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Abstract

In this paper we consider an inverse problem for a damped vibration system from the
noisy measured eigendata, where the mass, damping, and stiffness matrices are all symmet-
ric positive definite matrices with the mass matrix being diagonal and the damping and
stiffness matrices tridiagonal. To take into consideration the noise in the data, the prob-
lem is formulated as a convex optimization problem involving quadratic constraints on the
unknown mass, damping, and stiffness parameters. Then we propose a smoothing Newton-
type algorithm for the optimization problem, which improves a pre-existing estimate of a
solution to the inverse problem. We show that the proposed method converges both globally
and quadratically. Numerical examples are also given to demonstrate the efficiency of our
method.
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1 Introduction

There are many structural engineering problems governed by the following system of second-
order differential equation:

Mü(t) + Cu̇(t) +Ku(t) = 0. (1)

Here the n-by-n matrices M , C, and K are known as the mass, damping and stiffness matrices,
respectively, and u(t) is an n-vector. Such a system is called a finite element model in many
engineering applications, see for instance [22, 42, 45]. By using the method of separation of
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variables u(t) = x eλt, where x is a constant vector, it can be shown that the general solution to
(1) can be given in terms of the solution of the following Quadratic Eigenvalue Problem (QEP):

Q(λ)x := (λ2M + λC +K)x = 0. (2)

The scalar λ and the corresponding nonzero vector x are called the eigenvalue and the eigenvector
of the quadratic pencil Q(λ), respectively. QEPs play an important role in many applications
such as the vibrating analysis of structural mechanical and acoustic system, the electrical circuit
simulation, fluid mechanics, and the modeling microelectronic mechanical systems. For more
applications, mathematical properties and numerical methods of QEPs, we refer readers to the
survey paper [46] by Tisseur and Meerbergen.

In this paper, we concern the inverse problem of the reconstruction of the structured mass,
damping, and stiffness matrices (i.e., M,C,K) from the experimentally measured eigendata.
In particular, we will concentrate on the following Structured Inverse Quadratic Eigenvalue
Problem (SIQEP):

SIQEP. Construct a nontrivial quadratic pencil

Q(λ) = λ2M + λC +K

from a set of measured eigendata {(λi, xi)}p
i=1, where the matrices M , C and K are defined as

follows:

M = diag(m1,m2, . . . ,mn), (3)

C =









c1 + c2 −c2
−c2 c2 + c3 −c3
· · · · · · · · · · · · · · ·

−cn cn









, (4)

and

K =









k1 + k2 −k2

−k2 k2 + k3 −k3

· · · · · · · · · · · · · · ·
−kn kn









, (5)

where the real numbers {mi}n
1 , {ci}n

1 and {ki}n
1 are undetermined mass, damping, and stiffness

parameters, respectively.

This kind of structured inverse problem arises in vibrations, see for instance [12, 23, 34] and
the references therein. In practice, the number of available measured eigendata is much smaller
than the problem dimension (i.e., p≪ n) and the real numbers {mi}n

1 , {ci}n
1 and {ki}n

1 denote,
respectively, the physical mass, damping and stiffness parameters, which should be positive
[22, 23].

It is often complicated to solve the structured inverse quadratic eigenvalue problem with
the matrices M,C,K satisfying diverse structure properties such as symmetry, definiteness,
sparsity and bandedness, which are the inherent connectivity properties of the finite element
model for the practical structure. There are many studies in the literature on the simplified
cases, see for instance [4, 5, 16, 17, 21, 22, 33, 48]. However, these approaches may fail to find
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a physically realizable solution, where the solution matrices satisfy the exploitable structure
properties. Recently, Chu, Kuo and Lin [13] constructed a physical solution for the SIQEP in
which the matrices M , C and K are real and symmetric with the matrices M and K being
positive definite and positive semidefinite, respectively. Lancaster and Prells [31] considered the
SQIEP for the case when M , C and K are real symmetric matrices with both M and K being
positive definite and C being positive semi-definite based on the complete information on simple
and non-real eigenvalues and the associated eigenvectors. Kuo, Lin and Xu [30] presented a
general solution for the SIQEP when the matrices M , C, and K are all real and symmetric
with M being positive definite. Chu, Lin and Xu [14] provided a complete theory for the model
updating with no spillover being solvable. But their model updating method may not preserve
the inherent structure properties. Bai, Chu and Sun [3] proposed an optimization method for
the SIQEP such that the updated matrices M , C and K are all real and symmetric with the
matrices M and K being positive definite and positive semidefinite, respectively. However, all
these methods are established under the assumption that the measured eigendata is exact and
may not preserve the various inherent connectivity simultaneously.

In this paper, we consider the SIQEP based on the test eigendata subject to measurement
errors, where the physical parameters {mi}n

1 , {ci}n
1 and {ki}n

1 determined by (3)-(5) are required
to be real and positive. We point out that in practice, the natural frequencies {λi}p

i=1 and the
corresponding mode-shapes {xi}p

i=1 are experimentally measured from a practically realizable
structure which are inevitably affected by noise. If we try to construct the matrices M , C and
K such that the equations

(λ2
iM + λC +K)xi = 0, for i = 1, . . . , p (6)

are satisfied, then it may result in three inaccurate estimates of M , C and K since the noise may
be mixed up with the valuation of the matrices M , C and K. The real M , C and K will not
satisfy exactly (6) for the noisy data. To overcome the problem, we will formulate the SIQEP
with the partial noisy eigendata {(λi, xi)}p

i=1 as a Nonlinear Complementarity Problem (NCP).
Then we propose a smoothing Newton algorithm for solving the NCP.

