
January 13, 2006 8:8 Proceedings Trim Size: 9.75in x 6.5in locu2

A RECURSIVE METHOD FOR SOLVING HAPLOTYPE FREQUENCIES IN
MULTIPLE LOCI LINKAGE ANALYSIS

ERIC S. FUNG WAI-KI CHING ∗ YIU-FAI LEE

Department of Mathematics, The University of Hong Kong
Pokfulam Road, Hong Kong, China

E-mails: ericfung@hkusua.hku,hk, wkc@maths.hku.hk, ahyiu@graduate.hku.hk

MICHAEL K. NG †

Department of Mathematics, Hong Kong Baptist University
Kowloon Tong, Hong Kong, China
E-mail: mng@math.hkbu.edu.hk

Multiple loci analysis has become popular with the advanced development in biological experiments.
A lot of studies have been focused on the biological and the statistical properties of such multiple loci
analysis. In this paper, we study one of the important computational problems: solving the probabil-
ities of haplotype classes from a large linear system Ax = b derived from the recombination events
in multiple loci analysis. Since the size of the recombination matrix A increases exponentially with
respect to the number of loci, fast solvers are required to deal with a large number of loci in the anal-
ysis. By exploiting the nice structure of the matrix A, we develop an efficient recursive algorithm for
solving such structured linear systems. In particular, the complexity of the proposed algorithm is of
O(m log m) operations and the memory requirement is of O(m) locations where m is the size of the
matrix A. Numerical examples are given to demonstrate the effectiveness of our efficient solver.

1. Introduction

Linkage analysis is an important tool for the mapping of genetic loci. With the availability
of numerous DNA markers throughout the human genome, linkage analysis has demon-
strated its usefulness in mapping the mutations responsible for hundreds of Mendelian
diseases (Kruglyak and Lander, 1995). The genotype of an individual at loci X and Y

is formed by the haplotypes of two gametes XfYf inherited from the father, and XmYm

inherited from the mother. The haplotype of a gamete produced by the individual consists
of a mixture of paternal and maternal alleles. A gamete contains two alleles from the same
parental gamete (non-recombinant), i.e., XfYf or XmYm, or one allele from each parental
gamete (recombinant), i.e., XfYm or XmYf . The recombination fraction between the two
loci is defined as the probability that a gamete is recombinant.

∗Work partially supported by RGC Grant No. HKU 7126/02P, and HKU CRGC Grant Nos. 10203919,10204437
†Work partially supported by RGC Grant Nos. HKU 7130/02P, 7046/03P, 7035/04P, 7035/05P.

1



January 13, 2006 8:8 Proceedings Trim Size: 9.75in x 6.5in locu2

2

When the number of loci is large, a haplotype almost certainly constitutes a new com-
bination of alleles, different from the parental and the maternal haplotypes (Sham, 1998).
If n loci are involved, there are (n− 1) intervals between adjacent loci, each of which can
either have an even or an odd number of crossovers. This produces 2n−1 classes of gametic
haplotypes, and therefore (2n−1−1) independent gametic frequencies (the 2n−1 classes of
gametic frequencies must sum up to one). The frequency of a gametic haplotype is equal
to the joint probability of the co-occurrence of a set of recombination events. Liberman
and Karlin (1984) applied the concept of recombination values to establish the relationship
between recombination fractions and haplotype frequencies for n > 3. The recombination
value of a set of intervals (not necessary contiguous), is the probability of an odd number
of crossovers occurring in the intervals. Since each of the (n− 1) intervals can be included
or excluded in a set of intervals, there are (2n−1−1) sets of intervals and hence (2n−1−1)
recombination values. There is a relationship between these (2n−1 − 1) recombination
values and the (2n−1 − 1) haplotype frequencies as specified by a linear system

Θ = ΓAn

where An is the m-by-m matrix with m = 2n−1 being equal to the number of haplotype
classes, and Θ and Γ are m-vectors containing the recombination values and haplotype
frequencies respectively. When the number n of loci increases, the size of An increases
exponentially and therefore the cost of solving Θ = ΓAn is very expensive. Here we will
first establish the structure of An and a recursive formula relating An+1 and An. We then
present a recursive solver based on the recursiev formula to solve Θ = ΓAn efficiently.

