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Abstract

In this paper, we study optimal control policies for Probabilistic Boolean
Networks (PBNs) with hard constraints. Boolean Networks (BNs) and PBNs
are useful and effective tools for modelling genetic regulatory networks. A
PBN is essentially a collection of BNs driven by a Markov chain process. It
is well-known that the control/intervention of a genetic regulatory network
is useful for avoiding undesirable states associated with diseases like cancer.
Therefore both optimal finite-horizon control and infinite-horizon control
policies have been proposed to achieve the purpose. Actually the optimal
control problem can be formulated as a probabilistic dynamic programming
problem. In many studies, the optimal control problems did not consider
the case of hard constraints, i.e., to include a maximum upper bound for the
number of controls that can be applied to the PBN. The main objective of this
paper is to introduce a new formulation for the optimal finite-horizon control
problem with hard constraints. Experimental results are given to demonstrate
the efficiency of our proposed formulation.
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I. INTRODUCTION

An important research issue in systems biology is to understand and model the
mechanism in which the cells execute and control a large number of operations
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for their normal functions and also the way in which they fail in diseases such
as cancer. A lot of mathematical models have been proposed for the former
purpose, such as neural networks [19], differential equations [10] and Petri nets
[25]. For the captured problem, modelling the genetic regulatory network and
inferring its structure by real gene expression data, Boolean Network (BN) and
its generalization Probabilistic Boolean Network (PBN) have received much
attention. This approach helps one to make efficient and effective predictions of
the cellular systems by using computer simulations. BN was first introduced by
Kauffman [13]. In a BN, each gene is regarded as a vertex of the network and
is then quantized into two levels only (express (0) or not-express (1)) though
the idea can be extended to the case of more than two levels. In a BN, the target
gene is predicted by several genes through a Boolean function. The genes used
to predict a certain gene are called its input genes. If the input genes and the
Boolean functions are given, then a BN is said to be defined and it can be
considered as a deterministic dynamical system. BN is simple but its dynamics
is complex and it is useful in getting insight in the global behavior of a genetic
regulatory network [26]. In a BN, attractors play a very important role. Starting
with a given state, eventually the BN will enter into a cycle of states called
an attractor cycle and will stay there forever [14]. A number of algorithms
have been proposed by Akutsu et al. [3], [4] and Zhang et al. [28] for finding
attractors.

However, the biological system has its stochastic nature and the microarray
data sets used to infer the network structure are usually not accurate because
of the experimental noise in the complex measurement process. Thus a de-
terministic model may not be able to cope with the real situations. In view
of this, Akutsu et al. [2] proposed a noisy Boolean network together with
an identification algorithm. In their noisy BNs, they relax the requirement of
consistency imposed by the Boolean functions. Later Shmulevich er al. [20],
[21] proposed a PBN that can take the advantage of the rule-based properties of
BNs and still be able to cope with the presence of uncertainty. PBNs have been
shown to be practical in building a logical representation of cell cycle regulation,
see for instance [20], [21]. The dynamics of a PBN can be studied in the context
of a standard Markov chain [20], [21]. Therefore the theory of Markov chain
process [7] can be applied to analyze the network. It should be noted that the
PBNs in [20], [21] are called instantaneously random PBNs. It may not have
a unique steady-state probability distribution. To stabilize the network, later
random gene perturbations were introduced to the network in [22]. With the
random gene perturbation, the system becomes stable in the long-run and has the
unique network steady-state probability distribution. Another extension of the
instantaneously random PBN is the context-sensitive PBN [16]. The extra feature
in a context-sensitive PBN is that at each time step the BN will be changed with
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a certain probability. In the computation of the network steady-state probability
distribution, the computational cost increases exponentially with respect to the
number of genes in the network. To tackle the high dimensionality problem, a
multivariate Markov chain model has been developed to approximate a PBN [6].
Other efficient numerical methods such as Markov chain Monte-Carlo (MCMC)
method [24], matrix method [27] and approximation method [8] have also been
proposed for the computation of the steady-state probability distribution of a
PBN.

