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Abstract

The purpose of this article is to explain recent developments on classification and
construction of fake projective planes. The main goal is to give an expository on
the formulation and results of Gopal Prasad and the author in [PY1]. We also
mention the recent results of Donald Cartwright and Tim Steger in [CS]. Earlier
geometric setup and further developments are discussed as well.
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1 Introduction

1.1 A fake projective plane is a smooth complex surface which has the same Betti
numbers as P 2

C but which is not biholomorphic to P 2
C. It is special in the sense that

it has the smallest Euler number among surfaces of general type. Furthermore, a
fake projective plane turns out to be a quotient of the complex two ball by a torsion-
free discrete subgroup of PU(2, 1). Hence it is either a Shimura surface or a finite
cover of a Shimura surface and carries rich geometric and arithmetic structures.
The purpose of this article is to survey recent results on fake projective planes,
leading to the classification and construction of such surfaces by Gopal Prasad and
the author in [PY1], and the completion of the program by Cartwright and Steger
in [CS]. It is also our purpose to give a reasonable coherent outline of proof. The
article is an expansion of the summary given in [Ye4].

The complete study requires the input of differential and algebraic geometry,
non-linear analysis, algebraic groups, Bruhat-Tits theory, algebraic and analytic
number theory. As a chapter in the Handbook in Geometric Analysis, our goal
here is to introduce the ideas and explain the results from a more geometric point
of view. For a survey on the subject from a more algebraic point of view, we refer
the readers to the Bourbaki Seminar report of Rémy in [Rem].

1.2 To explain the origin of the topic, we begin with a well known problem of
Severi, who asked whether there exists a smooth complex surface homeomorphic
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to but not isomorphic to P 2
C. The problem was finally settled in the negative in the

paper of Yau [Ya1], after the solution of Calabi Conjecture in the case of negative
Ricci curvature by Aubin [A] and Yau [Ya2].

The result of Yau shows that there is no exotic structure on P 2
C. Mumford

asked how well one can mimic P 2
C. In particular, he asked if there was a smooth

complex surface with the same Betti numbers as P 2
C but which is not biholomorphic

to P 2
C. Mumford provided the answer himself by constructing in [Mu] an example

with the same Betti numbers as P 2
C but has ample canonical line bundle and hence

is not biholomorphic to P 2
C. Such a surface is now known as fake projective plane.

Algebraic geometers have been interested in fake projective planes since the
appearance of Mumford’s example, as they play special roles in the geography of
smooth surfaces of general type, by being the ones with smallest Euler-Poincaré
characteristic. It is hence meaningful to classify such surfaces.

It follows from the result of Aubin and Yau that a fake projective plane is
uniformized by the complex two ball B2

C in C2. Hence it can be written as the
quotient of B2

C by a cocompact lattice Π of PU(2, 1). It turns out that Π is an
arithmetic lattice in PU(2, 1) according to the result of Klingler [Kl] and Yeung
[Ye1] on geometric rigidity. The arithmeticity of the lattice involved allows us to
apply the volume formula of Prasad [Pra] to reduce classification of fake projective
planes to classification of arithmetic lattices.

Near the end of this article (Theorem 10 in §7), we will state a strong charac-
terization of P 2

C in terms of homology groups which generalize the original problem
of Severi, as a result of the project on the classification of fake projective planes.

1.3 The example of Mumford was constructed from p-adic uniformization intro-
duced by Kurihara and Mustafin. His method was different from the classical
methods of construction of surfaces. Two more examples of fake projective planes
were later found by Ishida and Kato in [IK], utilizing the examples of discrete
subgroups of GL3(Qv) which act transitively on the vertices of the Bruhat-Tits
building constructed by Cartwright, Mantero, Steger and Zappa in [CMSZ]. The
construction of Ishida and Kato was related to the original construction of Mum-
ford. More recently, Keum constructed a fake projective plane with an order 7
automorphism in [Ke1], starting with Ishida’s analysis on Mumford’s example in
[I]. As explained in the introduction in [Ke1], it was not clear whether the exam-
ple in [Ke1] was different from the earlier three examples in the construction of
[Ke1]. The example turned out to be different from the earlier three using the
classification of [PY1].

As a result of the work of [PY1] and its addendum, there are twenty-eight
non-empty classes of fake projective planes, and there can be at most five more
classes which are conjectured not to exist. In the addendum some corrections were
made and the final classification is a more refined one compared to the original
scheme proposed in [PY1]. As a result, the final count of classes in the addendum
is slightly different from those mentioned earlier in [Rem] and [Ye4]. Each of the
examples known earlier lies in one of the twenty-eight classes mentioned. Very
recently, Cartwright and Steger [CS], using sophisticated computer-assisted group
theoretical argument, have shown that the twenty-eight classes of fake projective
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planes exhaust all possibilities by eliminating the five putative classes. Moreover,
there are precisely one hundred distinct fake projective planes up to biholomor-
phism in the twenty-eight classes. This concludes the scheme of classification and
listing of fake projective planes. We refer the readers to §7 for more details.