Our approach is motivated by the recent development of the numerical computation for
structured IQEPs and NCPs. Burak and Ram [6] determined the pencil

Q(λ) = λ2M +K

with M and K being defined in (3) and (5) from a single exact natural frequency, two exact mode
shapes and an exact static deflection due to a unit load for the undamped case (i.e., C = 0) and
express them in terms of a certain generalized eigenvalue problem. However, the positiveness of
these parameters are not guaranteed. Bai [2] was able to construct the quadratic pencil

Q(λ) = λ2M + λC +K

with C and K being defined in (4) and (5), and

M =









2m1 + 2m2 m2

m2 2m2 + 2m3 m3

· · · · · · · · · · · · · · ·
mn 2mn








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from the following two situations: (i) two exact real eigenvalues and three exact real eigenvectors
or (ii) a precise real eigenvector and a precise complex conjugate eigenpair. He also consider the
problem for the perturbed eigendata. Chu, Buono and Yu [11] converted the physical solvability
of the SIQEP with the prescribed exact eigendata to the consistency of a certain system of
inequalities from two real eigenpairs or a set of two complex eigenpairs which is closed under the
complex conjugate. Abdalla, Grigoriadis and Zimmerman [1] considered the structural damage
detection, or equivalently the reconstruction of the pencil

Q(λ) = λ2M +K

from the noisy natural frequencies {λi}p
i=1 and mode-shapes {xi}p

i=1. Here M is a known matrix
butK is an unknown sparse symmetric positive definite matrix. The NCP is a fundamental prob-
lem in mathematical programming. Recently, there has been much interest in using smoothing
and nonsmoothing Newton’s methods for solving the NCP, see for instance [8, 10, 26, 27, 28, 36].
Based on a priori estimate of M,C,K and the noisy eigendata {(λi, xi)}p

i=1 , one can reformulate
the SIQEP as a quadratically constrained quadratic programming, and convert the optimization
problem into a nonsmooth NCP. Then we construct the smoothing approximation for the nons-
mooth NCP based on the well-known Chen-Harker-Kanzow-Smale smoothing function [7, 29, 43].
Under some mild conditions, the global and quadratic convergence of our method is established.
We also give some numerical tests to demonstrate the efficiency of our method.

To facilitate our discussion, throughout the paper, we will be using the following notations.
Let AT be the transpose of a matrix A ∈ R

m×n. We denote R
n as the real vector space of

dimension n with the Euclidean inner product 〈·, ·〉 and its induced norm ‖ · ‖. For an n-vector
x, we let (x)i be the ith entry of x and x+ be a vector whose i-th component is max{0, (x)i}
for i = 1, 2, . . . , n. We use I to denote the identity matrix of an appropriate dimension. We
also let R

n
+ and R

n
++ be the nonnegative orthant of R

n and the strictly positive orthant of R
n,

respectively. Let A is an n× n matrix with element (A)ij , i, j = 1, . . . , n. If I and J are index
sets such that I,J ⊆ {1, . . . , n}, we use AIJ to denote the |I| × |J | submatrix of A consisting
of entries (A)ij , i ∈ I, j ∈ J . If AII is nonsingular, we denote by A/AII the Schur complement
of AII in A, i.e.,

A/AII = AJJ −AJ IA
−1
IIAIJ

where J = {1, . . . , n}\I. Finally, we denote by xI the subvector of an n-vector with entries
(x)i, i ∈ I.

The rest of the paper is structured as follows. In Section 2, based on the noisy eigendata,
we formulate the SIQEP as a nonsmooth NCP. In Section 3 we present our smoothing Newton
algorithm for solving the SIQEP. In Section 4 we show the global and quadratic convergence of
the method. Numerical examples are given to illustrate the efficiency of the proposed method
in Section 5. Finally, a summary is given in Section 6 to conclude the paper.

2 Problem Formulation

In this section, we will first rewrite the SIQEP as a constrained optimization problem and then
study the corresponding NCP. As in [3, 13], we assume that, in the given eigendata {(λi, xi)}p

i=1,
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the first 2s (2s ≤ p) eigenpairs are complex conjugate and the remaining are real. To simplify
the discussion, for i = 1, 2, . . . , s, we let















λ2i−1 = αi + ıβi,
λ2i = αi − ıβi,
x2i−1 = xiR + ıxiI ,
x2i = xiR − ıxiI ,

where αi, βi ∈ R with βi 6= 0, xiR, xiI ∈ R
n, and ı :=

√
−1. Then the given eigendata can be

described in the real matrix form (Λ,X) ∈ R
p×p × R

n×p with

Λ = diag(λ
[2]
1 , . . . , λ

[2]
s , λ2s+1, . . . , λp),

and
X = [x1R, x1I , . . . , xsR, xsI , x2s+1, . . . , xp],

where

λ
[2]
i =

[

αi βi

−βi αi

]

∈ R
2×2, βi 6= 0, i = 1, . . . , s.

