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Abstract

In this paper, we develop a parsimonious and flexible multivariate Markov chain model

for describing the dependency of transitions of ratings of credit risky entities. The model

serves as a complement to copulas, which cannot be applied to describe the dependence of

categorical time series, like credit ratings, effectively. The number of parameters involves

here is only O(sm2 + s2), where s is the dimension of the categorical time series of ratings

and m is the number of possible ratings of a security. The new model has relatively small

number of parameters and is more parsimonious and flexible when compared to the model

of Siu et al. [18]. Our model also provides a great deal of flexibility in modelling both

the positive and negative associations between the time series of credit ratings. Another

distinctive feature of our model is its ability to handle the case when the dataset of ratings

is short. This is an important feature since it is rather difficult or costly to obtain a long

dataset of ratings in practice. We introduce an efficient method to estimate or calibrate

the model. The estimation method can be formulated as a linear programming problem

and it can be implemented using spreadsheets. We compare the estimation results and the

computational efficiency of our model with those of Siu et al. [18] to illustrate the effect of

incorporating both positive and negative associations on portfolio credit risks.

Key Words: Multivariate Markov chains, Parsimony, Ratings, Dependent Credit Risk,

Positive and Negative Associations, Linear Programming.

∗Advanced Modeling and Applied Computing Laboratory, Department of Mathematics, The University of

Hong Kong, Pokfulam Road, Hong Kong. E-mail: wching@hkusua.hku.hk. Research supported in part by RGC

Grants, HKU CRCG Grants, Hung Hing Ying Physical Sciences Research Fund and HKU Strategic Research

Theme Fund on Computational Physics and Numerical Methods.
†Department of Actuarial Mathematics and Statistics, School of Mathematical and Computer Sciences and

the Maxwell Institute for Mathematical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK.
‡Advanced Modeling and Applied Computing Laboratory, Department of Mathematics, The University of

Hong Kong, Pokfulam Road, Hong Kong. E-mail: liminli@hkusua.hku.hk
§Advanced Modeling and Applied Computing Laboratory, Department of Mathematics, The University of

Hong Kong, Pokfulam Road, Hong Kong. E-mail: litang@hkusua.hku.hk
¶Department of Statistics and Actuarial Science, The University of Hong Kong, Pokfulam Road, Hong Kong.

Email: hrntlwk@hkucc.hku.hk

1



1 Introduction

Ratings data of credit risky entities provide us with an important piece of information

for analyzing the credit quality of the entities. Some international rating agencies, like

Standard & Poor, Moodys and Fitch, are the major providers of rating data. Investors can

make use of the data provided by rating agencies to judge the credit qualities of corporate

bonds, sovereign bonds and other securities and make their financial decisions. In practice,

ratings change over time randomly according to the changes in the economic fundamentals

of the entities, the economic judgments and forecasts made by analysts, macro-economic

conditions, and others. Given the importance of ratings, academics and practitioners are

looking for some appropriate quantitative methods to describe and analyze the transitions

of ratings of credit risky entities. The discrete-time homogeneous Markov chain model

provides a natural mean to model such transitions over time. It has widely been used by

practitioners for modelling transitions of ratings.

Recently, there has been a considerable interest in modelling the dependency of indi-

vidual credit risks in a portfolio. Knowledge in the dependency of credit risks is important

for portfolio credit management. In particular, the model specification that explains and

describes the dependency of the credit risks has significant implications for portfolio credit

risk measurement and management. Different approaches have been introduced in the lit-

erature for this aspect. A natural approach to describe the inter-dependence of credit risks

is the use of default correlations. It is a common approach for pricing multivariate credit

derivatives, such as Collateral Debt Obligations (CDO). Li [15] proposes the use of copulas

for modeling dependence of credit risks. The main advantage of the use of the copulas is

that it can model asymmetric dependency and non-linear association of variables, which

cannot be described by correlations. There are some technical issues on the practical

implementation of the use of copulas for modelling dependent credit risks. One issue is

on which parametric form of copulas function one should use in practice. There are dif-

ferent parametric forms of copulas functions, including Gaussian copulas, t-copulas and

Clayton copulas. Each of them generates a particular type of asymmetric and non-linear

dependent behavior. There are some statistical procedures that guide us how to choose a

particular parametric form of copulas function. However, the theoretical justifications for

these statistical procedures have yet been well-explored and understood. Moreover, some

statistical procedures are rather ad hoc. Copulas can work well for describing asymmet-

ric and non-linear dependent relationships when the underlying variables are continuous.

However, when the underlying variables are discrete, like credit ratings, copulas cannot be

applied to describe the dependence of the variables directly and effectively since according

to Sklar’s theorem, copulas cannot be specified uniquely when the underlying variables

are discrete. Hence, there is a practical need to develop a method which can describe

the dependence of credit ratings effectively. Some other models for dependent credit risks

are the mixture model approach, in particular the Poisson mixture model in CreditRisk+

developed by Credit Suisse Financial Products in 1997 [8], the infectious default model
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for Binomial Expansion Technique (BET) by Davis and Lo [9, 10] and the multivariate

Markov chain model of Kijima et al. [14].

