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Abstract

A graceful labeling of a graph G with n edges is an injective function from the

set of vertices of G to the set {0, 1, 2, . . . , n} such that the edge labels, the absolute

difference between the two endvertex labels, are all distinct. One of the most fa-

mous open problems in graph theory is the Graceful Tree Conjecture which states

that every finite tree has a graceful labeling. Despite forty years of research effort,

little progress has been made towards resolving this conjecture. Today, some of the

known graceful trees are caterpillars, trees with at most 4 endvertices, trees with

diameter at most 5, and trees with at most 27 vertices.

In this paper, we considered the infinite version of the Graceful Tree Conjecture.

First, the notions of bijective graceful N-labeling and bijective graceful N/N-labeling

of infinite graphs were introduced. Such labelings were then shown to be possible

for infinite graphs built by certain types of graph amalgamations. Finally, based on

the tools developed, we were able to characterize all the infinite trees that have a

bijective graceful N/N-labeling and hence solved the Graceful Tree Conjecture for

infinite trees.
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1 Introduction

The study of graph labeling was initiated by Rosa [9] in 1967. This involves labeling
vertices or edges, or both, using integers subject to certain conditions. Ever since then,
various kinds of graph labelings have been considered, and the most well-studied ones are
graceful, magic and harmonious labelings. Not only interesting in its own right, graph
labeling also finds a broad range of applications: the study of neofield, topological graph
theory, coding theory, radio channel assignment, communication network addressing and
database management. One should refer to the comprehensive survey by Gallian [6] for
further details.

Rosa considered the so-called β-valuation which is commonly known as graceful la-
beling. A function f is called a graceful labeling of a graph G with n edges if f is an
one-to-one map from the vertices of G to the set {0, 1, . . . , n} such that the edge labels,
the absolute difference between the two endvertex labels, are all distinct. Graceful label-
ing was originally introduced to attack Ringel’s Conjecture which says that a complete
graph of order 2n + 1 can be decomposed into 2n + 1 isomorphic copies of any tree with
n edges. Ringel’s Conjecture is true if it could be shown that every tree has a graceful
labeling. This is known as the famous Graceful Tree Conjecture but such seemingly
simple statement defies any effort to prove it [5]. Today, some known examples of graceful
trees are: caterpillars [9] (a tree such that the removal of its endvertices leaves a path),
trees with at most 4 endvertices [8], trees with diameter at most 5 [7], and trees with at
most 27 vertices [1].

Most of the previous works on graph labeling focused on finite graphs only. Recently,
Beardon [2], and later, Combe and Nelson [3] considered magic labelings of infinite graphs
over integers and infinite abelian groups. Beardon showed that infinite graphs built by
certain types of graph amalgamations possess bijective edge-magic Z-labelings. Infinite
graph has the advantage that there is a much greater degree of freedom for constructing
the magic labeling as both the graph and the labeling set are infinite. However, it is not
known whether every countably infinite tree supports a bijective edge-magic Z-labelings.
Motivated by their ideas, we are going to study graceful labelings of infinite graphs. Along
the way, we will completely solve the infinite version of the Graceful Tree Conjecture.

This paper is organized as follows. In Section 2, we give a formal definition of graceful
labeling. We also consider how to construct an infinite graph by means of amalgamation,
and introduce the notions of bijective graceful N-labeling and bijective graceful N/N-
labeling. Section 3 includes two examples on graceful labelings of the semi-infinite path
which illustrate the main ideas in this paper. In Section 4, our main results are presented
while further generalizations are discussed in Section 5. In Section 6, we make use of
the tools developed in Section 4 and characterize all infinite trees that have a bijective
graceful N/N-labeling. This, in turn, settles the Graceful Tree Conjecture for infinite trees.
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2 Definitions and notations

Let G be a graph with vertex set V (G) and edge set E(G). Denote the set of natural
numbers {1, 2, 3, . . .} by N. A graceful N-labeling of G is an injective function f that maps
V (G) to N such that the labels |f(x)−f(y)| assigned to each edge xy are all distinct. We
will denote the edge label on edge xy by f(xy).

Consider a graph Gn with vertex set Vn and edge set En. A sequence of graphs, {Gn},
is increasing if for each n, Vn ⊂ Vn+1 and En ⊂ En+1. An infinite graph, limn Gn, is then
defined to be the graph whose vertex set and edge set are ∪nVn and ∪nEn respectively.
Throughout this thesis, we use the term infinite to mean countably infinite.

Following Beardon [2], we build an infinite graph by joining an infinite sequence of
graphs through the process of amalgamation described below. Let G1 and G2 be two
graphs with no common vertices. Select a vertex v1 from G1 and a vertex v2 from G2.
The amalgamation of G1 and G2, G1#G2, is obtained by taking the disjoint union of G1

and G2 and identifying v1 with v2.

Now let G′

1, G
′

2, . . . be an infinite sequence of graphs. Construct a new sequence Gn

inductively by G1 = G′

1 and Gn+1 = Gn#G′

n+1. Obviously, {Gn} is increasing and their
union is an infinite graph. Using techniques similar to those introduced by Beardon [2],
we are able to show that every infinite graph generated by certain types of graph amalga-
mations has a graceful labeling. To be more precise, we call a graceful labeling, bijective
graceful N-labeling if there is an one-to-one correspondence between the vertex labels and
N. If both the vertex and edge labels are permutations of the natural numbers, then we
call it a bijective graceful N/N-labeling.

