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Abstract

By employing Mavhin's continuation theorem, the existence of tpe_aplacian delay Rayleigh
equation

(Pp(X' )+ FX'(1) + Bg(x(t — (1) = e(t)

under various assumptions is obtained.
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1. Introduction

Consider thep-Laplacian Rayleigh differential equation
(pp(X' (1)) + F(X'(1) + Ba(x(t — (1)) = e(t), (1.1)

wherep > 1is a @nstantyp : R — R, pp(u) = lu|P~2u is a one-dinensionalp-Lapla-
cian; 8 > 0 is a onstant,f,g,e,7 € C(R,R), e, t are periodic with period, e(t) # 0,
fOT e(s)ds = 0, andr(t) > O fort € [0, T].

While there are plenty of results on the existerof periodic solutions for various types of
delay dfferential equation (seel[8,10-12 and rderences therein), studies of delay Rayleigh
equations is relatively infrequent. The main difficulty lies in the middle térix/(t)) of (1.1),
the existence of whitobstructs the usual method of findiagriori boundsfor delay Duffing or
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Lienard equations from working. I8]; Wang and Cheng discussed a delay Rayleigh equation
of the form

X' + F(X'(1) + g(x(t — (1)) = et), 1.2)

and estimated the existence of periodic solutions to the equation by using Mawhin’s continuation
theorem. Recently, S.P. Lu, W.G. Ge and Z.X. Zheng ($¢8)[continued to study1.2) and
improved the resuldf Wang and Cheng. Now as tigeLaplacian(¢p(x'(t)))" of a functionx (t)
frequently comes into play in manyartical situéions (for example, it is used to describe fluid
mechanical and nonlineatastic mechanical phen@na), and in fact, since’(t) = @2(x'(t))’,

the p-Laplacian is a natural generalization of theiakLaplacian, it is natural to try to consider
the existencef solutions ofp-Laplacian equations, that is, differential equations with the leading
term ap-Laplacian. So for example, it should be interesting to consider the aforesa{d.E2).

with x”(t) replaced by(pp(X'(t)))’. Theobvious difficulty for the study of genergkLaplacian
equations, withp # 2, isthat (¢p(x'(t)))" is no longer linear and so Mawhin’s continuation
theorem does not apply directly. As far as we avaee, theproblem of the existence of solutions

for p-Laplacian delay equations had not been studied until, very recently, Cheung angl&en [
investigatedp-Laplacian LEnard equations and established sufficient conditions for the existence
of periodic solutions of these equations. In this paper, following the line of Cheung and Ren in |
3], we congder the p-Laplacian differential equatiofiL.1) and obtain sufficient conditions for

the existencef periodic solutions of1.1).

2. Preparation

We firstrecall Mawhin’s continuation theorem which our study is based upon.

Let X andY be real Banach spaces ahd: D(L) ¢ X — Y be a Fredholm operator
with index zero; hereD(L) denotes the domain df. This means that InkL is closed inY
and dimKer. = dim(Y/Im L) < +4o0. Consider the supplementary subspags Y, of X,
Y respectively, such thak = KerL & X1, Y = ImL & Y, and letP : X — KerL and
Q : Y — Y1 be the natural projections. Clearly, Ken (D(L) N X1) = {0}; thus the refiction
Lp := LIp)nx, is invertible. Denote b the inverse oL p.

Let 2 be an open bounded subsebtofvith D(L) N 2 # ¢. AmapN : 2 — Y is said to be
L-compact in?2 if QN(£2) is bounded and the operatrl — Q)N : 2 — X is compact.

Lemma 2.1 (Gaines and Mawhin [4]). Suppose that X and Y are two Banach spaces, and
L : D(L) ¢ X — Y isa Fredholm operator with index zero. Furthermore, 2 C X is an
openboundedset and N : 2 — Y is L-compact on {2. If:

(1) Lx #£ ANx,¥x € 32N D(L), 1 € (0, 1);
(2) Nx €lmL,vx € a2NKerL; and
(3) dedJQN, 2 NKerL, 0} # 0,where J : Im Q — KerL isanisomorphism,

then the equation Lx = Nx hasa solutionin 2 () D(L).
The next result is useful in obtainirggpriori bounds of periodic solutions.

