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1. Introduction

1.1. Let G be a noncompact connected real semi-simple Lie group with trivial
center and with no nontrivial compact connected normal subgroups, and g be its
Lie algebra. The group Aut(G) (=Aut(g)) of automorphisms of G is a Lie group
with finitely many connected components, and G is its identity component. We will
denote the identity component of Aut(G) in the Zariski-topology by Int(G). Let X
be the symmetric space of G (X is the space of maximal compact subgroups of G),
and Xu be the compact dual of X. There is a natural identification of the group
of isometries of X with Aut(G). We assume in this paper that X (and hence Xu)
is hermitian. Then every holomorphic automorphism of X is an isometry. The
group Hol(X) of holomorphic automorphisms of X is a subgroup of finite index of
the group Aut(G) of isometries, and it is known (see [Ta], the remark in §5) that
Hol(X) ∩ Int(G) = G.
1.2. We will say that the quotient X/Π of X by a torsion-free cocompact discrete
subgroup Π of G is a fake compact hermitian symmetric space if its Betti numbers
are same as that of Xu; X/Π is an irreducible arithmetic fake compact hermitian
symmetric space if, further, Π is irreducible (i.e., no subgroup of Π of finite index is
a direct product of two infinite normal subgroups) and it is an arithmetic subgroup
of G. Any such space can be endowed with the structure of a smooth complex
projective variety. Several such spaces have been constructed in our two earlier
papers [PY1] and [PY2]. In [PY1] we have given a classification of “fake projective
planes”, the first of which was constructed by David Mumford in [Mu] using p-
adic uniformization. In [PY2] we have constructed four arithmetic fake P4

C, four
arithmetic fake Grassmannians Gr2,5, and five irreducible arithmetic fake P2

C ×P2
C.

All these are Shimura varieties.
We note that if G contains an irreducible arithmetic subgroup, then the simple

factors of its complexification are isomorphic to each other, see [Ma], Corollary 4.5
in Ch. IX. Also, if the real rank of G is at least 2, then by Margulis’ arithmeticity
theorem ([Ma], Ch. IX]), any irreducible discrete cocompact subgroup of G (in fact,
any irreducible lattice) is arithmetic.

If Π is a torsion-free cocompact discrete subgroup of G, then there is a natural
embedding of H∗(Xu, C) in H∗(X/Π, C), see [B], 3.1 and 10.2, and hence X/Π is a
fake compact hermitian symmetric space if and only if the natural homomorphism
H∗(Xu, C) → H∗(X/Π, C) is an isomorphism.
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1.3. Let G, X and Xu be as above, and let Π be a torsion-free cocompact discrete
subgroup of G. Let Z = X/Π. If Z is a fake compact hermitian symmetric space,
then the Euler-Poincaré characteristic χ(Z) of Z = X/Π, and so the Euler-Poincaré
characteristic χ(Π) of Π equals χ(Xu). As X has been assumed to be hermitian, the
Euler-Poincaré characteristic of Xu is positive. On the other hand, it follows from
Hirzebruch proportionality principle, see [S], Proposition 23, that the Euler-Poincaré
characteristic of X/Π is positive if and only if the complex dimension of X is even.
Using the results of [BP], we can easily conclude that there are only finitely many
irreducible arithmetic fake compact hermitian symmetric spaces. It is of interest to
determine them all.
1.4. Hermitian symmetric spaces have been classified by Élie Cartan; see [H], Ch. IX.
We recall that the irreducible hermitian symmetric spaces are the symmetric spaces
of Lie groups SU(n + 1−m,m), SO(2, 2n− 1), Sp(2n), SO(2, 2n− 2), SO∗(2n), an
absolutely simple real Lie group of type E6 with Tits index 2E16′

6,2 , and an absolutely
simple real Lie group of type E7 with Tits index E28

7,3 respectively (for Tits indices
see Table II in [Ti1]). The complex dimensions of these spaces are (n + 1 −m)m,
2n− 1, n(n+1)/2, 2n− 2, n(n− 1)/2, 16 and 27 respectively. The Lie groups listed
above are of type An, Bn, Cn, Dn, Dn, E6 and E7 respectively. We will say that an
irreducible symmetric space is one of these types if it is the symmetric space of a
simple Lie group of that type, and say that a locally hermitian symmetric space is of
one of these types if its simply connected cover is a product of irreducible hermitian
symmetric spaces of that type.

The following is the main theorem of this paper.

Theorem. There does not exist an irreducible arithmetic fake compact hermitian
symmetric space of type Bn, Cn, E6 or E7.

In the following subsection we will explain the strategy of the proof, and fix
notation which will be used throughout the paper.