Further definitions and notations will be introduced as our discussions proceed. The
graph theory terminology used in this paper can be found in the book by Diestel [4].

3 Example: Semi-infinite Path

In this section, we will illustrate our graph labeling method and the key ideas behind
by means of the semi-infinite path. Denote the semi-infinite path by P , with vertices:
v0, v1, v2, . . . and edges: v0v1, v1v2, . . .. To simplify subsequent discussions, we choose the
listing V = {1, 2, 3, . . .} for vertex labels and E = {1, 2, 3, . . .} for edge labels, and let
f(v0) = m0 = 1.

r r r r r r r r r r r

v0 v1 v2 v3 v4 v5 v6 v7 v8 v9 v10

Figure 1
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Bijective graceful N-labeling of the semi-infinite path

Our goal is to label the vertices of P using N such that the vertex labels correspond
one-to-one to the set of the natural numbers and the edge labels are all distinct. We will
proceed in a manner similar to that in [1].

r r r r r r r r r r r

1 m1 m2

n1 n2

Figure 2

Let f(v1) = m1, f(v2) = m2, f(v0v1) = n1 = |m0−m1| and f(v1v2) = n2 = |m1−m2|.
Take m2 to be the smallest integer in V not yet used for vertex labeling which is 2. Now,
we can choose m1 to be sufficiently large so that n1 and n2 are distinct and have not
appeared in the edge labels. m1 = 3 will do, and we have n1 = 2 and n2 = 1.

r r r r r r r r r r r

1 3 2 m3 m4

2 1 n3 n4

Figure 3

Now let f(v3) = m3, f(v4) = m4, f(v2v3) = n3 = |m2 − m3| and f(v3v4) = n4 =
|m3 − m4|. Again, take m4 to be the smallest integer in V not yet appeared which is 4.
Choose m3 to be sufficiently large so that n3 and n4 are distinct and have not appeared
in the edge labels. Pick m3 = 7, and we have n3 = 5 and n4 = 3.

The above process can be repeated indefinitely. Since for each n ∈ N, we can choose
f(v2n) to be the smallest unused integer in V , f is surjective. By construction, f is also
injective and all edge labels are distinct. Hence, we have constructed a bijective graceful
N-labeling of the semi-infinite path.

r r r r r r r r r r r

1 3 2 7 4 11 5 14 6 18 8

2 1 5 3 7 6 9 8 12 10

Figure 4

Bijective graceful N/N-labeling of the semi-infinite path

In the previous example, we require that all natural numbers appear in the vertex
labels. A natural question arises: can we also require that all natural numbers appear in
the edge labels? As will be shown below, this is possible for the semi-infinite path. Recall
that we choose the listing V = {1, 2, 3, . . .} for vertex labels and E = {1, 2, 3, . . .} for edge
labels, and let f(v0) = m0 = 1.
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Let f(v1) = m1, f(v2) = m2, f(v0v1) = n1 and f(v1v2) = n2. We choose n2 to be the
smallest integer in E not used in the edge labels. Hence, n2 = 1.

r r r r r r r r r r r

1 m1 m2

n1 1

Figure 5

Now we would like to choose m1 and m2 that satisfy the following conditions:

1. m1 and m2 are distinct, different from 1 (vertex labels already used) and |m1−m2| = 1,
and
2. |1 − m1| is different from 1 (edge labels already used).

This is always possible if we choose m1 and m2 to be sufficiently large so that n1 has
not appeared before. (This key idea will be used in the proof of Lemma 2.) But in this
particular example, m1 = 3 and m2 = 2 will do.

r r r r r r r r r r r

1 3 2 m3 m4

2 1 n3 n4

Figure 6

Let f(v3) = m3, f(v4) = m4, f(v2v3) = n3 and f(v3v4) = n4. This time we choose m4

to be the smallest integer in V not yet appeared in the vertex labels. So m4 = 4. Now
choose m3 sufficiently large so that n3 and n4 have not appeared in the edge labels. Pick
m3 = 7, and we have n3 = 5 and n4 = 3.

r r r r r r r r r r r

1 3 2 7 4 m5 m6 m7 m8

2 1 5 3 n5 n6 n7 n8

Figure 7

Repeat the above two procedures. Let f(v5) = m5, f(v6) = m6, f(v7) = m7,
f(v8) = m8 and f(v4v5) = n5, f(v5v6) = n6, f(v6v7) = n7, f(v7v8) = n8. Choose n6

to be smallest unused edge label which is 4. Pick m5 and m6 sufficiently large so that
|m5 − m6| = 4 and n5 has not appeared. We have m5 = 10, m6 = 6 and n5 = 6.

r r r r r r r r r r r

1 3 2 7 4 10 6 m7 m8

2 1 5 3 6 4 n7 n8

Figure 8

Next choose m8 to be the smallest unused vertex label which is 5. Pick m7 sufficiently
large so that n7 and n8 have not appeared. Therefore, m7 = 13, n7 = 7 and n8 = 8.

r r r r r r r r r r r

1 3 2 7 4 10 6 13 5

2 1 5 3 6 4 7 8
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Figure 9

The above labeling process can go on indefinitely. Since for each n ∈ N, we are able
to choose f(v4n−3v4n−2) and f(v4n) to be the first unused integer in E and V respectively,
f : E(P ) → N and f : V (P ) → N are surjective. By construction, f is also injective.
Therefore, we have successfully obtained a bijective graceful N/N-labeling of the semi-
infinite path.