Lemma?2.2 ([5]). Let s € C(R, R) be periodic with period T and maxeo, 17 |S(t)| < « for
some constant o € [0, T]. Then for any u € C1(R, R) which is periodic with period T, we have

T T
/ lu(t) — u(t — st))?dt < 2a2/ U’ ()% dt.
0 0
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In order to apply Mawhin’s continuation theorem to study the existencé& -periodic
solutions for(1.1), we rewrite (1.1)in the following form:

{xi(w = pq (1) = Pa®[Txa(t) 2.1)
Xp(1) = — f (gg(x2()) — BYOx(t — (1)) + D), '

whereq > 1 is a @nstant with% + % = 1. Clearly, ifx(t) = (x1(t), x2(t)) " is aT-periodic
solution to(2.1), thenx1(t) must be e?l’-periodic solution tq1.1). Thus, he problem of finding
a T-periodic solution foi(1.1) reduces to finding one f@@.1).

Now, we selCt = {¢ € C(R,R) : ¢(t + T) = ¢(t)} with norm|¢|o = maxeqo, 11 ¢ (1),
X =Y = {x = x1(),%() € CR,R? : x(t) = x(t + T)} with norm ||x|| =
max{|X1|o, |X2]o}. Clearly, X andY are Banach spaces. Meanwhile, let

/
L:D(L)C X =Y, Lx=x’=(x}>

’ _ ¥q(X2)
N:X—Y, NXx = (_ f (pg(X2(1))) — B(xa(t — T(1))) + e(t)) .

It is easy to see that Kér = R2and ImL = {y € Y : fOT y(s)ds = 0}. SoL is a Fredholm
operator with index zero. Lé? : X — KerL andQ : Y — Im Q c R? be defined by

1 /7 1 /7
PX:?/O X(s) ds; Qy=?/0 y(s) ds,

and letK denote the inverse df|ker pnp(L). Obviously, KerL = 1Im Q = R? and

T
[Ky](t):/0 G(t,s)y(s)ds (2.2)
where
s
T O0<s<t<T
G(t,s) = el T

By (2.2), N is L-compact onf2, wheres2 is an open, bounded subset)f

For the s&e of conenience, denote bik|,, = ([OT Ix(s)|*ds)/* for w > 1: we list the
following assumptions which will be useful in the study of the existencg-periodic solutions
to Eq.(1.1)in Section3.

[H1] There exist constants > 0 andn € N suchthat f(x)x > o|x|™1 ¥x € R (or
f(X)x < —o|x|™1vx € R).

[H2] There exist constants > 0 andn € N suchthat f(x) > o|x|" ¥x € R (or
f(x) < —o|x|"Vx € R).

[H3] There exists a constadt> 0 such hatxg(x) > 0 (orxg(x) < 0) and|g(x)| > % for
[X] > d.

[H4] There exists a constaht- 0 such thatg(uy) — g(uz2)| < l|ug — uz| Yuz, Uz € R.

[Hs] There exist constantse [0, +o00) andm € N such that liny 40 % —=r.
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3. Main results
Theorem 3.1. Suppose f(0) = 0 and [H1], [H3], [H4] hold. Suppose further that there exist
k € Z and § > 0 such that maxcpo, 17|t (t) — KT| < 4. If:

()n=1lando > 258,

or
2)n>1,

then Eq. (1.1) has at least one T -periodic solution.
Proof. Consider tle operator equation
Lx = ANX, A€ (0,1). (3.2)

Letf: = {x € X: Lx = ANX, A € (0, D}. If x(t) = (Xl(”) € (X, thenfrom (3.1)we have

X2 (t)

{xi(t) = Jpq(x2()) = Axa(®)]% 2 (t) (32)
Xa(t) = —1f (pg(x2(t) — ABY(xa(t — T(1)) + Ae(t). '

