
An Isomorphism Theorem for Holomorphic Mappings
from Arithmetic Varieties of Rank ≥ 2 into

Quotients of Bounded Domains of Finite Intrinsic Measure

Ngaiming Mok∗

Let Ω be a bounded symmetric domain of rank ≥ 2 and Γ ⊂ Aut(Ω) be a torsion-free
irrreducible lattice, X := Ω/Γ. In Mok [M1,2] and To [To] Hermitian metric rigidity for the
canonical Kähler-Einstein metric was established. In the locally irreducible case, it says that
the latter is up to a normalizing constant the unique Hermitian metric on X of nonpositive
curvature in the sense of Griffiths. This led to the rigidity result for nontrivial holomorphic
mappings of X into Hermitian manifolds of nonpositive curvature in the sense of Griffiths,
to the effect that up to a normalizing constant any such holomorphic mapping must be an
isometric immersion totally geodesic with respect to the Hermitian connection. With an aim
to studying holomorphic mappings of X into complex manifolds which are of nonpositive
curvature in a more generalized sense, for instance, quotients of arbitrary bounded domains
by torsion-free discrete groups of automorphisms, we established recently in Mok [M4] a
form of metric rigidity applicable to complex Finsler metrics, including especially induced
Carathéodory metrics, constructed from bounded holomorphic functions. By studying ex-
tremal bounded holomorphic functions in relation to Finsler metric rigidity we established
rigidity theorems for nontrivial holomorphic mappings f of arithmetic varieties X of rank ≥ 2
into complex manifolds N whose universal covers admit enough nontrivial bounded holomor-
phic functions. A new feature of our results is that we can prove that the lifting F : Ω → Ñ to
universal covers is a holomorphic embedding. We called this result the Embedding Theorem.

Mok [M4] gave the first link between bounded holomorphic functions and rigidity prob-
lems. In Mok [M5] we further developed the theory by solving the Extension Problem, which
is the problem of ‘inverting’ the holomorphic embedding F : Ω → Ñ as a bounded holomor-
phic map, i.e., finding a holomorphic extension R : Ñ → Cn of the inverse i : F (Ω) → Ω b Cn

as a bounded holomorphic map. As a consequence, we proved a Fibration Theorem when f

induces an isomorphism on fundamental groups. In the case when X and N are compact (N
not necessarily Kähler) the Fibration Theorem says that there exists a holomorphic fibration
with connected fibers ρ : N → X such that ρ ◦ f ≡ idX . Compactness is used to show that
certain bounded plurisubharmonic functions constructed on Ñ have to be constant, which
allows us to show that R descends from Ñ to N .

One primary objective in our research relating bounded holomorphic functions to rigid-
ity problems is to study holomorphic mappings on X into target manifolds N which are
uniformized by an arbitrary bounded domain D, N := D/Γ′. In this article we study the
situation where f : X → N = D/Γ′ induces an isomorphism on fundamental groups and look
for necessary and sufficient conditions which would guarantee that the lifting F : Ω → D is
a biholomorphism. Our main result is to establish the latter under the assumption that N

is of finite intrinsic measure with respect to the Kobayashi-Royden volume form. From the

∗Research partially supported by a CERG of the Research Grants Council of Hong Kong, China

1



method of proof of the Fibration Theorem we need to show the constancy of certain bounded
plurisubharmonic functions. When N is a complete Kähler manifold of finite volume, we have
at our disposal the tool of integration by part on complete Kähler manifolds. We resort to
such techniques, by passing first of all to the hull of holomorphy of D and making use of the
canonical Kähler-Einstein metric constructed by Cheng-Yau [CY] and shown to be complete
in Mok-Yau [MY]. We exploit the hypothesis that N = D/Γ′ is of finite intrinsic measure with
respect to the Kobayashi-Royden volume form to prove that N can be enlarged to a complete
Kähler-Einstein manifold of finite volume, which is enough to show that the bounded plurisub-
harmonic functions constructed are constant. The hypothesis that the target manifold is of
finite intrinsic measure with respect to the Kobayashi-Royden volume form appears to be
the most natural geometric condition, as the notion of intrinsic measure, unlike the canonical
Kähler-Einstein metric, is elementary and defined for any complex manifold, and its finite-
ness is a necessary condition for the target manifold to be quasi-projective. The passage from
a quotient of a bounded domain of finite intrinsic measure to a complete Kähler-Einstein
manifold of finite volume involves an elementary a-priori estimate on the Kobayashi-Royden
volume form of independent interest applicable to arbitrary bounded domain.
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§1 Preliminaries and statements of results.
(1.1) In Mok [M4] we proved an embedding theorem for holomorphic mappings on arithmetic
varieties X = Ω/Γ of rank ≥ 2, Γ ⊂ Aut(Ω) being torsion-free irreducible lattices, when
the universal covering spaces of the target manifold admit enough bounded holomorphic
functions. For the formulation we introduce a nondegeneracy condition (†) for holomorphic
maps in relation to bounded holomorphic functions. Let f : X → N be a holomorphic map
and denote by F : Ω → Ñ its lifting to universal covering spaces. When Ω is irreducible we
say that (X,N ; f) satsifies the nondegeneracy condition (†) whenever there exists a bounded
holomorphic function h on Ñ such that F ∗h is nonconstant. In general, let Ω = Ω1×· · ·×Ωm

