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Abstract

Hidden Markov Models (HMMs) are widely used in applied sciences and

engineering. The potential applications in manufacturing industries have not

yet been fully explored. In this paper, we propose to apply HMM to the de-

tection of machine failure in a process control problem. We propose models

for both cases of indistinguishable production units and distinguishable pro-

duction units. Numerical examples are given to illustrate the effectiveness of

the proposed model.

Key Words: Machine Failure, Hidden Markov Model, Statistical Control Process,

Transition Probability.

1 Introduction

Statistical process control is a powerful tool that is widely used in monitoring man-

ufacturing processes. On a control chart, points are plotted as production proceeds,

and the process is deemed to be out of control if a plotted point lies outside the con-

trol limits, or a group of points have a certain pre-defined abnormal pattern. Com-

monly used control charts, including the x̄ -chart, p-chart, EWMA charts [12, 14]
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and the relatively new CCC- and CQC-charts [2, 3, 4], are designed for monitoring a

single quality characteristic. In order to achieve high production efficiency, in many

manufacturing process the equipment is design for parallel production of multiple

items of the same product. An example is a soft-drink filling machine with 100 filling

nozzles arranged in a circle, designed for filling 100 bottles simultaneously. In such

a set-up, from a strict process control point of view, the operating condition of each

nozzle should be monitored. In normal operation, however, bottles filled by the dif-

ferent nozzles are mixed when they come out from the filling machine, and it is not

possible to tell which bottle is filled by which nozzle. If the products produced from

the machine are inspected, the overall fraction of nonconforming products produced

can be monitored using one p-chart or CCC-chart, but such a chart does not show

the quality characteristic of individual filling nozzles. The same situation occurs in

many other manufacturing processes. The objective of this paper is to introduce

the hidden Markov model (HMM) for monitoring such processes.

In general, we consider a system of n independent production units each of

which can be regarded as a stand-alone part in the system. In the above bottle-

filling example, the system is the filling machine, and a unit is a filling nozzle. An

item of product is a bottle filled by the filling machine, and each item produced

can be classified as either conforming or nonconforming according to whether the

amount of liquid filled is within a specified range or out of the range. Suppose

that each production unit, when operating in the in control state, has probability

r1 ∈ [0, 1) of producing conforming product, and when it is in the out of control

state, it has probability r2 of producing conforming product, where r2 ∈ [0, r1).

Assume that at any time during production, a production unit which is in the in

control state will change to the out of control state with probability p ∈ (0, 1), and

if it is in the out of control state it will stay in this state until repair is carried

out which will bring it back to the in control state. Suppose that the states of the

individual units are unknown (unless production is stopped and each production

unit is investigated). We assume that each of the n production units produces the

same quantity of product within the same period of time. Assume further that

the products produced by the n production units are mixed and inspected after

production, and the overall number of nonconforming product items are counted.

In what follows, we shall apply a HMM to indicate whether the process is out of
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control.

The rest of the paper is organized as follows. In Section 2, we will give a brief

introduction to HMM. In Section 3, we will establish a HMM that can be used for

statistical process control purpose, and perform a statistical analysis for the produc-

tion problem. In Section 4, we will apply the model to a system of indistinguishable

production units, while in Section 5 we will give an example of three distinguishable

units. The paper is then concluded in Section 6.

2 Hidden Markov Model

Hidden Markov Models (HMMs) are widely used in applied sciences and engineering

[6, 9, 7, 11], but its potential applications in manufacturing industries have not yet

been fully explored. Readers may refer to [11] for a detailed discussion on HMM.

In a HMM, there are two types of states, the hidden state and the observable

state. The underlying process of both types of states is a Markov chain process.

The hidden state qt at time t cannot be observed, and may take any element in the

set of

S = {S1, S2, . . . , SN}
of possible states, where N ≥ 1 is a given integer. The observable state Ot at time

t can be observed, and may be take any element in the collection

V = {v1, v2, . . . , vM}

of possible states, where M ≥ 1 is a given integer. Suppose that AN = {aij}ij is an

N×N transition probability matrix for the hidden state at time t+1 given the hidden

state at time t, and BNM = {bi(k)}ik is an N ×M probability distribution matrix

for the observable state at time t given the hidden state at time t. A HMM consists

of the hidden states, the observable states, the transition probability matrix AN and

probability distribution matrix BNM with the initial state probability distribution