If the given eigendata is free of noise, then the SIQEP is equivalent to finding M,C,K defined
in (3)-(5) such that

MXΛ2 + CXΛ +KX = 0, (7)

We remark that it is not easy to find a set of positive parameters {mi}n
1 , {ci}n

1 and {ki}n
1 such

that the corresponding matrices M,C,K satisfy Equation (7), see for instance [2, 6, 11] for the
exploration of the physical solvability.

Suppose that the positive numbers {mo
i }n

1 , {coi }n
1 and {ko

i }n
1 (i.e., the corresponding matrices

Mo, Co,Ko are in the form (3)-(5)) are a priori estimate of the unknown physical parameters
{mi}n

1 , {ci}n
1 , and {ki}n

1 , respectively. In practical engineering applications, these structured
matrices Mo, Co,Ko (respectively, called the estimated analytic mass, damping and stiffness
matrices) are obtained by the finite element method for the practical structure, see for instance
[11, 23]. The associated estimated analytic model

Moü(t) + Cou̇(t) +Kou(t) = 0

only accurately predicts the partial natural frequencies and mode shapes. To validate the model,
it is desirable that one can find the mass, damping and stiffness parameters {mi}n

1 , {ci}n
1 , and

{ki}n
1 such that the associated mass, damping, and stiffness matrices M,C,K are closest to the

analytic matrices Mo, Co,Ko and satisfy the experimentally measured eigendata. This is the
model updating problem, see for instance [22].

In this paper, we focus on the case when the eigendata {(λi, xi)}p
i=1 is affected by noise. In

fact, the natural frequencies {λi}p
i=1 and the corresponding mode-shapes {xi}p

i=1 are measured
experimentally from a real-life structure which should admit of some perturbation. In this
case, the actual mass, damping, and stiffness matrices M,C,K may not satisfy precisely (7)
for the prescribed noisy data {(λi, xi)}p

i=1. Even though we can solve (7) for the noisy data
{(λi, xi)}p

i=1, the data noise may lead to the incorrect estimation of M,C,K. To take account
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of the presence of the noise, we will find a solution to the following Quadratically Constrained
Quadratic Programming (QCQP):















inf 1
2 (‖M −Mo‖2 + ‖C − Co‖2 + ‖K −Ko‖2)

s.t. ‖MXΛ2 + CXΛ +KX‖ ≤ δn,

M,C,K having the structure described in (3)-(5),

(8)

where δn is a small positive number which depends on the noise level of the measured eigendata
[1]. We note that the equality constraint (7) is recovered as δn → 0. Without making any
confusion, we refer to Problem (8) as our SIQEP for the noisy data {(λi, xi)}p

i=1.

We note that both Mo, Co,Ko and M,C,K satisfy the sparse structure defined in (3)-(5).
Thus we can rewrite the quadratical constraint in (8) in terms of the parameters {mi}n

1 , {ci}n
1

and {ki}n
1 . To achieve this, we let

yo =











yo
1

yo
2
...
yo

n











∈ R
3n with yo

i =





mo
i

coi
ko

i



 ∈ R
3 for 1 ≤ i ≤ n,

y =











y1

y2
...
yn











∈ R
3n with yi =





mi

ci
ki



 ∈ R
3 for 1 ≤ i ≤ n,

Aii =





























(α2
1 − β2

1)(x1R)i − 2α1β1(x1I)i α1(x̄1R)i − β1(x̄1I)i (x̄1R)i
2α1β1(x1R)i + (α2

1 − β2
1)(x1I)i β1(x̄1R)i + α1(x̄1I)i (x̄1I)i

...
...

...
(α2

s − β2
s )(xsR)i − 2αsβs(xsI)i αs(x̄sR)i − βs(x̄sI)i (x̄sR)i

2αsβs(xsR)i + (α2
s − β2

s )(xsI)i βs(x̄sR)i + αs(x̄sI)i (x̄sI)i
λ2

2s+1(x2s+1)i λ2s+1(x̄2s+1)i (x̄2s+1)i
...

...
...

λ2
p(xp)i λp(x̄p)i (x̄p)i





























for 1 ≤ i ≤ n,

Bii = −





























0 α1(x̄1R)i − β1(x̄1I)i (x̄1R)i
0 β1(x̄1R)i + α1(x̄1I)i (x̄1I)i
...

...
...

0 αs(x̄sR)i − βs(x̄sI)i (x̄sR)i
0 βs(x̄sR)i + αs(x̄sI)i (x̄sI)i
0 λ2s+1(x̄2s+1)i (x̄2s+1)i
...

...
...

0 λp(x̄p)i (x̄p)i





























for 2 ≤ i ≤ n,
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and

A =















A11 B22 0
A22 B33

. . .
. . .

An−1,n−1 Bnn

0 Ann















.