1.5. Let G, X, Xu be as above. X will be assumed to be a hermitian symmetric
space of one of the following types Bn, Cn, E6 and E7. Assume, if possible, that
G contains a cocompact irreducible arithmetic subgroup Π whose orbifold Euler-
Poincaré characteristic χ(Π) equals χ(Xu). Then there exist a totally real number
field k, a connected adjoint absolutely simple algebraic k-group G of same type
as X, G of k-rank 0 (by Godement criterion since Π is cocompact), real places
v1, · · · , vr of k such that G(kv) is compact for every real place v different from
v1, · · · , vr, G is isomorphic to

∏r
j=1 G(kvj )o (and will be identified with it), and Π is

commensurable with an arithmetic subgroup of G(k). Let π : G → G be the simply
connected covering of G defined over k. The kernel of the isogeny π is the center C
of the simply connected k-group G. If G is of type E6, then it is an “outer k-form”
of a split group (i.e., it is of type 2E6) since X is hermitian. In this case let # be
the quadratic extension of k over which G is an “inner k-form”. Then # is totally
complex.
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Description of C: For a positive integer s, let µs be the kernel of the endomor-
phism x %→ xs of GL1. Then if G is of type 2E6, its center C is k-isomorphic to
the kernel of the norm map N!/k from the algebraic group R!/k(µ3), obtained from
µ3 by Weil’s restriction of scalars, to µ3. If G is of type Bn, Cn or E7, then C is
isomorphic to µ2.

It is known, and easy to see using the above description of C, that for any real
place v of k, the order of the kernel of the induced homomorphism G(kv) → G(kv)
is 2 if G is not of type 2E6, and of order 3 if it is of type 2E6. Moreover, as G(kv) is
connected, π(G(kv)) = G(kv)o. Let G =

∏r
j=1 G(kvj ), and let Π̃ be the inverse image

of Π in G. Then the kernel of the homomorphism π : G → G is of order sr, and hence
the orbifold Euler-Poincaré characteristic χ(Π̃) of Π̃ equals χ(Π)/sr = χ(Xu)/sr,
where, here and in the sequel, s = 2 if G is not of type E6, and s = 3 if G is of
type E6. Now let Γ be a maximal discrete subgroup of G containing Π̃. Then the
orbifold Euler-Poincaré characteristic χ(Γ) of Γ is a submultiple of χ(Π̃) = χ(Xu)/sr.
Using the volume formula of [P], some number theoretic estimates, the Bruhat-Tits
theory, and the Hasse principle for semi-simple groups (Proposition 7.1 of [PR]), we
will prove that G does not contain such a subgroup.

2. Preliminaries

2.1. We will use the notations introduced in 1.5. Thus k will be a totally real number
field, G an absolutely simple simply connected algebraic k-group (of one of the
following four types: Bn, Cn, 2E6, and E7), C its center, G =

∏r
j=1 G(kvj ). We will

think of G(k) as a subgroup of G in terms of its diagonal embedding. Γ is a maximal
arithmetic subgroup of G (arithmetic with respect to the k-structure on G) whose
orbifold Euler-Poincaré characteristic is a submultiple of χ(Xu)/sr. Then Λ :=
Γ ∩G(k) is a “principal” arithmetic subgroup, i.e., for every nonarchimedean place
v of k, the closure Pv of Λ in G(kv) is a parahoric subgroup, Λ = G(k) ∩

∏
v∈Vf

Pv,
and Γ is the normalizer of Λ in G, see Proposition 1.4(iv) of [BP]. Let the “type”
Θv of Pv be as in [BP], 2.2, and ΞΘv be as in 2.8 there. If either Pv is hyperspecial,
or G is of type 2E6 and it does not split over kv, then ΞΘv is trivial. The order of
ΞΘv is always a divisor of s.

In terms of the normalized Haar-measure µ on G =
∏r

j=1 G(kvj ) used in [P] and
[BP], and to be used in this paper, χ(Γ) = χ(Xu)µ(G/Γ) (see [BP], 4.2). Thus the
condition that χ(Γ) is a submultiple of χ(Xu)/sr is equivalent to the condition that
µ(G/Γ) is a submultiple of 1/sr. We will prove that there does not exist such a Γ.

A comprehensive survey of the basic notions and the main results of the Bruhat-
Tits theory of reductive groups over nonarchimedean local fields is given in [Ti2].

2.2. All unexplained notations are as in [BP] and [P]. Thus for a number field K,
DK will denote the absolute value of its discriminant, hK its class number, i.e., the
order of its class group Cl(K). We will denote by hK,s the order of the subgroup of
Cl(K) consisting of the elements of order dividing s, where, as in 1.5, s = 2 if G is
not of type E6, and s = 3 if G is of type E6. Then hK,s ! hK . We will denote by UK
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the multiplicative-group of units of K, and by Ks the subgroup of K× consisting of
the elements x such that for every normalized valuation v of K, v(x) ∈ sZ.

Vf (resp. V∞) will denote the set of nonarchimedean (resp. archimedean) places
of k. As k admits at least r distinct real places, see 1.5, d := [k : Q] " r. For v ∈ Vf ,
qv will denote the cardinality of the residue field fv of kv.
2.3. For a parahoric subgroup Pv of G(kv), we define e(Pv) and e′(Pv) by the
following formulae (cf. Theorem 3.7 of [P]):

(1) e(Pv) =
q(dimMv+dimMv)/2
v

#Mv(fv)
.

(2) e′(Pv) = e(Pv) ·
#Mv(fv)

qdimMv
v

= q(dimMv−dimMv)/2
v · #Mv(fv)

#Mv(fv)
.