At the end of this article, we will explain an application of the work of
Cartwright and Steger [CS] to geography of smooth algebraic surfaces of general
type. We will also formulate the corresponding classification problem in higher
dimensions and explain results of Prasad and Yeung in [PY2] and [PY3].

1.4 Here is the table of content for this article.

§1. Introduction.
§2. Uniformization of fake projective planes.
§3. Geometric estimates on number of fake projective planes.
§4. Arithmeticity of lattices associated to fake projective planes.
§5. Covolume formula of Prasad.
§6. Formulation of proof.
§7. Statements of the results.
§8. Further studies.

1.5 It is a great pleasure for the author to thank his collaborator Gopal Prasad
for his detailed comments and invaluable help in polishing the survey, Jiu-Kang
Yu for his comments related to buildings, and Donald Cartwright and Tim Steger
for explaining their results and helpful comments.

2 Uniformization of fake projective planes

2.1 The purpose of this section is to show that any fake projective plane is the
quotient of the unit ball B2

C in C2 by a torsion-free cocompact lattice in PU(2, 1).
This is a classical example of how results in non-linear analysis can lead to advance
in algebraic and complex geometry.

Let us begin with the following classical result as stated in [Ya1].

Theorem 1. a. On a surface M of general type, c21 6 3c2. (Bogomolov-Miyaoka-
Yau Inequality).
b. The inequality becomes equality if and only if the universal covering M̃ of M is
biholomorphic to the unit ball B2

C in C2.

Bogomolov proved in [Bo] a Chern number inequality for any stable vector
bundle on a surface, which in the case of tangent bundle of a surface of general
type leads to c21 6 4c2. For the tangent bundle on a surface of general type Miyaoka
[Mi] proved that c21 6 3c2. The proofs of Bogomolov and Miyaoka are algebraic
geometric in nature. Yau proved in [Ya1] that c21 6 3c2 holds for smooth surfaces
with an ample canonical line bundle as a consequence of the solution of the Calabi
Conjecture in the case of negative scalar curvature [Ya2]. The proof of Yau uses
non-linear analysis in differential geometry, and the method has the advantage
that uniformization result in Theorem 1b follows from the argument. The role of
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existence of Kähler-Einstein metric in uniformization as stated in Theorem 1b has
been observed by H. Guggenheimer [Gug], as explained in [Ya1].

2.2 The solutions of the Calabi Conjecture in the case of negative scalar curvature
by Aubin and Yau ([A], [Ya2]) and the Ricci flat case by Yau [Ya2] are fundamental
results in complex differential geometry. The conjecture is a consequence of insight
of Calabi ([Cal1], [Cal2]) in his quest for canonical metrics on a complex manifold.
An example of such a canonical metric is Kähler-Einstein metric. Recall that a
Kähler metric g with a Kähler form ω is Kähler-Einstein if it satisfies the Einstein
equation

Ric(ω) = cω,

where Ric(ω) represents the Ricci curvature form of ω. For our purpose we only
state the result in the case of negative scalar curvature.

Theorem 2. (Aubin [A] and Yau [Ya2]) Let M be a compact complex manifold
equipped with a Kähler metric ω of negative Ricci curvature. Then there exists a
Kähler-Einstein metric of negative Ricci curvature in the cohomology class of ω.

The solution of the problem is reduced to solving a Monge-Ampere equation,
a non-linear elliptic partial differential equation.

2.3 Assuming Theorem 2, we will explain the proof of Theorem 1 in the case
that the canonical line bundle of M is ample, which is sufficient for our study
of fake projective planes. From Chern-Weil Theory, we can express the Chern
numbers as integrals of expressions invariant in terms of the curvature tensor R
of a given Kähler metric g over M. Let Θ be the curvature (1, 1)-form of a Kähler
metric g with Kähler form ω =

√
−1
2

∑
i,j gijdz

i∧dzj in terms of local holomorphic
coordinates, which can be chosen so that gij = δij at the origin. Then the chern
forms are given by

C1 =
√
−1

2π
tr(Θ)

C2 =
1

8π2
tr(Θ ∧Θ).

where Θkl = 1
2

∑
i,j Rijkldz

i∧zj in terms of local coordinates. The first two Chern
numbers are given by c21 =

∫
M
C2

1 and c2 =
∫
M
C2. Hence c21−3c2 =

∫
M

(C2
1−3C2),

where the integrand can be expressed explicitly in terms of the curvature tensor R,
the Ricci curvature tensor Ricij = gklRijkl and the scalar curvature s = 2gijRicij .
From direct calculation,

C2
1 − 3C2 =

1
4π2

(
s2

4
− 4|Ric|2 + 3|R|2) = − 1

4π2
(−s

2

4
+ 3|R|2),

where in the second equality we use the fact that |Ric|2 = s2

8 since ω is a Kähler-
Einstein metric. On the other hand, with respect to the Kähler metric, the cur-
vature tensor has an orthogonal decomposition R = S + S⊥, where S = s

12 (Ro),
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Ro is a four tensor given by (Ro)ijkl = gijgkl + gilgkj , and S⊥ is orthogonal to S
with respect to g. Hence

|R|2 > |S|2 =
s2

122
|Ro|2 =

s2

12
.