Here, for any 1 ≤ i ≤ p, the n-vectors x̄iR, x̄iI and x̄i are defined by

(x̄iR)j := (xiR)j − (xiR)j−1,
(x̄iI)j := (xiI)j − (xiI)j−1,
(x̄i)j := (xi)j − (xi)j−1,

for j = 1, 2, . . . , n with the notations (xiR)0 = (xiI)0 = (xi)0 = 0. Then, it is not difficult to
check that the quadratic constraint in (8) can be rewritten as follows:

‖Ay‖ ≤ δn. (9)

Therefore, the QCQP (8) is reduced to the following form:















inf 1
2‖y − yo‖2

s.t. ‖Ay‖ ≤ δn,

y ∈ R
3n
++,

(10)

where y ∈ R
3n
++ corresponds to the constraint that the physical parameters {mi}n

1 , {ci}n
1 and

{ki}n
1 should be positive. For the convenience of numerical computation, we will consider the

following relaxed form:














inf f0(y) := 1
2‖y − yo‖2

s.t. f(y) := ‖Ay‖2 − δ2n ≤ 0,

y ∈ R
3n
+ .

(11)

It is obvious that there exists a strictly feasible solution for Problem (11). This means that we
have a point y0 ∈ R

3n
++ such that ‖Ay0‖ < δn, i.e, the Slater condition [25] holds for Problem

(11). Then Problem (11) is equivalent to the NCP: Finding y ∈ R
3n
+ and ξ ∈ R+ such that

∇f0(y) + ξ∇f(y) = 0, ξ ≥ 0, −f(y) ≥ 0, ξf(y) = 0 (12)

where ∇f(y) is the gradient of f(y) at y ∈ R
3n. We remark that this NCP is the well-known

Karush-Kuhn-Tucker (KKT) conditions for Problem (11). A solution of (12) is a KKT point
of Problem (11). Let K := R

3n
+ × R+. Then, solving the NCP is equivalently to find a vector

z∗ ∈ K such that

(z − z∗)TF (z∗) ≥ 0, for all z ∈ K, (13)

or

((z)i − (z)∗i )
T (F (z∗))i ≥ 0, for all z ∈ K, i = 1, . . . , 3n + 1,
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where

z := (y, ξ), F (z) :=

(

∇f0(y) + ξ∇f(y)
−f(y)

)

. (14)

Let ΠK(·) denotes the Euclidean projection onto K. Then solving (13) is equivalent to the
solution of the following normal equation:

F (ΠK(z)) + z − ΠK(z) = 0 (15)

in the sense that if ẑ∗ is a solution of (15), then

z∗ := ΠK(ẑ∗)

is a solution of (13). Conversely if z∗ is a solution of (13), then

ẑ∗ := z∗ − F (z∗)

is a solution of (15), see for instance [39].

Let

G0(y, ξ) := F (ΠK(z)) + z − ΠK(z).

Then (15) becomes

G0(y, ξ) =

(

∇f0(y+) + ξ+∇f(y+) + y − y+

−f(y+) + ξ − ξ+

)

= 0. (16)

We note that the function G0 is not differentiable as the function y+ and ξ+ are not differentiable
everywhere. By using the Chen-Harker-Kanzow-Smale smoothing function [7] for ΠK(·), one can
construct the smoothing approximation for G0(·) as follows:

G(µ, y, ξ) :=

(

∇f0(θ(µ, y)) + ϕ(µ, ξ)∇f(θ(µ, y)) + y − θ(µ, y)
−f(θ(µ, y)) + ξ − ϕ(µ, ξ)

)

, (µ, y, ξ) ∈ R × R
3n × R, (17)

where θ : R
3n+1 → R

3n is defined by

(θ(µ, y))i := ϕ(µ, (y)i), 1 ≤ i ≤ 3n (18)

and ϕ : R
2 → R is defined by

ϕ(a, b) :=
1

2

(

b+
√

b2 + 4a2
)

, ∀ (a, b) ∈ R × R. (19)

The function ϕ is continuously differentiable at any point (a, b) ∈ R × R \ (0, 0) such that

ϕ′(a, b) =

(

2a√
b2 + 4a2

,
1

2

(

1 +
b√

b2 + 4a2

))

.

We observe that

ϕ(a, b) ≥ 0 and lim
a→+0

ϕ(a, b) = b+ for all b ∈ R

8



and for all b ∈ R and a 6= 0,
0 ≤ ϕ′

b(a, b) ≤ 1.

That is, ϕ′
b(a, b) is a cumulative distribution function, i.e.,

ϕ′
b(a, b) =

∫ b

|a|

−∞

ρ(t)dt for a fixed a 6= 0,

where the probability density function

ρ(t) =
2

(t2 + 4)
3
2

with the infinite support

supp{ρ(t)} := {t ∈ R : ρ(t) > 0} = R, (20)

see also [8, 9].
Now we define the mapping H : R × R

3n × R → R × R
3n × R by

H(µ, y, ξ) :=

(

µ
G(µ, y, ξ)

)

, (µ, y, ξ) ∈ R × R
3n × R. (21)

Then, z∗ = (y∗, ξ∗) ∈ R
3n × R solves (16) if and only if (0, y∗, ξ∗) ∈ R × R

3n × R solves
H(µ, y, ξ) = 0.

3 A Smoothing Newton’s Method

In this section, we propose a smoothing Newton-type algorithm for solving H(µ, y, ξ) = 0. This
is motivated by its super numerical performance. For example, Chen, Qi, and Sun [10] designed
the first globally and superlinearly convergent smoothing Newton-type method by exploiting the
Jacobian consistency and applying the infinite sequence of smoothing approximation functions.