2.4. Let m1, . . . ,mn (m1 < · · · < mn), where n is the absolute rank of G, be the
exponents of the Weyl group of G. For type Bn and Cn, mj = 2j − 1; for type E6,
the exponents are 1, 4, 5, 7, 8 and 11; and for type E7, the exponents are 1, 5, 7, 9,
11, 13 and 17. Then

• if either G is not of type 2E6, or v splits in #,

e′(Pv) = e(Pv)
n∏

j=1

(1− 1
q
mj+1
v

);

• if G is of type 2E6 and v does not split in #,

e′(Pv) = e(Pv)(1−
1
q2
v
)(1 +

1
q5
v
)(1− 1

q6
v
)(1− 1

q8
v
)(1 +

1
q9
v
)(1− 1

q12
v

),

or
e′(Pv) = e(Pv)(1−

1
q2
v
)(1− 1

q6
v
)(1− 1

q8
v
)(1− 1

q12
v

)

according as v does not or does ramify in #.
2.5. It is obvious that e′(Pv) < e(Pv). It is not difficult to check using (2) that for
all v ∈ Vf , and an arbitrary parahoric subgroup Pv of G(kv), e′(Pv) is an integer.
2.6. Now we will use the volume formula of [P] to write down the precise value of
µ(G/Λ). As the Tamagawa number τk(G) of G equals 1, Theorem 3.7 of [P] (recalled
in 3.7 of [BP]), for S = V∞, provides us the following if G is not of type 2E6,

(3) µ(G/Λ) = D
1
2dimG
k

( n∏

j=1

mj !
(2π)mj+1

)d
E,

and if G is of type 2E6,

(4) µ(G/Λ) = (DkD!)13
(4!5!7!8!11!

(2π)42
)d

E,

where n is the absolute rank of G, and E =
∏

v∈Vf
e(Pv), with e(Pv) as in 2.1.
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2.7. Let ζk be the Dedekind zeta-function of k, and L!|k be the Hecke L-function
associated to the quadratic Dirichlet character of #/k. Then

ζk(a) =
∏

v∈Vf

(1− 1
qa
v
)−1;

L!|k(a) =
∏′

(1− 1
qa
v
)−1

∏′′
(1 +

1
qa
v
)−1,

where
∏′ is the product over the nonarchimedean places v of k which split in #, and∏′′ is the product over all the other nonarchimedean places v which do not ramify

in #. Hence the Euler product E appearing in (3) can be rewritten as

(5) E =
∏

v∈Vf

e′(Pv)
n∏

j=1

ζk(mj + 1),

and the one appearing in (4) can be rewritten as

(6) E =
∏

v∈Vf

e′(Pv) · ζk(2)L!|k(5)ζk(6)ζk(8)L!|k(9)ζk(12).

2.8. If G is not of type 2E6, let T be the set of all v ∈ Vf such that Pv is not a
hyperspecial parahoric subgroup of G(kv), and T′ be the empty set. If G is of type
2E6, let T be the set of all v ∈ Vf which splits in # and Pv is not a hyperspecial
parahoric subgroup, and let T′ be the set of v (∈ Vf ) which does not split in #, and
either Pv is not a hyperspecial parahoric subgroup of G(kv) but v is unramified over
#, or v is ramified in # and Pv is not a special parahoric subgroup. Then for all
nonarchimedean v /∈ T, ΞΘv is trivial; if v /∈ T ∪ T′, e′(Pv) = 1, and e′(Pv) > s if
v ∈ T. Therefore, 1 ! e′(Pv) < e(Pv), and E =

∏
v∈Vf

e(Pv) > s#T. Hence, if G is
not of type 2E6,

(7) µ(G/Λ) > D
1
2dimG
k

( n∏

j=1

mj !
(2π)mj+1

)d
2#T,

and if G is of type 2E6,

(8) µ(G/Λ) > (DkD!)13
(4!5!7!8!11!

(2π)42
)d

3#T.

2.9. If G is not of type 2E6, let

(9) R = D
1
2dimG
k

( n∏

j=1

mj !
(2π)mj+1

)d
n∏

j=1

ζk(mj + 1),

and if G is of type 2E6, let

(10) R = (DkD!)13
(4!5!7!8!11!

(2π)42
)d

ζk(2)L!|k(5)ζk(6)ζk(8)L!|k(9)ζk(12).



6 NONEXISTENCE OF ARITHMETIC FAKE COMPACT HERMITIAN SYMMETRIC SPACES

Then

(11) µ(G/Λ) = R
∏

v∈T∪T′

e′(Pv).

As e′(Pv) is an integer for all v (see 2.5), we conclude that µ(G/Λ) is an integral
multiple of R.

Using the functional equations

ζk(2a) = D
1
2−2a
k

((−1)a22a−1π2a

(2a− 1)!
)d

ζk(1− 2a),

and

L!|k(2a + 1) =
(Dk

D!