While the mechanism of a genetic network can be studied and understood
by using a PBN, it is an ultimate goal of the systems biologists to design
therapy and strategy for the intervention of the network dynamics, in particu-
lar, in the case of diseases like cancer. We note that although a PBN allows
uncertainty in the inter-gene relations, actually it evolves according to some
fixed state transition probabilities. Therefore there is no internal control to
drive this evolution to some desirable states or to avoid some undesirable
states. Genetic intervention has been proposed to facilitate a PBN to evolve
to some targeted desirable state. Shmulevich et al. [22], [23] have studied two
approaches for genetic intervention. In the first approach, they influence the
network by toggling the state of a particular gene from on to off [22]. But
this approach can only affect the behavior of the system for a while as the
system dynamics still depends on the network itself. Another approach is to
apply the structural intervention to change the network steady state [23]. But
still this approach constitutes only transient intervention. To achieve relatively
more permanent effect of intervention, optimal control theory (finite-horizon
and infinite-horizon) finds its application. In [9], an optimal control formulation
for gene intervention problem has been formulated as a minimization problem
with some costs. The costs are defined as the cost of applying the control inputs
in some particular states. Of course relatively higher terminal costs are assigned
to those undesirable states. But the costs have to be decided by the biologists
or clinicians and can be subjective. Since the system is stochastic in nature,
the cost is given by its expectation. Thus the optimal control policy is the one
which minimizes the overall expected cost and is obtained by using the theory of
probabilistic dynamic programming [17]. Here we would like to remark that the
number of possible states in the network increases exponentially with respect
to the number of genes n and therefore the computational cost for solving
the optimal control problem can be enormous even for moderate n. Take for
example of a BN, it has been shown that finding a control strategy for BN to the
desired global state is NP-hard [4]. Therefore the problem of solving optimal
control in a PBN is challenging and approximate methods should be considered.
Recently an approximate finite-horizon optimal control has been introduced in
[15] and a heuristic method based on ()-learning algorithm for approximating
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the optimal infinite-horizon control policy has been proposed in [12]. However,
all the optimal control formulations did not consider the case of hard constraints
[1], i.e., to include a maximum upper bound for the number of controls that can
be applied to the PBN. Here we will introduce a new formulation for the optimal
finite-horizon control problem with hard constraints [5]. The new formulation
can be applied to both perturbed and context-sensitive PBNs though we only
discuss examples of instantaneously random PBNs. On one hand, during the
treatment of one patient, the cost of the operation conducted may be expensive.
On the other hand, it may be impractical to apply many operations to the patient
due to the organism quality of their body, as in chemotherapy. Apart from the
hard constraints, the followings are two more features of our optimal control
model. First, our formulation does not need to define any control cost or terminal
cost. The only constraint is the maximum number of controls that one can apply
to the network. Second, the control policy is not state dependent. However, we
remark that our formulation here can be modified to include both the control
costs and the state dependent control policies.

The paper is organized in the following sequel. In Section two, we give a
probabilistic dynamic programming formulation for our optimal finite-horizon
control problem. In Section three, numerical examples are given to demonstrate
the efficiency of our proposed optimal control formulation. Finally, concluding
remarks are given to address further research issues in Section four.

II. THE OPTIMAL FINITE-HORIZON CONTROL PROBLEM

In this section, we give a mathematical formulation for the optimal control
problem based on the principle of dynamic programming. Here the problem
can be considered as a discrete time control problem. Beginning with an initial
probability distribution vy the PBN (or the Markov chain) evolves according
to two possible transition probability matrices Py and P;. Without any exter-
nal control, we assume that the PBN evolves according to a fixed transition
probability matrix Fy. When a control is applied to the network, the PBN will
then evolve according to another transition probability matrix P (with more
favorable steady states or a BN) but it will return back to Py again when no more
control is applied to the network. We remark that one can have more than one
type of control, i.e., more than one transition probability matrix P; to choose in
each time step. But for simplicity of discussion, we assume that there is only one
possible control here. We then suppose that the maximum number of controls
that can be applied to the network during the finite investigation period 1" (finite-
horizon) is K where K < T and which can be determined under the guidance
of a doctor or a biologist. The objective here is to find an optimal control policy
such that state of the network is close to a target state vector z. The vector z
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can be an unit vector (a desirable state) or a probability distribution (a weighted
average of desirable states). To facilitate our discussion, we first define the
following state probability distribution vectors v(igix_1...11) = P;, -+ P;, Vo
to represent all the possible network state probability distribution vectors up
to time k. Here i1,...,i; € {0,1} and 25:1 ij < K and igip_q...41 is a
Boolean string of size k. We then define U (k) = {v(igig_1...71) : i1,...,0 €
{0,1} and 2?21 i; < K} to be the set containing all the possible state
probability vectors up to time k. We note that one can conduct a forward
calculation to compute all the state vectors in the sets U(1),U(2),...,U(T)
recursively. Beginning with v, we have v(0) = Pypvg and v(1) = Pyvg and
therefore U(1) = {v(0),v(1)} = {Povo, Pivo}. We then compute v(00) =
Pyv(0), v(10) = Piv(0), v(01) = Pyv(1l), v(11) = Piv(l) and we have
U(2) = {V(OO), V(Ol), V(lO), V(ll)} = {PQP()V[), P1POV0, P()PlVO, P1P1V0}
Recursively one can compute U(3),...,U(T). Here the main computational
cost is the matrix-vector multiplication and the cost is O(22") where n is the
number of genes in the network. However, we don’t need to compute and store
all the 27" vectors as some state probability distribution actually does not exist
because the maximum number of controls is K. In fact, the total number of

vectors involved is
K

T
2 T

7=0
For example if K = 1, the complexity of the above algorithm is O(T22").