Summing up, the crucial element that makes bijective graceful N-labeling of the semi-
infinite path possible is that during the labeling process, one can find a vertex that is not
adjacent to all the previously labelled vertices. Such vertex can then be labelled using
the smallest unused vertex label. Likewise, one can find an edge that is not incident to all
the previously labelled vertices. Such edge can be labelled using the smallest unused edge
label allowing one to obtain a bijective graceful N/N-labeling of the semi-infinite path.

4 Main Results

Here we put the ideas developed in the previous chapter into Lemma 1 and 3 which are
the key to our main results on graceful labelings of infinite graphs. Along the way, type-1
and type-2 graph amalgamations will be introduced.

Type-1 graph amalgamation

v0 v u

G G0

G#G0

Figure 10

Lemma 1. Let f0 be an injective graceful N-labeling of a finite graph G0. Let V0 be the set
of integers taken by f0 on V (G0) and E0 be the resulting edge labels on E(G0). Suppose
that m ∈ N \ V0. Let G be any finite graph and form an amalgamated graph G0#G by
identifying a vertex v0 of G0 with a vertex v of G. If G has a vertex u not adjacent to
v, then G0#G is called a type-1 amalgamation (Figure 10) and f0 can be extended to an
injective graceful N-labeling f of G0#G such that f(u) = m.
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Proof. First define f to be f0 on G0 and f(u) = m. Let v1, . . . , vk be the vertices in G
other than u and v. Define f(vi) = mi for i = 1, . . . , k where mi’s are parameters to be
determined. Having identified v with v0, we write mv = f0(v0). Now, each edge in G is of
one of the forms: vvi, uvi or vivj for 1 ≤ i 6= j ≤ k with edge labels |mv − mi|, |m − mi|,
and |mi −mj| respectively. Notice that the edge label for edge e is the absolute value of a
non-constant linear polynomial pe(m1, . . . ,mk). To make f injective, we want to choose
mi, for i = 1, . . . , k, so that:

1. mi 6= mj for i 6= j,
2. m1, . . . ,mk /∈ V0 ∪ {m},
3. pei

(m1, . . . ,mk) /∈ E0,
4. pei

(m1, . . . ,mk) 6= pej
(m1, . . . ,mk) for i 6= j, and

5. pei
(m1, . . . ,mk) 6= −pej

(m1, . . . ,mk) for i 6= j.

This is always possible by the following lemma. �

Lemma 2. Let N0 be a finite subset of N. Consider, for m1, . . . ,mk in N, the 5k − 1
non-trivial expressions of the form Lj(m1, . . . ,mk) = aj1m1+ . . .+ajkmk where each aij is
−2,−1, 0, 1, 2. Then there exists a choice of m1, . . . ,mk in N such that no Lj(m1, . . . ,mk)
is in N0.

Proof. We prove by induction. For k = 1, we can choose m1 so that −2m1,−m1,m1, 2m1

are all outside N0. Suppose the statement holds for every finite subset N0 and for
k = 1, . . . , n. Now consider the variables, m1, . . . ,mn,mn+1 and any finite subset N0

of N. Choose mn+1 so that −2mn+1,−mn+1,mn+1, 2mn+1 are all outside N0. By induc-
tion hypothesis, we can choose m1, . . . ,mn so that for each j, Lj(m1, . . . ,mn) /∈ B where
B = (−2mn+1 + N0) ∪ (−mn+1 + N0) ∪ N0 ∪ (mn+1 + N0) ∪ (2mn+1 + N0). Now any
linear form in the variables m1, . . . ,mn+1 is of the form Lj(m1, . . . ,mn) + amn+1 where
a = −2,−1, 0, 1, 2. Obviously, in each case, Lj(m1, . . . ,mn) + amn+1 /∈ N0. Hence, the
statement is true for k = n + 1 and the proof is complete. �

Type-2 graph amalgamation

v0 v

x

y

G G0

G#G0

Figure 11
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Lemma 3. Let f0 be an injective graceful N-labeling of a finite graph G0. Let V0 be
the set of integers taken by f0 on V (G0) and E0 be the resulting edge labels on E(G0).
Suppose that n ∈ N \ E0. Let G be any finite graph and form an amalgamated graph
G0#G by identifying a vertex v0 of G0 with a vertex v of G. If G has an edge xy such
that x and y are different from v, then G0#G is called a type-2 amalgamation (Figure 11)
and f0 can be extended to an injective graceful N-labeling f of G0#G such that f(xy) = n.