Modelling the inter-dependency and intra-dependency of ratings of individual entities

in a portfolio is a crucial step for modelling dependency of credit risks. Kijima et al. [14]

first introduce a multivariate Markov chain model to simulate the evolution of dependent

ratings of several credit risks. Based on the multivariate Markov chain model in [2] Siu et

al. [18] provide a different parameterization of multivariate Markov chain for modelling

dependent credit risks and propose the use of credibility theory in actuarial science to

calibrate the model. The model proposed by Siu et al. [18] can describe both the inter-

dependent and intra-dependent of ratings. The number of parameters involved in the

model is O(s2m2), where s is the dimension of the categorical time series of ratings

and m is the number of possible credit ratings of a security. To incorporate all possible

pairwise dependencies between any two categorical time series for ratings, Cs
2 = s(s−1)/2

parameters are involved. The model by Siu et al. [18] can only incorporate positive

correlations (or associations), but not negative ones, between two ratings series. It can

be a reasonable proxy if the two credit risks are from the same sector and the systematic

effect in the sector dominates the idiosycratic effect. However, when the idiosycratic

effect, or in particular, the competitive effect, within the sector dominates the systematic

effect or when the two credit risks come from different sectors with negative associations,

modelling positive associations only is not flexible enough.

In this paper, we shall develop a parsimonious and flexible multivariate Markov chain

model for describing the dependency of transitions of ratings of credit risky entities. As

in the model of Siu et al. [18], we suppose that the conditional probability distribution

of the rating of a particular credit risk in the next period given the currently available

information depends not only on its own current rating, but also on the current ratings

of all other credit risks in the portfolio. In other word, the model can describe both the

inter-dependency and intra-dependency of categorical time series of ratings. The model

proposed in this paper is more parsimonious and flexible than the model introduced in [18].

The number of parameters involved here is only O(sm2 + s2), where s is the dimension

of the categorical time series of ratings and m is the number of possible ratings of a

security. Our model also provides a great deal of flexibility in modelling both the positive

and negative associations between the time series of credit ratings. We shall describe

the precise meaning of positive and negative associations. In many cases, the stationary

or the steady-state conditions are assumed in the estimation of model parameters. This

means that a longer dataset is required for estimation. However, in practice, it might

not be easy or it might be rather costly to get a long dataset for ratings. A distinctive

feature of our model is its ability to accommodate the situation when the dataset is short.

The estimation method can be formulated as a linear programming problem, which can

be solved easily using spreadsheets. This provides market practitioners with a handful

way to implement the estimation method. We compare the estimation results and the
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computational efficiency of our proposed model with those of Siu et al. [18]. We shall also

compare credit risk measures obtained from our model with those from Siu et al. [18] to

illustrate the effect of incorporating both positive and negative associations on portfolio

credit risks.

The rest of the paper is structured in the sequel. In Section 2, we introduce the

multivariate Markov chain model for describing the dependency of credit risks and discuss

some important properties of the model. Section 3 presents the estimation or calibration

method of the model. In section 4, we provide some numerical examples to illustrate the

implementation of the multivariate Markov chain model for credit risk measurement. We

shall also present the estimation results of our model and compare them with those in

Siu et al. [18] using real credit ratings data and the risk ratings data for bonds from four

important industrial sectors in United States extracted by the interactive hidden Markov

model (IHMM) in Ching et al. [5] using the quarterly bond defaults data of the four

sectors. We shall compare the risk measures obtained from our model with those implied

by the model of Siu et al. [18]. Concluding remarks are given in Section 5.

2 The New Multivariate Markov Chain Model

In this section, we shall first review the multivariate Markov chain model in Siu et

al. [18]. Then, we shall present the main idea of the new multivariate Markov chain

model. which has been successfully in sales demand forecasting [4]. The new model

provides market practitioners with a more parsimonious and flexible way to model the

dependency of ratings than the model of Siu et al. [18]. In particular, the new model can

incorporate both positive and negative associations of ratings sequences while the model

of Siu et al. [18] can only incorporate positive associations. The new model [4] can also

accommodate the situation when the ratings dataset is short by adjusting a parameter

which controls the rate of convergence of the sequence of the probability vectors of the

process to the stationary distribution. This is an important feature of the new model since

it is difficult and costly to obtain long ratings datasets and the accuracy of the estimation

results depends on the rate of convergence. To investigate the rate of convergence to the

stationary distribution, we shall represent the new model in the form of a vector-valued

difference equation.

First, we fix a complete probability space (Ω,F ,P). Here, we consider a discrete-

time economy and suppose that T represents the time index set {0, 1, 2, . . .} on which all

economic activities take place. We consider a portfolio of n credit entities, for example,

n corporate bonds, and deal with the situation when the ratings of these entities are

dependent. Suppose Y (1), Y (2), . . . , Y (s) represent s ratings processes with common time

index set T . Let S denote a set of unit vectors {e1, e2, . . . , em} in Rm, where

ei = (0, . . . , 0,

ithentry
︷︸︸︷

1 , 0, . . . , 0)T ∈ Rm .
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Suppose, for each j = 1, 2, . . . , s, Y (j) := {Y
(j)
t }t∈T is a discrete-time, finite-state stochas-

tic process on (Ω,F ,P) with state space S, where Y
(j)
t represents the ratings of the jth

entity at time t. In particular, “Y
(j)
t = ei” means that the jth entity is in the ith rating

class at time t. Define the space Ŝ as below:

{s ∈ Rm|s =
m∑

i=1

αiei, 0 ≤ αi ≤ 1,
m∑

i=1

αi = 1}.

Let {X
(j)
t }t∈T denote the dynamics of the discrete probability distributions for Y (j), where

X
(j)
t ∈ Ŝ for each t ∈ T . In particular, the ith component X

(j)
t (i) of the probability vector

X
(j)
t represents the probability that the jth entity is in the ith rating class at time t; That

is,

X
(j)
t (i) := P(Y

(j)
t = ei) .

