣∣∣
∫ T

0
βg(x1(t − τ (t)))x ′

2(t) dt

∣∣∣∣ +
∣∣∣∣
∫ T

0
e(t)x ′

2(t) dt

∣∣∣∣
≤ βgM1 · |x ′

2|1 + |e|2|x ′
2|2

≤ βgM1T
1
2 |x ′

2|2 + |e|2|x ′
2|2 (3.21)

wheregM1 := max|u|≤M1 |g(u)|. Hence

|x ′
2|2 ≤ βgM1T

1
2 + |e|2 := M∗∗, (3.22)

which, together with(3.20), yields

|x2|0 ≤
∫ T

0
|x ′

2(s)| ds ≤ T
1
2 |x ′

2|2 ≤ T
1
2 M∗∗ := M2. (3.23)

Let Ω2 = {x ∈ Ker L : Nx ∈ Im L}. If x ∈ Ω2, thenx ∈ Ker L andQNx = 0. Obviously
|x2|q−2x2 = 0; then by the assumption one, we seethatg(x1) = 0. So

|x1| ≤ d ≤ M1, x2 = 0 ≤ M2. (3.24)

Let Ω = {x = (x1, x2)
� ∈ X : |x1|0 < N1, |x2|0 < N2}, whereN1 andN2 are constants with

N1 > M1, N2 > M2 and(N2)
q > dβgd , wheregd = max|u|≤d |g(u)|. ThenΩ1 ⊂ Ω , Ω2 ⊂ Ω .

From (3.18), (3.23)and(3.24), it is easy to see that conditions (1) and (2) ofLemma 2.1are
satisfied.

Next, we claim that condition (3) ofLemma 2.1is also satisfied. For this, define the
isomorphism J : Im Q → Ker L by J (x1, x2) = (x2,−x1) and let H (v, µ) := µv + (1 −
µ)J QNv, (v, µ) ∈ Ω × [0, 1]. By simplecalculations, we obtain, for(x, µ) ∈ ∂(Ω ∩ Ker L) ×
[0, 1],

x�H (x, µ) = µ(x2
1 + x2

2) + (1 − µ)(βx1g(x1) + |x2|q) > 0. (3.25)

Hence

deg{J QN,Ω ∩ Ker L, 0} = deg{H (x, 0),Ω ∩ Ker L, 0}
= deg{H (x, 1),Ω ∩ Ker L, 0} = deg{I,Ω ∩ Ker L, 0}
�= 0, (3.26)

and so condition (3) ofLemma 2.1is also satisfied.
Therefore, byLemma 2.1, we conclude that equation

Lx = Nx (3.27)

has a solution x(t) = (x1(t), x2(t))� on Ω , i.e., Eq.(1.1) has aT -periodic solutionx1(t) with
|x1|0 ≤ M1. This completes the proof ofTheorem 3.1. �
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Theorem 3.2. Suppose f (0) = 0 and [H2], [H3], [H5] hold. If:

(1) n = m and σ > rβT n,

or
(2) n > m,

then Eq. (1.1)has at least one T -periodic solution.

Proof. As proved inTheorem 3.1, letΩ1 = {x ∈ X : Lx = λNx, λ ∈ (0, 1)}. If x(t) =
(

x1(t)
x2(t)

)
∈

Ω1, then we have

[ϕp(x ′
1(t))]′ + λp f

(
1

λ
x ′

1(t)

)
+ λpβg(x1(t − τ (t))) = λpe(t) (3.28)

and

|x1|0 ≤ |x1(t
∗)| +

∫ T

0
|x ′

1(s)| ds ≤ d + |x ′
1|1. (3.29)

Integrating both sides of(3.28)over[0, T ], we get∫ T

0
f

(
1

λ
x ′

1(t)

)
dt +

∫ T

0
βg(x1(t − τ (t))) dt = 0. (3.30)

It follows from [H2] that∣∣∣∣
∫ T

0
f

(
1

λ
x ′

1(t)