be the decomposition of Ω into irreducible factors. A subdomain Ω′1 = Ω1 × {(x2, . . . , xm)}
will be called an irreducible (first) factor subdomain, etc. We say that (X, N ; f) satisfies
the nondegeneray condition (†) if and only if for each k, 1 ≤ k ≤ m, there exists a bounded
holomorphic function hk on Ñ such that F ∗hk is nonconstant on some irreducible k-th factor
subdomain Ω′k ⊂ Ω. We proved

The Embedding Theorem (Mok[M4]). Let Ω be an irreducible bounded symmetric domain
of rank ≥ 2 and Γ ⊂ Aut(Ω) be a torsion-free cocompact lattice, X := Ω/Γ. Let N be a
complex manifold and denote by Ñ its universal cover. Let f : X → N be a holomorphic
mapping and F : Ω → Ñ be its lifting to universal covers. Suppose (X,N ; f) satisfies the
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nondegeneracy condition (†). Then, F : Ω → Ñ is a holomorphic embedding.

In Mok [M5] we study further the holomorphic embedding F : Ω → Ñ given by the Embedding
Theorem. With applications in mind, we posed the Extension Problem, which is the problem
of finding a bounded holomorpohic mapping R : Ñ → Cn which serves as a left inverse of
F : Ω → Ñ , i.e., R ◦ F = idΩ. We have proved

Theorem (Solution the Extension Problem, (Mok[M4])). Let Ω b Cn be the Harish-
Chandra realization of a bounded symmetric domain of rank ≥ 2 and Γ ⊂ Aut(Ω) be a
torsion-free irreducible lattice, X := Ω/Γ. Let N be a Zariski-open subset of some compact
complex manifold and denote by Ñ its universal cover. Let f : X → N be a nonconstant
holomorphic mapping into N , and denote by F : Ω → Ñ the lifting to universal covering
spaces. Suppose (X, N ; f) satisfies the nondegeneracy condition (†). For the holomorphic
embedding F : Ω ∼= F (Ω) ⊂ Ñ denote by i : F (Ω) → Ω the inverse mapping. Then, there
exists a (not necessarily unique) bounded vector-valued holomorphic map R : Ñ → Cn such
that R|F (Ω) ≡ i, i.e., R ◦ F ∼= idΩ.

We applied the solution to the Extension Problem to the situation where f : X → N

induces an isomorphism on fundamental groups. We considered the case where N can be
compactified in a nice way, viz., where N is a Zariski-open subset of a compact complex
manifold. In this case we prove that N can be projected onto f(X). More precisely, we have

The Fibration Theorem. Let Ω be a bounded symmetric domain of rank ≥ 2 and Γ ⊂
Aut(Ω) be a torsion-free irreducible lattice, X := Ω/Γ. Let N be a Zariski-open subset of
some compact complex manifold and denote by Ñ its universal cover. Let f : X → N

be a nonconstant holomorphic mapping into N , and denote by F : Ω → Ñ the lifting to
universal covering spaces. Suppose (X, N ; f) satisfies the nondegeneracy condition (†). Then,
f : X → N is a holomorphic embedding, and there exists a holomorphic fibration ρ : N → X

with connected fibers such that ρ ◦ f = idX .

(1.2) One of our primary objectives in relating bounded holomorphic functions to rigidity
problems is to develop a theory applicable to holomorphic mappings from arithmetic vari-
eties of rank ≥ 2 to complex manifolds uniformized by arbitrary bounded domains. In this
case the nondegeneracy condition (†) for the Embedding Theorem are always satisfied for
any nonconstant holomorphic mapping f : X → N . We proved the following result as a
consequence of our solution to the Extension Problem.

Theorem (Mok[M5]). Let Ω b Cn be a bounded symmetric domain of rank ≥ 2 and Γ ⊂
Aut(Ω) be a torsion-free irreducible lattice, X := Ω/Γ. Let D be an n-dimensional bounded
domain on a Stein manifold, Γ′ be a torsion-free discrete group of automorphisms on D,
N := D/Γ′. Then, any nontrivial holomorphic mapping f : X → N lifts to a biholomorphism
F : Ω ∼= D between covering domains.