We also note that {X
(j)
t }t∈T can be used to represent the ratings of the jth entity at time

t, for each j = 1, 2, . . . , s. Suppose the jth entity is in the ith rating class at time t; that

is, Y
(j)
t = ei. In other words, the probability that the jth entity is in the ith rating class

at time t is one, and,

X
(j)
t = ei = (0, . . . , 0, 1

︸︷︷︸

ith entry

, 0 . . . , 0)T .

Suppose P (jk) represents a transition matrix from the ratings of the kth entity to the

ratings of the jth entity. In particular, P (jj) is the transition matrix for the ratings of the

jth entity. Then, under the multivariate Markov chain model for ratings in Siu et al. [18],

the dynamics of the probability distributions of the ratings are governed by the following

multivariate difference equations:

X
(j)
t+1 =

s∑

k=1

λjkP
(jk)X

(k)
t , for j = 1, 2, . . . , n , (1)

where

λjk ≥ 0, 1 ≤ j, k ≤ n and

n∑

k=1

λjk = 1, for j = 1, 2, . . . , s . (2)

In Equation (1), the state probability distribution of the ratings of the jth entity at time

(t + 1) depends on the weighted average of P (jk)X
(k)
t at time t. We note that

Y := (Y (1), Y (2), . . . , Y (s))

forms a multivariate Markov chain under Equation (1), see for instance [18]. Equation
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(1) can also be represented as the following matrix form:

Xt+1 ≡









X
(1)
t+1

X
(2)
t+1
...

X
(n)
t+1









=









λ11P
(11) λ12P

(12) · · · λ1sP
(1s)

λ21P
(21) λ22P

(22) · · · λ2sP
(2s)

...
...

...
...

λs1P
(s1) λs2P

(s2) · · · λssP
(ss)

















X
(1)
t

X
(2)
t

...

X
(s)
t









≡ QXt.

We note that the column sum of Q is not equal to one (the column sum of P (jk) is

equal to one). In spite of this, there still exists a unique stationary distribution for the

process Y . For more details, we refer readers to Ching et al. [2] and Siu et al. [18]. The

number of parameters in the model of Siu et al. [18] is O(s2m2), where s is the number

of credit entities and m is the number of possible ratings of an entity. The precision of

estimates of the parameters decreases as the number of parameters increases. In view of

this, Ching et al. have proposed a simplified multivariate Markov chain model having

fewer model parameters [6]. However, both models in [6] and [18] can only incorporate

positive associations among the ratings of the entities since λjk’s and the components of

the matrices P (jk)’s are all non-negative. The estimation method in Siu et al. [18] is

developed based on the existence of a unique stationary distribution X for the process Y

such that X = QX holds when the ratings dataset is sufficiently long. The matrices P (jk)

can be estimated by counting the transition frequencies of the states among the entities.

Then, the main idea of the estimation method for λij is to minimize the “distance”

between the X̂ and Q̂X̂, where X̂ is the estimate of X and Q̂ is the matrix Q having Pij

being estimated. We note that a long ratings dataset might be required to provide an

accurate estimate for Q. However, in practice, it might be difficult and costly to obtain

long ratings datasets. The accuracy of the estimate Q can be enhanced by speeding up

the rate of convergence, and, this issue has not been discussed in Siu et al. [18].

In the sequel, we shall present a new multivariate Markov chain model for ratings of

credit entities. This multivariate Markov chain model originates from the work of [2].

First, we let

Zt+1 =
1

m − 1
(1 − Xt) ,

where 1 is the vector of all ones and the factor (m − 1)−1 is the normalization constant

and the number of possible states m ≥ 2. We note that there is a negative association

between Zt+1 and Xt, i.e., if Xt increases (decreases), Zt+1 decreases (increases). To make

the model more parsimonious (i.e., to reduce the number of parameters), we suppose that

P (ij) = I when i 6= j. This idea has been adopted, justified and shown to be effective

in modelling sales demand data sequences in Ching et al. [4]. Then, under the new

multivariate Markov chain model, the dynamics of the probability vectors of the ratings
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are governed by the following equations:









X
(1)
t+1

X
(2)
t+1
...

X
(s)
t+1









= Λ+









X
(1)
t

X
(2)
t

...

X
(s)
t









︸ ︷︷ ︸

Positive associated part

+
1

m − 1
Λ−









1 − X
(1)
t

1 − X
(2)
t

...

1 − X
(s)
t









︸ ︷︷ ︸

Negative associated part

(3)

where

Λ+ =








λ1,1P
(11) λ1,2I · · · λ1,sI

λ2,1I λ2,2P
(22) · · · λ2,sI

· · · · · · · · · · · ·

λs,1I · · · λs,s−1I λs,sP
(ss)








and

Λ− =








λ1,−1P
(11) λ1,−2I · · · λ1,−sI

λ2,−1I λ2,−2P
(22) · · · λ2,−sI

· · · · · · · · · · · ·

λs,−1I · · · λs,−s+1I λs,−sP
(ss)








.

Here λi,j ≥ 0 for i = 1, 2, . . . , s and j = ±1, . . . ,±s and

s∑

j=−s

λi,j = 1.

In Equation (3), Λ+ and Λ− represent the transition matrices for the positive and negative

associations, respectively. From the second term of Equation (3), an increase (a decrease)

in Xt leads to a decrease (or an increase) in Xt+1. In other words, there is a negative

association between Xt and Xt+1. The term 1
m−1

is a normalization constant, which makes

X
(j)
t+1 on the left hand side of Equation (3) a probability vector, for each j = 1, 2, . . . , s.

