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Abstract

In this paper, we consider the pricing of exotic options when the price dynamic of the

underlying risky asset is governed by a discrete-time Markov-modulated process driven by

a Higher-order Hidden Markov Model (HHMM). We assume that the market interest rate,

the drift and the volatility of the underlying risky asset’s return switch over time according

to the states of the HHMM. Here the states of the HHMM are interpreted as the states of

an economy. The advantage of the HHMM is that it can capture the long-range dependence

of the states of the economy. We will then employ the well-known tool in actuarial science,

namely, the Esscher transform to determine an equivalent martingale measure for option

valuation. Moreover, we will also investigate the impact of the long-range dependence of the

states of the economy on the prices of some path-dependent exotic options, such as Asian

options, lookback options and barrier options.

Keywords: Asian Options; Barrier Options; Lookback Options; HHMM; Long-range

Dependence; Esscher Transform.

1 Introduction

Recently, there is a considerable interest in the applications of regime switching models

driven by a hidden Markov chain to various financial problems. For an overview of hidden

Markov chain and their financial applications, see Elliott et al [8], Elliott and Kopp [10]

and Aggoun and Elliott [1]. Some works on the use of hidden Markov chain in finance

include Buffington and Elliott [3, 4] for pricing European and American options, and

Elliott et al [11] for option valuation in an incomplete market. Most of the literature

concern the pricing of options under a continuous-time Markov-modulated process. There

∗Advanced Modeling and Applied Computing Laboratory, Department of Mathematics, The University of

Hong Kong, Pokfulam Road, Hong Kong. E-mail: wching@hkusua.hku.hk. Research supported in part by RGC

Grants, HKU CRCG Grants, Hung Hing Ying Physical Sciences Research Fund and HKU Strategic Research

Theme Fund on Computational Physics and Numerical Methods.
†Department of Actuarial Mathematics and Statistics, School of Mathematical and Computer Sciences and

the Maxwell Institute for Mathematical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK.
‡Advanced Modeling and Applied Computing Laboratory, Department of Mathematics, The University of

Hong Kong, Pokfulam Road, Hong Kong. E-mail: liminli@hkusua.hku.hk

1



is not much work on the valuation of options under a discrete-time Markov-modulated

framework. The presence of long-range dependence in the states of an economy is well-

known in the economic literature. It is importance to investigate the impact of such well-

known economic phenomenon on option valuation. There is a relatively little amount of

literature on studying the impact of the long-range dependence in the states of an economy

on option valuation. This paper helps to fill in the gap by investigating consequences for

pricing some popular exotic (path-dependent) options of the presence of the long-range

dependence in the states of an economy.

In this paper, we consider the pricing of exotic options when the price dynamic of the

underlying risky asset is governed by a discrete-time Markov-modulated process driven by

a Higher-order Hidden Markov Model (HHMM). The discrete-time framework provides a

natural and intuitive way to incorporate the higher-order effect in the underlying hidden

Markov chain. We assume that the market interest rates of a bank account, the drift

and the volatility of the underlying risky asset’s return switch over time according to

one of the states of the HHMM. We interpret the states of the HHMM as the states

of an economy. The use of HHMM to model the economic states can incorporate the

long-range dependence of these states. We shall employ the well-known tool in actuarial

science, namely, the Esscher transform to determine an equivalent martingale measure for

option valuation in the incomplete market described by the HHMM. We shall investigate

the impact of the long-range dependence of the economic state on the prices of some path-

dependent exotic options, such as Asian options, lookback options and barrier options.

The rest of the paper is organized as follows. In Section 2, we present the Markov-

modulated process with HHMM for modeling the price dynamic of the underlying risky

asset. We shall illustrate the use of the Esscher transform to determine an equivalent

martingale measure for option valuation in the HHMM setting in Section 3. Section

4 conducts some simulation experiments and investigates the impact of the long-range

dependence of the economic state on the option prices. Finally, concluding remarks are

given in Section 5.

2 Asset Price Dynamic by HHMM

In this section, we present a Markov-modulated process driven by a higher-order hidden

Markov chain (HHMM) for modeling the asset price dynamic of an underlying risky asset.