In the present article we further study holomorphic embeddings as given by the Embed-
ding Theorem with target manifolds uniformized by bounded domains, assuming now as in
the Fibration Theorem that the induced map on fundamental groups is an isomorphism. We
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look for some natural geometric condition on N which would allow us to establish an ana-
logue of the Fibration Theorem, in which case one expects the fibers on Ω to reduce to single
points, and that we would have a biholomorphism. We establish the following principal result
which yields a biholomorphism under the assumption that the target manifold N = D/Γ′ is
of finite measure with respect to the Kobayashi-Royden volume form, which is a necessary
condition for N to admit a realization as a Zariski-open subset of some compact complex
manifold. Our principal result is given by

Main Theorem (The Isomorphism Theorem). Let Ω be a bounded symmetric domain
of rank ≥ 2 and Γ ⊂ Aut(Ω) be a torsion-free irreducible lattice, X := Ω/Γ. Let D be a
bounded domain on a Stein manifold, Γ′ be a torsion-free discrete group of automorphisms on
D, N := D/Γ′. Suppose N is of finite measure with respect to the Kobayashi-Royden volume
form, and f : X → N is a holomorphic map which induces an isomorphism f∗ : Γ ∼= Γ′.
Then, f : X → N is a biholomorphic map.

Remark. We note that in the statement of the Main Theorem we do not need to assume
that D is simply-connected. We will need a slight variation of the Theorem concerning
the Extension Problem. There in the proof it is not important to use the universal covering
space Ñ . We may use any regular covering τ : Ñ → N provided that the holomorpic mapping
f : X → N admits a lifting to F : Ω → Ñ .

§2 Complete Kähler-Einsten metrics and estimates on the Kobayashi- Royeden
volume form

(2.1) For the Isomorphism Theorem we are interested in the case where the target manifold
N is uniformized by a bounded domain D on a Stein manifold. In our study of such manifolds
we will need to resort to the use of canonical complete Kähler metrics. When D is assumed
furthermore to be a domain of holomorphy, we have the canonical Kähler-Einstein metric.
The existence of the metric was established by Cheng-Yau [CY], and its completeness by
Mok-Yau [MY]. More precisely, we have

Existence Theorem on Kähler-Einstein Metrics. Let M be a Stein manifold and D b
M be a bounded domain of holomorphy on M . Then, there exists on D a unique complete
Kähler-Einstein metric dsKE of Ricci curvature −(n+1). The metric is furthermore invariant
under Aut(D).

Remark. We note that invariance of ds2
KE under Aut(D) follows from uniqueness and

the Ahlfors-Schwarz Lemma for volume forms. Furthermore, for the existence of ds2
KE the

bounded domain D b M has to be assumed a domain of holomorphy. It was in fact proven
in [MY] that any bounded domain on M admitting a complete Kähler-Einstein metric of
negative Ricci curvature satisfies the Kontinuitätssatz of Oka’s, and must therefore be a
domain of holomorphy.

In the formulation of the Isomorphism Theorem we assume that the target manifold
N = D/Γ′ is of finite intrinsic measure with respect to the Kobayashi-Royden volume form.
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This notion of intrinsic measure (cf. (2.2)) is defined for any complex manifold. For the proof
of the Isomorphism Theorem we need nonetheless to work with the complete Kähler-Einstein
metric. This is done by first passing to the hull of holomorphy D̂ of D. For the passage and
for estimates in the proof it is necessary to compare various canonical metrics and volume
forms, as given in the following Comparison Lemma which results from the Ahlfors-Schwarz
Lemma for Kähler metrics and for volume forms (cf. Mok [M2] and the references given
there).

The Comparison Lemma. Let D be a bounded domain on some n-dimensional Stein
manifold, ds2

KE be the canonical complete Kähler-Einstein metric of constant Ricci curvaute
−(n + 1), and denote by dVKE its volume form. Then, for the Carathéodory metric κ and
the Kobayashi-Royden volume form dVKR on D, we have

ds2
KE ≥ 2κ

n + 1
, dVKE ≤ dVKR .

(2.2) Let ds2
Bn be the Poincaré metric on the unit ball Bn ⊂ Cn normalized to have constant

Ricci curvature −(n + 1), with volume form dVPoin.. On a complex manifold M let KM be
the space of all holomorphic maps f : Bn → M . For a holomorphic n-vector η its norm with
respect to the Kobayashi-Royden volume form dVKR is given by ‖η‖dVKR

= inf{‖ξ‖dVP oin.
:

f∗ξ = η for some f ∈ KM}. We will need the following estimate for the Kobayashi-Royden
volume form on a bounded domain in Cn in terms of distances to the boundary.

Proposition 1. Let U b Cn be a bounded domain, and denote by ρ = ρU the Kobyashi-
Royden volume form on U . For z ∈ U denote by δ(z) the Euclidean distance of z from the
boundary ∂U . Write dV for the Euclidean volume form on Cn. Then, there exists a positive
constant c depending only on n and the diameter of U such that

ρ(z) >
c

δ(z)
.

Proof. We will first deal with the case where n = 1. In this case, the Kobayashi-Royden form
is the same as the infinitesimal Kobayashi-Royden metric, which agrees with the Poincaré
metric, and we have the stronger estimate where c

δ(z) is replaced by c
δ2(z)(logδ)2 (Mok-Yau

[MY]). The latter estimate relies on the Uniformization Theorem and does not carry over to
the case of general n. We will instead give the weaker estimate as stated in Proposition 1 for
n = 1 using Cauchy estimates and give the necessary modification for general n.