This immediately implies that c21 − 3c2 6 0.

Moreover, when the inequality becomes an equality, the integrand C2
1 − 3C2

vanishes identically on M and hence R = S = s
12 (Ro), which up to a constant is

the curvature of the Poincaré metric of B2
C since s < 0. After scaling by a constant

if necessary, this implies that M is isometric to a complex ball quotient with the
Poincaré metric. This completes the proof of Theorem 1. For more elaborate
discussions, we refer the readers to [Be] or [Zh].

2.4 Theorem 1 allows us to put fake projective plane in proper perspective.

Theorem 3. a. A fake projective plane is the quotient of B2
C by a cocompact

torsion free lattice in PU(2, 1).
b. A fake projective plane achieves the minimal Euler-Poincaré number among all
smooth projective algebraic surfaces of general type.

Proof In the following we refer the readers to [BHPV] for terminology and basic
facts about algebraic surfaces. Let M be a fake projective plane. Denote by
bi = bi(M) the i-th Betti number of M. Since M is a fake projective plane,

b0 = 1, b1 = 0, b2 = 1, b3 = 0, b4 = 1.

Hence the second Chern number c2(M), which is also the Euler-Poincaré charac-
teristic of M, is 3.

A conjecture of Kodaira, which is a theorem by a result of Siu [Siu1], states
that a complex surface with even b1 is Kähler. Since b1(M) = 0, we conclude that
M is Kähler. Poincaré Duality and the Hodge decomposition implies that bp =∑
i+j=p h

i,j , where hi,j are the Hodge numbers of M. As all the numbers involved
are non-negative integers, and hi,j = hj.i from Hodge identity, we conclude that

h0,0 = h1,1 = h2,2 = 1

are the only non-zero Hodge numbers. Recall that the arithmetic genus of M is
defined by χ(O) =

∑3
i=0(−1)ih0,i. It follows that χ(O) = 1 for a fake projective

plane. Applying Noether’s Formula χ(O) = 1
12 (c21 + c2) again, we conclude that

c21 + c2 = 12. Since c2 = 3, this implies that c21 = 9. Hence c21 = 3c2.
Note that h1,1 = 1 implies that the Picard number of M is 1. Hence the

canonical line bundle KM is a multiple of a generator of the Neron-Severi group
modulo torsion. We conclude that KM is either positive or negative.

Suppose KM is negative, it follows from a result of Hirzebruch-Kodaira [HK]
that M is biholomorphic to P 2

C. A more elementary argument for the biholomor-
phism of M and P 2

C is as follows. We know that M has Picard number ρ(M) = 1.
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Let H be a generator of the Neron-Severi group H1,1 ∩H2(M,Z) modulo torsion.
We choose H to be ample. From Poincaré Duality, the assumption that KM is
negative and the facts that K2

M = 9 and ρ(M) = 1, we know that KM = −3H
modulo torsion. Observe that the linear system |H| has dimension at least 2 from
Riemann-Roch Theorem and Kodaira Vanishing Theorem. H has no base locus of
dimension 1, for otherwise from Picard number 1, the component has to be homol-
ogous to aH modulo torsion for some a 6 0, which is not possible. Furthermore,
the numerical condition H2 = 1,K ·H = 1 implies that any section D in |H| is a
rational curve and that the restriction of H to D is positive. It follows that |H|
restricted to D is base point free and hence there is no base locus of dimension 0
on M. Hence |H| gives rise to a birational morphism of M on P 2

C, which has to
be a biholomorphism since no curve can be contracted in view of the fact that the
Picard number is 1.

Since we assume that M is not biholomorphic to P 2
C, we conclude that KM

is positive and hence M is of general type. It follows from Theorem 1b that the
universal covering of M is B2

C. Hence Theorem 3a follows.

The Bogomolov-Miyaoka-Yau Inequality in Theorem 1a and the Noether’s
Formula also imply that for any smooth surface N of general type,

χ(ON ) =
1
12

(c21(N) + c2(N)) 6
1
3
c2(N).

It is well-known that χ(ON ) > 0 for any minimal surface of general type and hence
for any smooth surface of general type. As χ(ON ) is an integer, χ(ON ) > 1. We
conclude that c2(N) > 3χ(ON ) > 3.