From the firg equation of(3.2), we have
1
X2(t) = ¢p <Xx/1(t)> . (3.3

Lett andt be, respectively, the global maximum point and global minimum poing ¢f) on
[0, T, thenx] (T) = 0 and thee existss > 0 such hatx;(t) is decreasing for € (T — ¢,T + ¢).
By (3.3), x2(t) = 0 andx2(t) is also decreasing fdre (t — &,t + &) which yieldsx,(t) < 0.
From f (0) = 0 and the scond equation af3.2), we have

—Ba(x1(t — (1)) +e®) <0,

ie.,
_ _ t
g @ - 1(®)) = % > —% (3.4)
Similarly, we get
t
goxut — T(0)) < % < %. (3.5)

If gexa—7(®)) > 'e‘o , thenfrom (3.5)there & apointy € [0, T] suchthatg(xi(n—(n))) =
TO Soly assumptlor[Hg] we find
[X1(n — ()| < d. (3.6)

On the other hand, i§(x.(f — t(®))) < % Eq. (3.4)implies thatig(xi (@ — t(®)))| < lT
which together with assumptididz] guarantees that

X1 — ()| < d. (3.7)
Combining the above, we séeat there is always a poigite [0, T] suchthat

IX1(§ — T(§)] = d.
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Write § —7(£) = KT +t* whenk € Z andt* € [0, T]. Thenbylxy(t)| < | f. [X;(S)|ds|+Ix1(t*)]
forallt € [0, T], we have

.
[X1lo < [X1(t*)] +/0 IX1(s)]ds < d + [x]]1. (3.8)

On the other hand, substitutiifg.3)into the second equation ¢3.2), we obtain
1 / ' 1 /
[(ﬂp (Xxl(t))} +af <<ﬂq <<ﬂp <XX1(t)>)) + ABg(x1(t — (1)) = Are(t),

1
[pp(Xy ()] + AP f <XX’1('E)) +APBgxa(t — (1)) = APet). (3.9)

or

Multiplying both sides of Eq(3.9)by x; (t) and integrating ove0, T], we have
T T 1
/0 [op(X(M)]'x1 (1) dt +Ap/0 f <Xx’1(t)> x1(t) dt
T T
+Ap/ Ba(xa(t — ()X (t) dt = Ap/ e(t)xy(t) dt. (3.10)
0 0

If we write w(t) = pp(X,(®)), then [} [pp(X )X, ) dt = [3 gq(w(®)) dw(t) = 0. Hence
(3.10)reduces to

T T T
/0 f Gx/l(t)) X1 (t) dt = —/0 ,3g(x1(t—r(t)))x/l(t)dt+/0 e(t)xy(t)dt.  (3.11)

flxlt f)] dt > A Tl/t
xl() Xl() _CT/C; xxl()

From[H1], we have

T 1 T
‘/ f <—x’l(t)> x/l(t)dt‘ = /
0 A 0
.
o /
= ﬁ/o Ix; (0" dt,

which together with(3.11) [Ha], and Hilder’s inequdity implies

,
a/ X7 ()" dt
0

n+1
dt

T T
<" / ,39(X1(t—T(t)))X/l(t)dt‘—l-k” / e(t)x’l(t)dt‘
0 0

T T
=B ‘/O g(x1 (D)X (1) dt +/0 [g(x1(t — T(1))) — g(Xl(t))]x’l(t)dt‘
T
+ V e(t)xg(t)dt‘
0
T T
< I,B/O IX1(t — 7(t)) — X(D)||x1 (1) dt + ‘/0 e(t)xfl(t)dt‘

1
2

T
< 1BIxql2 (/0 IX1(t) — Xa(t — T(t))lzdt) + [el2lxq 2. (3.12)
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Meanwhile, by assumption, there exise Z ands > 0 such bat maxejo, 7|7 (t) — KT| < 6.
HenceLemma 2.25ives

1

r b :
</ [X1(t) — xo(t — T(t))lzdt> = </ [X1(t) — xg(t — (1) + kT)|2dt>
0 0

< V25|X]2. (3.13)
Substituting(3.13)into (3.12) andusing Holder's inequdity, we have
T
cr/ X (t) " it
0
< V25BIX 5 + lelalxql2