)2a+ 1
2
((−1)a22aπ2a+1

(2a)!
)d

L!|k(−2a),

for every positive integer a, and the fact that dimG = n + 2
∑

mj , we find that if
G is not of type 2E6,

(12) R = 2−dn|
n∏

j=1

ζk(−mj)|,

and if G is of type 2E6,

(13) R = 2−6dζk(−1)L!|k(−4)ζk(−5)ζk(−7)L!|k(−8)ζk(−11).

2.10. As χ(Λ) = χ(Xu)µ(G/Λ) ([BP], 4.2), we have the following

(14) χ(Γ) =
χ(Λ)
[Γ : Λ]

=
χ(Xu)µ(G/Λ)

[Γ : Λ]
.

Proposition 2.9 of [BP] applied to G′ = G and Γ′ = Γ implies that [Γ : Λ] is a power
of the prime number s. Now since µ(G/Λ) is an integral multiple of R, we conclude
from (10) that if χ(Γ) is a submultiple of χ(Xu), then the numerator of the rational
number R is a power of s. We state this as the following proposition.

Proposition 1. If the orbifold Euler-Poincaré characteristic of Γ is a submultiple
of χ(Xu), then the numerator of the rational number R is a power of s.

2.11. In this paragraph we assume that G is not of type 2E6. Then C ∼= µ2, and
the Galois cohomology H1(k, C) ∼= k×/k×2. The order of the first term of the short
exact sequence of Proposition 2.9 of [BP], for G′ = G and S = V∞, is 2r−1. From
the proof of Proposition 0.12 of [BP], we easily conclude that #k2/k×2 ! hk,22d.
Now we can adapt the argument used to prove Proposition 5.1, and the argument
in 5.5, of [BP], for S = V∞ and G′ = G, to derive the following bound:

(15) [Γ : Λ] ! 2d+r−1+#Thk,2.

2.12. We shall assume now that G is of type 2E6. As the norm map N!/k : µ3(#) →
µ3(k) is onto, the Galois cohomology group H1(k, C) is isomorphic to the kernel of
the homomorphism #×/#×3 → k×/k×3 induced by the norm map. We shall denote
this kernel by (#×/#×3)•.
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By Dirichlet’s unit theorem, Uk
∼= {±1} × Zd−1, and U!

∼= µ(#) × Zd−1, where
µ(#) is the finite cyclic group of roots of unity in #. Hence, Uk/U3

k
∼= (Z/3Z)d−1,

and U!/U3
!
∼= µ(#)3 × (Z/3Z)d−1, where µ(#)3 is the group of cube-roots of unity

in #. Now we observe that N!/k(U!) ⊃ N!/k(Uk) = U2
k , which implies that the

homomorphism U!/U3
! → Uk/U3

k , induced by the norm map, is onto. Therefore, the
order of the kernel (U!/U3

! )• of this homomorphism equals #µ(#)3.
The short exact sequence (4) in the proof of Proposition 0.12 of [BP] gives us the

following exact sequence:

1 → (U!/U3
! )• → (#3/#×

3)• → (P ∩ I3)/P3,

where (#3/#×3)• = (#3/#×3) ∩ (#×/#×3)•, P is the group of all fractional principal
ideals of #, and I the group of all fractional ideals (we use multiplicative notation for
the group operation in both I and P). Since the order of the last group of the above
exact sequence is h!,3, see (5) in the proof of Proposition 0.12 of [BP], we conclude
that

#(#3/#×
3)• ! #µ(#)3 · h!,3.

Now we note that the order of the first term of the short exact sequence of
Proposition 2.9 of [BP], for G′ = G and S = V∞, is 3r/#µ(#)3.

Using the above observations, together with Proposition 2.9 and Lemma 5.4 of
[BP], and a close look at the arguments in 5.3 and 5.5 of [BP] for S = V∞ and G as
above, we can derive the following upper bound:

(16) [Γ : Λ] ! 3r+#Th!,3.

2.13. Since µ(G/Γ) = µ(G/Λ)/[Γ : Λ] is a submultiple of 1/sr (see 2.1), we conclude
that µ(G/Λ) ! [Γ : Λ]/sr. From the bound for [Γ : Λ] derived in 2.11 and 2.12 we
obtain that if G is not of type 2E6, then

(17) µ(G/Λ) ! 2d−1+#Thk,2,

and if G is of type 2E6,

(18) µ(G/Λ) ! 3#Th!,3.

Now combining these with (7) and (8) respectively, we obtain

(19) D
1
2dimG
k < 2d−1hk,2

( n∏

j=1

(2π)mj+1

mj !

)d
,

if G is not of type 2E6, and

(20) (DkD!)13 < h!,3

( (2π)42

4!5!7!8!11!

)d

if G is of type 2E6.
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3. Discriminant bounds

We will recall discriminant bounds required in later discussions. We define Mr(d) =
minK D1/d

K , where the minimum is taken over all totally real number fields K of de-
gree d. Similarly, we define Mc(d) = minK D1/d

K , by taking the minimum over all
totally complex number fields K of degree d.

The precise values of Mr(d),Mc(d) for low values of d are given in the following
table (cf. [N]).

d 2 3 4 5 6 7 8
Mr(d)d 5 49 725 14641 300125 20134393 282300416
Mc(d)d 3 117 9747 1257728

The following proposition can be proved in the same way as Proposition 2 in
[PY2] has been proved.