There are at least two possible formulations for our optimal control problem.
The first one is to minimize the terminal distance with the target vector z, i.e.,

i ) ) — e ) - . 1
Vlirin 1o €U(T) Vv (irir—y...i1) — 2fl2 (1)

The second one is to minimize the overall average of the distances of the state

vectors v(i;...41) (t =1,2,...,T) to the target vector z, i.e.,
1 I
min — v(ig...11) — z||2. 2
V(irir_1..i0)eU(T) T tzl [V (i ) 2 @

For the first optimal control problem (1), once we compute all the feasi-
ble state vectors U(7"), we can then compute the minimum of the following:
min{||v(ipizr_1...41) — 2||2}. The optimal control policy can be found ac-
cordingly. For the second optimal control formulation (2), we have to define the
following cost function D(v(wy),t, k), 1 <t <T, 0 < k < K as the minimum
total distance to the terminal time 7' when beginning with state distribution
vector v(wy) at time ¢ and that the number of controls used is k. Here wy is
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a Boolean string of length ¢. To reduce the duplication in the calculation of
distances, we consider the following dynamic programming formulation ([1]):

D(v(wi—1),t —1,k) = min{||v(0w;_1) — z||2 + D(v(0W¢_1),t, k),
[lv(lwi—1) — z||2 + D(v(1w_1),t, k+ 1)}.

Here Ow;_; and 1w;_; are Boolean strings of size ¢. The first term in the right-

hand-side of (3) is the cost (distance) when no control is applied at time ¢ while

the second term is the cost when a control is applied. The optimal control policy

can be obtained during the process of solving (3). To solve our optimal control

problem: ming<x<x{D(vo,0,k)} we need the following boundary conditions:
D(v(wy),t, K +1) =00 for all w; and ¢ and for £ =0,1,..., K,
T

D(v(wr),T,k) =||v(wr) — 2|l for wp=ir...iy and Zij < K.
j=1

3)

Finally, we remark that the formulations are still valid when ||.||2 is replaced
by other vector norms such as ||.||; or ||.||co-

III. EXPERIMENTAL RESULTS

In this section, we apply the optimal control to a eight-gene network [15]. We
assume that there are two Boolean functions fl(l) and fz(l associated with each
gene 7. Moreover, all the Boolean functions and their variables are generated
randomly as in [15]. Here we assume the control when applied to the network
will suppress gene 1, i.e., gene 1 is not expressed. We further assume that the
transition probability matrix when a control is applied is given by

0 0
n=(v7)

where 0 and I are the 27-by-27 zero matrix and the identity matrix respectively.

In the numerical experiment, we assume that the initial state vector of the
network is the uniform distribution vector vg = 2—18(1, 1,...,1)T. The target
vector is z = %(0, 1)7 where 0 and 1 are the 1 x 27 zero vector and the 1 x 27
vector of all ones respectively. Again we assume that the total time 7" to be
12 and we try several different maximum number of controls K = 1,2,3,4,5.
Tables I and II report the numerical results. It took 10.7 seconds to generate the
transition probability matrix F. The computational time for solving for optimal
policy in all cases is less then 4 seconds. In Tables I and II, we observed that we
should apply as many controls as possible up to the maximum constraints for
both formulations (1) and (2). According to the formulation (2), the controls
should be conducted as soon as possible (the optimal policy is to apply the
controls at the beginning of the period).
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TABLE I
THE EXAMPLE OF EIGHT-GENE NETWORK (OBJECTIVE FUNCTION (1) IS USED)
l K | [ 2 | 3 | 4 [ 5 |
Control time point @) o,11) | (79,11) | (3,79,11) | (2,5,7,9,11)
Optimal value 0.1585 | 0.1454 | 0.1309 0.1297 0.1272
TABLE II
THE EXAMPLE OF EIGHT-GENE NETWORK (OBJECTIVE FUNCTION (2) IS USED)
l K | 1 2 [ 3 [ 4 [ 5 |

Control time point | (1) (12) | (1.23) | (1.23.4) | (1,2,3.45)
Optimal value | 0.1459 | 0.1327 | 0.1194 | 0.1061 0.0929

IV. CONCLUDING REMARKS

In this paper, we introduce a new optimal finite-horizon control formulation
for PBNs with hard constraints. The new formulation can be applied to both
perturbed and context-sensitive PBNs though we only test it with the instan-
taneously random PBNs. We remark again that our proposed optimal control
method can be extended easily to the case of more than two control policies. The
followings are our future research issues. First, we will extend our formulation
for PBNs to the case of optimal infinite-horizon control based on the results in
[1], [5]. Second, we will extend the approximation method in [8] to our control
problem. Finally, we will conduct more numerical experiments to bigger size
networks.
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