π = {πi} defined by





aij = Prob(qt+1 = Sj | qt = Si), (i, j = 1, . . . , N),

bi(k) = Prob(Ot = vk | qt = Si), (i = 1, . . . , N ; k = 1, . . . , M),

πi = Prob(q1 = Si), (i = 1, . . . , N).
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Failures 0 1 2 3 4 5

A 1/8 1/8 1/4 1/4 1/8 1/8

B 7/10 1/10 1/10 1/30 1/30 1/30

Table 1

Here aij is the probability for the hidden state at time t + 1 given the hidden state

at time t, and bi(k) is the probability for the observable state at time t given the

hidden state at time t. We also denote aij by aqtqt+1 and bi(k) by bqt(Ot) whenever

appropriate.

2.1 An Illustration of a HMM with Two Machines

Suppose that an old machine A and a new machine B, are used in producing the same

product. When a batch of five items of product is produced from either machine,

the number of nonconforming items are observed. We assume that the probability

distributions of the number of nonconforming product items produced by Machines

A and B are given in Table 1. Here we further assume that the process of choosing

a machine from Machines A and B is a hidden process, so that each time when a

machine is to be chosen it is unknown (unobservable) whether A or B will be chosen.

But it is known that A will be chosen with probability 0.3 and B will be chosen with

probability 0.7. Suppose that during operation of the chosen machine, the number

of nonconforming items produced can be observed and recorded.

The process can be described as a HMM with

N = 2, M = 6, S = {A,B}, V = {0, 1, 2, 3, 4, 5} and π = (0.3, 0.7).

The transition probability matrix is the following 2× 2 matrix

(
0.3 0.7

0.3 0.7

)
.

Also, we have bA(i) = 1
8

for i = 0, 1, 4, 5; bA(i) = 1
4

for i = 2, 3;

bB(i) = 7
10

for i = 0; bB(i) = 1
10

for i = 1, 2 and bB(i) = 1
30

for i = 3, 4, 5.
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3 Statistical Analysis in a HMM

In this section, we present the numerical algorithms for simulation and computation

in a HMM. Recall the symbols in Section 2, given the parameters in a HMM, a

sequence of observed states O1O2 . . . OT (Oi ∈ V ) can be simulated. In order to

monitor a process using HMM, first of all it is necessary to estimate the relevant pa-

rameters in the HMM given an observed sequence O1O2 . . . OT from the process, and

then to compute the most-likely sequence of the hidden states q1q2 . . . qT . Computa-

tion of the most-likely sequence of the hidden states can be done by using the Viterbi

algorithm [13], a dynamic programming approach, see for instance, [5, 8, 11]. Hence

the model parameters can be estimated, see for instance a tutorial on the algorithms

[11].

3.1 Simulation of HMM

We present the numerical algorithm for the simulation of a given HMM as follows.

(Step S1) Choose an initial hidden state q1 = Si ∈ S with the initial distribution

π.

(Step S2) Set t = 1.

(Step S3) Generate Ot = vk ∈ V according to the probability bi(k).

(Step S4) Make a transition of hidden state from qt = Si to qt+1 = Sj according

to the transition probability distribution aij.

(Step S5) Set t = t + 1 and return to Step 3 if t < T ; otherwise terminate the

procedure.

4 A System of n Indistinguishable Production Units

In this section, we consider a production system consisting of n independent, indis-

tinguishable production units, each of which can produce items of the same product.

A production unit is either in the normal state w1 or in the subnormal state w2. We

assume the followings.
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(i) During the duration in which a production unit is producing an item, the state

of the production unit does not change.

(ii) If a production unit is in state w1, immediately after an item is produced

it will deteriorate to state w2 with probability p or remain in state w1 with

probability 1− p.

(iii) If a production unit is in state w2, it will remain in this state until a perfect

maintenance action is carried out which will bring the unit back to state w1.

(iv) An item produced can be classified as either conforming or nonconforming.

(v) When a production unit is in state wi, it will produce a conforming item

with probability ri or produce a nonconforming item with probability 1 − ri

(i = 1, 2), where r1 > r2.

We assume that during production, the states of the production units are unob-

servable. The states of the production units are known only if production is stopped

and a full inspection on the system is carried out. Furthermore, we assume that all

product items produced are inspected, and inspection is perfect in the sense that it

will correctly indicate whether the item inspected is conforming or nonconforming.