)
dt

∣∣∣∣ =
∫ T

0

∣∣∣∣ f

(
1

λ
x ′

1(t)

)∣∣∣∣ dt ≥ σ

λn

∫ T

0
|x ′

1(t)|n dt (3.31)

and so

σ

∫ T

0
|x ′

1(t)|n dt ≤ λn
∣∣∣∣
∫ T

0
βg(x1(t − τ (t))) dt

∣∣∣∣ ≤ β

∫ T

0
|g(x1(t − τ (t)))| dt . (3.32)

For an arbitrary constantε > 0, we have from[H5] that there is a constantρ > d (independent
of λ) such that |g(u)| ≤ (r + ε)|u|m for |u| > ρ. Let E1 = {t ∈ [0, T ] : |x1(t − τ (t))| > ρ},
E2 = {t ∈ [0, T ] : |x1(t − τ (t))| ≤ ρ} andgρ = max|u|≤ρ |g(u)|. By (3.32), we have

σ

∫ T

0
|x ′

1(t)|n dt ≤ β

∫
E1

|g(x1(t − τ (t)))| dt + β

∫
E2

|g(x1(t − τ (t)))| dt

≤ (r + ε)βT |x1|m0 + βgρT

≤ (r + ε)βT (d + |x ′
1|1)m + βgρT .

(3.33)

We claim that there exists a constantM1 > 0 such that

|x1|0 ≤ M1. (3.34)

If |x ′
1|1 = 0, then by(3.29), |x1|0 ≤ d. So suppose|x ′

1|1 > 0; then[
d +

∫ T

0
|x ′

1(s)| ds

]m

=
(∫ T

0
|x ′

1(s)| ds

)m
[

1 + d∫ T
0 |x ′

1(s)| ds

]m

. (3.35)

From elementary analysis, there isa constanth > 0 (independent ofλ) such that

(1 + x)m < 1 + (1 + m)x, ∀x ∈ (0, h]. (3.36)
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If d
|x ′

1|1 ≥ h, then

|x ′
1|1 ≤ d/h,

and(3.29)implies that

|x1|0 ≤ d + d/h. (3.37)

If d
|x ′

1|1 < h, thenfrom (3.36)we have[
d + |x ′

1|1
]m

≤
(∫ T

0
|x ′

1(s)| ds

)m
[

1 + (m + 1)d∫ T
0 |x ′

1(s)| ds

]

=
(∫ T

0
|x ′

1(s)| ds

)m

+ (m + 1)d

(∫ T

0
|x ′

1(s)| ds

)m−1

≤ T m(n−1)/n
(∫ T

0
|x ′

1(s)|n ds

)m
n

+ (m + 1) dT (n−1)(m−1)/n
(∫ T

0
|x ′

1(s)|n ds

)(m−1)/n

. (3.38)

Substituting(3.38)into (3.33), weobtain

σ

∫ T

0
|x ′

1(t)|n dt

≤ (r + ε)βT 1+m− m
n

(∫ T

0
|x ′

1(s)|n ds

)m
n

+ (r + ε)(m + 1)β dT m+ 1
n − m

n

(∫ T

0
|x ′

1(s)|n ds

)m−1
n

+ βgρT . (3.39)

Case 1. If n = m andσ > rβT n, we can chooseε < σ
βT n − r . Thenσ > (r + ε)βT n. So by

(3.39), we seethat
∫ T

0 |x ′
1(t)|ndt is bounded.

Case 2. For n > m, as m−1
m < m

n < 1, it is also easy to see that
∫ T

0 |x ′
1(t)|ndt is bounded.

Hence weknow that in both cases there is a constantM > 0 such that∫ T

0
|x ′

1(t)|n dt ≤ M

which together with(3.29)yields that

|x1|0 ≤ d + T (n−1)/n(M)1/n := M1. (3.40)

This proves the claim and the rest of the proof of the theorem is identical to that ofTheorem 3.1.
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