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Abstract

In this paper, we first introduce the use of an Interactive Hidden Markov Model (IHMM)

for modeling and analyzing default data in a sector. Under the IHMM, the transitions of the

hidden risk states of the sector depend on the observed number of bonds in the sector that

default in the current time step. This models the feedback effect of the number of defaults

on the transitions of the hidden risk states. This feature seems to be more realistic and does

not enjoy by the traditional HMMs. We then develop a “dynamic” version of the Binomial

Expansion Technique (BET) modulated by the IHMM for modeling the occurrence of defaults

of bonds issued by firms in the same sector. Under the BET modulated by the IHMM,

the number of bonds defaulting in each time step follows a Markov-modulated binomial

distribution with the probability of defaulting of each bond depending on the states of the

IHMM, which represent the hidden risk states of the sector. Efficient estimation method will

be presented for estimating the model parameters in the BET modulated by the IHMM. We

shall compare the hidden risk state process extracted from the IHMM with that extracted

from the BET modulated by HMM in order to illustrate the significance of the feedback

effect using real data. We shall also present the estimation results for the BET modulated

by the IHMM and compare them with those for the BET modulated by the HMM.
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1 Introduction

Modeling portfolio credit risk is an important and practically relevant issue in credit

risk analysis. It is an important research topic among academics and financial practi-

tioners over the past few years. One important issue in modeling portfolio credit risk

is to develop an appropriate model to quantify interaction effects of the credit risky en-

tities within a portfolio. In practice, the Binomial Expansion Technique (BET) model

developed by Moodys has been widely adopted in finance and insurance industries. In

the BET model, it is supposed that the number of defaults within a bond portfolio in

each time period is binomially distributed. The default events of the bonds in the port-

folio are independent and the probability of defaulting of each bond remains the same

across the bonds in the portfolio over time. In order to deal with the dependence of the de-

faults, the concept of diversify score has been introduced in the BET model, which groups

the dependent bonds together and shrinks the number of dependent surviving bonds in

each time step as the number of independent credit risky entities under which the BET

model can be applied. Later Davis and Lo [4, 5] provide extensions to the BET model

to model dependence of defaults and the default correlation in a bond portfolio. They

focus on modeling the cross-sectional dependence of the defaults. Woo and Siu (2004)

[16] model the temporal dependence of the default probabilities and introduced the use

of the Bayesian filtering model for modeling the dynamics of the varying and unknown

default probabilities.

In a recent paper by Giampieri et al. [8], a Hidden Markov model (HMM) is proposed

for modeling the occurrence of defaults within a sector of bonds. They assume that the

number of defaults within the sector / portfolio in each time step follows a binomial model

with the default probability of each bond depending on the hidden states of a HMM, which

are interpreted as risk states. They supposed that the risk state is common to all bonds

within one particular industry, sector or region. They then employ the standard maximum

likelihood estimation techniques associated with the Baum-Welch algorithm [9] developed

by Baum and Welch for signal processing to estimate the model parameters. Their model

can also be extended to include independent hidden risk sequences, which can then be

used to incorporate the risk associated with the business cycle from the specific to the

individual sector. In practice, the risk state of the bonds within the same industry or

sector may depends on the financial performance of the issuing firms within that industry

or sector and the number of defaults of the bonds within the industry contains important

information about the financial performances of the issuing within that industry. It is

reasonable to consider the impact of the number of the defaults of the bonds within the

industry or sector on the common risk state of the bonds. In other words, the causality

effect between the number of defaults of the bonds and the risk state of the bonds are in

both direction and hence the feedback effect of the number of the defaults of the bonds

on the risk state is incorporated. By incorporating this feedback effect, one can further

explore the non-linear temporal behavior of the default data.
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The concept of interactive hidden Markov models (IHMMs) was first introduced by

Ching et al. [1, 2] in the classification of customers in a service sector. A threshold-type

classifier has been obtained using the IHMM. The key idea of the IHMM is that the

transitions of hidden states depend on the observable states. In a traditional HMM, the

observable states are affected directly by the hidden states, but not vice versa, even though

there are advanced higher-order HMMs [15]. Later Ching et al. [3] extend the IHMM to

extract hidden economic conditions from observable economic data. The IHMM can be

related to a discrete-time version of the class of the first-order Self-Exciting Threshold