We note that H is continuously differentiable at any (µ, y, ξ) ∈ R++ × R
3n × R. It follows

from (21) that, for any (µ, y, ξ) ∈ R++ × R
3n × R,

H ′(µ, y, ξ) =

[

1 0
(F ′(θ(µ, y), ϕ(µ, ξ)) − I) d(µ) F ′(θ(µ, y), ϕ(µ, ξ))U(y, ξ) + I − U(y, ξ)

]

, (22)

where

F ′(θ(µ, y), ϕ(µ, ξ)) =

[

∇2f0(θ(µ, y)) + ϕ(µ, ξ)∇2f(θ(µ, y)) ∇f(θ(µ, y))
−∇f(θ(µ, y))T 0

]

=

[

I + 2ϕ(µ, ξ)ATA 2ATAθ(µ, y)
−2θ(µ, y)TATA 0

]

(23)

and

d(µ) =











(d(µ))1
...

(d(µ))3n

(d(µ))3n+1











,
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U(y, ξ) = diag ((U(y))11, . . . , (U(y))3n,3n, (U(ξ))3n+1,3n+1)

with

(d(µ))i = 2µ√
(y)2

i
+4µ2

, 1 ≤ i ≤ 3n, (d(µ))3n+1 = 2µ√
ξ2+4µ2

,

(U(y))ii(µ) = 1
2

(

1 + (y)i√
(y)2

i
+4µ2

)

, 1 ≤ i ≤ 3n, (U(ξ))3n+1,3n+1 = 1
2

(

1 + ξ√
ξ2+4µ2

)

.

It is easy to to see from (23) that, for any (µ, y, ξ) ∈ R++ × R
3n × R, F ′(θ(µ, y), ϕ(µ, ξ)) is

a P0-matrix, i.e., all its principal minors are nonnegative [18]. Then, by (20) and [7, Theorem
3.3], the matrix

F ′(θ(µ, y), ϕ(µ, ξ))U(y, ξ) + I − U(y, ξ)

is nonsingular. Therefore, we can establish the nonsingularity of H ′(µ, y, ξ) as follows.

Theorem 3.1 For any (µ, y, ξ) ∈ R++ × R
3n × R, the matrix H ′(µ, y, ξ) defined in (22) is

nonsingular.

Now, we propose a smoothing Newton’s method for solving H(µ, y, ξ) = 0. Given µ̄ ∈ R++

and τ ∈ (0, 1) such that τ µ̄ < 1. Let w̄ := (µ̄, 0, 0) ∈ R×R
3n×R. Define φ,ψ : R×R

3n×R → R+

by
φ(w) := ‖H(w)‖2 and ψ(w) := τ min(1, φ(w)),

respectively.
Next, we state our smoothing Newton’s method as follows.

Algorithm 3.2 (A smoothing Newton’s method)

Step 0. Give δ ∈ (0, 1), σ ∈ (0, 1/2) and define k = 0.
Let

w(0) := (µ(0), y(0), ξ(0)) with µ(0) := µ̄

and both y(0) ∈ R
3n and ξ(0) ∈ R being arbitrary.

Step 1. If ‖H(w(k))‖ = 0 then stop.

Step 2. Compute
∆w(k) := (∆µ(k),∆y(k),∆ξ(k)) ∈ R × R

3n × R

by
H(w(k)) +H ′(w(k))∆w(k) = ψ(w(k))w̄. (24)

Step 3. Let mk be the smallest nonnegative integer m such that

φ(w(k) + δm∆w(k)) ≤ [1 − 2σ(1 − τ µ̄)δm]φ(w(k)) (25)

Step 4. Define
w(k+1) := w(k) + δmk∆w(k).

Then replace k by k + 1 and go to Step 1.
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The algorithm is based on smoothing Newton’s method in [36] for the NCP and box con-
strained variational inequalities. Let

W := {w = (µ, y, ξ) ∈ R × R
3n × R|µ > ψ(w) µ̄}. (26)

Then, we have the following results for Algorithm 3.2.

Lemma 3.3 The followings are the properties of Algorithm 3.2.

(a) Algorithm 3.2 is well-defined, i.e., the equation (24) is solvable and the line search (25)
terminates finitely.

(b) Algorithm 3.2 generates an infinite sequence {w(k)} with φ(k) > 0.

(c) µ(k) ∈ R++ and w(k) ∈ W for all k ≥ 0.

Proof: The results follow from [36, Lemma 5, Propositions 5 and 6].

4 Convergence Analysis

In this section, we study the global and quadratic convergence of Algorithm 3.2.

4.1 Global Convergence

By Lemma 3.3, we have the following result on the global convergence.

Lemma 4.1 Algorithm 3.2 generates an infinite sequence {w(k)} and any accumulation point
w∗ of {w(k)} is a solution of H(w) = 0.

Proof: It follows from [36, Theorem 4].

We point out that Lemma 4.1 only implies that for an infinite sequence {w(k)} generated
by Algorithm 3.2, if an accumulation point w∗ exists, then it is a solution of H(w) = 0. To
guarantee the existence of such an accumulation point, we need the following assumption (see
also [27]).

Assumption 4.2 The solution set of (16) is nonempty and bounded.