First, we consider a discrete-time economy with two primary traded assets, namely, a

bank account and a share. Let T be the time index set {0, 1, . . .} of the economy. Fix

a complete probability space (Ω,F ,P), where P is a real-world probability. We suppose

that the uncertainties due to the fluctuations of market prices and the hidden economic

states are described by the probability space (Ω,F ,P). In the sequel, we shall define a

HHMM for describing the hidden states of an economy.

Let X := {Xt}t∈T be an lth-order discrete-time homogeneous HHMM, which takes
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values in the state space

X := {x1, x2, . . . , xM}.

Write

i(t, l) := (it, it−1, . . . , it−l),

where t ≥ l, l = 1, 2, . . . and it, it−1, . . . , it−l ∈ {1, 2, . . . , M}. The state transition

probabilities of X are specified as follows:

P (it+1|i(t, l)) := P [Xt+1 = Xit+1
|Xt = xit , . . . , Xt−l = xit−l

], it+1 = 1, 2, . . . , M.

(2.1)

The order l represents the degree of long-range dependence of the hidden states of the

economy. When l = 1, X becomes a short-memory or just the first-order hidden Markov

model.

To determine the HHMM completely, we need to define the following initial distribu-

tions:

P (il+1|i(l, l)) := πil+1|i(l,l) , it+1 = 1, 2, . . . , M. (2.2)

We shall then describe the Markov-modulated process for the price dynamic of the un-

derlying risky asset. We assume that the market interest rate of the bank account, the

drift and the volatility of the risky asset switch over time according to the states of the

economy modeled by X.

Let rt,j be the market interest rate of the bank account in the tth period. For each

j = 0, 1, . . . , l, we write Xt,j for (Xt, Xt−1, . . . , Xt−j), for each t ≥ l, j = 0, 1, . . . , l. We

suppose that rt depends on the current value and the past values of the HHMM up to lag

j, i.e.,

rt,j := r(Xt,j) . (2.3)

Then, the price dynamic B := {Bt}t∈T of the bank account is given by:

Bt = Bt−1e
rt,j , B0 = 1 , P-a.s. (2.4)

Let S := {St}t∈T be the price process of the risky stock. For each t ∈ T , let Yt :=

ln(St/St−1) be the logarithmic return in the tth-period. We denote

µt,j := µ(Xt,j)

and

σt,j := σ(Xt,j)

the drift and the volatility of the risky stock in the tth-period respectively. In other words,
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the drift and the volatility depend on the current value and the past values of the HHMM

up to lag j. In particular,

µ(xit , xit−1
, . . . , xit−j

) = µi(t,j), (2.5)

and

σ(xit , xit−1
, . . . , xit−j

) = σi(t,j) , (2.6)

where µi(t,j) ∈ R and σi(t,j) > 0.

Let {ξt}t=1,2,... be a sequence of i.i.d. random variables with common distribution

N(0, 1), a standard normal distribution with zero mean and unit variance. We assume

that ξ and X are independent. Then, we suppose that the dynamic of Y is governed by

the following Markov-modulated model:

Yt = µ(Xt,j) −
1

2
σ2(Xt,j) + σ(Xt,j)ξt, t = 1, 2, . . . . (2.7)

By convention, Y0 = 0, P-a.s.

When j = 0, the Markov-modulated model for Y becomes:

Yt = µ(Xt) −
1

2
σ2(Xt) + σ(Xt)ξt , t = 1, 2, . . . , (2.8)

where the drift and the volatility are driven by the current state of the Markov chain X

only.

If we further assume that l = 1, the Markov-modulated model for Y resembles the

first-order HMM for logarithmic returns in Elliott et al. [9].

3 Regime-switching Esscher Transform

The Esscher transform is a well-known tool in actuarial science. The seminal work

of Gerber and Shiu [12] pioneers the use of the Esscher transform for option valuation.

Their approach provides a convenient and flexible way for the valuation of options under

a general asset price model. The use of the Esscher transform for option valuation can be

justified by the maximization of the expected power utility. It also highlights the interplay

between actuarial and financial pricing, which is an important topic for contemporary

actuarial research as pointed out by Bühlmann et al. [5]. Elliott et al. [11] adopt the

regime-switching version of the Esscher transform to determine an equivalent martingale

measure for the valuation of options in an incomplete market described by a Markov-

modulated geometric Brownian motion. Here, we consider a discrete-time version of the

regime-switching Esscher transform and apply it to determine an equivalent martingale

measure for pricing options in an incomplete market described by our model. In the

sequel, we shall introduce the discrete-time regime-switching Esscher transform.
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First, for each t ∈ T , let FX
t and FY

t denote the σ-algebras generated by the values of

the Markov chain X and the observable logarithmic returns Y up to and including time

t respectively. We write Gt for FY
t ∨ FX

T , for each t ∈ T .