Furthermore, the only situation that c2(N) = 3 can occur is when all the
above inequalities become identities. This happens only if c21(N) = 3c2(N) and
χ(ON ) = 1. In other words, c21(N) = 9, c2(N) = 3. These are precisely the char-
acteristic numbers shared by fake projective planes. This concludes the proof of
Theorem 3b.

3 Geometric estimates on the number of fake pro-
jective planes

3.1 Before the work of [PY1], we only know three distinct fake projective planes,
namely, the example of Mumford in [Mu] and the two examples of Ishida-Kato
[IK]. The example of Keum [Ke1] appeared when the paper of [PY1] was being
completed and it was not clear at that time whether it was different from the other
three. On the other hand, it was already known by Mumford in [Mu] that there
were only a finite number of fake projective planes. It was hence a natural question
whether there exists an effective estimate for the number of fake projective planes.
In this section, we are going to explain a rough but nevertheless effective estimates
obtained in [Ye2]. The estimates are obtained by completely geometric method.
In later sections, we will give much finer classification results obtained in [PY1].
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To understand the restriction on the cardinality of fake projective planes and
also for later purpose, let us recall the following results on rigidity.

Theorem 4. (a) (Calabi-Vesentini [CV]) A fake projective plane is locally rigid
as a complex analytic manifold.
(b) (Siu [Siu2]) Any Kähler surface with the same fundamental group as a fake
projective plane is actually biholomorphic or conjugate biholomorphic to it.
(c) (Mostow [Mo1]) Any locally symmetric space with the same fundamental group
as a fake projective plane is isometric to it with respect to the Killing metric.

3.2 The theorem has the following immediate consequence.

Lemma 1. The moduli of fake projective planes consists of a finite set of points.

Proof Any part of the above theorem shows that the setM of all fake projective
planes consists of points. It suffices to show that M is bounded. There are at
least two approaches to this problem. The first is algebraic geometric in nature.
Observe that the Chern numbers of a fake projective plane are all bounded. It
follows from Matsusaka’s Big Theorem that M is a bounded set as well. The
second method is Lie theoretical. A result of H.C. Wang [W] states that the set
of lattices Γ in PU(2, 1) with covolume in a Haar measure bounded by a constant
consists of a finite number of conjugacy classes. The description ofM as a moduli
follows either from a result of Gieseker [Ge] or Viehweg [V], since we know that
M is a surface of general type.

3.3 The algebraic geometric argument in the above proof can be make effective to
give the following effective estimates in [Ye2].

Theorem 5. The cardinality of fake projective planes is bounded from above by
( 294!

5!289! )
44100 6 10451925.

Proof Let M be a fake projective plane. Let H be a generator of the Neron-Severi
group H1,1∩H2(M,Z) modulo torsion. From the proof Theorem 3, we know that
KM is positive and KM = 3H modulo torsion. Since the torsion part does not
affect intersection numbers, we may just assume that KM = 3H for all practical
purposes in the remaining argument of the theorem.

From the solution of I. Reider [Rei] on Fujita Conjecture in dimension two,
we conclude that K + 4H = 7H is very ample. Let Φ : M → PNC be the pro-
jective embedding associated to 7H. From Riemann-Roch and Kodaira Vanishing
Theorem,

N =
1
2

(c1(7H)(c1(7H)− c1(3H)) +
1
12

(c21(3H) + c2(M))− 1 = 14.

The degree of the image is given by

degΦ(M) =
∫

Φ(M)

C2
1 (HP 14

C
) =

∫
M

C2
1 (Φ∗HP 14

C
) = c21(7H) = 49.
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Here by abuse of language, we denote by C1 is the first Chern form. We may
choose a generic projection of π : P 14

C → P 5
C so that π ◦ Φ : M → P 5

C is still an
embedding with image of degree 49.

We now consider the Chow varieties parameterizing cycles of degree d on P 5
C.

First we note that for each irreducible component C of the Chow variety containing
a fake projective space a, each cycle b in C is actually biholomorphic to a. This
is a consequence of either Theorem 4a or Theorem 4b. Hence it suffices for us to
bound the number of components of the appropriate Chow variety.

Catanese [Cat] gave the first effective bound for the number of components.
This bound was improved through the work of Kollár [Ko1] and others. Denote
by Chow′k,d(P

N
C )) the union of irreducible components of the Chow variety of

dimension k and degree d in PNC whose general element is irreducible. According
to an expression of Guerra ([Gue]) which was made effective by Heier in [Hei], the
number of irreducible components of Chow′k,d(P

N
C )) is bounded from above by

{ [(N + 1)d]!
N ![(N + 1)d−N ]!

}(N+1)(k+1)
(d+k−1)!

(k−1)!(d−1)! .

In our case of fake projective space, with N = 5, k = 2 and d = 49, we get a
upper bound of

{ [6 · 49]!
5![(6)49− 5]!

}6·3
(49+1)!

48! = 1768917355844100 < 10451925.

This concludes the proof of Theorem 5.