Let z ∈ U and f : ∆ → U be a holomorphic function such that f(0) = z. Denote by
w the Euclidean coordinate on ∆. We will show that for some absolute constant C to be
determined, we have |f ′(0)| ≤ C

√
δ(z), which gives the estimate ‖ ∂

∂z‖2 ≥ c
δ(z) for C = 1

c .
Write |f ′(0)| = A. Let b ∈ ∂U be such that |z − b| = δ(z). To get an upper estimate for A

we are going to show that if A were too large, then b would lie in the image f , leading to a
contradiction. To this end consider the function h(w) = f(w)− b. The linear part of h at 0
is given by L(w) = f ′(0)w + z − b. Write h(w) = L(w) + E(w). Assume that A ≥ C

√
δ. We
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assert that there is a constant a > 0 for which the following holds whenever δ(z) is sufficiently
small:

(a) |L(w)| > 2δ(z) whenever |w| = a
√

δ(z) ;

(b) |E(w)| < δ(z) whenever |w| = a
√

δ(z) .

From (a) and (b) it follows that |h(w)| > δ(z) whenever |w| = a
√

δ(z).

We can start with (b), which is valid for a sufficiently small a > 0 depending on the
diameter of U but independent of δ(z), by means of Cauchy estimates, since the “error” term
E(w) satisfies E(0) = E′(0) = 0. Choose now the constant C such that C > 3

a . Then, for
|w| = a

√
δ(z),

∣∣L(w)
∣∣ ≥ A|w| − δ(z) >

3
a

√
δ(z)

(
a
√

δ(z)
)− δ(z) > 2δ(z) , (1)

so that (1) holds true. Given (1) and (2) we apply Rouché’s Theorem. In view of the
generalization to several variables, we give the proof here. Consider ht(w) = L(w) + tE(w)
for t real, 0 ≤ t ≤ 1. For t = 0 the affine-linear function L admits a zero at w = 0. The
number of zeros of ht on the disk ∆

(
c
√

δ(z)
)

is counted, by Stokes’ Theorem, by the boundary
integral

1
2π

∫

∂∆
(
a
√

δ(z)
)
√−1 ∂log|ht|2 =

∫

∆
(
a
√

δ(z)
)
√−1∂∂log|ht|2 . (2)

The boundary integral is well-defined, takes integral values by the Argument Principle, and
varies continuously with t, so that it is independent of t, implying that there exists a zero of
ht on the disk ∆

(√
δ(z)

)
; 0 ≤ t ≤ 1. In particular f(w) = b has a solution, contradicting

with the assumption that b ∈ ∂U .

We now generalize the argument to several variables. Let f : Bn → U be such that
f(0) = z. Let again b ∈ ∂U be a point such that ‖z − b‖ = δ(z). Consider the linear
map df(0). Since U is bounded, eigenvalues of df(0) are bounded by a fixed constant. By
Cramer’s rule it follows that, df(0)

(
Bn(r)

) ⊃ B
(
e| det(df(0)|) for some constant e depending

on U but independent of f ∈ KU . In terms of the Euclidean coordinates w = (w1, ..., wn)
of the domain manifold define as for n = 1 the holomorphic map h(w) = f(w) + z − b.
Decomposing h(w) = L(w) + E(w) as in the case of n = 1, L(w) = df(0)(w) + z − b, and
using exactly the same argument there we have a real one-parameter family of holomorphic
maps ht(w) = L(w) + tE(w), 0 ≤ t ≤ 1, such that ht(w) 6= 0 for any w ∈ ∂Bn

(
a
√

δ(z)
)
.

For the analogue of Rouché’s Theorem we note that L(w) = 0 has a unique solution on
Bn

(
a
√

δ(z)
)
. Suppose for some t, 0 < t ≤ 1, ht(w) = 0 is not solvable on Bn

(
c
√

δ(z)
)
.

Writing ht(w) = (ht,1(w), · · · , ht,n(w)), 1 ≤ k ≤ n, it follows that the components ht,k(w),
1 ≤ k ≤ n, cannot be simultaneously zero, so that [ht] : Bn → Pn−1 is well-defined, and(√−1∂ ∂log|ht|2

)n ≡ 0, since the (1,1)-form inside the parenthesis is nothing other than the
pull-back of the Kähler form of the Fubini-Study metric on Pn−1. If that happens, by Stokes’
Theorem we have

I(t) :=
1

(2π)n

∫

∂Bn
(
a
√

δ(z)
)
√−1∂log|ht|2 ∧

(√−1∂∂log|ht|2
)n−1 = 0 . (3)
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The boundary integral is well-defined for 0 ≤ t ≤ 1, with I(0) = 1. Obviously I(t) varies
continuously with t, but it is less clear that I(t) is an integer for each t. To reach a contra-
diction to the assumption b ∈ ∂U (as in the use of Rouché’s Theorem for n = 1), we proceed
as follows. ht = L+ tE makes sense for any real t, and, for ε sufficiently small, in the interval
−ε ≤ t ≤ 1 + ε, ht is not equal to 0 on ∂Bn