The rest of this paper is organized as follows. In Section 2, we give some background
and basic properties on the matrix An. In Section 3, we show that An is nonsingular and
give the explicit form for its inverse. According to the explicit form of A−1

n , we obtain the
haplotype frequencies efficiently by using a recursive scheme. We also give a cost analysis
for the proposed algorithm. Numerical examples are given to illustrate the effectiveness of
the proposed method. Finally, concluding remarks are given in Section 4.

2. The Recombination Matrix An

In this section, we give some background of the recombination matrix An. In the multi-
locus situation (n ≥ 3), we denote a haplotype of n loci by a (n−1) string of 0s and 1s with
respect the ith digit representing the recombination status of the (i+1)th allele with respect
to the first allele. This string of (n − 1) digits specifies the recombination status between
all n(n− 1)/2 pairs of loci. Here pairs of loci with different digits are recombinants while
the others are non-recombinants. Such strings refer to different rows of the matrix An. To
apply the concept of recombination values of a set of non-contiguous intervals, we let the
inclusion or the exclusion of the intervals be denoted by a vector of 0s and 1s, where 0
represents exclusion and 1 represents inclusion. Such intervals refer to different columns
of the matrix An.

For examples, in the case of four loci, W , X , Y and Z, there are eight possible hap-
lotype classes, 000, 001, 010, 011, 100, 101, 110 and 111. Each represents a unique



January 13, 2006 8:8 Proceedings Trim Size: 9.75in x 6.5in locu2

3

combination of recombination status between the six possible pairs of loci (WX , WY ,
WZ, XY , XZ and Y Z). There are seven possible sets of intervals (001, 010, 011, 100,
101, 110, 111), excluding the set with no intervals. In this case, the relationship between
the haplotype classes and the recombination values can be described as follows:

Haplotype classes Interval sets
WXYZ 001 010 011 100 101 110 111

000 0 0 0 0 0 0 0
001 1 0 1 0 1 0 1
010 1 1 0 0 1 1 0
011 0 1 1 0 0 1 1
100 0 1 1 1 1 0 0
101 1 1 0 1 0 0 1
110 1 0 1 1 0 1 0
111 0 0 0 1 1 1 1

• The gamete of the haplotype class “001” is the recombinant with respect to the
loci W and Z, and is the non-recombinant with respect to the loci W , X and
Y . Correspondingly, the crossover only occurs in the interval Y Z, and therefore,
we assign one in the sets of intervals (001, 011, 101 and 111) as these intervals
including Y Z contribute the frequencies to the haplotype class “001”. By using
the same arguments, the haplotype class “100” can be considered similarly.

• For the haplotype class “011”, the gamete is the recombinant with respect to the
loci W and Y and the loci W and Z, and is the non-recombinant with respect
to the loci W and X . In this case, the crossover only occurs in the interval XY .
The sets of intervals including XY contributing to the frequencies of the haplo-
type class “011” are 010, 011, 110 and 111. The haplotype class “110” can be
considered similarly.

• The gamete of the haplotype class “010” is the recombinant with respect to the
loci W and Y , and is the non-recombinant with respect to the loci W , X and Z. It
also implies that such haplotype is also the the recombinant with respect to the loci
X and Y , and also the loci Y and Z. Correspondingly, the crossover only occurs
in the interval XY or Y Z, and therefore, we assign one in the sets of intervals
(001, 010, 101 and 111) as these intervals including XY or Y Z contribute the
frequencies to the haplotype class “010”. We note that the sets of intervals (011
and 111) include both XY and Y Z and therefore the value 0 is assigned to them
since an odd number of crossovers occurring in the intervals is counted. By using
the same arguments, the haplotype class “101” can be considered similarly.

• For the haplotype class ”111”, the gamete is the recombinant with respect to the
loci W and X , the loci W and Y , and the loci W and Z. In this case, the crossover
only occurs in the interval WX . The sets of intervals contributing to the frequen-
cies of the haplotype class “111” are 100, 101, 110 and 111.

Finally, we note that the sum of all haplotype frequencies should be equal to one. With the



January 13, 2006 8:8 Proceedings Trim Size: 9.75in x 6.5in locu2

4

above table and the additional constraint, the matrix A4 is given as follows:

Interval sets
001 010 011 100 101 110 111

Haplotype classes

000 →
001 →
010 →
011 →
100 →
101 →
110 →
111 →




1 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1
1 1 1 0 0 1 1 0
1 0 1 1 0 0 1 1
1 0 1 1 1 1 0 0
1 1 1 0 1 0 0 1
1 1 0 1 1 0 1 0
1 0 0 0 1 1 1 1




.