3.4 We would like to make a few remarks. First of all we define a fake projective
space of complex dimension n to be a Kähler manifold with the same Betti numbers
as the projective space of the same dimension, a notion that we will explain more
in later sections. Then similar argument as above yields the following results in
[Ye2].

Theorem 6. (a). The cardinality of fake projective spaces of complex dimension
n is bounded from above by N(n), where

N(n) = { [(2n+ 2)A]!
(2n+ 1)![(2n+ 2)A− (2n+ 1)]!

}(2n+2)(n+1)
(A+n−1)!

(n−1)!(A−1)!

and

A = (n+ 1)n[2(2n+ 3 +
(3n+ 1)!

(n− 1)!(2n+ 1)!
)]n.

(b). Let us equip a locally Hermitian symmetric space of non-positive and non-
trivial curvature with a Kähler-Einstein metric whose Kähler form ω satisfies
Ric(ω) = −ω. The resulting Kähler metric differs from the Bergman metric by
a normalizing constant. Let ρ(V ) be the number of compact locally Hermitian
symmetric spaces of non-compact type of complex dimension n which has volume
bounded from above by V with respect to the above metric. Then ρ(V ) 6 (aV )bV

n

,

where a = (2n+2)Bn

[(2n+1)!]1/(2n+1) , b = 2(n+1)2Bn2

(n−1)! , and B = 2(n+ 3 + (3n+1)!
(2n+1)!(n−1)! ).
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The second remark is that finiteness results as stated in Theorem 3 and 4
are related to the results of Prasad [Pra], Borel and Prasad [BP], stating that
the set of all arithmetic locally symmetric spaces with volume bounded by any
constant is finite, including all possible dimensions and the Lie groups G involved.
We will refer to the papers [Pra] and [BP] in greater details later on, which are
crucial for the argument in [PY1]. In another direction, finiteness result could also
be established by a differential geometric argument as developed in the papers
[BGLM] and [Ge].

4 Arithmeticity of lattices associated to fake pro-
jective planes

4.1 In the last section we have explained that any fake projective plane M is a
smooth complex two ball quotient B2

C/Π for some torsion free cocompact discrete
subgroup Π in PU(2, 1). Hence one way to understand and classify M is to deter-
mine Π. For this purpose, let us recall some terminology in the study of lattices
in semisimple Lie groups.

Semi-simple Lie groups can be studied geometrically through symmetric
spaces. Take a semi-simple Lie group and a maximal compact subgroup K of
G. The quotient space G/K is a symmetric space, on which there is a natural
invariant metric given by the Killing form. G/K is a Hermitian symmetric space
if there is a G-invariant complex structure on it. Symmetric spaces are higher
dimensional geometric models which to a certain extent play the role of the upper
half plane, the Riemann sphere and the Euclidean plane in real two dimensions.
In particular, in the special case of G = PU(n, 1) and K = P (U(n) × U(1)), we
get a complex n ball BnC , the unit ball in complex Euclidean space of complex di-
mension n. Symmetric spaces and semi-simple Lie groups have been classified by
E. Cartan (cf. [Hel]). In the case that G is non-compact, we obtain a non-compact
symmetric space on which the Killing metric has non-positive sectional curvatures.
According to Cartan-Hadamard Theorem, the non-compact symmetric spaces are
diffeomorphic to a Euclidean space. Symmetric spaces are the universal covering
of the locally symmetric space Γ\G/K if Γ is torsion-free. Hence the topology of a
locally symmetric space Γ\G/K with torsion-free Γ is mostly determined by Γ. We
will be mainly interested in complex ball quotients BnC/Γ where the corresponding
lattices Γ involved are cocompact.

4.2 We recall that a lattice Γ of a semi-simple Lie group G is arithmetic if there ex-
ists a semisimple algebraic Q-groupH and a surjective homomorphism ϕ : H0

R → G
with compact kernel such that ϕ(H0

R∩HZ) is commensurable to Γ. A fundamental
result of Margulis [Mag] states that in the case that the real rank of G is at least 2,
any irreducible lattice Γ in G is arithmetic. In the case that the symmetric space
is either a quaternionic hyperbolic space or the Cayley hyperbolic plane, it follows
from the results of Corlette [Co] and Gromov-Schoen [GS] that any lattice in the
corresponding G are arithmetic as well. From the classification of E. Cartan, the
only symmetric spaces left are the real and complex hyperbolic spaces. It has been
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known for sometime that lattices in the real hyperbolic spaces are not as rigid as
in the higher rank case and in particular, there are lots of non-arithmetic lattices.
Hence the remaining class of lattices, those in PU(n, 1), the automorphism group
of a complex hyperbolic space, are particularly interesting from this point of view.
Not much is known about the lattices in PU(n, 1). It has long been observed by
Mostow [Mo1] and Deligne-Mostow [DM] that there are non-arithmetic lattices in
PU(2, 1) and PU(3, 1), which can be traced to the construction of Picard [Pi] and
Le Vavasseur [Le]. Hence an interesting problem is to find conditions to charac-
terize arithmetic lattices in the complex hyperbolic spaces.