(
a
√

δ(t)
)
. Hence, the boundary integral I(t)

remains well-defined. I(t) then varies as a real-analytic function in t. For t sufficiently small,
ht is a biholomorphism of Bn

(
a
√

δ(z)
)

onto its image. The current
(√−1∂∂log|ht|)2

)n over
Bn

(
a
√

δ(z)
)

is given by (2π)nδx(t), where x(t) is the unique zero of ht, and δx denotes the
delta measure at x. Hence I(t) = 1 for t sufficiently small. It follows that I(t) = 1 for
0 ≤ t ≤ 1 by real-analyticity, and we have a contradiction at t = 1. The proof of Proposition
1 is complete. ¤

The Kobayashi-Royden volume form on a complex manifold M arises from the space
KM of holomorphic maps f : Bn → M . As is well-known, in the event where M is a bounded
domain U in a Stein manifold Z, estimates for the Kobayashi-Royden form can be localized
using Cauchy estimates. More precisely, if b lies on the boundary ∂U on Z, and B ⊂ Z

is a small Euclidean coordinate ball centred at b, any holomorphic map f : Bn → U must
map Bn(r) into B ∩ U for the Euclidean ball Bn(r) centred at o of radius r, for some r > 0
independent of f ∈ KU . This leads to an upper bound on the Kobayashi-Royden volume
form of B ∩ U in terms of that of U . We formulate it in a more general form as follows,
noting the monotonicity property of the Kobayashi-Royden volume form.

Localization Lemma for the Kobayashi-Royden volume form. Let π : U → Z be a
bounded Riemann domain spread over a Stein manifold Z, and W ⊂ Z be any open subset.
Let K ⊂ W be a compact subset. Then, there exists a positive constant C depending on U ,
W and K such that for any z ∈ K we have

µU (z) ≤ µU∩W (z) ≤ CµU (z) .

Proposition 2. Let π : U → Z be a bounded Riemann domain spread over a Stein manifold
Z, and W ⊂ U be an open subset. Let x ∈ U − W and B ⊂ U be an open coordinate
neighborhood of x in U , which we will identify as a Euclidean open set, endowed with the
Lebesgue measure λ. Suppose Volume(B ∩W,µB) < ∞. Then, the closed subset B −W ⊂ B

is of zero Lesbesgue measure.

Proof. The problem being local, we may consider the following special situation. Identify Cn

with R2n. Let I denote the unit interval [0, 1]. Let E ⊂ I2n be a closed subset contained in
I2n−1× [ε, 1− ε] for some ε > 0 such that (I2n−1×{0})∩E = ∅. On Cn−E denote by δ the
Euclidean distance to E, i.e. δ(x) = sup

{
r : Bn(x; r) ∩ E = ∅} for x /∈ E. By Proposition 1

in (2.2), we have ∫

I2n−E

dV

δ
< ∞ , (1)

where dV denotes the Euclidean volume form on R2n. Then, we need to prove that λ(E) = 0
for the Lebesgue measure λ. Let S ⊂ I2n−1 be the closed subset consisting of those s such
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that
({s} × I

) ∩ E 6= ∅. Denote by t the Euclidean variable for the last direct factor of I2n.
For each s ∈ S observe that ∫

({s}×I)−E

dt

δ
= ∞ . (2)

In fact, for each s ∈ S, δ(s, t) ≤ |t − t0| for any t0 such that (s, t0) ∈ E. Taking t0 to be
the mimimal possible value, then the integral above dominates the integral

∫ t0
0

dt
t = ∞, as

observed. As a consequence, by Fubini’s Theorem, the closed subset S ⊂ I2n−1 is of zero
Lebesgue measure, so that E ⊂ S × I is of zero Lebesgue measure, as desired. ¤

We note that, given any unramified covering map ν : M ′ → M , the Kobayashi-Royden
volume form µM on M agrees with that on M ′ by lifting, since Bn is simply-connected. Using
Proposition 2 we deduce the following result crucial to the proof of the Main Theorem. It
relates the covering domain D to its hull of holomorpy D̂, and allows us to enlarge N to a
manifold admitting a complete Kähler-Einstein metric of finite volume.

Proposition 3. Let D ⊂ Z be a bounded domain on a Stein manifold Z, Γ′ ⊂ Aut(D) be a
torsion-free discrete group of automorphisms of D such that N = D/Γ′ is of finite measure
with respect to µD. Let π : D̂ → Z be the hull of holomorphy of D. Then, Γ′ extends to a
torsion-free discrete group of automorphisms Γ̂′ of D̂ such that, writing N̂ := D̂/Γ̂′, N̂ is of
finite volume with respect to µ

N̂
.