We shall then investigate the existence of a stationary distribution under the new

multivariate Markov chain model, the rate of convergence and how to speed up the rate

of convergence. First, we represent the new multivariate Markov chain model as the
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following vector-valued difference equation:

Xt+1 =









X
(1)
t+1

X
(2)
t+1
...

X
(s)
t+1









=








H1,1 H1,2 · · · H1,s

H2,1 H2,2 · · · H2,s

· · · · · · · · · · · ·

Hs,1 Hs,2 · · · Hs,s
















X
(1)
t

X
(2)
t

...

X
(s)
t









+ 1
m−1








J1,−1 J1,−2 · · · J1,−s

J2,−1 J2,−2 · · · J2,−s

· · · · · · · · · · · ·

Js,−1 · · · Js,−s+1 Js,−s
















1

1
...

1









≡ MsXt + b.

Here

Hij =

{

(λi,j −
λi,−j

m−1
)P (ii) if i = j

(λi,j −
λi,−j

m−1
)I otherwise

and

Jij =

{

λi,−jP
(ii) if i = j

λi,−jI otherwise.

We note that

Xt+1 = M2
s Xt−1 + (I + Ms)b = M3

s Xt−2 + (I + Ms + M2
s )b

= M t+1
s X0 +

t∑

k=0

Mk
s b

where M0
s = I.

Now the new multivariate Markov chain model has a stationary distribution if for a

certain matrix norm ||.|| (let us choose ||Ms||∞), ||Ms|| < 1. In this case, we have

lim
t→∞

Xt = lim
t→∞

t∑

k=0

Mk
s b = (I − Ms)

−1b.

We also note that

||Ms||∞ ≤ max
1≤k≤s

{

m

∣
∣
∣
∣
λk,k −

λk,−k

(m − 1)

∣
∣
∣
∣
+
∑

k 6=i

∣
∣
∣
∣
λk,i −

λk,−i

(m − 1)

∣
∣
∣
∣

}

.

Hence, by controlling the the value ||Ms||∞, the convergence rate of the process to the

stationary distribution can be speeded up. This means one can control the rate of con-

vergence by imposing an upper bound α < 1 and introducing the following additional
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constraints:

m

∣
∣
∣
∣
λk,k −

λk,−k

(m − 1)

∣
∣
∣
∣
+
∑

k 6=i

∣
∣
∣
∣
λk,i −

λk,−i

(m − 1)

∣
∣
∣
∣
≤ α for i = 1, 2, . . . , s.

Clearly if a smaller value of α is chosen, the rate of convergence to the stationary distribu-

tion becomes faster. Thus, reasonably accurate estimates for the unknown parameters can

be obtained even when the ratings dataset is short. Thus, reasonably accurate estimates

for the unknown parameters can be obtained even when the ratings dataset is short.

3 Estimation of Model Parameters

In this section, we present efficient methods for estimating P (jj) and λjk. For each

ratings series of a credit entity, we can adopt the method in [2, 3, 4] to estimate the

transition probability matrix. In particular, given a ratings series of an entity, we can

count the transition frequencies from one arbitrary state to the others and construct

the transition frequency matrix for the ratings series. Then, an estimate of the transition

probability matrix of the ratings of the entity can be obtained by normalization. Here, we

need to estimate O(s×m2) transition frequency matrices for the new multivariate Markov

chain model for ratings of s entities, each of which has m possible rating classes. The

stationary probability vector X can be estimated from the proportion of the occurrence

of each rating class in each of the ratings series.

Based on the idea at the end of the last section, if we take ||.|| to be ||.||1, an estimate

of λjk can be obtained by solving the following optimization problem (see [2, 3, 4]):

min
λ

∑

i

∣
∣
[
bj,k − x̂(j)

]

i

∣
∣

Subject to







bj,k =

s∑

k=1

(

(λj,k −
λj,−k

m − 1
)∆jkx̂

(k) +
1

m − 1
λj,k∆jk1

)

s∑

k=−s

λjk = 1, ∀j = 1, 2, . . . , s.

λjk ≥ 0, ∀k = ±1, . . . ,±s, j = 1, 2, . . . , s.

m

∣
∣
∣
∣
λk,k −

λk,−k

(m − 1)

∣
∣
∣
∣
+
∑

k 6=i

∣
∣
∣
∣
λk,i −

λk,−i

(m − 1)

∣
∣
∣
∣
≤ α for k = 1, 2, . . . , s.

(4)

Here,

∆jk =

{

P (jj) if j = k

I if j 6= k.

We can then formulate Problem (4) as s linear programming problems as below (see, for
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example, [7, (p. 221)].

min
λ

∑

i

wi

Subject to







wi ≥
[
bj,k − x̂(j)

]

i

wi ≥ −
[
bj,k − x̂(j)

]

i
s∑

k=−s

λjk = 1, ∀j.

λjk ≥ 0, ∀k = ±1, . . . ,±s, ∀j.

AΛj ≤ α, ∀j.

(5)

where

Λj = (λj,1, λj,2, . . . , λj,s, λj,−1, . . . , λj,−s)
T , Ai = [A1j , A2j],

A1j =


















1 · · · m · · · 1 1

1 · · · m · · · 1 −1

1 · · · m · · · −1 1
...

...
...

...
...

...
...

...
...

...
...

...

−1 · · · −m · · · −1 1

−1 · · · −m
︸︷︷︸

j th column

· · · −1 −1


















and

A2i = −
1

m − 1
A1i.