In the following discussion, the binary strings of haplotype classes and interval sets are
represented in ascending order, and the properties of the recombination matrix An can be
summarized as follows:

(1) All the entries in the first column of An are equal to 1.
(2) The first row of An is a unit row vector with the first entry being equal to 1.
(3) For the (i, j)th entry of An, we express the integers i and j in a binary system:

i = 1 +
n−2∑

k=0

a
(i)
k 2k and j = 1 +

n−2∑

k=0

b
(j)
k 2k.

The haplotype class is represented by a
(i)
0 a

(i)
1 · · · a(i)

n−2 and the set of intervals is
represented by b

(i)
1 b

(i)
2 · · · b(i)

n−2. The value of the (i, j)th entry of An is determined
by the following formula:

[An]i,j =

(
a
(i)
0 b

(i)
0 +

n−2∑

k=1

(a(i)
k − a

(i)
k−1)b

(j)
k

)
(mod 2).

We note that when a
(i)
k and a

(i)
k−1 are different, it refers to the case that the gamete is

recombinant with respect to themselves, and hence such interval should be included
in the interval set if b

(j)
k is equal to 1. The a

(i)
0 already indicates whether the gamete

is recombinant with respect to the first two loci. Finally, the value one is assigned
to [An]i,j under the modulo arithmetic if the number of intervals included is an odd
number.

According to the above properties of An, we can construct the recombination matrix
and then solve the linear system Θ = ΓAn to obtain the haplotype frequencies. Since
the size of An increases exponentially with respect to the number of loci n, fast solvers
are required in order to compute haplotype frequencies efficiently in linkage analysis of
multiple loci. Next we present a recursive formula for An+1 and An based on the nice
structure of the matrix An+1.



January 13, 2006 8:8 Proceedings Trim Size: 9.75in x 6.5in locu2

5

Theorem 2.1. For n ≥ 1, the recombination matrix An+1 is given recursively as follows:

An+1 =
(

An An −R

PAn N − PAn + R

)

where

P =




0 0 . . . 0 1
0 . . . 0 1 0
...

...
...

...
...

...
...

...
...

...
1 0 0 . . . 0




, R =




1 0 0 . . . 0
1 0 0 . . . 0
...

...
...

...
...

...
...

...
...

...
1 0 0 . . . 0




and N =




1 1 . . . 1 1
1 1 . . . 1 1
...

... · · · ...
...

...
... · · · ...

...
1 1 . . . 1 1




.

Proof. First of all, we partition An+1 into four blocks, i.e.,

An+1 =
(

M1 M2

M3 M4

)

where Mi are 2n−1-by-2n−1 matrices. We note that the binary strings of haplotype classes
and interval sets are represented in ascending order. Therefore, for the matrix M1 corre-
sponding to the first 2n−1 rows and the first 2n−1 columns, the first digit of their corre-
sponding haplotype classes and interval sets is equal to 0. It implies that M1 is just the
recombination matrix An for the n loci problem.

For the submatrix M2, we note that the first digit of the interval sets corresponding the
columns of An+1 between (2n−1 + 1)th to 2nth, is equal to 1. Since the first digit of the
corresponding haplotype classes is equal to 0, there is no contribution of such haplotype
classes to the interval set “100 · · · 000”. We assign the zero entries for the first column of
M2, and the other entries are the same as the matrix M1. Therefore the resulting matrix
M2 is equal to (An −R).

For the submatrix M3, the corresponding haplotype class “i1i2 · · · in” can be viewed
as the same as the haplotype class “(1 − i1)(1 − i2) · · · (1 − in)”. The contributions of
the haplotype class “i1i2 · · · in” and the haplotype class “(1 − i1)(1 − i2) · · · (1 − in)”
to the interval sets are the same. It means that the kth row of the matrix M3 is equal to
the (2n−1 − k + 1)th row of the matrix M1. Such permutation can be implemented as
M3 = PM1.

For the submatrix M4, by using the similar argument for the submatrix M3, the kth row
of the matrix M4 is equal to the (2n−1−k+1)th row of the matrix M2. Since the first digit
of all the haplotype classes and all the interval sets corresponding to the matrix M4 is equal
1, all the entries of M4 should increase by 1. We note that an odd number of crossovers
occurring in the set intervals is counted in the recombination matrix. Therefore, the matrix
M4 is given by N − P (An −R). Hence the result follows.

In the next section, we demonstrate that an efficient solver based on the recursive for-
mula for An+1 can be developed to solve the linear system Θ = ΓAn.