Proof. Since µ
N̂
≤ µN on N , Volume(N,µ

N̂
) ≤ Volume(N, µN ) < ∞. On the other hand,

Volume(N̂−N,µ
N̂

) is obtained by integrating µ
N̂

over N̂−N . In terms of local holomorphic
coordinates which give local Lebesgue measures, we can write µ

N̂
= ϕ · λ, where ϕ is a

continuous function. Since N̂ can be covered by a countable number of open Euclidean open
sets Bα such that Bα ∩ (N̂ − N) is of zero Lebesgue measure of each index α, we conclude
that Volume(N̂ , µ

N̂
) = Volume(N, µ

N̂
) < ∞, as desired. ¤

From Proposition 3 and the Existence Theorem on Kähler-Einstein metrics in (1.1) on
bounded domains of holomorphy, we have immediately

Corollary 1. Let N̂ ⊃ N be the complex manifold as in Proposition 3. Then N̂ admits a
unique complete Kähler-Einstein metric gKE of finite volume and of constant Ricci curvature
−(n + 1), n = dim N .

§3 Proof of the Isomorphism Theorem
(3.1) We recall briefly the argument for proving the Fibration Theorem in the case when X

and N are compact, after the Extension Problem had been solved. Denote by τ : Ñ → N

the universal covering map. For any bounded holomorphic function θ on Ñ consider the
continuous plurisubharmonic function ψθ : N → R defined by ψθ(q) = sup{|θ(p)| : τ(p) = q}.
(θ is continuous, actually Lipschitz, by Cauchy estimates.) From the compactness of N it
follows that ψθ must be constant. We applied this argument on linear projections of the
bounded vector-valued holomorphic map R : Ñ → Cn to show that R(Ñ) ⊂ Ω. Using f∗ :
Γ ∼= Γ′ we identify Γ with Γ′. Consider now the vector-valued holomorphic map Tγ : Ñ → Cn
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given by Tγ = R(γ(p)) − γ(R(p)), which vanishes identically on F (Ω). Applying the above
argument on θ again to components of Tγ we conclude that the latter vanishes identically
on Ñ , i.e., we have the identity R ◦ γ ≡ γ ◦ R on all of Ñ . It follows that the holomorphic
mapping R : Ñ → Ω descends to ρ : N → X, which gives the Fibration Theorem in the
compact case.

For the proof of the Isomorphism Theorem we proceed now to justify the same line of
argument by first proving the constancy of analogous functions ψθ. This will be demonstrated
by integrating by part on complete Kähler manifolds, for which purpose we will pass to the
hull of holomorphy D̂ of D and make use of complete Kähler-Einstein metrics as explained in
§2. A further argument, again related to the vanishing of certain bounded plurisubharmonic
functions, will be needed to show that the holomorphic fibration obtained is trivial.

For the proof of the Main Theorem along this line of thoughts we will need

Lemma 1. Let (Z, ω) be an s-dimensional complete Kähler manifold of finite volume, and
u be a uniformly Lipschitz bounded plurisubharmonic function on Z. Then, u is a constant
function.

Proof. Fix a base point z0 ∈ Z. For R > 0 denote by BR the geodesic ball on (Z, ω) of radius
R centred at z0. There exists a smooth nonnegative function ρ

R
on Z, 0 ≤ ρ

R
≤ 1, such that

ρ ≡ 1 on BR, ρ ≡ 0 outside BR+1, and such that ‖dρ
R
| ≤ 2

R . By Stokes’ Theorem, we have

0 =
∫

Z

d
(√−1ρRu∂u∧ ωn−1

)
=

∫

Z

√−1d(ρ
R
u)∧ ∂u∧ ωs−1 +

∫

Z

ρ
R

√−1u∂∂u∧ ωs−1 . (1)

so that
∫

BR

√−1∂u ∧ ∂u ∧ ωs−1 ≤
∫

Z

ρR

√−1∂u ∧ ∂u ∧ ωs−1

= −
∫

Z

√−1u∂ρR ∧ ∂u ∧ ωs−1 −
∫

Z

ρR

√−1u∂∂u ∧ ωs−1 . (2)

In terms of norms on (Z, ω), ‖du‖ is by assumption uniformly bounded. Furthermore,
‖dρ

R
‖ ≤ 2

R , and its support is contained in Z − BR, so that the second last term of (2),
up to a fixed constant, is bounded by Volume(Z − BR, ω), which decreases to 0 as R → ∞
since Volume(Z, ω) < ∞ by assumption. On the other hand the last term of (2) (without the
minus sign) is nonnegative since u ≥ 0 and u is plurisubharmonic. Fix any R0 > 0. It follows
readily that for any R > Ro,

∫

BR0

‖∂u‖2 ≤
∫

BR

‖∂u‖2 → 0 as R →∞ . (3)

As a consequence ∂u ≡ 0, so that u ≡ C for some constant C, as desired. ¤

We are now ready to prove the Main Theorem, as follows.