Here, A1i covers all of the rows in which each component takes one of the two possible

values, 1 and −1. Hence, A has s × 2s rows.

We remark that the s linear programming problems can be solved using Excel spread-

sheets. This provides market practitioners with a handy way to estimate the unknown

parameters in the multivariate Markov chain model for ratings. The estimation proce-

dure can be implemented with reasonably computational time and effort when there is a

modest number of ratings series.

4 Practical Implementation and Estimation Results

In this section, we shall first provide a numerical example to demonstrate the practical

implementation of the multivariate Markov chain model for hypothetical ratings. Then,

we shall present the estimation results for the model using two sets of ratings data,

namely, the ratings data of two assets extracted from Kijima et al. [14] and the risk

ratings data of bonds from four important industrial sectors in United States, namely,
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consumer, energy, transportation and media, extracted by the IHMM in Ching et al. [5]

using the quarterly bond defaults data of the four sectors from Giampieri et al. [12]. As

in [12] and [5], we suppose that bonds from each of the sectors are assigned one of the

two risk ratings, namely, enhanced risk state and normal risk state. The values of the

bonds depend on their risk ratings. In particular, the bonds with enhanced risk state

potentially have lower values than those with normal risk state. We shall compare the

empirical performance of the multivariate Markov chain model with that of the model

in Siu et al. [18]. The Bayesian Information Criterion (BIC) will be adopted here as a

criterion for model selection. We shall also compare the risk measures, namely, the Credit

Value-at-Risk (CVaR) and the Credit Expected Shortfall (CES), obtained from the new

model with different values of the parameter α with those obtained from the model of

Siu et al. [18] and document the impact of incorporating different degrees of negative

associations on the risk measures.

4.1 A Numerical Example

Here, we consider the following three hypothetical ratings series, each of which has

three possible rating classes: 1, 2, 3.

A : 1, 2, 2, 1, 3, 3, 2, 3, 1, 3, 3, 2, 2, 3, 2, 1, 2, 1, 2, 2

B : 2, 2, 1, 1, 2, 1, 2, 1, 2, 2, 2, 2, 3, 2, 2, 1, 2, 1, 2, 2

C : 3, 1, 1, 2, 2, 1, 2, 3, 1, 1, 3, 3, 3, 2, 3, 2, 3, 3, 1, 2

First, we estimate all of the transition probability matrices P (jj) by counting the frequen-

cies of transitions from one rating class to the others and the estimates are presented as

below:

p(11) =






0.0000 0.3750 0.1667

0.6000 0.3750 0.5000

0.4000 0.2500 0.3333




 ,

p(22) =






0.1667 0.4167 0.0000

0.8333 0.5000 1.0000

0.0000 0.0833 0.0000






and

p(33) =






0.3333 0.2000 0.3750

0.5000 0.2000 0.2500

0.1667 0.6000 0.3750




 .

Here, we suppose that the upper bound α ranges from 0.1 to 1.0, with an increment of

0.1. For each value of α, the estimates of the parameters λij ’s can be computed by solving

the linear programming problems described in Section 3. Here, we need to solve three

linear programming problems since we have three ratings series.

To compare the empirical performances of different models and perform model selec-

11



tion, we adopt the BIC as a criterion, which is defined as below:

BIC = −2L + q log n ,

where

L =

s∑

j=1

(
m∑

i0,k1,···ks=1

n
(j)
i0,k1,··· ,ks

log I

)

,

I =

m∑

l=1

s∑

k=1

(λjk −
1

m − 1
λj,−k)p

(jk)
i0,kl

+
1

m − 1
λj,−k

is the log-likelihood of the model, and,

n
(j)
i0,k1,k2,··· ,ks

=
∑

x
(j)
n+1(i0)x

1
n(k1)x

2
n(k2) · · ·x

s
n(ks).

Here, q represents the number of independent parameters and n is the length of ratings

series. The smaller the value of the BIC, the better the model is. In other words, the

“best” model is given by the one with the smallest BIC.

For the sake of comparison, we also give the empirical results for the model of Siu et

al. [18]. The BICs of the new model with different values of α and the model of Siu et

al. [18] are reported in Table 4.1.

Table 4.1. The BIC for Different Models

Models BIC

The model in [18] 607.4

The New Model (α = 0.1) 247.0

The New Model (α = 0.2) 246.2

The New Model (α = 0.3) 245.3

The New Model (α = 0.4) 245.5

The New Model (α = 0.5) 247.2

The New Model (α = 0.6) 246.5

The New Model (α = 0.7) 245.9

The New Model (α = 0.8) 245.5

The New Model (α = 0.9) 245.2

The New Model (α∗ = 1.0) 244.9

From Table 4.1, the “best” model is the new model with α∗ = 1.0. This model is

also better than the model of Siu et al . [18] in terms of fitting the hypothetical ratings

data since the former has a smaller BIC than the latter. This might be attributed to

the existence of negative associations among the three hypothetical ratings series. The

optimal value α∗ = 1.0 is the most appropriate one to accommodate the given length of

the ratings series according to the BIC. When the optimal value of α∗ = 1.0, the estimate

12



of [λij ] is given by:






λ1,1 λ1,2 λ1,3 λ1,−1 λ1,−2 λ1,−3

λ2,1 λ2,2 λ2,3 λ2,−1 λ2,−2 λ2,−3

λ3,1 λ3,2 λ3,3 λ3,−1 λ3,−2 λ3,−3




 =






0.2146 0.1599 0.1101 0.3094 0.0876 0.1184

0.0000 0.4707 0.0000 0.0000 0.3383 0.1910

0.2094 0.0000 0.0157 0.0000 0.3246 0.4503






and

M1 =




















0.0000 0.0225 0.01000 0.1161 0.0000 0.0000 0.0509 0.0000 0.0000

0.0359 0.0225 0.0299 0.0000 0.1161 0.0000 0.0000 0.0509 0.0000

0.0240 0.0150 0.0200 0.0000 0.0000 0.1161 0.0000 0.0000 0.0509

0.0000 0.0000 0.0000 0.0503 0.1256 0.0000 −0.0955 0.0000 0.0000

0.0000 0.0000 0.0000 0.2512 0.1507 0.3015 0.0000 −0.0955 0.0000

0.0000 0.0000 0.0000 0.0000 0.0251 0.0000 0.0000 0.0000 −0.0955

0.2094 0.0000 0.0000 −0.16230 0.0000 0.0000 −0.0698 −0.0419 −0.0785

0.0000 0.2094 0.0000 0.0000 −0.1623 0.0000 −0.1047 −0.0419 −0.0524

0.0000 0.0000 0.2094 0.0000 0.0000 −0.1623 −0.0349 −0.1257 −0.0785




















and

b1 = (0.2868, 0.3312, 0.2551, 0.1942, 0.4902, 0.1096, 0.3668, 0.3762, 0.4193)T.

We remark that the computational time for the multivariate model [18] is 0.11 seconds,

while the computation time for the new model with α = 1.0 is 0.125 seconds in this

numerical example. Hence, the computational times for the two models are similar.

4.2 Ratings Data of Two Assets

Now, we use the credit ratings data of two assets extracted from Kijima et al. [14].

This dataset has been adopted in Siu et al. [18] and is presented as follows:

Table 4.2. The Ratings of the Two Assets (Taken from Kijima et al. [14])

Asset/Year 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1 4 4 4 4 4 5 5 5 5 5 4 4 4 4 5 5 5 5

2 4 4 4 4 4 4 4 4 5 5 5 4 4 4 5 5 5 5

Here, the state “1” represents the highest rating class, say AAA. The estimates of the

parameters λjk’s for different values of the upper bound α are reported in Table 4.3.

Table 4.3: Λ+ = (λ11, λ12, λ21, λ22), Λ− = (λ1,−1, λ1,−2, λ2,−1, λ2,−2)
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Models Λ+ Λ−

(α = 0.1) (0.1333,0.0111,0.8556,0.0000) (0.0111,0.1333,0.0000,0.8556)

(α = 0.2) (0.1417,0.0222,0.8361,0.0000) (0.0222,0.1417,0.0000,0.8361)

(α = 0.3) (0.1500,0.0333,0.8167,0.0000) (0.0333,0.1500,0.0000,0.8167)

(α = 0.4) (0.1583,0.0444,0.7972,0.0000) (0.0444,0.1583,0.0000,0.7972)

(α = 0.5) (0.1667,0.0556,0.7778,0.0000) (0.0556,0.1667,0.0000,0.7778)

(α = 0.6) (0.1750,0.0667,0.7583,0.0000) (0.0667,0.1750,0.0000,0.7583)

(α = 0.7) (0.1833,0.0778,0.7389,0.0000) (0.0778,0.1833,0.0000,0.7389)

(α = 0.8) (0.1917,0.0889,0.7194,0.0000) (0.0889,0.1917,0.0000,0.7194)

(α = 0.9) (0.2000,0.1000,0.7000,0.0000) (0.1000,0,2000,0.0000,0.7000)

(α∗ = 1.0) (0.2083,0.1111,0.6806,0.0000) (0.1111,0.2083,0.0000,0.6806)

Table 4.4. displays the BIC for the new model with different values of the upper bound

α and the model of Siu et al. [18].

Table 4.4. The BIC

Models BIC

The model in [18] 922.4

(α = 0.1) 500.1

(α = 0.2) 497.6

(α = 0.3) 495.3

(α = 0.4) 493.1

(α = 0.5) 491.0

(α = 0.6) 489.0

(α = 0.7) 487.1

(α = 0.8) 485.3

(α = 0.9) 483.5

(α∗ = 1.0) 481.8

From Table 4.4, for each value of the upper bound α, the new model provides a better

fit to the credit ratings data than the model of Siu et al. [18]. Moreover, the new model

with a large value of the upper bound provides a better fit to the credit ratings data. In

this case, the “best” model is the new model with α∗ = 1. When this optimal value of α

is used, we have following model.

M2 =

(

M11 M12

M21 M22

)
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where

M11 =


















0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0864 0.0139 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0247 0.0972 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000


















,

M22 =


















0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0909 0.0185 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0202 0.0926 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000


















,

M21 = 0.1111I

and

M12 = 0.1111I

and

b2 =
(0.0000, 0.0000, 0.0000, 0.0878, 0.1067, 0.0000, 0.0000, 0.0000,

0.0000, 0.0000, 0.0000, 0.0957, 0.0987, 0.0000, 0.0000, 0.0000)T.

To evaluate the CVaR and the CES, we consider a portfolio with one unit of each

of the two assets. As in Siu et al. [18] (see pp. 552-553 therein), we evaluate the loss

from each of the two assets by first considering an unit interval and its uniform partitions

∪8
i=1Pi with

Pi = [
i − 1

8
,
i

8
) ,

for each i = 1, 2, . . . , 8.