Auto-Regressive (SETAR) models first proposed by Tong [11, 12, 13, 14] for modeling

non-linear time series taking numerical values. The class of SETAR models by Tong

provide a piecewise linear approximation to a non-linear time series model by dividing

the state-space into several regimes via the threshold principle. It provides a good first

approximation to non-linear time series model beyond the class of ARMA models. The

monograph by Tong [14] provides an excellent and original discussion of the SETAR

models and other important non-linear time series models. The IHMM model can be

considered as a discrete-state analogy of the class of the first-order SETAR models when

the observable state can determine the hidden state with probability one. It can provide a

first-order approximation of the non-linear behavior of categorical time series by dividing

the state-space of the Markov chain process into several regimes, say two regimes.

In this paper, we first introduce the use of an Interactive Hidden Markov Model

(IHMM) for modeling and analyzing default data in a sector. We then compare our

results with the BET modulated by Hidden Markov models (HMMs) introduced by Gi-

ampieri et al. [8]. The IHMM is different from the HMMs in Giampieri et al. [8] in

the assumption of the transitions of the hidden states. Under the IHMM, the transitions

of the hidden risk states of the sector depend on the observed number of bonds in the

sector that default in the current time step. In other words, the IHMM can feedback

the effect of the number of the defaults on the hidden risk states. Hence, the causality

effect between the number of defaults and the hidden risk states are in both directions.

With the IHMM model, we can further explore the temporal non-linear behavior of the

default data by dividing the state-space of the Markov chain into several regimes, let us

say two regimes. We then develop a “dynamic” version of the Binomial Expansion Tech-

nique (BET) modulated by the IHMM for modeling the occurrence of defaults of bonds

issued by firms in the same sector. Under the BET modulated by the IHMM, the number

of bonds defaulting in each time step follows a Markov-modulated binomial distribution

with the probability of defaulting of each bond depending on the states of the IHMM.

As in Giampieri et al. [8], the states of the IHMM here represent the hidden risk states

of the sector. Efficient estimation method will be presented for estimating the model

parameters in the BET modulated by the IHMM. We shall compare the hidden risk state

process extracted from the the BET modulated by IHMM with that extracted from the

HMM in order to illustrate the significance of the feedback effect using real data. We shall
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also present the estimation results for the BET modulated by the IHMM and compare

them with those for the BET modulated by the HMM.

This paper is structured as follows. In Section 2, we present the main idea of the

IHMM of [3]. We also describe the estimation method for the parameters of the IHMM.

In Section 3, we present a general set up for the BET modulated by the IHMM. We

shall also discuss the estimation issue for the BET modulated by the IHMM through a

numerical example. In Section 4, we shall examine the performance of the IHMM on

extracting the hidden risk state process from the observed real default data and compare

its performance with that of the HMM. We also present the estimation results of the BET

modulated by the IHMM and compare them with those of the BET modulated by the

HMM in Giampieri et al. [8]. We shall highlight the feedback effect presented in the

IHMM. Finally, concluding remarks will be given in Section 5.

2 The Interactive Hidden Markov Model

In this section, we present the main idea of the IHMM and the estimation method for

the model parameters [1, 2] through the following example.

Example 2.1: Suppose we are given an observed time series of the numbers of defaults,

each of which takes values in the state-space {0, 1, 2}, as below:

0, 1, 1, 2, 1, 0, 0, 0, 1, 2, 0, 2, 1, . . . .

Here, we assume the maximum number of defaults observed is 2 in the observed sequence.

Suppose further that we have a hidden state variable with two states, namely, A (Normal

risk) and B (Enhanced risk). When the hidden state variable takes the value A, the

probability distribution of an observable variable is assumed to be:

(
1

3
,
1

3
,
1

3
).

When the hidden state variable takes the value B, the probability distribution of an

observable variable is assumed to be:

(0,
1

2
,
1

2
).