Proof of Main Theorem (The Isomorphism Theorem). Here and in what follows by the in-
trinsic measure we will always mean the measure given by the Kobayashi-Royden volume
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form. By (2.1), Proposition 1, we can ‘complete’ D to a bounded domain of holomorphy D̂

and extend Γ′ to a torsion-free discrete group of automorphisms Γ̂′, such that N̂ = D̂/Γ̂′

is of finite intrinsic measure. By Corollary 1 in (2.2), N̂ carries a unique Kähler-Einstein
metric gKE of constant Ricci curvature −(n + 1), n = dim(N). Denote by ω

KE
the Kähler

form of gKE . By invariance, gKE and ωKE descend to N̂ , and we use the same notations
on N̂ . Again by the Comparison Lemma in (2.1), the Kähler-Einstein volume form on N̂

is bounded by a constant multiple of the Kobayashi-Royden volume form, so that (N̂ , ωKE )
is also of finite volume. We may consider the holomorphic map f : X → N to have image
in N̂ . Applying our solution to the Extension Problem as given in (1.2), we can extend the
inverse map i : F (Ω) ∼= Ω to R̂ : D̂ → Cn as a bounded holomorphic map. We claim, in
analogy to the proof of the Fibration Theorem, that R̂(D̂) ⊂ Ω. The proof there relies on
showing that the bounded plurisubharmonic function ψθ is a constant. From the construc-
tion, dψθ is uniformly bounded with respect to the induced Carathéodory metric κ on N̂ . By
the Comparison Lemma in (2.1), g

KE
dominates a constant multiple of κ, so that ‖dψθ‖g

KE

is uniformly bounded on N̂ (cf. Eqn. (1) below for details in an analogous situation). By
Lemma 1 it follows that ψθ is a constant, so that R̂(D̂) ⊂ Ω. The same argument applied to
the bounded vector-valued holomorphic functions Tγ = R̂◦γ−γ ◦R̂ yields the equivariance of
R̂ under Γ. As a consequence, the analogue of the Fibration Theorem remains valid, i.e., there
exists a holomorphic map ρ : N̂ → X such that f ◦ ρ ≡ idX . To complete the proof of the
Isomorphism Theorem it remains to show that f : X → N is an open embedding. Knowing
this, we will have ρ ◦ f ≡ id

N̂
by the identity theorem, so that f maps X biholomorphically

onto N̂ . But, by hypothesis f(X) ⊂ N , so that N̂ = N and we will have established that
f : X → N is a biholomorphism.

We proceed to prove that f : X → N ⊂ N̂ is an open embedding. Suppose otherwise.
Then, n = dim(N) > dim(X) := m and the fibers ρ−1(x) of ρ̂ : N̂ → X are positive-
dimensional. Let x0 ∈ X be a regular value of ρ̂ : N̂ → X, and L ⊂ ρ̂−1(x0) be a connected
component, dim(L) = n−m > 0. We claim that L lifts in a univalent way to D̂. To this end let
x̃0 ∈ Ω be such that π(x̃0) = x0, and L̃ ⊂ D̂ be a connected component of R̂−1(x̃0), such that
τ(L̃) = L for the covering map τ : D̂ → N̂ . Suppose γ ∈ Γ acts as a covering transformation
on D̂ such that γ(L̃) = L̃. By the Γ-equivariance of R̂ we have R̂(γ(p)) = γ(R̂(p)). Applying
this to p ∈ L̃, R̂(γ(p)) = R̂(p), so that γ(R̂(p)) = R̂(p), implying that γ acts as the identity
map on Ω since Γ ⊂ Aut(Ω) is torsion-free. This means precisely that τ |

L̃
maps L̃ bijectively

onto L, as claimed.

Recall that gKE is the complete Kähler-Einstein metric on N̂ of constant Ricci curvature
−(n + 1), ωKE is its Kähler form. From the liftings L̃ we are going to derive a contradiction.
Let σ be a bounded holomorphic function on the bounded domain D̂ such that σ|

L̃
is not

identically a constant. Then, u := |σ|2 gives a nonnegative plurisubharmonic function on
L̃ ∼= L. If we know that (L, ωKE |L) is of finite volume, then Lemma 1 applies to yield a
contradiction. We only know that (N̂ , ω

KE
) is of finite volume. Let again x0 ∈ X be a

regular value of ρ : N̂ → X, q0 := f(x0). Let V be a simply connected open neighborhood
of x0 in X. For x ∈ V denote by Lq ⊂ ρ̂−1(x) ⊂ N̂ the connected component of ρ̂−1(x)
containing q := f(x). Since V is simply connected there is an open subset Ṽ ⊂ Ω such that
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π
∣∣
Ṽ