T 2/(n+1)
< V25T (-D/(0+D < /O X} (t)"L dt)

T 1/(n+1)
+ |gfo T (M D/ D) < / IXq )"t dt) (3.14)
0
Casel. If n=1ando > +/288, it follows from (3.14)that
lef2
Xjlp < ————=— = 3.15
| 1|2 =5 \/25,3 ( )
So by(3.8)and Hilder's inequdity, we have
IXtlo < d +[xjl1 <d + TY2x{ | < d + TY2M. (3.16)

Case2. Forn > 1,as¥(n+1) < 2/(n+ 1) < 1, it follows from (3.14)that there must be a
constantM* > 0 such thagfoT |x/1(t)|“Jrl dt < M*. Thus by(3.8)and Hlde's inequdlity,

T 1/(n+1)
IX1lo < d+[x3l1 <d + Tn/(n+1) </O |x/1(t)|”+1 dt)

<d+ -I—n/(n+1)(|v|*)1/(n+1)_ (3.17)
From(3.16)and(3.17) we see tht in both cases there exists a constdatsuchthat
IX1lo < M1. (3.18)
On the other had, by the first equation B.2), we have
T
/ X2(8)|9?x2(s) ds = 0, (3.19)
0

which implies that there is a constdpte [0, T] suchthatxz(to) = 0. So

.
Ileosf0 1X5(S)| ds. (3.20)
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Now multiplying by x5(t) on both sides of the second equatior(®R) and integrating over
[0, T], weobtain

T T
IX§|§ = - /0 f (pq(x2(1)))X5(t) dt —A/O BI(xa(t — T (1))x5(t) dt
.
+A/ e(t)x5(t) dt
0

T T
= —A/ Ba(xa(t — T(1))x5(t) dt + )»/ e(t)Xy(t) dt
0 0

IA

T T
VO ﬁg(xl(t—r(t)))xg(t)dt‘+VO e(t)xé(t)dt‘

< BOm, - IX3l1 + lef2]x3l2
1
< BIm, T Z[X3l2 + lel2|x3l2 (3.21)
wheregwm, = maxy<m, |19(u)|. Herce

Xl2 < BOm T2 + lelz = M**, (3.22)
which, together with{(3.20) yields
T
palo = [ hg@)1ds = Thixgle < TEM™ o= Mz (3.23)
0

Letf» = {x € KerL : Nx € ImL}. If x € {2, thenx € KerL andQNx = 0. Obviously

IX2|972x, = 0; then by the ssumption ore, we seehatg(x;) = 0. So
[X1] <d < My, X2 =0 < Ma. (3.24)

Let2 = {x = (x1,X2) T € X : [x1|lo < N, [X2lo < No}, whereN; and N are constants with
Ny > Mg, N2 > Mz and(N2)% > dBgq, wheregq = maxyj<d |g(u)|. Then21 C 2, 2> C £2.
From (3.18) (3.23)and(3.24) it is easy to see that conditions (1) and (2)Le&fmma 2.1are
satisfied.

Next, we claim that condition (3) oLemma 2.1is also satisfied. Fothis, define the
isomorphismJ : ImQ — KerL by J(xg,X2) = (X2, —X1) and letH (v, u) = pv + (1 —
w)JQNv, (v, u) € 2 x [0, 1]. By simplecalculations, we obtain, fax, 1) € 3(£2 NKerL) x
[0, 1],

XTH (X, 1) = w0 +535) + (L= ;) (Bxag(x1) + [x2|%) > 0. (3.25)
Hence
dedJQN, 2 NnKerL, 0} = dedH (x,0), 2NKerL, 0}
=dedH(x, 1), 2NKerL, 0} =dedl, 2 NKerL, 0}
# 0, (3.26)

and so condition (3) dtemma 2.1is also satisfied.
Therefore, by emma 2.1we @mnclude that equation

Lx = Nx (3.27)

has a shution x(t) = (x1(t), X2(t))" on £, i.e., Eq.(1.1) has aT -periodic solutionxy(t) with
[X1]lo < Mj. This mmpletes the proof ofheorem 3.1 O
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Theorem 3.2. Suppose f (0) = 0 and [H2], [Hz], [Hs] hold. If:
(A n=mando > rBT",

or
2) n>m,

then Eq. (1.1) has at least one T-periodic solution.