On the other hand, it is easy to check that both the function G0 : R
3n+1 → R

3n+1 defined
by (16) and the function H : R

3n+2 → R
3n+2 defined by (21) are weakly univalent functions.

A continuous function Υ : X → R
n is weakly univalent if there exists a sequence of continuous

one-to-one functions on the domain X converging to Υ uniformly on bounded subset of X,
see for instance [24]. Under Assumption 4.2, the inverse image G−1

0 (0) of the weakly univalent
function G0 is nonempty and bounded. Then, by [38, Theorem 2.5] and Lemma 4.1, we obtain
the following result.

Theorem 4.3 Suppose that Assumption 4.2 is satisfied. Then the infinite sequence {w(k)}
generated by Algorithm 3.2 is bounded and any accumulation point w∗ of {w(k)} is a solution of
H(w) = 0.
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4.2 Local Quadratic Convergence

We then discuss the local quadratic convergence of Algorithm 3.2. We need the definition
of semismoothness. Semismoothness was originally introduced by Mifflin [32] for functionals
and was extended to vector-value functions by Qi and Sun [37]. To describe the definition of
semismoothness, we first recall Clarke’s generalized Jacobian [15].

Let X and Y be two arbitrary finite dimensional real vector spaces. Let O be an open
set in X and Υ : O ⊆ X → Y be a locally Lipschitz continuous function on the open set O.
Rademacher’s theorem [40, Chapter 9.J] says that Υ is almost everywhere Fréchet differentiable
in O. We denote by OΥ the set of points in O where Υ is Fréchet differentiable. Let Υ′(y)
denote the Jacobian of Υ at x ∈ OΥ. Then Clarke’s generalized Jacobian of Υ at x ∈ O is
defined by

∂Υ(x) := conv{∂BΥ(x)},
where “conv” denotes the convex hull and the Bouligand-subdifferential ∂BΥ(x) is defined by
[35]

∂BΥ(x) :=

{

V : V = lim
j→∞

Υ′(x(j)) , x(j) → x , x(j) ∈ OΥ

}

.

Definition 4.4 Suppose that Υ : R
l1 → R

l2 is a locally Lipschitzian function and has a gener-
alized Jacobian ∂Υ in the sense of Clarke [15]. Then

1) Υ is said to be semismooth at x ∈ R
l1 if

lim
V ∈∂Υ(x+th′)

h′→h,t↓0

{V h′}

exists for any h ∈ R
l1 .

2) Υ is said to be strongly semismooth at x if F is semismooth at x and for any V ∈ ∂Υ(x+
th), h → 0, it follows that

Υ(x+ h) − Υ(x) − V h = O(‖h‖2).

It follows easily that the function ϕ(·) defined in (19) is strongly semismooth at any (a, b) ∈
R

2. Then the function H defined by (21) is strongly semismooth everywhere [19]. By the
strongly semismoothness of H, similar to the proof of [36, Theorem 8], we have the following
theorem on the quadratic convergence for Algorithm 3.2.

Theorem 4.5 Suppose that w∗ is an accumulation point of the sequence {w(k)} generated by
Algorithm 3.2. If all V ∈ ∂H(w∗) are nonsingular, then the sequence {w(k)} converges to w∗

with
‖w(k+1) − w∗‖ = O(‖wk − w∗‖2) and µ(k+1) = O

(

(µ(k))2
)

.

Theorem 4.5 shows that Algorithm 3.2 is quadratically convergent if all V ∈ ∂H(w∗) are
nonsingular at a solution point

w∗ = (µ∗, y∗, ξ∗) ∈ R × R
3n × R.

12



We now discuss the nonsingularity of ∂H(w∗). For convenience, we define three index associated
the solution w∗ = (µ∗, z∗) with z∗ = (y∗, ξ∗) as follows:

α = {i|(z∗)i > 0}, β = {i|(z∗)i = 0 = (F (ΠK(z∗)))i}, γ = {i|(F (ΠK(z∗)))i > 0}.

The solution z∗ is said to be R-regular if ∇Fαα(z∗) is nonsingular and the Schur complement of
∇Fαα(z∗) in

[

∇Fαα(z∗) ∇Fαβ(z∗)
∇Fβα(z∗) ∇Fββ(z∗)

]

is a P -matrix, i.e., all its principal minors are positive, see for instance [18].
Before discussing the nosningularity of any element in ∂H, we provide the estimate on ∂H

at the solution w∗ = (µ∗, y∗, z∗) below.

Proposition 4.6 Let w∗ = (µ∗, z∗) with z∗ = (y∗, ξ∗). Then

∂H(w∗) ⊆
[

1 0
W (µ∗) W (z∗)

]

and W := (W (µ∗),W (z∗)) ∈ ∂G(w∗). (27)

Here
W (µ∗) ∈ R

3n+1 and W (z∗) ∈ R
(3n+1)×(3n+1)

with
W (z∗) ⊆ ∇F (θ(µ∗, y∗), ϕ(µ∗, ξ∗))P (z∗) + I − P (z∗),

where P (z∗) ∈ R
(3n+1)×(3n+1) is a diagonal matrix with the ith diagonal entry being given by







(P (z∗))ii = 1 if i ∈ α
(P (z∗))ii ∈ [0, 1] if i ∈ β
(P (z∗))ii = 0 if i ∈ γ

. (28)

Proof: It follows from the definition of θ in (18), the rules on the evaluation of the generalized
Jacobian [15, Proposition 2.6.2 (2)], and the theorem on the generalized gradient of a composite
function [15, Theorem 2.3.9 (iii)].