Proof. The proof is almost identical to that of Lemma 1 except for some minor mod-
ifications. Let mv = f0(v0). By choosing mx and my sufficiently large, we can ensure
that (i) mx,my ∈ N \ V0, (ii) |mx − my| = n, (iii) |mx − mv| /∈ E0 ∪ {n} if x is adjacent
to v, and (iv) |my − mv| /∈ E0 ∪ {n} if y is adjacent to v. Define f to be f0 on G0,
f(x) = mx and f(y) = my. Let v1, . . . , vk be the vertices in G other than v, x and y.
Define f(vi) = mi for i = 1, . . . , k where mi’s are parameters to be determined. Now,
each edge e in G except xy (and possibly vx and vy) is of one of the forms: vvi, xvi, yvi

or vivj for 1 ≤ i 6= j ≤ k with edge labels |mv −mi|, |mx − mi|, |my −mi| and |mi −mj|
respectively. Notice that every such edge label is the absolute value of a non-constant
linear polynomial pe(m1, . . . ,mk) in the variables m1, . . . ,mk. To make f injective, we
want to choose mi, for i = 1, . . . , k, so that:

1. mi 6= mj for i 6= j,
2. m1, . . . ,mk /∈ V0 ∪ {mx} ∪ {my},
3. pei

(m1, . . . ,mk) /∈ E0 ∪ {n},
4. pei

(m1, . . . ,mk) 6= mx − mv if x is adjacent to v,
5. pei

(m1, . . . ,mk) 6= mv − mx if x is adjacent to v,
6. pei

(m1, . . . ,mk) 6= my − mv if y is adjacent to v,
7. pei

(m1, . . . ,mk) 6= mv − my if y is adjacent to v,
8. pei

(m1, . . . ,mk) 6= pej
(m1, . . . ,mk) for i 6= j, and

9. pei
(m1, . . . ,mk) 6= −pej

(m1, . . . ,mk) for i 6= j.

The remaining part of the proof is identical to that of Lemma 1. �

Here comes the two theorems that tell us what particular types of infinite graphs can
have a bijective graceful N-labeling or a bijective graceful N/N-labeling.

Theorem 1. Let {G′

n} be an infinite sequence of finite graphs. Let G1 = G′

1 and for each
n ∈ N, let Gn+1 = Gn#G′

n+1. If there are infinitely many type-1 amalgamations during
the amalgamation process, then limn Gn has a bijective graceful N-labeling.

Proof.
Since there are infinitely many type-1 amalgamations, without loss of generality, we

can assume that every amalgamation is a type-1 amalgamation.
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Let f1 be an injective graceful N-labeling of G1. This is always possible by using
labels such as {1, 2, 22, . . .}. Let V1 and E1 be the set of vertex and edge labels of G1

respectively. Assume 1 ∈ V1. Let m2 = min{N \ V1}. We form a type-1 amalgamated
graph G2 = G1#G′

2 by identifying a vertex v1 of G1 with a vertex v′

2 of G′

2. Suppose u2 is
a vertex in G′

2 not adjacent to v′

2. By Lemma 1, we can extend f1 to an injective graceful
N-labeling f2 of G2 such that f2(u2) = m2.

Let V2 and E2 be the set of vertex and edge labels of G2 respectively. Let m3 =
min{N \ V2}. Proceed as above, we can extend f2 to an injective graceful N-labeling f3

of G3 = G2#G′

3 such that m3 ∈ f3(V (G3)). By repeating the above process indefinitely,
we obtain an injective graceful N-labeling of limn Gn.

Now denote the set of vertex labels of Gi by Vi. Let m1 = 1 and mi+1 = min{N \ Vi}.
By the construction above, mi ∈ Vi. To prove that f is surjective, it suffices to show that
{1, 2, . . . , n} ⊂ Vn. Notice that V1 ⊂ V2 ⊂ V3 ⊂ . . .. Obviously, {1} ⊂ V1. Now suppose
{1, 2, . . . , k} ⊂ Vk. If k + 1 ∈ Vk, then k + 1 ∈ Vk+1 and we are done. If k + 1 /∈ Vk,
then mk+1 = min{N \ Vk} = k + 1 and we have k + 1 = mk+1 ∈ Vk+1. By induction,
{1, 2, . . . , n} ⊂ Vn. Hence, f is surjective and the proof is complete. �

Theorem 2. Let {G′

n} be an infinite sequence of finite graphs. Let G1 = G′

1 and for each
n ∈ N, let Gn+1 = Gn#G′

n+1. If there are infinitely many type-1 and type-2 amalgama-
tions during the amalgamation process, then limn Gn has a bijective graceful N/N-labeling.

Proof. Since there are infinitely many type-1 and type-2 amalgamations, without loss of
generality, we can assume that the amalgamation process alternates between type-2 and
type-1 amalgamations indefinitely.

Let f1 be an injective graceful N-labeling of G1 (e.g. choose labels from {1, 2, 22, . . .}),
and V1 and E1 be the set of vertex and edge labels of G1 respectively. Without loss of
generality, assume 1 ∈ V1. Let n2 = min{N \ E1}. We form a type-2 amalgamated graph
G2 = G1#G′

2 by identifying a vertex of v1 of G1 with a vertex v′

2 of G′

2. Suppose x2y2

is an edge in G′

2 such that x2 and y2 are different from v′

2. By Lemma 3, we can extend
f1 to an injective graceful N-labeling f2 of G2 so that f2(x2y2) = n2. Let V2 and E2 be
the set of vertex and edge labels of G2 respectively. If 1 ∈ E1, then 1 ∈ E2. Otherwise if
1 /∈ E1, we have n2 = 1 ∈ E2.