Let Θt be a FX
T -measurable random variable, for each t = 1, 2, . . .. We interpret Θt

as the regime-switching Esscher parameter at time t conditional on FX
T . Let MY (t, Θt)

denote the moment generating function of Yt given FX
T evaluated at Θt under P, i.e.,

MY (t, Θt) := E(eΘtYt|FX
T ) , (3.1)

where E(·) is the expectation under P.

Here we assume that there exists a Θt such that MY (t, Θt) < ∞. Then, we define a

process

Λ := {Λt}t∈T

with Λ0 = 1, P-a.s., as follows:

Λt :=

t
∏

k=1

eΘkYk

MY (k, Θk)
. (3.2)

Lemma 3.1: Assume that Yt+1 is conditionally independent of FY
t given FX

T . Then, Λ

is a (G,P)-martingale.

Proof: We note that Λt is Gt-measurable, for each t ∈ T . Given that Yt+1 is conditionally

independent of FY
t given FX

T ,

E

(

Λt+1

Λt

∣

∣

∣

∣

Gt

)

= E

[

eΘt+1Yt+1

MY (t + 1, Θt+1)

∣

∣

∣

∣

FX
T

]

= 1 , P − a.s. (3.3)

Hence, the result follows.

Now, we define a discrete-time version of the regime-switching Esscher transform in

Elliott et al. [11] PΘ ∼ P on GT associated with

(Θ1, Θ2, . . . , ΘT )

as follows:

PΘ(A) = E(ΛT · IA) , A ∈ GT . (3.4)

Let MY (t, z|Θ) be the moment generating function of Yt given FX
T under PΘ evaluated

at z, i.e.,

MY (t, z|Θ) = EΘ(ezYt|FX
T ) , (3.5)
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where EΘ(·) is an expectation under PΘ.

Lemma 3.2: We have

MY (t, z|Θ) =
MY (t, Θt + z)

MY (t, Θt)
. (3.6)

Proof: By the Bayes’ rule, Lemma 3.1 and the fact that Yt is independent of FY
t−1 given

FX
T ,

MY (t, z|Θ) = EΘ(ezYt|FY
t−1 ∨ FX

T )

= E

(

Λt

Λt−1
ezYt

∣

∣

∣

∣

Gt−1

)

=
E(e(z+Θt)Yt|FY

t−1 ∨ FX
T )

MY (t, Θt)

=
MY (t, Θt + z)

MY (t, Θt)
. (3.7)

The seminal works of Harrison and Pliska [13, 14] establish an important link between

the absence of arbitrage and the existence of an equivalent martingale measure under

which discounted price processes are martingales. This is known as the fundamental the-

orem of asset pricing and is then extended by several authors, including Dybvig and Ross

[7], Back and Pliska [2] and Delbaen and Schachermayer [6]. In our case, we specify an

equivalent martingale measure by the risk-neutral regime-switching Esscher transform and

provide a necessary and sufficient condition on the regime-switching Esscher parameters

(Θ1, Θ2, . . . , ΘT ) for PΘ to be a risk-neutral regime-switching Esscher transform.

Proposition 3.3: The discounted price process { St

Bt
}t∈T is a (G,PΘ)-martingale if and

only if

Θt+1 := Θ(Xt+1,j) =
rt+1,j − µt+1,j

σ2
t+1,j

, t = 0, 1, . . . , T − 1. (3.8)

Proof: By Lemma 3.2,

EΘ

(

St+1

Bt+1

∣

∣

∣

∣

Gt

)

=
St

Bt

e−rt+1EΘ(eYt+1|Gt)

=
St

Bt

e−rt+1MY (t + 1, 1|Θ)

=
St

Bt

e−rt+1
MY (t + 1, Θt+1 + 1)

MY (t + 1, Θt+1)

=
St

Bt

, P − a.s. , (3.9)
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if and only if

MY (t + 1, Θt+1 + 1)

MY (t + 1, Θt+1)
= ert+1 . (3.10)