We define an augmented Markov chain with the following states: A, B, 0, 1 and 2. We

assume that when the observable state is i, the probabilities that the hidden state is A and

B in next time step are given by αi and 1 − αi, respectively. The transition probability
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matrix governing the augmented Markov chain is then given by:

P2 =

















0 0 1
3

1
3

1
3

0 0 0 1
2

1
2

α0 1 − α0 0 0 0

α1 1 − α1 0 0 0

α2 1 − α2 0 0 0

















.

Hence, to define the IHMM, one has to estimate:

α = (α0, α1, α2)

from an observed data sequence. One may consider the two-step transition probability

matrix:

P 2
2 =

















α0+α1+α2

3
1 − α0+α1+α2

3
0 0 0

α1+α2

2
1 − α1+α2

4
0 0 0

0 0 α0

3
1
2
− α0

6
1
2
− α0

6

0 0 α1

3
1
2
− α1

6
1
2
− α1

6

0 0 α2

3
1
2
− α2

6
1
2
− α2

6

















.

One can then extract the one-step transition probability matrix of the observable states

from P 2
2 as follows:

P̃2 =







α0

3
1
2
− α0

6
1
2
− α0

6
α1

3
1
2
− α1

6
1
2
− α1

6
α2

3
1
2
− α2

6
1
2
− α2

6






.

The rationale of considering the matrix P̃2 is that it provides us with information of the

one-step transition from one observable state to another one. Even though, in this case,

we do not have a closed form solution for the stationary distribution of the process. There

are three parameters to be estimated. To estimate the parameter αi, we first estimate the

one-step transition probability matrix from the observed sequence, which can be done by

counting the transition frequency of the states in the observed sequence as in Ching et al.

[2].

Suppose the estimate of P̃2 is P̂2. It is expected that P̃2 ≈ P̂2 and, hence, αi can be

obtained by solving the minimization problem:

min
αi

||P̃2 − P̂2||
2
F

subject to the constraints:

0 ≤ αi ≤ 1 for i = 0, 1, 2.
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Here, ||.||F is the Frobenius norm, i.e.

||A||2F =
n
∑

i=1

n
∑

i=1

A2
ij.

We remark that other matrix norms can also be used as the objective function. We then

consider the following two cases, namely, when the matrix P is known and when it is

unknown.

From Example 2.1, the one-step transition probability matrix of the observable states

is:

P̃2 = αP

(P is called the emission matrix) where

α =













α11 α12 · · · α1m

α21 α22 · · · α2m

...
...

...
...

αn1 αm2 · · · αnm













and P =













p11 p12 · · · p1n

p21 p22 · · · p2n

...
...

...
...

pm1 pm2 · · · pmn













,

i.e.

[P̃2]ij =

m
∑

k=1

αikpkj i, j = 1, 2, . . . , n.

Here αij are unknown. We first consider the case that the probabilities pij are given [2].

Suppose [Q]ij is the one-step transition probability matrix estimated from the observed

sequence. Then, for each fixed i, αij , j = 1, 2, . . . , m can be obtained by solving the

constrained least squares problem as follows:

min
αik







n
∑

j=1

(

m
∑

k=1

αikpkj − [Q]ij

)2






subject to the constraints:

m
∑

k=1

αik = 1 and αik ≥ 0 for i = 1, 2, . . . , n.

Ching et al. [3] also provide a comprehensive discussion for the case when P is unknown.

When all of the probabilities Pij are unknown, we shall use the bi-level programming

technique to estimate all unknown parameters (see [3] or Appendix A). Once the model

parameters are available the most likely hidden state can be obtained [3]. We shall

compare the IHMM with the HMM of Giampieri et al. [8] in detecting hidden risk state

in Section 4.
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3 The Binomial Expansion Techniques (BET) Modulated by the

IHMM

In this section, we shall present a general framework for the BET modulated by the

IHMM. Here, we consider the situation that there are m hidden common risk states to

all of the bonds issued by firms in the same (industrial) sector and that there are n bonds

in the sector; that is, the number of surviving bonds in the portfolio at the beginning of

the first period S0 = n. We present the general framework in the sequel.

We consider a discrete-time economy associated with the time index set

T := {0, 1, 2, . . . , T}.

Fix a complete probability space (Ω,F ,P), where P is a real-world probability measure.