Next form a type-1 amalgamated graph G3 = G2#G′

3 by identifying a vertex v2 of G2

with a vertex v′

3 of G′

3. Let m3 = min{N \ V2}. Suppose u3 is a vertex in G′

3 not adjacent
to v′

3. By Lemma 1, we can extend f2 to an injective graceful N-labeling f3 of G3 such
that f3(u3) = m3.

By repeating the above process indefinitely, we obtain an injective graceful N-labeling
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f of limn Gn. Now it remains to show that f is surjective. First denote the set of
vertex and edge labels of Gi by Vi and Ei respectively. Let mi+1 = min{N \ Vi} and
ni+1 = min{N \Ei}. From the above construction, we have n2k ∈ E2k and m2k+1 ∈ V2k+1.

To prove the surjectivity of f , we will first show that {1, 2, . . . , n} ⊂ V2n−1. Note that
V1 ⊂ V2 ⊂ V3 ⊂ . . .. From above, we have {1} ⊂ V1. Now suppose that {1, 2, . . . , k} ⊂
V2k−1. If k + 1 ∈ V2k, then k + 1 ∈ V2k+1. Otherwise, k + 1 /∈ V2k. But since
{1, 2, . . . , k} ⊂ V2k−1 ⊂ V2k, we have m2k+1 = min{N \ V2k} = k + 1 ∈ V2k+1 and
{1, 2, . . . , k + 1} ⊂ V2k+1. By induction, {1, 2, . . . , n} ⊂ V2n−1.

To show that {1, 2, . . . , n} ⊂ E2n, again notice that E1 ⊂ E2 ⊂ E3 ⊂ . . .. From
above, we have {1} ⊂ E2. Now suppose {1, 2, . . . , k} ⊂ E2k. If k + 1 ∈ E2k+1, then
k + 1 ∈ E2k+2. Otherwise, k + 1 /∈ E2k+1. But since {1, 2, . . . , k} ⊂ E2k ⊂ E2k+1, we have
n2k+2 = min{N\E2k+1} = k+1 ∈ E2k+2. In either case, we have {1, 2, . . . , k+1} ⊂ E2k+2.
Therefore, {1, 2, . . . , n} ⊂ E2n by induction. We have thus shown that f is surjective and
the proof is complete. �

5 Generalizations

As mentioned in [2], the amalgamation process described above can be generalized to one
that identifies a finite set of vertices in one graph with a finite set of vertices in another
graph. Based on this more general amalgamation, we can derive the more general versions
of Theorem 1 and 2. As a result, we are able to prove the following two theorems which
are important for the characterizations of graphs that have a bijective graceful N-labeling
and graphs that have a bijective graceful N/N-labeling.

Proposition 1. Let G be an infinite graph. If every vertex of G has a finite degree, then
G has a bijective graceful N-labeling.

Proof. We will show that such a graph can be constructed inductively by type-1 amal-
gamation. For W ⊂ V (G), denote the neighbor of W (i.e. all vertices other than W
that are adjacent to some vertex in W ) by N(W ) and the subgraph of G induced by
W by G[W ]. Choose a vertex v1 in G and let G1 = G′

1 = {v1}. Since the degree of v1

is finite, |N(G1)| is finite. Therefore, there exists v2 ∈ G such that v2 /∈ G1 ∪ N(G1).
Let G′

2 = G[G1 ∪ N(G1) ∪ {v2}]. Form a type-1 amalgamated graph G2 = G1#G′

2 by
identifying G1. Interestingly, we have G2 = G′

2. Now there exists v3 /∈ G2 ∪ N(G2). Let
G′

3 = G[G2 ∪ N(G2) ∪ {v3}]. Form a type-1 amalgamated graph G3 = G2#G′

3 by identi-
fying G2. By repeating the above process, we see that Gn is increasing and G = limn Gn.
Hence, by Theorem 1, G has a bijective graceful N-labeling. �
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Proposition 2. Let G be an infinite graph with infinite number of edges. If every vertex
of G has a finite degree, then G has a bijective graceful N/N-labeling.

Proof. The proof is similar to that of Proposition 1. Here we form both type-1 and type-2
amalgamations instead and apply Theorem 2. �

Although our discussions so far only make use of N for graph labeling, all the above re-
sults still hold for any infinite torsion-free abelian group A (written additively). An abelian
group A is torsion-free if for all n ∈ N and for all a ∈ A, na 6= 0. Here, na = a + . . . + a
(n times). In such general settings, the absolute difference will no longer be meaningful
and we have to consider directed graphs instead. Denote the directed edge from x to y
by xy. Let f(x) and f(y) be the vertex labels of x and y respectively. We will define the
edge label for xy to be f(y) − f(x). Now we are ready for the more general versions of
Theorem 1 and 2 but first we need the following three lemmas.

Lemma 4. Let A be an infinite torsion-free abelian group and A0 be a finite subset of A.
Then there exists m ∈ A such that for all k ∈ Z\{0}, km /∈ A0.

Proof. Let B = A0 ∪−A0. Since B is finite, there exists a ∈ A such that a /∈ B. Consider
C = {a, 2a, 3a, . . .} in which all elements are distinct as A is torsion-free. Now, only
finitely many elements of C lie in B. Otherwise there exist p < q such that pa = qa ∈ B
which is impossible as A is torsion-free. Similarly, only finitely many elements of −C lie
in B. Therefore, there exists N ∈ N such that for all k ≥ N , ka /∈ B and −ka /∈ B. Take
m = Na. We have for all k ∈ Z\{0}, km /∈ B and hence km /∈ A0. �

Lemma 5. Let A be an infinite torsion-free abelian group and A0 be a finite subset
of A. Consider, for m1, . . . ,mk in A, the 5k − 1 non-trivial expressions of the form
Lj(m1, . . . ,mk) = aj1m1 + . . . + ajkmk where each aij is −2,−1, 0, 1, 2. Then there exists
a choice of m1, . . . ,mk in A such that no Lj(m1, . . . ,mk) is in A0.