In what follows, for any integers k and m, we denote by Cm
k the number of

combinations of k objects from m objects if m and k are integers and 0 ≤ k ≤ m,

and Ck
m = 0 otherwise. The system is said to be in state i if i production units

are in state w2 and the other (n − i) units are in state w1. The true states of the

production units during production are unobservable. As production proceeds their

states form a HMM with N = n + 1 states. The transition probability matrix of

this HMM is an (n + 1)× (n + 1) matrix An+1 = {aij}, where

aij = Cn−i+1
j−i (1− p)n−j+1pj−i (i, j = 1, . . . , n + 1).

For example, when n = 2, the transition matrix AN is given by

A3 =

state 0 1 2

0

1

2




(1− p)2 2p(1− p) p2

0 (1− p) p

0 0 1


 .
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Suppose that 0 ≤ k ≤ n. When the production system is in state i, the probabil-

ity for (n− i) production units in state w1 to produce (k− l) nonconforming items,

and i production units in state w2 to produce l nonconforming items, one from each

production unit, is

p(k − l, l) = Cn−i
k−l r

(n−i)−(k−l)
1 (1− r1)

k−l × Ci
l r

i−l
2 (1− r2)

l,

which can be easily seen from Figure 1.

k − l l

︷ ︸︸ ︷ ︷ ︸︸ ︷
x x x x x x x x x x x x x x x

– – – – – – – – – – – – – – – – – – – – – – – –

︸ ︷︷ ︸ ︸ ︷︷ ︸
n− i items produced i items produced

by production units by production units

in state w1 in state w2

Figure 1. Production of a total of k nonconforming items.

In Figure 1, a horizontal bar “−” denotes an item produced, and a cross “x”

above the horizontal bar indicates that the item is nonconforming. Figure 1 shows

that out of the k nonconforming units, (k − l) are produced by (n − i) production

units in state w1, and l are produced by i production units in state w2. Let the

probability for this to happen be bi(k). Hence the probability distribution matrix

for the observable states of the n items produced from the production system, one

from each of the n production units, is an (n + 1)× (n + 1) matrix Bn+1 = {bi(k)}.
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Figure 1 shows that when k ≤ i and k ≤ n− i, we have 0 ≤ l ≤ k, and in other

cases, l takes different ranges. From such results, we have

bi(k) =





k∑

l=0

p(k − l, l), k ≤ i, k ≤ n− i,

i∑

l=0

p(k − l, l), i ≤ n− i, k > i, k ≤ n− i,

k∑

l=k−(n−i)

p(k − l, l), i > n− i, k ≤ i, k > n− i,

i∑

l=k−(n−i)

p(k − l, l), k > i, k > n− i.

When n = 2, for example, we have

B3 =

state 0 1 2

0

1

2




r2
1 2r1(1− r1) (1− r1)

2

r1r2 (1− r1)r2 + (1− r2)r1 (1− r1)(1− r2)

r2
2 2r2(1− r2) (1− r2)

2


 .

4.1 A Numerical Example

Suppose that n = 2, so that the states of the production units are given by

S1 = {w1, w1}, S2 = {w1, w2}, S3 = {w2, w2},

and the transition probability matrix for the states of the production unit is A3.

If the two production units are in state Si, immediately after each of them has

produced an item they will change to state Sj with probability

aij (i, j = 1, 2, 3).

Any item produced is defined as in state u1 or state u2 according to whether it is

conforming or nonconforming. Therefore the three possible states of the two items

are given by

v1 = {u1, u1}, v2 = {u1, u2}, v3 = {u2, u2},
and the transition probability matrix for the states of two items is given by B3.
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0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 1 0 0 0 0 0 1 1 1 1 0

1 0 0 0 1 2 0 0 0 1 1 0 0 0 0 0 0 0 0 1 1 0 1 0 1 1 0 0 1 2 2 0 0 2 1 0 1 2 0 1

1 2 1 2 1 2 1 0 2 2 2 0 1 1 1 0 1 2 1 0 1 1 1 1 0 1 1 2 0 1 1 1 1 1 1 1 0 2 1 2

1 0 1 1 1 2 1 2 2 2 1 1 1 0 1 1 0 2 0 0 1 1 2 1 2 1 1 2 2 0 1 1 2 2 1 2 2 0 2 1

1 0 0 1 2 2 1 1 1 0 0 2 1 2 1 1 1 0 1 1 1 2 1 1 0 1 0 1 1 1 2 1 2 1 2 1 0 0 1 0

Table 2

In the following numerical example, we let r1 = 0.95, r2 = 0.5 and p = 0.02 and

we use A3 to generate a time series of hidden states of length 200 for the states of

the production units. The hidden sequence {qt, t = 1, 2, . . . , 200} is given as follows:

qt =





{w1, w1}, t = 1, 2, . . . , 27;

{w1, w2}, t = 28, 29, . . . , 69;

{w2, w2}, t = 70, 71, . . . 200.