The probability space is rich enough to model all uncertainties in the model. Let X :=

{Xt}t∈T denote a hidden sequence (Ω,F ,P) with state-space

S := {s1, s2, . . . , sm}

where si ∈ Rm, for i = 1, 2, . . . , m.

We interpret the states of X as the common risk states of the bonds in the sector.

In particular, “1” represents the lowest risk state and “m” represents the highest risk

state. Without loss of generality, we can take the state-space S for X to be the set

{e1, e2, . . . , em} of unit vectors in Rm. This is called the canonical representation of a

Markov chain process introduced by Elliott [6] (see also Elliott et al. [7]). We suppose

that X is modeled by an IHMM model which is described in the following.

Let {St}t∈T denote a stochastic process on (Ω,F ,P), where St represents the number

of surviving bonds at the end of the tth period, for each t ∈ T . Then, for each t ∈ T \{0, 1}

and each k = 0, 1, 2, . . . , St−2, the transition probabilities of the hidden risk state process

X are specified as below:

aij(k) = P(Xt = ej |Xt−1 = ei, Mt−1 = k) , (3.1)

and

A(k) = [aij(k)]1≤i,j≤m.

Here {Mt}t∈T is a stochastic process on (Ω,F ,P) and Mt represents the number of defaults

in the tth period. Now, we describe the BET modulated by the IHMM for modeling the

number of defaults of the bonds over time. Let FS
t denote the P-augmentation of the

σ-algebra σ{S0, S1, . . . , St} generated by the process {St}t∈T up to and including time

t ∈ T . FS
t represents observable information up to and including time t ∈ T . For each

t ∈ T , conditional on FS
t , Mt+1 takes values in the set {0, 1, 2, . . . , St}.
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We define the probability of the default of each bond in the sector at time t as:

Θt := Θ(t, Xt) := 〈Θ, Xt〉 =

m
∑

i=1

Θi 〈Xt, ei〉 , (3.2)

where

Θ := (Θ1, Θ2, . . . , Θm) ∈ Rm, Θi ∈ (0, 1) for i = 1, 2, . . . , m

and

Θ1 < Θ2 < · · · < Θm.

For each t ∈ T , given FS
t , the conditional probability distribution of Mt+1 under P is

given by the following regime-switching binomial distribution:

P (Mt+1 = j|Xt,F
S
t ) = P (Mt+1 = j|Xt, St) (3.3)

=

(

St

j

)

(< Θ, Xt >)j(1− < Θ, Xt >)St−j

=
m
∑

i=1

(

St

j

)

(Θi)
j(1 − Θi)

St−j < Xt, ei > , (3.4)

for j = 1, 2, . . . , St.

The following example provides an illustration of the model. The version of the BET

model presents in the example resembles that of Giampieri et al. [8], except that the

IHMM is used to incorporate the feedback effect.

Example 3.1: Consider the situation that the hidden risk state takes two possible values,

namely, “N” (normal risk) and “E” (enhanced risk). In the normal risk state, the number

of observed defaults in each time step is modeled by a BET model with the default

probability of a bond PN . In the enhanced risk state, let PE denote the default probability

of a bond. Here PE > PN , which means that the probability of the default of a bond in

the enhanced risk state is higher than that in the normal risk state.

Then, in the normal state N , given the number of surviving bonds at the current time

is k, the conditional probability distribution of the number of defaults in the next period

is:

P (m|Nk) =

(

k

m

)

(PN)m(1 − PN )k−m , m = 1, 2, . . . , k . (3.5)

In the enhanced state E, the corresponding probability distribution is

P (m|Ek) =

(

k

m

)

(PE)m(1 − PE)k−m . (3.6)

In the following example, we shall define an augmented Markov chain associated with
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the BET modulated by an IHMM with two hidden risk states. The state-space of the

augmented Markov chain is formed by both hidden risk states and observable number of

defaults. We obtain the transition probability matrix of the augmented Markov chain,

which provides complete description of the probabilistic behaviors of the transitions of

both observable states and hidden states. The transition probability matrix also plays a

key role for the estimation of the unknown parameters of the IHMM.