Proof. The proof is identical to that of Lemma 2. Here we use Lemma 4 to make sure
that we can choose m so that −2m,−m,m, 2m are all outside A0. �

Lemma 6. Let A be an infinite abelian group and suppose m ∈ A. Then there exists
infinitely many pairs x, y ∈ A such that x − y = m.

Proof. Obvious. For each y ∈ A, choose x = y + m. �
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Using Lemma 5 and 6, we can obtain results similar to Lemma 1 and 3 for any infinite
torsion-free abelian group. The reason is that the polynomials we are dealing with are
of the form described in Lemma 5. Lemma 6 ensures that we can choose mx and my as
desired for Lemma 3. As a result, we have the following generalizations of Theorem 1 and
2.

Theorem 3. Suppose A is an infinite torsion-free abelian group. Let {G′

n} be an infinite
sequence of finite graphs. Let G1 = G′

1 and for each n ∈ N, let Gn+1 = Gn#G′

n+1. If there
are infinitely many type-1 amalgamations during the amalgamation process, then limn Gn

has a bijective graceful A-labeling. �

Theorem 4. Suppose A is an infinite torsion-free abelian group. Let {G′

n} be an infinite
sequence of finite graphs. Let G1 = G′

1 and for each n ∈ N, let Gn+1 = Gn#G′

n+1. If
there are infinitely many type-1 and type-2 amalgamations during the amalgamation pro-
cess, then limn Gn has a bijective graceful A/A \ {0}-labeling. �

We can generalize even further by examining the so-called bijective graceful V or
V/E-labeling where V and E are infinite subsets of an infinite abelian group. To illus-
trate this idea, let us consider an infinite graph with a bijective graceful N/N-labeling.
Now multiply each vertex label by q and then add r to it where 0 ≤ r < q. The result is
a bijective graceful qN+ r/qN-labeling of the original graph. The reverse process can also
be performed. This shows that bijective graceful N/N-labeling and qN+r/qN-labeling are
equivalent. We will demonstrate the usefulness of such general notion of graceful labeling
in the next section.

6 Graceful Tree Theorem for Infinite Trees

In this section, we make use of the tools developed earlier and characterize all infinite
trees that have a bijective graceful N/N-labeling. This in turn solves the Graceful Tree
Conjecture for infinite trees. Let us start off with the following two propositions.

Proposition 3. Let T be an infinite tree with a semi-infinite path. Then T has a bijective
graceful N/N-labeling.

Proof. The infinite tree T can be constructed inductively by the following procedure.

0. Order the vertices of T so that V (T ) = {v1, v2, v3, . . .} and v1 is the starting vertex
of the semi-infinite path. Let T1 = T [{v1}]. Set i = 1.
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1. Consider the neighbor of Ti in T , N(Ti), where the order of vertices is induced by
V (T ). Choose the first vertex in N(Ti) say u and let x be the unique neighbor of u in Ti.

2. If u is on the semi-infinite path, then x is the vertex immediately before u on the
semi-infinite path. Let y be the vertex immediately after u on the semi-infinite path. Now
amalgamate the path xuy to Ti by identifying x. This is a type-1 and type-2 amalgama-
tion and we have Ti+1 = Ti#xuy.

3. If u is not on the semi-infinite path, then amalgamate the edge xu to Ti by identi-
fying x. We have Ti+1 = Ti#xu.

4. i = i + 1. Goto step 1.

We will show that the above amalgamation process includes every vertex and edge
of T eventually. Consider a vertex w in T . Since T is connected, there is a finite path
connecting v1 and w namely v1 = va1

va2
. . . vak

= w. It is easy to see that after at most
max{a1, . . . , ak} − 1 iterations, w will appear in the amalgamated tree.

Consider an edge xy in T . Denote the unique path from p to q on T by pTq. Consider
v1Tx and v1Ty and let z be the last vertex on v1Tx that lies on v1Ty. If z 6= x and z 6= y,
then zTx + xy + yTz is a cycle in T which contradicts T is a tree. Therefore, x ∈ v1Ty
or y ∈ v1Tx. Without loss of generality, suppose x ∈ v1Ty. Since x will appear in the
amalgamated tree eventually, so will y and xy as T is a tree.

Now the presence of the semi-infinite path guarantees that there are infinitely many
type-1 and type-2 amalgamations. Therefore, by Theorem 2, T = limn Tn has a bijective
graceful N/N-labeling. �

Proposition 4. Let T be an infinite tree with at least 1 vertex of infinite degree denoted
by v. If v has infinitely many neighbors of degree > 1, then T has a bijective graceful
N/N-labeling.

Proof. The infinite tree T can be constructed inductively by the following procedure.

0. Denote the set of neighbors of v with degree > 1 by N . Notice that |N | is infinite.
Order the vertices of T so that V (T ) = {v1, v2, v3, . . .} and suppose that v1 = v. Let
T1 = T [{v1}]. Set i = 1.