Proposition 2. Let k and # be a totally real number field and a totally imaginary
number field of degree d and 2d respectively.

∀d " 2 3 4 5 6 7 8
D1/d

k > 2.23 3.65 5.18 6.8 8.18 11.05 11.38
D1/2d

! > 1.73 3.28 4.62 5.78

4. G of type Bn or Cn

4.1. In this section we assume that G is either of type Bn or Cn. Then its dimension
is n(2n + 1). The j-th exponent mj = 2j − 1, and the complex dimension of the
symmetric space X of G =

∏r
j=1 G(kvj ) is r(2n − 1) if G is of type Bn, and is

rn(n + 1)/2 if G is of type Cn. From (19) we obtain

(21) D1/d
k < f1(n, d, hk,2) :=

[
{2

n∏

j=1

(2π)2j

(2j − 1)!
}d ·

hk,2

2
]2/dn(2n+1)

.

According to the Brauer-Siegel Theorem, for a totally real number field k, and all
real δ > 0,

hkRk ! 21−dδ(1 + δ)Γ((1 + δ)/2)d(π−dDk)(1+δ)/2ζk(1 + δ),

where Rk is the regulator of k. Now from (21) we get the following bound:

(22) D1/d
k < f2(n, d, Rk, δ)

:=
[
{Γ((1 + δ)/2)ζ(1 + δ)

π(1+δ)/2

n∏

j=1

(2π)2j

(2j − 1)!
}·{δ(1 + δ)

Rk
}1/d

]2/(2n2+n−1−δ)
,

since ζk(1 + δ) ! ζ(1 + δ)d, where ζ = ζQ. Using the lower bound Rk " 0.04 e0.46d,
for a totally real number field k, due to R. Zimmert [Z], we get

(23) D1/d
k < f3(n, d, δ)
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:=
[
{Γ((1 + δ)/2)ζ(1 + δ)

π(1+δ)/2e0.46

n∏

j=1

(2π)2j

(2j − 1)!
} · {25δ(1 + δ)}1/d

]2/(2n2+n−1−δ)
.

4.2. It is obvious that for fixed n and δ ∈ [0.04, 9]], f3(n, d, δ) decreases as d
increases. Now we observe that for n " 9, (2n−1)! > (2π)2n. From this it is easy to
see that if for a given d, δ, and n " 8, f3(n, d, δ) " 1, then f3(n+1, d, δ) < f3(n, d, δ),
and if f3(n, d, δ) < 1, then f3(n + 1, d, δ) < 1. In particular, if for given d, and
δ ∈ [0.04, 9], f3(8, d, δ) < c, with c " 1, then f3(n, d′, δ) < c for all n " 8 and d′ " d.

We obtain by a direct computation the following upper bound for the value of
f3(n, 2, 3) for 6 ! n ! 14.

n 14 13 12 11 10 9 8 7 6
f3(n, 2, 3) < 1 1.1 1.2 1.3 1.4 1.6 1.8 2.1 2.4

From the bounds provided by the above table and the properties of f3 we conclude
that f3(n, d, 3) < 2.1 for all n " 7, and d " 2, and we conclude from Proposition 2
that unless k = Q (i.e., d = 1), n ! 6.

We assert now that n ! 13. To prove this, we can assume, in view of the result
established in the preceding paragraph, that k = Q. By a direct computation we
see that f1(14, 1, 1) < 1. Hence, f1(n, 1, 1) < 1 for all n " 14. As DQ = 1, from
bound (21) we conclude that n ! 13.

We will now assume that d " 2 and consider each of the possible cases 2 ! n ! 6
separately.

• n = 6: As D1/d
k < f3(6, 3, 2.1) < 2.5, from Proposition 2 we conclude that if n = 6,

d < 3. If d = 2, D1/d
k < f3(6, 2, 1.54) < 2.36. Therefore, Dk < 6, which implies that

k = Q(
√

5) is the only possibility.

• n = 5: As D1/d
k < f3(5, 3, 1.8) < 2.9, from Proposition 2 we conclude that if n = 5,

d < 3. If d = 2, D1/d
k < f3(5, 2, 1.3) < 2.9. Therefore, Dk < 9. So there are two

possible real quadratic fields k, their discriminants are 5 and 8. Both the fields have
class number 1, and we use the bound (21) to obtain D1/d

k < f1(5, 2, 1) < 2.73. So
only Dk = 5 can occur.

• n = 4: As D1/d
k < f3(4, 3, 1.3) < 3.61, from Proposition 2 we conclude that if n = 4,

d < 3. Let us assume that d = 2. Then since D1/d
k < f3(4, 2, 1.1) < 3.76, Dk < 15

and so the possible values of Dk are 5, 8, 12 or 13. The quadratic fields with these
Dk have class number 1. Now from bound (21) we obtain D1/d

k < f1(4, 2, 1) < 3.4.
Hence, Dk < 12, and only Dk = 5, 8 can occur.