: Ṽ → X maps Ṽ bijectively onto V for the universal covering map π : Ω → X. For
x ∈ V denote by x̃ ∈ Ṽ the unique point such that π(x̃) = x and write L̃q ⊂ Ω for the
irreducible component of π−1(Lq) containing x̃. For almost all x ∈ V , x is a regular value
of ρ : Ñ → X, and Lq ⊂ Ñ , q = f(x), is a complex submanifold of Ñ of dimension equal to
dim(N)−dim(X) = n−m. For a singular value x, it remains the case that dim(Lq) = n−m,
but Lq may have singularities. The arguments in the preceding paragraph remain valid
to show that τ

∣∣
L̃q

maps L̃q bijectively onto Lq. Let W ⊂ N̂ be the union of L̃q. Let σ

now be a bounded holomorphic function on the bounded domain D̂ such that σ
∣∣
L̃q0

is not

identically a constant. Since τ
∣∣
W̃

: W̃ → N̂ maps W̃ bijectively onto W we may regard
σ as a bounded holomorphic function on W . Write u := |σ|2. Then, u is a nonnegative
bounded plurisubharmonic function on W . Recall that κ is the induced Carathéodory metric
on N̂ = D̂/Γ′. By the Comparison Lemma of (2.1), gKE ≥ Const.× κ. Since ∂u = σ∂σ and
σ is bounded, we have

‖∂u(y)‖gKE
≤ Const.× ‖∂σ(y)‖gKE

= Const.× sup
{|∂σ(η)| : η ∈ Ty(D̂), ‖η‖gKE

≤ 1
}

≤ Const.′ × sup
{|∂σ(η)| : η ∈ Ty(D̂), ‖η‖κ ≤ 1

}

< ∞ ,

(1)

where the last inequality follows from the definition of the Carathéodory metric. Denote by
Rρ ⊂ f(V ) the subset of all q = f(x), where x ∈ V is a regular value of ρ. Consider the
fibration R̂ : D̂ → Ω. Then, the Carathéodory metric κ

D̂
on D̂ dominates the pull-back of

the Carathéodory metric κΩ on Ω. By the Comparison Lemma of (2.1), the Kähler-Einstein
metric g

KE
on D̂ dominates a constant multiple of the Carathéodory metric κ

D̂
on D̂, so that

gKE ≥ Const.× R̂∗κΩ . (2)

Descend to N̂ and consider the fibration ρ|W : W → V . In what follows we impose the
condition that V b X and denote by dλ the restriction of a smooth volume form on X to V .
From (1) it follows

ωn
KE ≥ (Const.× ρ∗dλ) ∧ ωn−m

KE . (3)

By Fubini’s Theorem we conclude from the estimates that∫

q∈Rρ

Volume(Lq, ωKE

∣∣
Lq

)dλ(q) ≤ Const.×Volume(W,ωKE)

≤ Const.×Volume(N̂ , ωKE) < ∞ , (4)

so that q ∈ Rρ and Volume(Lq, ωKE |Lq ) < ∞ for almost all q ∈ V . Applying Lemma 1 to
a regular fiber Lq with q sufficiently to q0, Volume(Lq, ωKE |Lq ) < ∞ and to the plurisub-
harmonic function u = |σ|2 we obtain a contradiction to Lemma 1, proving by contradiction
that f : X → N is an open embedding, with which we have completed the proof of the Main
Theorem. ¤

We have the following variation of the Main Theorem when the fundamental groups of
X and N are only assumed to be isomorphic as abstract groups.
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Variation of the Main Theorem. Suppose in the statement of the Main Theorem in place
of assuming that f∗ : Γ ∼= Γ′ we assume instead that Γ ∼= Γ′ as abstract groups and that
f : X → N is nontrivial. Then, f : X → N is a biholomorphism.

Proof. Fix an isomorphism between Γ and Γ′ as abstract groups and hence identify Γ′ with
Γ. f∗ is thus regarded as a group endomorphism of Γ. Let G = Aut0(Ω) be the identity
component of the automorphism group of Ω. Replacing Γ (and hence Γ′) by a subgroup of
finite index we may assume that Γ ⊂ G. Since G is semisimple, connected and of real rank
≥ 2, and Γ ⊂ G is an irreducible lattice, by Margulis’ Superrigidity Theorem [Ma], either
f∗(Γ) is finite, or else f∗ : Γ → Γ extends to a group automorphism ϕ : G → G. In the former
case we would have a lifting X to the covering domain D of N , which would force f to be
constant by the Maximum Principle, since the Satake compactification of X is obtained by
adding a variety of dimension ≤ dim(X) − 2. In other words, the nontriviality of f forces
f∗ : Γ → Γ to extend to a group automorphism ϕ : G → G. In particular, f∗ is injective.
With respect to a fixed Haar measure on the semsimiple Lie group G, which is invariant under
the automorphism ϕ, Volume(G/Γ) must agree with Volume(G/f∗(Γ)). Since f∗(Γ) ⊂ Γ, it
follows that f∗(Γ) = Γ, so that f∗ : Γ ∼= Γ ∼= Γ′, and we are back to the original formulation
of the Main Theorem. ¤
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