We note that the problem of arithmeticity or superrigidity can be formulated
and generalized to the setting of geometric superrigidity, such that the non-linear
version of a Bochner type formula gives rise to superrigidity or arithmeticity, while
the linear version leads to cohomology vanishing results, namely Matsushima’s
vanishing theorem. From this point of view, topological conditions may be related
to arithmeticity. It turns out that such a conjecture was formulated by Rogawski,
where the motivation seems to come instead from study of a concrete series of
examples in Langlands program.

Conjecture 1. (cf. [Rez]) Let Γ be a torsion-free cocompact lattice of PU(2, 1)
so that the corresponding ball quotient M = Γ\B2

C satisfies the conditions that the
first Betti number b1(M) = 0 and the Neron-Severi group H1,1(M) ∩ H2(M,Z)
modulo torsion is Z. Then Γ is arithmetic of second type (cf. §4.8 ).

We refer the reader to Section 3 for more details about the descriptions and
terminology of arithmetic lattices of complex hyperbolic spaces. In [Ro], Rogawski
shows that the congruence subgroups coming from arithmetic lattices of second
type satisfy the above cohomological properties.

The papers [Kl] and [Ye1] are some independent attempts to address the
conjecture. We have the following result as a corollary.

Theorem 7. ([Kl] [Ye1]) The lattice associated to a fake projective plane is arith-
metic.

In the following we give an outline of proof of the above statement, following
the expository in [Ye1].

4.3 Let M be a fake projective space. As mentioned earlier, the universal covering
M̃ of M is biholomorphic to the complex ball B2

C in C2 and M is the quotient of
M̃ by a torsion free cocompact subgroup of PU(2, 1).

A result of Weil tells us that any cocompact lattice Γ of PU(2, 1) is locally
rigid, from which it follows that Γ can be defined over a number field (cf. [Ra]),
that is, there exists an injective homomorphism ρ : Γ → G(k), G an algebraic
group defined over a number field k with a real place vo such that G(kvo

) ∼=
PU(2, 1). We call Γ integral if there exists a subgroup Γ′ of finite index in Γ so
that ρ(Γ′) ⊂ G(Ok).

In the setting of the above discussion, the proof of Theorem 7 is then sep-
arated into two steps, namely, Step A, the analogue of non-Archimedean super-
rigidity, that the lattice Γ is integral at any non-Archimedean place; and Step B,
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the analogue of Archimedean superrigidity at any Archimedean place in the sense
of §22 in [Mo2] or Appendix C(3.5) in [Mag]

4.4 Step A: Integrality

As above, let Π ⊂ PU(2, 1) be the fundamental group of a fake projective
plane M. We assume for the sake of proof by contradiction that Π is not integral.
Denote by kv the completion of k at a finite place v. Non-integrality of Π implies
that there exists a finite place v of k such that the induced homomorphism ρv : Γ→
G(kv) is unbounded. This is a situation where techniques of non-linear analysis in
geometry can be brought in. We also need some basic properties of Bruhat-Tits
buildings, for which we refer the readers to [Br].

Let X be the Bruhat-Tits building associated to G(kv). X is endowed with a
metric such that the restriction of the metric to an apartment Σ of X is isometric to
the Euclidean metric on Rr, where r is the dimension of the building, which is also
the kv-rank of G. The metric is non-positively curved in the sense of Alexandrov
spaces. According to Theorem 4.4, Theorem 7.1 of Gromov and Schoen [GS] on
harmonic maps into singular spaces which are simplicial complexes, there exists a
energy minimizing ρv-equivariant harmonic map f : M̃ → X. The mapping f is
said to be regular at x ∈ M̃ if a neighborhood of x is mapped to an apartment of
X. The complement of the set of regular points is denote by S(f) and is called the
singular set of f. According to Theorem 6.4 of [GS], f is sufficiently regular in the
sense that f is Lipschitz continuous and the singular set S(f) of f has Hausdorff
codimension at least 2. The regularity of the map is crucial for our argument in
more than one place. In particular, it is required for the purpose of integration by
parts so that Bochner formula can be applied.

Since the absolute rank of G is 2, r = rankkv
(G) is either 1 or 2. An apart-

ment Σ of the building X is isometric to Rr. In the case of rankkv
(G) = 2,

G(kv) = PGL(3, kv). As in page 147 of [Br], we write an apartment Σ as R2 ∼=
{(x1, x2, x3) ∈ R3|x1 + x2 + x3 = 0}, on which the affine Weyl group W ∼= AoW
acts by translations in A ∼= Z2 and W ∼= S3, symmetric group of three elements.
In the case that rankkv (G) = 1, X is a tree and the affine Weyl group W ∼= AoW
with A ∼= Z and W ∼= Z2.