• n = 3: As D1/d
k < f3(3, 4, 1.3) < 5.1, from Proposition 2 we conclude that if n = 3,

d < 4. Now since D1/d
k < f3(3, 3, 1.13) < 5.21, if d = 3 = n, Dk < 142 from which

we infer that Dk = 49 or 81. Since D1/d
k < f3(3, 2, 0.8) < 5.6, if d = 2 (and n = 3),

Dk < 32, and in this case the possible values of Dk are 5, 8, 12, 13, 17, 21, 24, 28
or 29. The quadratic fields with these discriminants have class number 1, and we
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use bound (21) to obtain D1/d
k < f1(3, 2, 1) < 4.52. Hence, Dk < 21 and only

Dk = 5, 8, 12, 13, 17 can occur.

• n = 2: As D1/d
k < f3(2, 7, 1.1) < 9, Proposition 2 implies that d ! 6.

n = 2 and d = 6: As D1/d
k < f3(2, 6, 1) < 9, Dk < 531441. One can check from the

table in [1] that hk = 1 for all the five number fields satisfying this bound. We now
use bound (21) to obtain D1/d

k < f1(2, 6, 1) < 7.2, which contradicts Proposition 2.

n = 2 and d = 5: As D1/d
k < f3(2, 5, 1) < 9.3, Dk < 69569. Again, one can check

from the table in [1] that there are five such number fields and the class number of
each of them is 1. Now we use bound (21) to obtain D1/d

k < f1(2, 5, 1) < 7.1. Hence,
Dk < 18043. From [1] we find that Dk = 14641 is the only possibility.

n = 2 and d = 4: As D1/d
k < f3(2, 4, 0.92) < 9.74, Dk < 9000. According to [1],

there are 45 totally real quartic number fields with discriminant < 9000, all of them
have class number 1. We use bound (21) to obtain D1/d

k < f1(2, 4, 1) < 7.037. Hence,
Dk < 2453. We find from [1] that there are eight totally real quartic number fields
k with Dk < 2453. Their discriminants are

725, 1125, 1600, 1957, 2000, 2048, 2225, 2304.

n = 2 and d = 3: As D1/d
k < f3(2, 3, 0.78) < 10.5, Dk < 1158. From table

B.4 of [C] we find that there are altogether 31 totally real cubics satisfying this
discriminant bound. Each of these fields have class number 1. We use bound (21)
to obtain D1/d

k < f1(2, 3, 1) < 6.96, which implies that Dk < 338. There are eight
real cubic number fields satisfying this bound. The values of Dk are

49, 81, 148, 169, 229, 257, 316, 321.

n = 2 and d = 2: As D1/d
k < f3(2, 2, 0.52) < 12, Dk < 144. From table B.2 of

totally real quadratic number fields given in [C], we check that the class number
of all these fields are bounded from above by 2. Hence, D1/d

k < f1(2, 2, 2) < 7.285.
So Dk < 53. Among the real quadratic fields with Dk < 53, there is only one field
whose class number is 2, it is the field with Dk = 40. All the rest have class number
1, and from bound (21) we conclude that D1/d

k < f1(2, 2, 1) < 6.8, i.e., Dk < 47.
Therefore, the following is the list of the possible values of Dk:

5, 8, 12, 13, 17, 21, 24, 28, 29, 33, 37, 40, 41, 44.

To summarize, for G of type Bn or Cn, the possible n, d and Dk are given in the
following table.
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n d Dk

2, . . . , 13 1 1
6 2 5
5 2 5
4 2 5, 8
3 3 49, 81
3 2 5, 8, 12, 13, 17
2 5 14641
2 4 725, 1125, 1600, 1957, 2000, 2048, 2225, 2304
2 3 49, 81, 148, 169, 229, 257, 316, 321
2 2 5, 8, 12, 13, 17, 21, 24, 28, 29, 33, 37, 40, 41, 44.

4.3. We will show that none of the possibilities listed in the above table actually
give rise to an arithmetic fake compact hermitian symmetric space of type Bn or
Cn. For this we recall first of all that G, and so also G, are anisotropic over k (1.5).
Now we observe that if G is a group of type Bn (n " 2), then it is k-isotropic if and
only if it is isotropic at all real places of k (this is an immediate consequence of the
classical Hasse principle for quadratic forms which says that a quadratic form over
k is isotropic if and only if it is isotropic at every place of k, and the well-known
fact that a quadratic form of dimension > 4 is isotropic at every nonarchimedean
place). Also, a k-group of type Cn (n " 2) is isotropic if it is isotropic at all the real
places of k (this is known, and follows, for example, from Proposition 7.1 of [PR]).
These results imply that if d = 1, i.e., if k = Q, then G is isotropic, and so k = Q is
not possible.

Now let us take up the case where d = 2, i.e., k is a real quadratic field, and
n = 2, 5 or 6. Then for any real place v of k where G is isotropic, the complex
dimension of the symmetric space of G(kv) is odd (recall from 1.4 that the complex
dimension of the symmetric space of G(kv) is 2n − 1 if G is of type Bn, and it is
n(n + 1)/2 if G is of type Cn). But as the complex dimension of the hermitian
symmetric space X is even (since the orbifold Euler-Poincaré characteristic of Γ is
positive, see 1.3), we conclude that G must be isotropic at both the real places of k
(note that G is anisotropic at a place v of k if and only if G(kv) is compact). From
this observation we conclude that G is k-isotropic also in case d = 2, and n = 2, 5
or 6. Therefore these possibilities do not occur.