Example 3.2: Consider the BET in Example 3.1 again. Suppose there are two surviving

bonds at the beginning of the first period, i.e., S0 = 2. In this case, there are three observ-

able states 0, 1 and 2 while there are six unobservable states (or more precisely, partially

unobservable), namely, N2, N1, N0, E2, E1 and E0. Here, N2 represents that the credit

risk is normal and there are two surviving bonds and E0 means that the credit risk is

enhanced and there is no surviving bond. We shall describe the probabilistic behavior

of the transitions of both observable states and unobservable states by an augmented

Markov chain with the following 9 states:

{N2, N1, N0, E2, E1, E0, 2, 1, 0}.

We further suppose that when the observable state is k (k = 0, 1, 2), the probabilities that

the hidden state is N and E in next time step are given by αk and 1 − αk, respectively.

Then, the transition probability matrix governing the augmented Markov chain is:

P2 =



































0 0 0 0 0 0 P (0|N2) P (1|N2) P (2|N, 2)

0 0 0 0 0 0 0 P (0|N1) P (1|N1)

0 0 0 0 0 0 0 0 P (0|N0)

0 0 0 0 0 0 P (0|E2) P (1|E2) P (2|E2)

0 0 0 0 0 0 0 P (0|E1) P (1|E1)

0 0 0 0 0 0 0 0 P (0|E0)

α2 0 0 1 − α2 0 0 0 0 0

0 α1 0 0 1 − α1 0 0 0 0

0 0 α0 0 0 1 − α0 0 0 0



































.

Suppose

PN = 0.15 and PE = 0.3.
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Then, the transition probability matrix is:

P2 =



































0 0 0 0 0 0 0.7225 0.2550 0.0225

0 0 0 0 0 0 0 0.8500 0.1500

0 0 0 0 0 0 0 0 1.000

0 0 0 0 0 0 0.4900 0.4200 0.0900

0 0 0 0 0 0 0 0.7000 0.3000

0 0 0 0 0 0 0 0 1.000

α2 0 0 1 − α2 0 0 0 0 0

0 α1 0 0 1 − α1 0 0 0 0

0 0 α0 0 0 1 − α0 0 0 0



































.

3.1 The Estimation of the BET Modulated by the IHMM

To illustrate how to use the above estimation method to estimate the BET modulated

by the IHMM, we first consider the case when PN and PE are known. To define the

IHMM for the hidden risk states, one has to estimate α = (α0, α1, α2) from the observed

sequence of the default data. We consider the 3× 3 sub-matrix related to the observable

states of the two-step transition probability matrix P 2
2 as below:

P̃2 =

(

α2P (0|N, 2) + (1 − α2)P (0|N, 2) α2P (1|N, 2) + (1 − α2)P (1|N, 2) α2P (2|N, 2) + (1 − α2)P (2|N, 2)

0 α1P (0|N, 1) + (1 − α2)P (0|N, 1) α1P (1|N, 1) + (1 − α2)P (1|N, 1)

0 0 1

)

.

Suppose PN = 0.15 and PE = 0.3. Then,

P̃2 =







0.2325α2 + 0.4900 −0.1650α2 + 0.4200 −0.0675α2 + 0.0900

0.0000 0.1500α1 + 0.7000 −0.1500α1 + 0.3000

0.0000 0.0000 1.0000






.

Note that α0 is not important in the model and can be assumed to be 0. We also notice

that P (0|N0) = P (0|E0) = 1.

To estimate the parameters αi (i = 1, 2) given PN and PE , we first estimate the one-

step transition probability matrix from the observed sequence of default data. This can

be done by counting the transition frequencies among the states in the observed sequence

of default data and then follow by a normalization, see for instance [2, 3, 9]. Suppose that

the estimated transition probability matrix is given by

P̂2 =







3
4

1
4

0

0 3
4

1
4

0 0 1






.

It is expected that P̃2 ≈ P̂2 and, hence, αi can be obtained by solving the following
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minimization problem:

min
αi

||P̃2 − P̂2||
2
F

subject to:

0 ≤ αi ≤ 1 , i = 1, 2 .

Here, ||.||F represents the Frobenius norm. Solving the above optimization problem,

α∗
1 = 0.3333 and α∗

2 = 0.9602.