The harmonic map f : M̃ → X into the building obtained by Gromov-Schoen
[GS] is actually pluriharmonic by the Bochner formula of Siu [Siu2]. At a regular
point of the harmonic map f so that f(Bδ(x)) lies in an apartment Σ for a small δ >
0, the pull-back f∗dx gives rise to a locally defined harmonic one form for any linear
function x on X. To have a globally defined one, let x = x1 − x2 be a root vector
and observe that six, si ∈W, give a root system of the Lie algebra of G. Consider
an m-tuple of one forms (f∗(si(dx)))Σ := (f∗(s1(dx)), · · · , f∗(sm(dx))), where
m := |W | denotes the cardinality of W. At the intersection of two apartments
Σ1 and Σ2, two such ordered sets (f∗(si(dx))Σ1 and (f∗(si(dx)))Σ2 agree up to
the permutation given by an element of W. Hence we see that they glue together
to form a m-valued 1-form on M̃\S(f). From the regularity of f given by §6
of [GS], we may apply the Bochner formula of Siu (cf. [Siu2]) to conclude that,
(f∗(si(dx))⊗C)1,0)Σ, the (1, 0)-part of the complexification of the multivalues one
forms, can be regarded as multi-valued holomorphic one forms on M.
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Let σi be the elementary symmetric polynomials of degree i constructed from
(f∗(sj(dx)) ⊗ C)1,0, j = 1, . . . ,m so that σi ∈ H0(M,Si(T ∗M )) is independent of
Σ, where Si(T ∗M ) is the symmetric product of the holomorphic cotangent bundle.
The equation

xm − σ1x
m−1 + · · ·+ (−1)mσm = 0

then defines a m-fold cover Ñ of M̃ on the cotangent bundle of M̃. Since f is
π1(M)-equivariant, the covering descends to give a covering πo : N → M, which
is proper according to [Sim3]. On a Zariski open set U of M on which the image
of f does not hit the wall of a building, it is clear that N is a m-sheeted cover of
U . The roots of the above equation lead to m holomorphic 1-forms on π−1

o (U),
which can be extended to N from Lipschitz continuity of f.

The covering N by our construction may have several connected isomorphic
components, corresponding to a subgroup of the Weyl group W. Let N1 be a
connected component of N . Let M1 be a desingularization of N1 by Hironaka’s
resolution of singularities. In the following, we call M1 the spectral covering of M
for simplicity in terminology. The covering maps π : M1 → M and π̃ : M̃1 → M
are possibly ramified, with the covering group W 1 a subgroup of W. We still denote
ωi = (π̃∗f∗(si(dx))⊗C)1,0, j = 1, . . . ,m, which are also regarded as forms on M1.
From construction, the singularity of f ◦ π̃ can only occur at the ramification locus
of π̃ where ωi = ωj for some i 6= j, and the image in X has to lie in a wall of an
apartment in X.

We refer the reader to [Sim3], [JZ], or [Ka] for more discussions on the for-
mulations related to spectral coverings.

To illustrate the argument for integrality, let us assume first that rankkv (G) =
1. In this case, X is a tree. ω = (π∗f∗dx⊗C)1,0 becomes a holomorphic 1-form on
M1, where one uses Siu’s Bochner formula and the regularity of f mentioned above
to obtain the holomorphic form from a harmonic one. Hence the Albanese map
α : M1 → Alb(M1) is non-trivial. We may assume that |W 1| 6= 1 for otherwise
M = M1 supports non-trivial holomorphic one forms, contradicting h0(M) = 0.
In case of |W 1| = 2, we apply a result of Simpson [Sim1] on Lefschetz Theorem, to
reduce to the case where the image of α is a curve, and α descends to a non-trivial
map αo : M → Co, an orbicurve. This however contradicts the assumption that
ρ(M) = 1, where ρ is the Picard number of M , since a generic fiber of αo and
the pull-back of an integral (1, 1) class on Co give rise to two linear independent
classes in the Neron-Severi group. The proof for rankkv

(G) = 1 follows more or
less from an unpublished result of Simpson.

The case rankkv
(G) = 2 is similar, except that it is technically more difficult.

In this case, an apartment in X can be written as Σ = {(x1, x2, x3) ∈ R3|x1 +
x2 + x3 = 0} ∼= R2. The covering group W 1 of the spectral covering p : M1 → M
is a subgroup of W ∼= S3, the Weyl of the root system of X. The key point of
our argument is to show that π is unramified. Instead of the set of holomorphic
one forms ωi, i ∈ |W |, on M described earlier, sometimes it is more convenient
to consider holomorphic one forms κi = (π∗f∗dxi ⊗ C)1,0, i = 1, 2, 3, in terms of
the standard coordinates on an apartment described earlier. There is the obvious
relation

∑3
i=1 κi = 0. Let AlbW 1,{ωi}(M1) be the abelian variety defined as the
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quotient of the albanese variety by the W 1-invariant abelian subvariety annihilated
by ωi, i = 1, 2, 3, and α : M1 → AlbW 1,{ωi}(M1) be the corresponding albanese
mapping. For simplicity, we denote AlbW 1,{ωi}(M1) by Alb(M1) when there is no
danger of confusion.