We suppose that for each j = 1, 2 and each i = 1, 2, . . . , m, the loss from the jth asset

Lt+1(Y
(j)
t+1) given Y

(j)
t+1 = ei takes values from Pi and it follows an uniform distribution

on the interval Pi. Given Y
(j)
t+1 = ei, we can then simulate the loss Lt+1(Y

(j)
t+1) from the

uniform distribution on Pi. The simulated losses for different assets and different rating

classes are presented in Table 4.5.

Table 4.5. Simulated Losses for the Two Data Sequences
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1 2 3 4 5 6 7 8

1 0.1188 0.2009 0.3614 0.4321 0.6027 0.7019 0.8652 0.8970

2 0.0289 0.1857 0.3453 0.3773 0.5556 0.7240 0.8423 0.9257

The aggregate loss of the portfolio at time t + 1 is given by:

Lt+1(Yt+1) = L
(1)
t+1(Y

(1)
t+1) + L

(2)
t+1(Y

(2)
t+1) .

The CVaR and the CES are then evaluated by the formulae in Siu et al. [18] (see Formulae

(11) - (13) for CVaR and Formula (14) for CES therein). The numerical results of the

CVaR and the CES for the new model with different α and the model of Siu et al. [18]

are presented in Table 4.6.

Table 4.6. The CVaR and the CES

Models BIC CVaR CES CVaR CES

(β = 0.05) (β = 0.05) (β = 0.01) (β = 0.01)

The model in [18] 922.4 1.1593 1.1593 1.1593 1.1593

(α = 0.1) 500.1 1.1795 1.2030 1.2185 1.2290

(α = 0.2) 497.6 1.1830 1.2054 1.2201 1.2300

(α = 0.3) 495.3 1.1859 1.2073 1.2213 1.2309

(α = 0.4) 493.1 1.1882 1.2088 1.2224 1.2316

(α = 0.5) 491.0 1.1902 1.2101 1.2233 1.2322

(α = 0.6) 489.0 1.1919 1.2112 1.2240 1.2327

(α = 0.7) 487.1 1.1933 1.2122 1.2246 1.2331

(α = 0.8) 485.3 1.1946 1.2130 1.2252 1.2335

(α = 0.9) 483.5 1.1957 1.2138 1.2257 1.2338

(α∗ = 1.0) 481.8 1.1966 1.2144 1.2261 1.2341

From Table 4.6, we see that the CES is always greater than or equal to the correspond-

ing CVaR for a given probability level β and that the CES and the CVaR with β = 0.01

are greater than or equal to those with β = 0.05. These are consistent with the definition

of the two risk measures. For the new model, both the CVaR and the CES with different

values of the probability level β increase as the value of α increases, which indicates that

the better the model is, the higher risk value the model has. This seems to be consistent

with the intuition that a more strict measure of risk is obtained when the model becomes

more restrictive. Our CES and CVaR with all different α are always greater than CES

and CVaR obtained from model of Siu et al. [18] for both β = 0.05 and β = 0.01. In

this case, the model incorporating both the positive and negative associations gives you

the risk measures more strict than those obtained from the model that only incorporates

the positive association. This reflects that without incorporating negative association

presented in the ratings of the two assets leads to an under-estimation of the risk.
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4.3 Risk Ratings Data for Bonds

In this section, we consider the risk ratings data for bonds from four industrial sectors

in United States, namely, consumer, energy, media and transportation. These risk ratings

data are extracted from the IHMM in Ching et al. [5] using the quarterly bonds defaults

data for the four sectors from Giampieri et al. [12]. The bond defaults data set covers

the period from January 1981 to December 2002 and the four sectors in United States

and these data were originally taken from Standard & Poors’ ProCredit6.2 database in

Giampieri et al. [12]. Following Giampieri et al. [12] and Ching et al. [5], we suppose

that the risk ratings of the bonds take one of the two possible values, namely, normal risk

state (State 1) and enhanced risk state (State 2) and that bonds from each of the four

sectors have the same ratings in each quarter. In other words, the bonds from each of the

four sectors are homogeneous in their quarterly risk ratings. The length of quarterly risk

ratings series of bonds for each of the four sectors is 88. Even through the bonds in the

same sector have the same risk ratings. they may have different values. However, the risk

ratings of the bonds do play an important role in their values. Here, we suppose that the

values of the bonds depend on their risk ratings. In particular, the values of the bonds

with enhanced risk state have lower values than bonds with normal risk state. In other

words, the losses from trading bonds with enhanced risk state are higher than those from

trading bonds with normal risk state. Table 4.7. reports the BIC of the new model with

different values of α and the model of Siu et al. [18].

Table 4.7: The BIC

Models BIC

The model in [18] 492.1

(α = 0.1) 445.4

(α = 0.2) 434.8

(α = 0.3) 424.9

(α = 0.4) 415.8

(α = 0.5) 407.6

(α = 0.6) 400.1

(α = 0.7) 393.7

(α = 0.8) 388.3

(α = 0.9) 384.2

(α∗ = 1.0) 380.7

From Table 4.7, the optimal model is the new model with α∗ = 1.0. When this optimal

value α∗ = 1.0 is applied, we have the following estimates of the unknown parameters of
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the new model.

M3 =


















0.0504 0.0245 0.0032 0.0000 0.0611 0.0000 0.2255 0.0000

0.0055 0.0314 0.0000 0.0032 0.0000 0.0611 0.0000 0.2255

0.0000 0.0000 0.1564 0.0952 0.0000 0.0000 0.1667 0.0000

0.0000 0.0000 0.0082 0.0714 0.0000 0.0000 0.0000 0.1667

−0.3750 0.0000 0.0000 0.0000 0.3545 0.1071 0.2500 0.0000

0.0000 −0.3750 0.0000 0.0000 0.0205 0.2679 0.0000 0.2500

0.0000 0.0000 −0.1667 0.0000 0.0000 0.0000 0.4756 0.3000

0.0000 0.0000 0.0000 −0.1667 0.0000 0.0000 0.0244 0.2000


















and

b3 = (0.5726, 0.4606, 0.6699, 0.3260, 0.6250, 0.6250, 0.5000, 0.5000)T.