Based on the R-regularity of the solution z∗, we give a sufficient condition on the nonsingu-
larity of all the elements in ∂H(w∗) as follows.

Theorem 4.7 Suppose that

w∗ := (µ∗, y∗, ξ∗) ∈ R × R
3n × R

is a solution of H(w) = 0. If z∗ := (y∗, ξ∗) is a R-regular solution of Problem (13), then all the
matrices V ∈ ∂H(w∗) are nonsingular.

Proof: By (27) and (28), any matrix V ∈ ∂H(w∗) can be written in the following form

V =









1 0 0 0
Wα(µ∗) ∇Fαα ∇FαβPββ 0αγ

Wβ(µ∗) ∇Fβα ∇FββPββ + I − Pββ 0βγ

Wγ(µ∗) ∇Fγα ∇FγβPββ Iγγ









. (29)
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Thus, to establish the nonsingularity of the matrix V is equivalently to show that

T :=

[

∇Fαα ∇FαβPββ

∇Fβα ∇FββPββ + I − Pββ

]

is nonsingular. That is, we only need to prove that

Th := T

[

hα

hβ

]

= 0

holds if and only if h = 0. The system can be rewritten as

{

∇Fααhα + ∇FαβPββhβ = 0,
∇Fβαhα + ∇FββPββhβ = −(I − Pββ)hβ .

(30)

By the R-regularity assumption, we have ∇Fαα is nonsingular. It follows from (30) that

{

hα = −∇F−1
αα∇FαβPββhβ,

(∇Fββ −∇Fβα∇F−1
αα∇Fαβ)Pββhβ = −(I − Pββ)hβ .

(31)

We note that by definition,

∇Fββ −∇Fβα∇F−1
αα∇Fαβ = T/∇Fαα

is the Schur complement of ∇Fαα in T . By the R-regularity assumption, T/∇Fαα is a P -
matrix. Then, showing the nonsingularity of T is equivalent to proving that the only solution
of the second equation of (31), i.e.,

(T/∇Fαα)Pββhβ = −(I − Pββ)hβ (32)

is hβ = 0. We assume that there exists a nonzero solution hβ 6= 0 and we expect to arrive at a
contradiction. Now, we discuss the following two cases:

(1) Pββhβ = 0. Let T := {i : (hβ)i 6= 0}. We know that T 6= ∅ by the assumption of
hβ 6= 0. This means that (P )ii = 0 for every i ∈ T . Thus −(I − Pββ)hβ 6= 0 and this is
contradiction.

(2) Pββhβ 6= 0. It is obvious that the nonzero (if any) entries of

Pββhβ and − (I − Pββ)hβ 6= 0

have opposite signs. Then, by (32), we have

(Pββhβ)i((T/∇(Fαα)Pββhβ)i ≤ 0, ∀ i ∈ β.

We note that T/∇(Fαα) is P -matrix, which is only possible if Pββhβ = 0. In this case,
again we have a contradiction. Thus the proof is completed.
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5 Numerical Experiments

In this section, we report the numerical performance of Algorithm 3.2 in solving the SIQEP (8)
for the data subject to measurement errors. All the numerical tests were done in a PC Intel
Pentium IV using MATLAB 7.0.4. As in [1], we set the measurement noise level to be r = 0.08.
Then an upper bound estimate for the noise parameter δn from the measured model data is
given by

δn = r(‖MoXΛ2‖ + ‖CoXΛ‖ + ‖KoX‖).

Throughout the numerical experiments, we set µ̄ = 0.1 and we choose the starting points as

(a) µ(0) = µ̄, y(0) = (0, . . . , 0)T ∈ R
3n, ξ(0) = 0 ∈ R;

(b) µ(0) = µ̄, y(0) = (1, . . . , 1)T ∈ R
3n, ξ(0) = 1 ∈ R.

The other parameters used in the algorithm are as follows:

δ = 0.5, σ = 0.5 × 10−4, τ = 0.2 × min(1, 1/µ̄).

The stopping criterion is set to be

‖H(w(k))‖ ≤ 10−6,

where the function H is defined in (21). Now, we demonstrate the numerical performance of
Algorithm 3.2. We remark that when the problem size is small, one can solve the linear system
(24) by some direct method as the system matrix is quite sparse; Otherwise, to reduce the cost,
one can solve (24) iteratively by the QMR method [20] using the MATLAB-provided QMR function
with the default tolerance, 10−6. Of course, one may choose other iterative methods (e.g., the
GMRES [41], BICG [47] and CGS [44] methods) for solving (24).

Example 5.1 We first randomly generate the parameters {mo
i }n

1 , {coi }n
1 and {ko

i }n
1 with n = 5

as follows:

{mo
i }5

1 = {2.0323, 1.4505, 1.3673, 1.4326, 1.8544},
{coi }5

1 = {2.3015, 2.5923, 2.2725, 3.2452, 3.3226},
{ko

i }5
1 = {5.4756, 7.3580, 12.7755, 11.5995, 6.0063}.