Since Yt+1|FX
T ∼ N(µt+1,j − 1

2
σ2

t+1,j , σ
2
t+1,j),

MY (t + 1, Θt+1) = exp

[

Θt+1

(

µt+1,j −
1

2
σ2

t+1,j

)

+
1

2
Θ2

t+1σ
2
t+1,j

]

. (3.11)

Then we have

MY (t + 1, Θt+1 + 1)

MY (t + 1, Θt+1)
= exp(µt+1,j + Θt+1σ

2
t+1,j). (3.12)

Hence, we have the result that

EΘ

(

St+1

Bt+1

∣

∣

∣

∣

Gt

)

=
St

Bt

, P − a.s. , (3.13)

iff

Θt+1 =
rt+1,j − µt+1,j

σ2
t+1,j

. (3.14)

The risk-neutral dynamic of Y under PΘ is presented in the following corollary.

Corollary 3.4: Suppose ν := {νt}t=1,2,...,T is a sequence of i.i.d. random variables such

that νt ∼ N(0, 1) under PΘ. Then, under PΘ,

Yt+1 = r(Xt+1,j) −
1

2
σ2(Xt+1,j) + σ(Xt+1,j)νt+1, t = 0, 1, . . . , T − 1 , (3.15)

and the dynamic of X remains unchanged under the change of measures.

Proof: By Lemma 3.2,

MY (t + 1, z|Θ) = exp

[

z

(

µt+1,j −
1

2
σ2

t+1,j

)

+
1

2
z(2Θt+1 + z)σ2

t+1,j

]

. (3.16)

By Proposition 3.3,

Θt+1 =
rt+1,j − µt+1,j

σ2
t+1,j

. (3.17)

This implies that

MY (t + 1, z|Θ) = exp

[

z

(

rt+1,j −
1

2
σ2

t+1,j

)

+
1

2
z2σ2

t+1,j

]

. (3.18)
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Hence,

Yt+1 = r(Xt+1,j) −
1

2
σ2(Xt+1,j) + σ(Xt+1,j)νt+1 , t = 0, 1, . . . , T − 1 . (3.19)

Since the processes X and ξ are independent, the dynamic of X remains the same under

the change of measures from P to PΘ.

We shall consider the pricing of three different types of exotic options, namely, Asian

options, lookback options and barrier options. First, we deal with an arithmetic average

floating-strike Asian call option with maturity T . The payoff of the Asian option at the

maturity T is given by:

PAA(T ) = max(ST − JT , 0) , (3.20)

where the arithmetic average JT of the underlying stock price is:

JT =
1

T

T
∑

t=0

St . (3.21)

Then, we consider the pricing of a down-and-out European call option with barrier level

L, strike price K and maturity at time T . The payoff of the barrier option at time T is

PB(T ) = max(ST − K, 0)I{min0≤t≤T St>L}, (3.22)

where IE is the indicator of an event E. Finally, we deal with a European-style lookback

floating-strike call option with maturity at time T . The payoff of the lookback option is:

PLB(T ) = max(ST − M0,T , 0) , (3.23)

where M0,T := min0≤t≤T St.

4 Simulation Experiments

In this section, we give some simulation experiments to investigate the effect of the

order of the HHMM on the pricing of the following options: Asian option, barrier option

and lookback option described in the last section. In particular, we shall investigate

the behaviors of the option prices implied by the second-order HHMM (Model I), the

first-order HMM (Model II) and the model without switching regimes (Model III). For

illustration, we assume that the hidden Markov chain has two states in each of the three

models. That is, the economy has two states with State “1” and State “2” representing

“Good” economic state and “Bad” economic state, respectively. We employ Monte Carlo

simulation to compute the option prices and generate 5,000 simulation runs for computing

each option price. All computations were done in a standard PC with C++ codes.

We specify some specimen values of the model parameters in the sequel. First, we
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specify these values for Model I. Let rij be the daily market interest rate when the economy

in the current period is in the jth state and the economy in the past period is in the ith

state, for i, j = 1, 2. We suppose that

r11 =
0.06

252
= 0.0238%, r12 =

0.02

252
= 0.00794%,

r21 =
0.04

252
= 0.0159%, r22 =

0.01

252
= 0.00397%.