To evaluate the CVaR and the CES, we consider a portfolio with one unit of a bond

from each of the four sectors. In this case, we evaluate the loss from each of the four

bonds by first considering an unit interval [0, 1] and dividing it into two parts, namely,

P1 := [0, 0.5) and P2 := [0.5, 1]. Here, P1 represents the state space of the losses from

trading a bond with normal risk state and P2 is the state space of losses from trading a

bond with enhanced risk state.

Here, for each sector j = 1, 2, 3, 4 and each risk rating state i = 1, 2, the loss from

trading a bond from the jth sector Lt+1(Y
(j)
t+1) given the risk rating state of the bond

Y
(j)
t+1 = ei takes values from Pi and it follows a uniform distribution on the interval Pi.

Given Y
(j)
t+1 = ei, we simulate the loss Lt+1(Y

(j)
t+1) from the uniform distribution on Pi.

The simulated losses of the bonds with different sectors and different risk rating states

are then displayed in Table 4.8.

Table 4.8: Simulated losses from trading the bonds

1 2

1 0.1645 0.9147

2 0.2391 0.9781

3 0.2986 0.7978

4 0.0807 0.5144

The aggregate loss of the portfolio at time t + 1 is given by:

Lt+1(Yt+1) = L
(1)
t+1(Y

(1)
t+1) + L

(2)
t+1(Y

(2)
t+1) + L

(3)
t+1(Y

(3)
t+1) + L

(4)
t+1(Y

(4)
t+1).

The numerical results of the CVaR and the CES for the new model with different α and

the model of Siu et al. [18] are presented in Table 4.9.

Table 4.9: The CVaR and the CES
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Models BIC CVaR CES CVaR CES

(β = 0.05) (β = 0.05) (β = 0.01) (β = 0.01)

The model in [18] 492.1 2.0210 2.0210 2.2721 2.2721

(α = 0.1) 445.4 3.0273 3.2218 3.3495 3.4796

(α = 0.2) 434.8 3.1312 3.3049 3.4190 3.5352

(α = 0.3) 424.9 3.1901 3.3521 3.4584 3.5667

(α = 0.4) 415.8 3.2291 3.3833 3.4845 3.5876

(α = 0.5) 407.6 3.2572 3.4057 3.5032 3.6026

(α = 0.6) 400.1 3.2784 3.4227 3.5174 3.6139

(α = 0.7) 393.7 3.2950 3.4360 3.5285 3.6228

(α = 0.8) 388.3 3.3083 3.4466 3.5374 3.6299

(α = 0.9) 384.2 3.3219 3.4575 3.5465 3.6372

(α∗ = 1.0) 380.7 3.3225 3.4580 3.5469 3.6375

In Table 4.9, the CES is always greater than or equal to the corresponding CVaR for

a given probability level β and that the CES and the CVaR with β = 0.01 are greater

than or equal to those with β = 0.05. This result is consistent with the definition of the

two risk measures. As in Table 4.6, the numerical results in Table 4.9 are also consistent

with the intuition that a more strict measure of risk is obtained when the model becomes

more restrictive. The CVaR and the CES obtained from the optimal new model with all

different values of α are larger than those obtained from the model of Siu et al. [18]. This

reflects that without incorporating negative association presented in the quarterly risk

ratings data of the bonds leads to an under-estimation of the risk from the portfolio. This

has important implications for the practice of credit risk measurement and management.

5 Concluding Remarks

We developed a parsimonious and flexible multivariate Markov chain model for de-

scribing the dependency of transitions of ratings of credit risky entities. The number of

parameters in the proposed model is only O(sm2 +s2), which is relatively small compared

with the number of parameters O(s2m2) in the model of Siu et al. [18]. Our model can

incorporate both the positive and negative associations between the time series of credit

ratings. We also introduced an effective method to control the rate of convergence of the

process to the stationary distribution and to handle the case when the dataset of ratings

is short. This is an important feature since it is rather difficult or costly to obtain a long

dataset of ratings in practice. We introduced an efficient method is to estimate or cali-

brate the model and formulated the estimation problem as a linear programming problem,

which can be implemented using spreadsheets. We compared the empirical performance

and computational efficiency of the new model with that of the model of Siu et al. [18].

We found that the new model can provide a better fit to the two sets of ratings data and

that the computational efficiencies of the two mdoels are similar. We also compared credit
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risk measures obtained from our model with those from Siu et al. [18] to illustrate the ef-

fect of incorporating both positive and negative associations on portfolio credit risks. We

found that both the ratings of two assets taken from Kijima et al. [14] case and without

incorporating negative association existed in the quarterly risk ratings data of the bonds

extracted from the IHMM from Ching et al. [5] using the quarterly bonds defaults data

from Giampieri et al. [12] leads to an underestimation of the risk from the portfolio of

bonds from four industrial sectors, namely, consumer, media, transportation and energy.

This finding has important implications for the practice of credit risk measurement and

management. We also found that a more strict measure of risk is obtained when the

model nested in the new model becomes more restrictive by controlling the upper bound

of the rate of the convergence.
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