The quadratic pencil

λ2Mo + λCo +Ko

has the following 5 pairs of complex conjugate eigenvalues:























−3.0828 ± 3.7426ı,
−2.7786 ± 2.7995ı,
−1.5194 ± 2.2841ı,
−0.6370 ± 1.6943ı,
−0.0690 ± 0.6054ı,
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and their corresponding eigenvectors are given by






−0.0320 ∓ 0.0300ı 0.0025 ± 0.0401ı 0.1050 ± 0.2582ı 0.0822 ± 0.4662ı 0.4032 ∓ 0.0141ı

0.1324 ± 0.0422ı −0.0095 ∓ 0.0990ı −0.0044 ∓ 0.1211ı 0.0552 ± 0.3982ı 0.6636 ∓ 0.0113ı

−0.1359 ∓ 0.1095ı −0.0962 ± 0.0054ı −0.0128 ∓ 0.2655ı 0.0932 ± 0.1996ı 0.7853 ± 0.0035ı

−0.0204 ± 0.1425ı 0.0929 ± 0.1796ı −0.1492 ∓ 0.1457ı 0.0703 ∓ 0.1072ı 0.8854 ± 0.0094ı

0.0437 ∓ 0.0374ı 0.0031 ∓ 0.1003ı 0.0514 ± 0.2255ı −0.2032 ∓ 0.4543ı 0.9969 ∓ 0.0031ı






.

Suppose the measured noisy complex conjugate eigenpairs {(λi, xi)}2
i=1 are generated randomly

as follows:

λ1,2 = −0.0379 ± 0.4883ı, x1,2 =













−0.3885 ∓ 0.0079ı
−0.6321 ∓ 0.0256ı
−0.8444 ± 0.0080ı
−0.9390 ± 0.0045ı
−0.9855 ± 0.0145ı













.

Then we use Algorithm 3.2 with any one of the starting points to reconstruct the physical model.
We obtain the same solution for the SIQEP as follows:

{mi}5
1 = {2.0240, 1.0485, 3.2705, 3.2000, 1.3948},

{ci}5
1 = {1.7957, 1.4753, 4.2719, 2.6621, 3.4855},

{ki}5
1 = {5.6699, 8.2750, 8.7487, 11.8750, 6.3687}..

Example 5.2 Let the parameters {mo
i }n

1 , {coi }n
1 , and {ko

i }n
1 be generated randomly for different

values of n. Suppose that the measured noisy eigendata (Λ,X) ∈ R
p×p × R

n×p is also generated
randomly for different values of p.

Our numerical results are given in Tables 1 and 2, where IT., NF., and VAL. stand for the
number of iterations, the number of function evaluations, and the value of ‖H(·)‖ at the final
iterate of our algorithm (the largest number of iterations in QMR is set to be max(1000, 3n+2)),
respectively. The numerical results in Tables 1 and 2 show that our proposed algorithm is very
efficient for solving the SIQEP.

p = 15, s = 3
SP. n IT. NF. VAL.

a) 50 15 24 3.5 × 10−9

100 14 22 2.7 × 10−10

200 14 20 4.5 × 10−11

500 13 19 3.8 × 10−7

1000 13 20 3.3 × 10−7

b) 50 13 23 2.9 × 10−9

100 14 25 2.7 × 10−10

200 13 23 1.2 × 10−10

500 11 15 3.9 × 10−7

1000 11 15 3.2 × 10−7

Table 1: Numerical results for Example 5.2
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n = 100
SP. p s IT. NF. VAL.

a) 10 3 14 22 1.2 × 10−11

20 6 14 21 4.6 × 10−11

30 9 15 23 1.1 × 10−9

40 12 15 23 3.5 × 10−9

50 15 15 23 4.9 × 10−11

b) 10 3 14 26 1.2 × 10−11

20 6 14 27 4.7 × 10−11

30 9 13 23 1.1 × 10−9

40 12 13 23 3.5 × 10−9

50 15 13 22 2.7 × 10−11

Table 2: Numerical results for Example 5.2

6 Conclusions

In this paper, we have discussed a special structured IQEP, i.e., an inverse problem for a damped
vibration system, where the mass, damping, stiffness matrices are determined by a set of phys-
ical parameters {mi}n

1 , {ci}n
1 , and {ki}n

1 and the prescribed eigendata is affected by noise. To
overcome the sensitivity and preserve the positiveness of the parameters {mi}n

1 , {ci}n
1 and {ki}n

1 ,
we first reformulate the SIQEP as a constrained optimization problem and then study its cor-
responding nonsmooth NCP. By constructing the smoothing approximation for the NCP, we
proposed a smoothing Newton-type approach for solving the NCP. The global and quadratic
convergence of the proposed method is proved under some mild conditions, which vitally require
the solution set of (16) being nonempty and bounded, see Assumption 4.2. The numerical tests
demonstrate the efficiency of our algorithm.

In engineering applications, there exist various structured IQEPs with the measured noisy
eigendata. These inverse problems can be written in a similar way as in (8) except that the
mass, damping, stiffness matrices are restricted to other structures. Here we have addressed a
typical kind of the inverse problems. There are many other interesting structured IQEPs which
need further investigation.
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