Now we will rule out the case where n = 2, d = 5, and Dk = 14641. In this case,
k = Q[x]/(x5 − x4 − 4x3 + 3x2 + 3x − 1). The class number of k is 1. It is easy to
see that the cardinality qv of the residue field of k at any nonarchimedean place v is
at least 4.

Since µ(G/Γ) is a submultiple of 1/2r (2.1), and [Γ : Λ] = 2m, where m !
4 + r + #T, see (15), using (3) we obtain
(24)

1 " 2rµ(G/Γ) = 2r µ(G/Λ)
[Γ : Λ]

>
2r

[Γ : Λ]

( 6Dk

(2π)6
)5

E > 2−4−#T
(87846

(2π)6
)5 ∏

v∈T

e(Pv),
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where E =
∏

v∈Vf
e(Pv), with e(Pv) as in 2.1.

The group G is a simply connected k-anisotropic group of type C2. Such a group
is described in terms of a quaternion division algebra D, with center k (see [Ti1]).
Since the symmetric space X is a complex analytic space of even complex dimension,
and d = 5, we conclude that G is anisotropic at an odd number of real places of k.
Hence the quaternion division algebra D ramifies at an odd number of real places
of k. Since a quaternion division algebra ramifies at an even number of places, we
infer that there is at least one nonarchimedean place where D ramifies. At such a
place, G is of rank 1, so such a place lies in T. This shows that T is nonempty. For
v ∈ T, e(Pv) equals either q6

v/(q4
v − 1), or q6

v/(qv + 1)(q2
v − 1), or q6

v/(q2
v − 1). All

these numbers are larger than q2
v . Now as qv " 4, and T is nonempty, from (24) we

conclude that

1 " 2rµ(G/Γ) > 2−4−#T
(87846

(2π)6
)5

16#T >
1
2

(87846
(2π)6

)5
> 1,

which is absurd.

4.4. To rule out the remaining cases listed in the table in 4.2, we compute the value
of R (R as in (12)) in each case. These values are given below. It turns out that in
none of the remaining cases the numerator of R is a power of 2 and Proposition 1
then eliminates these cases.

n d k Dk ζk(−1) ζk(−3) ζk(−5) ζ(−7) R
4 2 x2 − 5 5 1/30 1/60 67/630 361/120 24187/34836480000
4 2 x2 − 2 8 1/12 11/120 361/252 24611/240 97730281/22295347200.

n d k Dk ζk(−1) ζk(−3) ζk(−5) R
3 3 x3 − x2 − 2x + 1 49 −1/21 79/210 −7393/63 584047/142248960
3 3 x3 − 3x− 1 81 −1/9 199/90 −50353/27 10020247/11197440
3 2 x2 − 17 17 1/3 41/30 5791/63 237431/362880
3 2 x2 − 13 13 1/6 29/60 33463/1638 970427/37739520
3 2 x2 − 3 12 1/6 23/60 1681/126 38663/2903040
3 2 x2 − 2 8 1/12 11/120 361/252 3971/23224320
3 2 x2 − 5 5 1/30 1/60 67/630 67/72576000
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n d k Dk ζk(−1) ζk(−3) R
2 4 x4 − 4x2 + 1 2304 1 22011/10 22011/2560
2 4 x4 − x3 − 5x2 + 2x + 4 2304 4/5 9202/5 4601/800
2 4 x4 − 4x2 + 2 2048 5/6 87439/60 87439/18432
2 4 x4 − 5x2 + 5 2000 2/3 3793/3 3793/1152
2 4 x4 − 4x2 − x + 1 1957 2/3 3541/3 3541/1152
2 4 x4 − 6x2 + 4 1600 7/15 17347/30 121429/115200
2 4 x4 − x3 − 4x2 + 4x + 1 1125 4/15 2522/15 1261/7200
2 4 x4 − x3 − 3x2 + x + 1 725 2/15 541/15 541/28800
2 3 x3 − x2 − 4x + 1 321 −1 555/2 555/128
2 3 x3 − x2 − 4x + 2 316 −4/3 874/3 437/72
2 3 x3 − x2 − 4x + 3 257 −2/3 1891/15 1891/1440
2 3 x3 − 4x− 1 229 −2/3 1333/15 1333/1440
2 3 x3 − x2 − 4x− 1 169 −1/3 11227/390 11227/74880
2 3 x3 − x2 − 3x + 1 148 −1/3 577/30 577/5760
2 3 x3 − 3x− 1 81 −1/9 199/90 199/51840
2 3 x3 − x2 − 2x + 1 49 1/21 79/210 79/282240.

5. G of type 2E6

5.1. In this section G is of type 2E6. Its dimension is 78 and the complex dimension
of the symmetric space of G =

∏r
j=1 G(kvj ) is 16r. Let

A =
(2π)42

4!5!7!8!11!
.