January 13, 2006 8:8 Proceedings Trim Size: 9.75in x 6.5in locu2

6

3. Recursive Solvers

Since the number n of loci increases, the size of An increases exponentially. Fast solvers
are required in order to compute haplotype frequencies efficiently in linkage analysis of
multiple loci. In this section, we show that An is nonsingular for n ≥ 2, and study the
structure of A−1

n . We then present our recursive solvers.

Theorem 3.1. For n ≥ 1, An+1 is nonsingular, and we have the following properties of
A−1

n+1:

(a) The matrix A−1
n+1 is given by

1
2

(
A−1

n + G (A−1
n −G)P

A−1
n −G−H (H + G−A−1

n )P

)

where

G =




1 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0


 and H =

1
2n−2




1 1 · · · 1
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0




[Here we assume that A1 = 1.]
(b) The first row of A−1

n+1 is a unit row vector with the first entry being equal to 1.
(c) The row sum of A−1

n+1 is equal to zero except for the first row of A−1
n+1.

Proof. Here we use mathematical induction. Let S(k) be a statement that Ak is invertible
and A−1

k satisfies above properties. To begin with, we notice that A2 and its inverse are:

A2 =
(

1 0
1 1

)
and A−1

2 =
(

1 0
−1 1

)
.

For k = 3, A3 and its inverse are given by

A3 =




1 0 0 0
1 1 0 1
1 1 1 0
1 0 1 1


 and A−1

3 =
1
2




2 0 0 0
−1 1 1 −1
−1 −1 1 1
−1 1 −1 1


 .

It is clear that the last two properties are satisfied. We note that

1
2

(
A−1

2 + G (A−1
2 −G)P

A−1
2 −G−H (H + G−A−1

2 )P

)

=
1
2




„
1 0
−1 1

«
+

„
1 0
0 0

« »„
1 0
−1 1

«
−
„

1 0
0 0

«–„
0 1
1 0

«

„
1 0
−1 1

«
−
„

1 0
0 0

«
− 1

20

„
1 1
0 0

« »
1
20

„
1 1
0 0

«
+

„
1 0
0 0

«
−
„

1 0
−1 1

«–„
0 1
1 0

«




=
1
2




2 0 0 0
−1 1 1 −1
−1 −1 1 1
−1 1 −1 1


 = A−1

3 .



January 13, 2006 8:8 Proceedings Trim Size: 9.75in x 6.5in locu2

7

The statement is true for k = 2 and k = 3.
Now we assume S(k) is true. We are going to prove that S(k + 1) is true. By using

Theorem 2.1, we have

Ak+1 =
(

Ak Ak −R

PAk N − PAk + R

)

Let us consider the following matrix-matrix multiplication:

1
2

(
A−1

k + G (A−1
k −G)P

A−1
k −G−H (H + G−A−1

k )P

)(
Ak Ak −R

PAk N − PAk + R

)
=

(
C11 C12

C21 C22

)

where P 2 = I . Our task here is to show that the above right-hand-side matrix is the identity
matrix. We expand the product of the two matrices and we have

C11 =
1
2
[(A−1

k + G)Ak + (A−1
k −G)PPAk] =

1
2
[(A−1

k + G)Ak + (A−1
k −G)Ak]

=
1
2
[I + GAk + I −GAk] = I

and

C12 =
1
2
[(A−1

k + G)(Ak −R) + (A−1
k −G)P (N − PAk + R)]

=
1
2
[(A−1

k + G)(Ak −R) + (A−1
k −G)PP (N −Ak + R)]

=
1
2
[(A−1

k + G)(Ak −R) + (A−1
k −G)(N −Ak + R)]

=
1
2
[I −A−1

k R + GAk −GR + A−1
k N − I + A−1

k R−GN + GAk −GR]

=
1
2
[A−1

k N −GN ] = 0.