1. Consider the neighbor of Ti in T , N(Ti), where the order of vertices is induced by
V (T ). Choose the first vertex in N(Ti) say u and let x be the unique neighbor of u in Ti.
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2. If u ∈ N , then x = v. Let y be a neighbor of u in T other than x. Amalgamate the
path xuy to Ti by identifying x. This is a type-1 and type-2 amalgamation and we have
Ti+1 = Ti#xuy.

3. If u /∈ N , then amalgamate the edge xu to Ti by identifying x. We have
Ti+1 = Ti#xu.

4. i = i + 1. Goto step 1.

As in the proof of Proposition 3, every vertex and edge of T will be included by the
amalgamation process eventually. Now |N | = ∞ implies that there are infinitely many
type-1 and type-2 amalgamations. Therefore, by Theorem 2, T = limn Tn has a bijective
graceful N/N-labeling. �

We are now ready for the Graceful Tree Theorem for Infinite Trees.

Theorem 5. Every infinite tree has a bijective graceful N/N-labeling except when the in-
finite tree does not contain any semi-infinite path, has more than one but finitely many
vertices of infinite degree, and every infinite degree vertex has finitely many neighbors of
degree greater than one.

The proof will be divided into four cases: (i) Infinite tree with no infinite degree ver-
tices, (ii) Infinite tree with exactly one infinite degree vertices, (iii) Infinite tree with more
than one but finitely many infinite degree vertices, and (iv) Infinite tree with infinitely
many infinite degree vertices.

(i) Infinite tree with no infinite degree vertices

Proposition 5. Every infinite tree with all vertices of finite degree has a bijective graceful
N/N-labeling.

Proof. By Proposition 2. Another proof is by Proposition 3 and the following lemma.

Lemma 7. Let T be an infinite tree in which every vertex has finite degree. Then T has
a semi-infinite path.

Proof. Choose any vertex v0 of T . Since T is infinite, there exist infinitely many paths
starting from v0 namely one to each vertex. As there are only finitely many edges leaving
v0, there is a vertex v1 such that infinitely many paths start with the edge v0v1. Now the
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same reasoning shows that there is a vertex v2 such that infinitely many paths start with
the path v0v1v2. We can define a sequence {vn} inductively in this way and this sequence
defines a semi-infinite path from v0. �

(ii) Infinite tree with exactly one infinite degree vertices

Lemma 8. Every finite tree T has a V/E-labeling. Here V = {n1, n2, . . . , nk} and E =
{n1, n2, . . . , nk−1} where k is the number of vertices of T and n1 < n2 < . . . < nk−1 < nk

are to be determined.

Proof. Pick any vertex v ∈ V (T ) to be the root of T . Let S(l) be the set of vertices in T
that are of distance l from v. Let T (l) be the subtree induced by the vertices of distance
≤ l from v.

Label v by 1. We want to obtain a labeling of T (1) that satisfies the condition de-
scribed by the lemma. To this end, we multiply the label of v by 2p where p is a sufficiently
large odd number. Now the vertices of S(1) can be labelled using {1, 3, . . . , 2p − 1} with
the rule that if x is used, then so is 2p − x. Also if |S(1)| is odd, then p is used. Notice
that the label of T (0) is even while the labels of S(1) are all odd.

Now suppose we have obtained a labeling for T (l) such that the labels of T (l − 1) are
all even and the labels of S(l) are all odd. We would like to extend it to T (l + 1). Again,
the idea is to multiply the labels of T (l) by 2q where q is a sufficiently large odd number
and choose the labels for S(l + 1) using appropriate odd numbers.

Let v1, v2, . . . , vs be the vertices of S(l) and their respective labels be x1, x2, . . . , xs

which are all odd. For each vi, let vi1, vi2, . . . , viti be its neighbors in S(l + 1). Multiply
the labels of T (l) by 2q where q is an odd number to be determined. The labels of T (l)
now become all even and still satisfy the condition stated in the lemma. In particular,
the labels for v1, v2, . . . , vs now become 2qx1, 2qx2, . . . , 2qxs.

Observe that the set of 2ti + 1 consecutive integers {qxi − ti, . . . , qxi − 1, qxi, qxi +
1, . . . , qxi + ti} contains at least ti odd numbers. The labels of vi1, vi2, . . . , viti can then
be chosen from these odd numbers according to the rule: If x is used, so is 2qxi − x. If ti
is odd, then qxi is used.

Finally, to ensure the feasibility of the labeling, we require that: 0 < qx1−t1, qx1+t1 <
qx2 − t2, . . . , qxs−1 + ts−1 < qxs − ts or equivalently q > t1

x1

, q > t2+t1
x2−x1

, . . . , q > ts+ts−1

xs−xs−1

which is always possible by choosing a sufficiently large odd number q. Hence we obtain
a labeling of T (l + 1) satisfying the condition of the lemma.

the electronic journal of combinatorics 13 (2006), #R00 15



By repeating the above procedure, we obtain a V/E-labeling of T with the desired
properties. Note that the root of T , v, is labelled by nk. �

We illustrate the above labeling procedure by the following example.
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Therefore, we can choose q = 3.

Figure 12

Proposition 6. An infinite star with its center attached to a finite number of finite trees
each by an edge has a bijective graceful N/N-labeling.