Here, we assume that one year has 252 trading days. In other words, the corresponding

annual market interest rates are 6%, 2%, 4% and 1%, respectively. Let σij denote the

daily volatility when the economy in the current period is in the jth state and the economy

in the past period is in the ith state. We assume that

σ11 =
0.1√
252

= 0.63%, σ12 =
0.3√
252

= 1.89%,

σ21 =
0.2√
252

= 1.26%, σ22 =
0.4√
252

= 2.52%.

In other words, the corresponding annual volatilities are 10%, 30%, 20% and 40%, respec-

tively. Let

πijk := P (Xt = k|Xt−1 = i, Xt−2 = j), for i, j, k = 1, 2.

We suppose that

π111 = 0.7, π121 = 0.3, π211 = 0.6 and π221 = 0.2.

We assume that the two initial states of the second-order HHMM X0 = 1 and X1 = 2.

Then, we specify the values of the model parameters for the Model II. For each i = 1, 2,

let ri and σi denote the daily market interest rate and the daily volatility when the current

economy is in the ith state, respectively. We suppose that

r1 = r11 = 0.0238%, r2 = r12 = 0.00794%,

and

σ1 = σ11 = 0.63% σ2 = σ12 = 1.89%.

Let

πij := P (Xt = j|Xt−1 = i), for i, j = 1, 2.

We assume that

π11 = π111 = 0.7 and π21 = π121 = 0.3.

We further assume that the initial state X0 = 1. For Model III, we assume that the daily

market interest rate

r = r11 = 0.0238%
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and the daily volatility

σ = σ11 = 0.63%.

In all cases, we assume that the current price of the underlying stock S0 = 100 and that

the time to maturity ranges from 21 trading days (one month) to 126 trading days (six

months), with an increment of 21 trading days. Table 1 displays the prices of the Asian

options implied by Model I, Model II and Model III for various maturities.

Table 1: Prices of arithmetic average floating-strike Asian call options
Maturity (Days) Model I Model II Model III

21 0.355948 0.185336 0.00134111

42 1.62487 1.19555 0.248206

63 2.59119 2.05436 0.738202

84 3.27272 2.68161 1.19598

105 3.98376 3.21456 1.58142

126 4.49409 3.77677 1.94598

Assume the barrier level L = 80 and the strike price K = 100. Table 2 displays the prices

of the barrier options implied by the three models for various maturities.

Table 2: Prices of down-and-out European call options
Maturity (Days) Model I Model II Model III

21 3.26916 2.60273 1.36266

42 4.75085 3.87316 2.05369

63 5.97215 4.96323 2.69594

84 6.97627 5.82885 3.30289

105 7.88732 6.64117 3.89378

126 8.57693 7.34083 4.42853

Table 3 presents the prices of the lookback options implied by the three models for various

maturities.

Table 3.: Prices of lookback floating-strike call options
Maturity (Days) Model I Model II Model III

21 5.28862 4.22157 2.1354

42 7.85881 6.41523 3.27736

63 9.91941 8.16278 4.25719

84 11.6199 9.64562 5.12792

105 13.1429 10.9298 5.94646

126 14.4624 12.1277 6.67989

We can regard Model III (i.e. the no-regime-switching case) as a zero-order HHMM

and Model I as a first-order HHMM. Then, from Tables 1, 2 and 3, we can see that the

prices of the Asian options, the barrier options and the lookback options, respectively,

increase substantially as the order of the HHMM does. These prices are sensitive to the

order of the HHMM. This is true for the options with various maturities. In other words,

the long-range dependence in the states of economy has significant impact on the prices

of these path-dependent exotic options. The differences between the prices implied by
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the first-order HHMM and those implied by the zero-order HHMM are more substantial

than the difference between the prices obtained from the second-order HHMM and those

obtained from the first-order HHMM.

5 Conclusion

We investigated the pricing of exotic options under a discrete-time Markov-modulated

process driven by a HHMM, which can incorporate the long-range dependence of the

states of an economy. We supposed that the market interest rate, the stock appreciation

rate and the stock volatility switch over time according to the states of the economy. The

Esscher transform has been employed to select a pricing measure under the incomplete

market setting. We investigated the impact of the long-range dependence in the states of

the economy on the prices of the path-dependent exotic options, Asian options, lookback

options and barrier options via some simulation experiments. We found that the presence

of the long-range dependence in the states of the economy has significant impact on the

prices of the path-dependent exotic options with various maturities.
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