According to Theorem 2.1, the first row of Ak is a unit row vector with first entry being
equal to 1, we obtain GAk = GR = (1, 0, . . . , 0). By proposition 3.1, we obtain A−1

k N =
GN = 2n−2H . Thus we have

C21 =
1
2
[(A−1

k −G−H)Ak + (H + G−A−1
k )PPAk]

=
1
2
[(A−1

k −G−H)Ak + (H + G−A−1
k )Ak]

=
1
2
[I −GAk −HAk + HAk + GAk − I] = 0



January 13, 2006 8:8 Proceedings Trim Size: 9.75in x 6.5in locu2

8

and

C22 =
1
2
[(A−1

k −G−H)(Ak −R) + (H + G−A−1
k )P (N − PAk + R)]

=
1
2
[(A−1

k −G−H)(Ak −R) + (H + G−A−1
k )PP (N −Ak + R)]

=
1
2
[(A−1

k −G−H)(Ak −R) + (H + G−A−1
k )(N −Ak + R)]

=
1
2
[I −GAk −HAk −A−1

k R + GR + HR + HN −HAk + HR + GN −GAk

+GR−A−1
k N + I −A−1

k R]

= I +
1
2
[2GR + 2HR− 2GAk − 2HAk − 2A−1

k R + HN + GN −A−1
k N ] = I.

Hence (a) is proved.
By using the induction assumption, it is easy to show that each row sum of (A−1

k +
G) + (A−1

k − G)P is equal to zero except the first row. Also it is clear that the first row
sum of (A−1

k + G) + (A−1
k −G)P is equal to two. Moreover, we have

A−1
k −G−H + (H + G−A−1

k )P = A−1
k −G−H + H + (G−A−1

k )P
= (A−1

k −G) + (G−A−1
k )P.

Therefore we can show that each row sum of (A−1
k −G−H)+ (H +G−A−1

k )P is equal
to zero. Thus (b) and (c) are proved.

By using Theorem 3.1, a recursive method can be developed to solve the linear system
Θ = ΓAn. The next theorem states how to solve the linear system Θ = ΓAn without
storing A−1

n .

Theorem 3.2. The complexity for solving Γ in Θ = ΓAn with n loci is of O(n2n).

Proof. To begin with, let us consider the complexity for calculating 2n−1ΘA−1
n+1 given

that the computational complexity of the inverse of 2n−2XA−1
n is ψ(n), where X is a

1-by-2n−1 vector. By Theorem 3.1, we have

ΘA−1
n+1 =

1
2

(
Θ1 Θ2

)(
A−1

n + G (A−1
n −G)P

A−1
n −G−H (H + G−A−1

n )P

)

where Θ = (Θ1, Θ2). It implies that

2n−1ΘA−1
n+1 =

(
2n−2(Θ1 + Θ2)A−1

n + 2n−2(Θ1 −Θ2)G +−2n−2Θ2H

2n−2(Θ1 −Θ2)A−1
n P − 2n−2(Θ1 −Θ2)GP + 2n−2Θ2HP

)T

.

Firstly, we observe that the cost for 2n−2G requires one operation and there is no compu-
tational cost for 2n−2H as they are given by

2n−2G =




2n−2 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0


 and 2n−2H =




1 1 · · · 1
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0


 .



January 13, 2006 8:8 Proceedings Trim Size: 9.75in x 6.5in locu2

9

The computational cost for obtaining either (Θ1 + Θ2) or (Θ1−Θ2) requires 2n−1 opera-
tions. The cost for 2n−2(Θ1+Θ2)A−1

n and 2n−2(Θ1−Θ2)A−1
n requires 2ψ(n) operations.

The cost for 2n−2(Θ1−Θ2)G requires one operation as 2n−2G contains only one non-zero
element in 2n−2G. Similarly, there is no cost involved for the computation of 2n−2Θ2H .
This is also true for the matrix multiplication of P as it is just a permutation. Thus, the total
computational cost ψ(n + 1) of 2n−1ΘA−1

n+1 is equal to 2ψ(n) + 5 · 2n−1 + 4. It is easy to
deduce that

ψ(n + 1) = 3 · 2n−1 + 5(n− 1)2n−1 + 4 · (2n−1− 1) = 5n · 2n−1 + (2n− 4) = O(n2n).

Hence the result follows.

Theorem 3.3. The storage cost for solving Γ in Θ = ΓAn with n loci is 3 · 2n − 5.

Proof. To begin with, let us denote the storage cost for computing 2n−2ΘA−1
n by φ(n).

According to Theorem 3.2, we need to store such components

2n−2G, 2n−2H, Θ1 and Θ2.