¿From the generated hidden sequence, we simulate the number of nonconform-

ing product items and obtained a sequence of length 200 in Table 2, {Ot, t =

1, 2, . . . , 200} by using the procedure in described in Section 3.

For t = 1 to 200, based on the above observable sequence and the algorithms

mentioned in Section 3, it can be estimated that the most likely hidden sequence

{q̂t}200
t=1 is:

q̂t =





{w1, w1}, t = 1, 2, . . . , 30;

{w1, w2}, t = 31, 32, . . . , 71;

{w2, w2}, t = 72, 73, . . . 200.

In this numerical example, comparison of {qt} and {q̂t} shows that 3 more observa-

tions are required to identify the change of hidden state from {w1, w1} to {w1, w2}
and 2 more observations are required to identify the change of hidden state from

{w1, w2} to {w2, w2}.
The same set of parameters r1 = 0.95, r2 = 0.5 and p = 0.02 is used to simulate

the above process for 50 times. In a particular simulation, the number of obser-

vations that indicates a failure may occur before or after the real failure. ¿From

the simulation results, the average number of extra observations required to identify

the change of the system from hidden state {w1, w1} to hidden state {w1, w2} is

calculated to be 0.041667 with standard deviation 4.8508, and the average number
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of extra observations required to identify the change from hidden state {w1, w2} to

hidden state {w2, w2} is −0.43478 with standard deviation 9.6209.

5 A System of Three Distinguishable Production

Units

In this section, we consider a production system consisting of independent but distin-

guishable production units. For simplicity of discussion, we only consider a system

of three machines, namely M1,M2 and M3. Each of these production units can

produce the same product item by item. A production unit is either in the normal

state w1 or in the subnormal state w2. We assume the followings.

(i) During the production period a production unit is producing an item, the state

of the production unit does not change.

(ii) If the production unit Mi is in state w1, immediately after an item is produced

it will deteriorate to state w2 with probability pi or remain in state w1 with

probability p′i = 1− pi.

(iii) If a production unit is in state w2, it will remain in this state until a perfect

maintenance action is carried out which will bring the unit back to state w1.

(iv) An item produced can be classified as either conforming or nonconforming.

(v) When the production unit Mi is in state wj, it will produce a conforming item

with probability rij or produce a nonconforming item with probability

r′ij = 1− rij (j = 1, 2), where ri1 > ri2.

10



The transition probability matrix of this HMM is an 8× 8 matrix A:

(w1, w1, w1)

(w2, w1, w1)

(w1, w2, w1)

(w1, w1, w2)

(w2, w2, w1)

(w2, w1, w2)

(w1, w2, w2)

(w2, w2, w2)




p′1p
′
2p
′
3 p1p

′
2p
′
3 p′1p2p

′
3 p′1p

′
2p3 p1p2p

′
3 p1p

′
2p3 p′1p2p3 p1p2p3

0 p′2p
′
3 0 0 p2p

′
3 p′2p3 0 p2p3

0 0 p′1p
′
3 0 p1p

′
3 0 p′1p3 p1p3

0 0 0 p′1p
′
2 0 p1p

′
2 p′1p2 p1p2

0 0 0 0 p′3 0 0 p3

0 0 0 0 0 p′2 0 p2

0 0 0 0 0 0 p′1 p1

0 0 0 0 0 0 0 1




.

The transition matrix for the observable states of the three items produced from
the production system, one from each of the production unit, is an 8× 4 matrix B:

(w1, w1, w1)

(w2, w1, w1)

(w1, w2, w1)

(w1, w1, w2)

(w2, w2, w1)

(w2, w1, w2)

(w1, w2, w2)

(w2, w2, w2)