Hence,

P2 =



































0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.7225 0.2550 0.0225

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.8500 0.1500

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.4900 0.4200 0.0900

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.7000 0.3000

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000

0.9602 0.0000 0.0000 0.0398 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.3333 0.0000 0.0000 0.6667 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000



































.

Now, we consider the situation that both PN and PE are unknown. In this case, we

shall use the bi-level programming technique presented in Appendix A to estimate the

model parameters for the BET modulated by the IHMM with two risk states. We shall

present the estimation results of the IHMMs using the observed default data in the next

section.

4 Numerical Examples and Comparison

In this section, we present the estimation results of the IHMMs using the observed

default data in [8]. In [8], Giampieri et al. apply the HMM to the quarterly bond defaults

data of four sectors (consumer, energy, media and transportation) in United States taken

from Standard & Poors’ ProCredit6.2 database. The data set covers the period from

January 1981 to December 2002. The total number of bonds in January 1981 was 281

while the total number of bonds in December 2002 was 222. For the convenience of

comparison, we extracted the credit default data and also the most likely hidden risk

state directly from the figures in [8]. We then apply our IHMM to the extracted data

and comparisons are made and the results are reported in Appendix B. The details of the

computational procedures are given below. All computations were done on a Pentium

4HT PC with MATLAB.

Now, we need to set the initial probability for each sector and for each model. We

assume that the initial probability matrices of the consumer sector for both the IHMM

11



and the HMM are the same and that the common probability matrix is:

P (0) =

(

1/6 1/6 1/6 1/6 1/6 1/6 0 0 0 0 0 0 0

0 0 0 0 0 0 1/7 1/7 1/7 1/7 1/7 1/7 1/7

)

(4.1)

We recall that the number of observable states is equal to the maximum number of defaults

observed plus one in the IHMM. The initial probability matrices of the energy sector and

the transportation sector for both the IHMM and the HMM are supposed to be the same

and the common probability matrix is:

P (0) =

(

1/3 1/3 1/3 0 0 0

0 0 0 1/3 1/3 1/3

)

(4.2)

The initial probability matrices of the media sector for both the IHMM and the HMM

are assumed to be the same and the common probability matrix is:

P (0) =

(

1/4 1/4 1/4 1/4 0 0 0 0

0 0 0 0 1/4 1/4 1/4 1/4

)

(4.3)

Figures 1-4 (see Appendix B) display the results of the most likely hidden risk state

process extracted from the IHMM (Figures 1(b)-4(b)) and also those extracted from the

figures in [8] (Figures 1(a)-4(a)) using the observed default data in the consumer/service

sector, the energy and natural resources sector, the leisure time/media sector and the

transportation sector, respectively. There are 13, 6, 8 and 6 observable states in the

consumer/service sector, the energy and natural resources sector, the leisure time/media

sector and the transportation sector, respectively.

[Figures 1-4 about here]

From Figures 1-4, we can see that our IHMM is more sensitive in detecting the changes

in the hidden risk states than the HMM in [8] for the consumer/service sector, the energy

and natural resources sector, the leisure time/media sector and the transportation sector.

This reveals that the incorporation of the feedback effect by the IHMM can improve the

ability in detecting the changes in the hidden risk states. As expected, the IHMM gives a

threshold-type classification of the hidden risk states. For example, the IHMM classifies

those periods having six or more defaults as enhanced risk in the consumer/service sector.

The threshold values for the remaining three sectors are 3, 4 and 3 defaults respectively.

For the HMM, generally speaking, it is very unlikely to have two transitions of hidden

risk states in three consecutive transitions. Therefore, the HMM might not be adaptive

to the rapid changes of hidden risk states. This is consistent with the numerical examples

in Figures 1(a)-4(a) in Appendix B.
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Table 4.1.