Their corresponding storage cost are are 1, 2n−1, 2n−1 and 2n−1 respectively. The com-
putational procedure of solving Γ in Θ = ΓAn is summarized as follows:

Procedure Current Storage requirement
Start with 2n−2A−1

n φ(n)
Load Θ1, Θ2 φ(n) + 2n

Compute Θ1 + Θ2, Θ1 −Θ2 φ(n) + 2n + 2n

Remove Θ1 φ(n) + 2n + 2n−1

Compute X1 = 2n−2(Θ1 + Θ2)A
−1
n φ(n) + 2n + 2n−1 + 2n−1

Remove Θ1 + Θ2 φ(n) + 2n + 2n−1

Compute X2 = 2n−2(Θ1 −Θ2)A
−1
n φ(n) + 2n + 2n−1 + 2n−1

Remove 2n−2A−1
n 2n+1

Compute X2 = X2P 2n+1

Create 2n−2G 2n+1 + 1

Compute Y = 2n−2(Θ1 −Θ2)G 2n+1 + 1 + 1

Remove Θ1 −Θ2, 2n−2G 2n + 2n−1 + 1

Compute 2n−2Θ2H 2n + 2n−1 + 1 + 2n−1

Remove Θ2 2n + 2n−1 + 1

Compute X1 + Y − 2n−2Θ2H 2n + 2n−1 + 1 + 2n−1

Remove X1 2n + 2n−1 + 1

Compute Y = Y P 2n + 2n−1 + 1

Compute X2 − Y + 2n−2Θ2H 2n + 2n−1 + 1 + 2n−1

Remove X2, Y, 2n−2Θ2H 2n

Table 1: The Storage of the Algorithm.

From the above procedure, the maximum storage requirement is either φ(n) + 2n+1 or
2n+1 + 1. Since φ(n + 1) = φ(n) + 2n+1 = · · · = 2n+2 − 5 + 2n+1, the total storage
requirement is 3 · 2n+1 − 5.



January 13, 2006 8:8 Proceedings Trim Size: 9.75in x 6.5in locu2

10

3.1. Computational Results

In this subsection, we demonstrate the effectiveness of the proposed recursive solver for
solving Θ = ΓAn. Here we perform our test in a MATLAB platform with CPU=AMP
1800+ and memory=512Mb. Table 2 shows the times (in seconds) required for computing
ΘA−1

n and the ratio between the computational times of ΘA−1
n Θ′A−1

n−1. We remark that
the complexity of the proposed recursive algorithm for the n loci problem is of O((n −
1)2n). From Table 1, we find that the computational times only increase linearly with
respect to n when n ≥ 10. It clearly shows that the proposed recursive method is highly
efficient.

n 10 11 12 13 14 15 16 17
time (seconds) 0.05 0.11 0.22 0.33 0.77 1.43 2.86 5.65

ratio – 2.20 2.00 1.50 2.33 1.86 2 1.98
n 18 19 20 21 22 23 24 25

time (seconds) 11.37 22.91 46.08 92.83 187.68 379.04 765.94 1812.82
ratio 2.01 2.01 2.01 2.01 2.02 2.02 2.02 2.37

Table 1: The Computational Times for different n.

4. Concluding Remarks

In this paper, we give a systematic formulation for the linkage analysis problem and an
efficient recursive solver is also proposed for solving the haplotype frequencies in multiple
loci linkage analysis. The complexity of our method is shown to be O((n − 1)2n) for n

loci problem. It is much more efficient when compared to O(23n) operations required by
the classical Gaussian elimination method. Previous applications of the linkage analysis
only consider small values of n, see for instance (Sham 1998 and Zhao 1990). With our
formulation of the problem and also the fast recursive solver, practitioners can now consider
larger n and we expect the method can be more popular.

References
1. D. Curtis, Another Procedure for the Preliminary Ordering of Loci on Two-Point Lod Scores,

Annals of Human Genetics, 58, 65-75, 1994.
2. G. Golub and C. van Loan, Matrix Computations, The John Hopkins University Press, Baltimore

1989.
3. L. Kruglyak and E. S. Lander, High-Resolution Genetic Mapping of Complex Traits, American

Journal of Human Genetics, 56, 1212-23, 1995.
4. U. Liberman and S. Karlin, Theoretical Models of Genetic MapFunctions, Theoretical Popula-

tion Biology, 25, 331-46, 1984.
5. P. Sham, Statistics in Human Genetics, Edward Arnold, 1998.
6. D. E. Weeks, G. M. Lathrop and J. Ott, Multipoint Mapping under Genetic Interference, Human

Heredity, 43, 86-97, 1993.
7. L. P. Zhao, E. Thompson and R. Prentice, Joint Estimation of Recombination Fractions and

Interference Coefficients in Multilocus Linkage Analysis, American Journal of Human Genetics,
47, 255-265, 1990.