0
BBBBBBBBBBBBBB@

r11r21r31 r′11r21r31 + r11r′21r31 + r11r21r′31 r′11r′21r31 + r′11r21r′31 + r11r′21r′31 r′11r′21r′31
r12r21r31 r′12r21r31 + r12r′21r31 + r12r21r′31 r′12r′21r31 + r′12r21r′31 + r12r′21r′31 r′12r′21r′31
r11r22r31 r′11r22r31 + r11r′22r31 + r11r22r′31 r′11r′22r31 + r′11r22r′31 + r11r′22r′31 r′11r′22r′31
r11r21r32 r′11r21r32 + r11r′21r32 + r11r21r′32 r′11r′21r32 + r′11r21r′32 + r11r′21r′32 r′11r′21r′32
r12r22r31 r′12r22r31 + r12r′22r31 + r12r22r′31 r′12r′22r31 + r′12r22r′31 + r12r′22r′31 r′12r′22r′31
r12r21r32 r′12r21r32 + r12r′21r32 + r12r21r′32 r′12r′21r32 + r′12r21r′32 + r12r′21r′32 r′12r′21r′32
r11r22r32 r′11r22r32 + r11r′22r32 + r11r22r′32 r′11r′22r32 + r′11r22r′32 + r11r′22r′32 r′11r′22r′32
r12r22r32 r′12r22r32 + r12r′22r32 + r12r22r′32 r′12r′22r32 + r′12r22r′32 + r12r′22r′32 r′12r′22r′32

1
CCCCCCCCCCCCCCA

.

5.1 A Numerical Example

In this subsection, we demonstrate the efficiency of the method by a numerical

example. We let

p =




0.008

0.015

0.030


 and r =




0.65 0.3

0.80 0.4

0.95 0.5


 .

We use A to generate a time series of hidden states of length 200 and obtain the

observable sequence in Table 3. The hidden sequence {qt, t = 1, 2, . . . , 200} is:

qt =





(w1, w1, w1), t = 1, 2, . . . , 23;

(w2, w1, w1), t = 24, . . . , 27;

(w2, w1, w2), t = 28, . . . , 97;

(w2, w2, w2), t = 98, . . . , 200.

11



0 2 1 1 0 0 0 1 1 0 0 1 0 0 1 0 0 1 1 1 1 1 1 0 0 1 0 1 1 1 2 2 2 2 2 2 2 2 2 2

1 2 2 0 1 1 2 2 2 2 2 0 2 0 3 0 1 2 1 1 2 2 1 2 1 1 0 0 1 2 2 2 2 1 1 3 1 1 2 3

0 1 1 0 0 2 1 2 2 0 1 2 2 1 1 1 2 2 2 2 2 1 1 3 2 2 2 3 1 2 1 3 3 1 0 1 1 2 2 2

1 2 2 2 2 2 1 1 2 3 1 2 3 2 3 2 2 3 1 3 2 1 1 3 0 2 2 3 2 3 2 3 2 2 1 0 2 1 3 3

2 2 1 2 2 0 0 2 1 3 2 2 2 2 1 3 3 2 2 1 1 3 1 0 2 3 2 2 2 2 2 2 3 2 2 1 2 2 2 3

Table 3

Using the algorithm described in Section 3, one can find the most likely hidden

sequence {q̂t}200
t=1 as follows:

q̂t =





(w1, w1, w1), t = 1, 2, . . . , 17;

(w2, w1, w1), t = 18, . . . , 30;

(w2, w1, w2), t = 31, . . . , 96;

(w2, w2, w2), t = 97, . . . , 200.

We use the set of parameters r1 = 0.95, r2 = 0.5 and p = 0.02 to simu-

late the above process for 200 times. In this simulation, the algorithm is able

to identify the correct hidden sequence 74 times. In fact, there are 16 possible

scenarios for the breakdown of machines in this system. They are (i) no ma-

chine breaks down; (ii) one machine breaks down (M1,M2, or M3); (iii) two ma-

chines break down (M1M2,M2M1,M1M3, M3M1,M2M3,M3M2); and (iv) all ma-

chines break down (M1M2M3,M1M3M2, M2M1M3, M2M3M1,M3M1M2,M3M2M1).

Thus with the HMM, better prediction can be obtained. Among those correct identi-

fications the average extra numbers of observations required to identify the first, sec-

ond and third machine failures, calculated from the simulation results, are −1.5676,

0.028986 and −0.28571, with standard deviations 7.3094, 12.726 and 17.618, respec-

tively.

6 Summary

In this paper, we discuss hidden Markov models for the detection of machine failures.

We present two models for detecting machine failures of different production systems,

one is for a system of indistinguishable production units, and the other is for a system
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of distinguishable production units. Numerical examples are given to demonstrate

the effectiveness of the models. Simulation results show that the HMM is efficient

in detecting machine failures in both cases.
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