Proof. Denote the infinite star by S, its center by v, and the finite trees by T1, T2, . . . , Tm.
Each Ti is joined to S by an edge vui where ui ∈ V (Ti). The resulting infinite tree T
can be described as S ∪ (∪m

i=1Ti) +
∑m

i=1
vui. By taking ui to be the root of Ti, we can

obtain a Vi/Ei-labeling of Ti for i = 1, . . . ,m as described in Lemma 8. Hence we have
a (ciVi + 1)/ciEi-labeling of Ti. Choose ci’s so that the sets {ciVi + 1}m

i=1 are pairwise
disjoint. This is always possible by choosing ci sequentially with each one sufficiently
larger than the previous one. Now label the center of the star by 1 and the leaves of the
star by N \ ∪m

i=1(ciVi + 1) ∪ {1}. The result is a bijective graceful N/N-labeling of T . �

Proposition 7. Every infinite tree with exactly one vertex of infinite degree has a bijec-
tive graceful N/N-labeling.

Proof. Let T stand for the infinite tree and v be the vertex of infinite degree. Denote the
set of neighbors of v with degree > 1 by N .

If T has a semi-infinite path, then by Proposition 3, T has a bijective graceful N/N-
labeling.

Suppose T does not have a semi-infinite path. If |N | is finite, then T is an infinite star
with its center attached to a finite number of finite trees each by an edge. By Proposition
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6, T has a bijective graceful N/N-labeling. If |N | is infinite, then T is an infinite tree
with one infinite degree vertex v where v has infinitely many neighbors of degree > 1. By
Proposition 4, T has a bijective graceful N/N-labeling. �

(iii) Infinite tree with more than one but finitely many infinite degree vertices

Lemma 9. Let G be an amalgamation of a finite graph G1 = (V1, E1) and k infinite
stars by identifying k distinct vertices of G1 with the k centers of the stars. Suppose that
|E1| ≥ |V1| − 1 and G has a bijective graceful N-labeling. Then k = 1, the center of the
infinite star is labelled 1, and |E1| = |V1| − 1.

Proof. Denote the k centers by v1, v2, . . . , vk. Consider v1 and take a vertex v adjacent
to v1 such that the label of v is greater than that of any vertices of G1. Let the label
of v be n. Consider the subgraph H of G induced by the vertices labelled {1, 2, . . . , n}.
Let ni be the number of common edges between H and the infinite star centered at vi.
We have |V (H)| = n = |V1| + n1 + . . . + nk and |E(H)| = |E1| + n1 + . . . + nk. Hence
|E(H)| ≥ |V (H)| − 1 as |E1| ≥ |V1| − 1. Since the edge labels of H are all distinct,
|E(H)| must be less than |V (H)| implying that |E1| < |V1|. So |E1| = |V1| − 1 and
|E(H)| = |V (H)|−1. Now H has n−1 edges which must be labelled by {1, 2, . . . , n−1}.
The edge labelled n − 1 must be incident with the two vertices labelled 1 and n. Since
the vertex labelled n is v, v1 is labelled 1. However, the same argument also implies that
v2 is labelled 1 if k > 1 which is a contradiction. So k = 1. �

Proposition 8. Every infinite tree with more than one but finitely many vertices of infi-
nite degree has a bijective graceful N/N-labeling except for the case when the tree does not
contain any semi-infinite path and every infinite degree vertex has finitely many neighbors
of degree greater than one.

Proof. Let T be the infinite tree and U be the set of vertices of infinite degree. If T has
a semi-infinite path, then by Proposition 3, T has a bijective graceful N/N-labeling.

Suppose T does not have a semi-infinite path. If T has a vertex v of infinite degree
such that v has infinitely many neighbors of degree > 1, then by Proposition 4, T has a
bijective graceful N/N-labeling. Now suppose every vertex of infinite degree has finitely
many neighbors of degree > 1. Remove from T all degree 1 neighbors of v for all v ∈ U .
The resulting graph T ′ is a finite tree. This means that T is an amalgamation of T ′ and
|U | infinite stars by identifying |U | vertices of T ′ with the |U | centers of the stars. By
Lemma 9, T does not have a bijective graceful N-labeling. �

(iv) Infinite tree with infinitely many vertices of infinite degree
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Proposition 9. Every infinite tree with infinitely many vertices of infinite degree has a
bijective graceful N/N-labeling.

Proof. The infinite tree T can be constructed by the following procedure.

0. Order the vertices of T so that V (T ) = {v1, v2, v3, . . .}. Denote the set of vertices
of infinite degree by U . Let T1 = T [{v1}]. Set i = 1.

1. Consider the neighbors of Ti, N(Ti), where the order of the vertices is induced by
V (T ). Choose the first vertex in N(Ti) say u and let x be the unique neighbor in Ti

adjacent to u.

2. If u ∈ U , then there exists a vertex y other than x that is adjacent to u. Amalga-
mate the path xuy to Ti by identifying x. This is a type-1 and type-2 amalgamation and
we have Ti+1 = Ti#xuy.

3. If u /∈ U , then amalgamate the edge xu to Ti by identifying x. We have Ti+1 =
Ti#xu.

4. i = i + 1. Goto step 1.

As in the proof of Proposition 3, every vertex and edge of T will be included by the
amalgamation process eventually. Since T has infinitely many vertices of infinite degree,
this guarantees that infinitely many type-1 and type-2 amalgamations will occur. By
Theorem 2, T = limn Tn has a bijective graceful N/N-labeling. �

The proof of the Graceful Tree Theorem for Infinite Trees is therefore complete.
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