IHMM HMM in [8]

Sectors Total Default α PN PE q p PN PE

Consumer 1041 251 0.63 0.0022 0.0075 0.95 0.81 0.0026 0.0159

Energy 420 71 0.68 0.0015 0.0085 0.95 0.88 0.0014 0.0099

Media 650 133 0.50 0.0015 0.0085 0.96 0.83 0.0027 0.0194

Transport 281 59 0.63 0.0017 0.0153 0.97 0.78 0.0025 0.0223

We then apply the BET modulated by the IHMM discussed in Section 3 to the default

data again. In this case, since the number of model parameters αi is much more than the

data available, we assume that αi = α, for all i, in the estimation. Based on the observed

default data and the hidden risk state process for each sector extracted by our IHMM [3]

the likelihood function or the joint probability distribution for the hidden risk states with

the observed default data can be obtained in the following form:

αP (1 − α)QP R
N (1 − PN )SP T

E (1 − PE)U . (4.4)

Here P, Q, R, T and U can be obtained from the observed default data. The estimates

of all model parameters are then obtained by maximizing the above likelihood function

(4.4).

The estimates of the parameters of the BET modulated by the IHMM and the BET

modulated by the HMM are presented for the four sectors are presented in Table 4.1.

Under the BET modulated by the HMM, the hidden risk state is assumed to follow a

first-order Markov chain having the transition probability matrix:

(

q 1 − q

1 − p p

)

.

Here q is the probability of remaining in the normal risk state while p represents the prob-

ability of remaining in the enhanced risk state. We observe that the default probabilities

under the enhanced risk state estimated using the BET modulated by the HMM are al-

ways significantly greater (can be over 200% in the Media sector) than those estimated

by BET modulated by IHMM. While the default probabilities under the normal risk state

obtained by both of the models are more or less consistent with each other.

5 Concluding Remarks

We considered the IHMM and a BET modulated by an IHMM for modeling the oc-

currence of defaults of bonds issued by firms in the same sector. The main idea of the two

models is to assume that the transitions of the hidden risk states of the sector depend on

the current observed number of defaulting within the sector. We presented an efficient

estimation method for the model parameters and an efficient method for extracting the

13



most likely hidden risk state process. We conducted empirical studies on the models and

compared the hidden risk state process extracted from the IHMM model with that ex-

tracted from the HMM using the real default data from Giampieri et al. [8]. We found

that the incorporation of the interactive or feedback effect can provide a more sensitive

way to detect the transitions in the hidden risk states.

Acknowledgment: The authors would like to thank Mimi Lui for producing the figures.
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6 Appendix A

The bi-level optimization algorithm (Taken from [3]).

Initialize p
(0)
ij ; e = 1; h = 1;

Solve α
(h)
ik

min
α

(h)
ik







n
∑

j=1

(

m
∑

k=1

α
(h)
ik p

(h−1)
kj − [Q]ij

)2






subject to:
m
∑

k=1

α
(h)
ik = 1 and α

(h)
ik ≥ 0;

Solve p
(h)
ik

min
p
(h)
ik







n
∑

j=1

(

m
∑

k=1

α
(h)
ik p

(h)
kj − [Q]ij

)2






subject to:
n
∑

k=1

p
(h)
ik = 1 and p

(h)
ik ≥ 0

While e < tolerance,

h := h + 1;

Solve α
(h)
ik

min
α

(h)
ik







n
∑

j=1

(

m
∑

k=1

α
(h)
ik p

(h−1)
kj − [Q]ij

)2






subject to:
m
∑

k=1

α
(h)
ik = 1 and α

(h)
ik ≥ 0

Solve p
(h)
ik

min
p
(h)
ik







n
∑

j=1

(

m
∑

k=1

α
(h)
ik p

(h)
kj − [Q]ij

)2






subject to:
n
∑

k=1

p
(h)
ik = 1 and p

(h)
ik ≥ 0

e := ||α(h) − α(h−1)||22 − ||P (h) − P (h−1)||22 ;

end;
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7 Appendix B

Figure 1(a): Consumer/service sector. (HMM in [8] )

Figure 1(b): Consumer/service sector. (IHMM)

Figure 2(a): Energy and natural resources sector. (HMM in [8])

Figure 2(b): Energy and natural resources sector. (IHMM)
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Figure 3(a): Leisure time/media sector. (HMM in [8])

Figure 3(b): Leisure time/media sector. (IHMM)

Figure 4(a): Transportation sector. (HMM [8])

Figure 4(b): Transportation sector. (IHMM)
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