Proof. As provedinTheorem 3.1let 21 = {x € X : Lx = ANx, » € (0, D}. If x(t) = (gg;) €
{21, then we have

1
lop(xq ()] + AP T <XX'1(t)) + APBg(xa(t — (1)) = APe(D) (3.28)
and
T
IX1lo < [Xa(t™)] +/0 1X1(9)| ds < d + |1 (3.29)
Integrding both sides of3.28)over|[0, T], we get

T T
/ f Gx;(t)) dt +/ Bg(x1(t — (1)) dt = 0. (3.30)
0 0

It follows from [H>] that
T 1 T
[ i)l
0 A 0

.
a/ IXj(®)|"dt < A
0

1 / o T / n
f(oam dtzﬁfo X} (t)[" dit (3.31)

and so

T T
/0 BI(xa(t — T () dt| < ﬁ/o lg(xa(t — z(t)))| dt. (3.32)

For an arlitrary constant > 0, we have froniHs] that there is a constapt> d (independent
of A) such hat|g(u)| < (r +¢)|u|Mfor |u| > p. LetE; = {t € [0, T] : |[Xa(t — =(}))| > p},
Ex={te [0, T]:[xu(t — z(t)| < p} andg, = maxu<, [g(W)|. By (3.32) we have

T
U/ Ixp ()" dt < ﬂ/ |g(x1(t—r(t)))|dt+ﬂ/ |g(X1(t — T (t)))| dt
0 E1 - E2 (3.33)
< (r+¢&)BTIxilg + BY,T
< (r+e)BTA+IX110)™+ BY,T.
We claim that there exists a constavif > 0 such hat
[X1lo < M1. (3.34)
If [x1]1 = 0, then by(3.29) [x1|o < d. So supposgx;|1 > 0; then
T m T m d m
[d +/ |x’1(s)|ds} = </ |x’1(s)|ds) |:1+ T7:| ) (3.35)
0 0 Jo Ix1(s)|ds

From elementary analiss there isa anstant > 0 (independent of) such hat
A+ <14+ @+m)x, Vxe(0h]. (3.36)
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If 9 > h, then

X111
Ix1l1 < d/h,
and(3.29)implies that
[X1lo <d +d/h. (3.37)

If \X% < h, thenfrom (3.36)we have
1

[d + Ixqla]"
T m
< (/ 1X1(9)] ds) [1 + 7§m +1d }
0 Jo IX((s)|ds
T m T
= (/ 1X1(S)] ds) + (m+ 1)d </ [X1(S)| ds)
0 0
T n
< Tmn=1/n < / Ix;(s)|" ds)
0

T (m-1)/n
+ (Mm+ 1) dT"=DMm-1y/n </ X, ()|" ds) ) (3.38)
0

Substituting(3.38)into (3.33) we obtain
T
o/ Ix1(t)|" dt
0

T o
< (r +e)pTHM™R (/ |x;(S)|”dS>
0

m—1

T n
F(r+em+DdT™ AR </ |x’1(s)|”ds) + B9, T. (3.39)
0

Casel.If n = mando > r8T", we can choose < # —r.Theno > (r +¢)BT". So by
(3.39) we seethat [ |x](t)|"dt is bounded.

m

Case2. Forn > m, asmT*l < 7 <1,itis also easy to see thﬁ{}r [x1()|"dt is bounded.

Hence weknow that in both cases there is a constiéint- 0 such that
T
/ Ix;()|"dt < M
0
which together wit3.29)yields that

Ix1lo < d + T DMWY = M. (3.40)

This proves the claim and the rest of the proof of the theorem is identical to tliaeofem 3.1
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