The Brauer-Siegel Theorem for the totally complex number field # asserts that for
all real δ > 0,

(25) h!R! ! w!δ(1 + δ)Γ(1 + δ)d((2π)−2dD!)(1+δ)/2ζ!(1 + δ),

where R! is the regulator of # and w! is the number of roots of unity contained in #.
Using this, from bound (20) we obtain

(DkD!)13 < h!A
d ! δ(1 + δ)AdΓ(1 + δ)dD(1+δ)/2

! ζ!(1 + δ)
(R!/w!)(2π)d(1+δ)

.

Hence,

D13
k D

13− 1+δ
2

! <
δ(1 + δ)AdΓ(1 + δ)dζ!(1 + δ)

(R!/w!)(2π)d(1+δ)
.

As D2
k ! D!, and ζ!(1 + δ) ! ζ(1 + δ)2d, we conclude that

D38−δ
k <

δ(1 + δ)AdΓ(1 + δ)dζ(1 + δ)2d

(R!/w!)(2π)d(1+δ)
.
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Therefore,

D1/d
k <

[
{AΓ(1 + δ)ζ(1 + δ)2

(2π)1+δ
} · {δ(1 + δ)

R!/w!
}1/d

]1/(38−δ)
.

Using the lower bound R! " 0.02w! e0.1d due to R. Zimmert [Z], we obtain from this
the following

(26) D1/d
k < f(d, δ) :=

[
{AΓ(1 + δ)ζ(1 + δ)2

(2π)1+δe0.1
} · {50δ(1 + δ)}1/d

]1/(38−δ)
.

From bound (20) we also obtain,

(27) D!/D2
k <

[
Ad h!

D39
k

]1/13
.

Furthermore, using (25) and Zimmert’s bound R! " 0.02w!e0.1d, we get from this
that

(28) D!/D2
k < p(d, Dk, δ) :=

[
{AΓ(1 + δ)ζ(1 + δ)2

(2π)1+δe0.1
} · {50δ(1 + δ)

D38−δ
k

}1/d
]2d/(25−δ)

.

5.2. For a fixed δ, f(d, δ) clearly decreases as d increases. By a direct computation
we find that f(3, 2) < 2.3, and hence for all d " 3,

D1/d
k < f(d, 2) ! f(3, 2) < 2.3.

But according to Proposition 2, for totally real number fields of degree d " 3,
D1/d

k > 3.65, so we conclude that d ! 2.

Assume now that d = 2. Then D1/2
k ! f(2, 1.94) < 2.4. Therefore Dk < 6 and

hence Dk = 5. It follows from bound (28) with δ = 1.9 that D!/D2
k < p(2, 5, 1.9) <

1.4. Hence D!/D2
k = 1 and D! = 25, which contradicts the bound given by Proposi-

tion 2. Hence, d = 1 and k = Q.

It is known, and follows, for example, from Proposition 7.1 of [PR], that a Q-
group G of type 2E6, which at the unique real place of Q is the outer form of rank 2
(this is the form 2E16′

6,2 which gives rise to a hermitian symmetric space), is isotropic
over Q. This contradicts the fact that G is anisotropic over Q (1.5), and hence
we conclude that groups of type 2E6 do not give rise to arithmetic fake compact
hermitian symmetric spaces.

6. G of type E7

6.1. In this section G is assumed to be of type E7. Its dimension is 133, the
exponents are 1, 5, 7, 9, 11, 13 and 17. The dimension of the symmetric space X of
G =

∏r
j=1 G(kvj ) is 27r.
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Let

B =
7∏

j=1

(2π)mj+1

mj !
.

From (19) we obtain the following:

D1/d
k <

[
2B(hk,2/2)1/d

]2/133
.

Using the Brauer-Siegel Theorem for totally real number fields (see 4.1), and the
obvious bound ζk(1 + δ) ! ζ(1 + δ)d, we obtain

(29) D1/d
k <

[
{BΓ((1 + δ)/2)ζ(1 + δ)

π(1+δ)/2
} · {δ(1 + δ)

Rk
}1/d

]2/(132−δ)
.

Now using the lower bound Rk " 0.04 e0.46d due to R. Zimmert [Z] again, we get

(30) D1/d
k < φ(d, δ) :=

[
{BΓ((1 + δ)/2)ζ(1 + δ)

π(1+δ)/2e0.46
} · {25δ(1 + δ)}1/d

]2/(132−δ)
.

6.2. For a fixed δ " 0.04, φ(d, δ) clearly decreases as d increases. By a direct
computation we see that φ(2, 4) < 2, and hence for all totally real number field k of
degree d " 2,

D1/d
k < φ(d, 4) ! φ(2, 4) < 2.

From this bound and Proposition 2 we conclude that d can only be 1, i.e., k = Q.
But then r = 1 and the complex dimension of the associated symmetric space X
is 27. Then the Euler-Poincaré characteristic of any quotient of X by a cocompact
torsion-free discrete subgroup of G is negative (1.3), and hence it cannot be a fake
compact hermitian symmetric space. Another way to eliminate this case is to observe
that an absolutely simple Q-group of type E7 is isotropic if it is isotropic over R
(this result follows, for example, from Proposition 7.1 of [PR]).
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