We claim that the image of α has complex dimension 2. Otherwise α : M →
C := α(M1) is of complex dimension 1. Since α is W 1-invariant, we conclude that
h(F ) is contracted by α for each element h ∈ W 1 and each fiber F of α. Hence
the fibration α : M1 → C descends to a mapping αo : M → Co onto an orbicurve
Co. As argued earlier, this contradicts ρ(M) = 1. The claim is proved.

4.5 We would like to understand the ramification locus Rπ of the spectral covering.
Let Roπ be union of irreducible components in Rπ that are not contracted by π to
a point on M. Recall that any component of Roπ is defined by ωi = ωj for some
i 6= j. On the other hand, the singularity of the harmonic map f has image lying
in the walls of an apartment of the building. Writing ωi as κi1 − κi2 , it means
that only those pairs of (i, j) with xi1 − xi2 = xj1 − xj2 defining a wall in an
apartment as described earlier can be possible candidates in Roπ. Suppose we write
ω1 = κ1 − κ2, ω2 = κ1 − κ3, ω3 = κ2 − κ3 and ωi = −ωi−3 for i = 4, 5, 6. We can
check easily which pair of (i, j) can be ruled out as a candidate to be in Roπ. In
particular ω1 −ω3 = 0 cannot be a candidate since (x1 − x2)− (x2 − x3) = 0 does
not lie in the wall of an apartment of X, but ω1 − ω2 is a possible candidate since
(x1−x2)− (x1−x3) = 0 defines a wall on an apartment. Clearly the ramification
index of π at such a possible ramification divisor in Roπ is 2, corresponding to the
element (1)(23) ∈ S3 which fixes x1 but permutes x2 and x3. This is clearly the
case for all possible candidates in Roπ. We claim the following.

Lemma 2. π : M1 →M is unramified.

Proof The key point is to show that Roπ is empty. We argue by proof by con-
tradiction. Assume that D is an irreducible component in Roπ, the ramification
divisor of π. First we observe that D cannot be contracted by the Albanese map
α, for otherwise similar argument as in the last paragraph shows that its image
π(D) in M would be contracted by a mapping αo onto an orbifold of complex
dimension 2, which already supports an invariant Kähler form. Again, this would
contradicts the assumption that ρ(M) = 1. Hence α(D) is actually a divisor on
Alb(M1). From definition of the spectral mapping π : M1 →M, D corresponds to
the set on M1 on which two of those one forms ωi’s are identified. Hence without
loss of generality, we may assume that on D, ω1 = ω2 and hence α(D) lies in the
kernel of a non-trivial holomorphic one form of the type dz1−dz2 in terms of some
Euclidean coordinates on the universal covering Ã ∼= C2 of Alb(M1). Hence a lift
of α(D) to Ã is defined by a linear equation z1 − z2 = c for some constant c. The
projection of such a linear space in the abelian variety Alb(M1) can be a divisor
only if the divisor is an abelian subvariety. Hence α(D) is an Abelian subvariety
of Alb(M1).

Let C be a generic fiber of M1
α→ Alb(M1)

β→ Alb(M1)/α(D) = E. In the
next few paragraphs, we reach a contradiction by observing that on one hand,
p∗(π(C)), the Zariski closure of p∗(π(C)), is a non-trivial normal subgroup of the
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simple group G and hence is equal to G, and on the other hand f(π(C)) is a tree
lying in X with the stabilizer given by a proper subgroup of G.

Here are the details of the argument. Let h = β ◦ α : M1 → E. The set of
regular values of h is a Zariski open set Eo of E. Eo is an affine curve. Consider
the homotopy sequence of the fibration,

1 = π2(Eo)→ π1(h−1(a)) i1∗→ π1(h−1(Eo)))→ π1(Eo)→ · · · ,

where i1∗ is the homomorphism induced by the embedding. As π1(h−1(a)) is
a normal subgroup of π1(h−1(Eo)). h−1(Eo) is a Zariski-open subset of M1 and
the homomorphism i2∗ : π1(h−1(Eo)) → π1(M1) is surjective. Pulling back the
homomorphism ρ : π1(M)→ G(kp) by the projection π : M1 →M and restricting
to h−1(a), we get a homomorphism σ = ρ◦π∗ ◦ i2∗ ◦ i1∗ : π1(h−1(a))→ G(kp). The
Zariski closure σ(π1((h−1(a))) of the image of σ is a normal algebraic subgroup of

G. SinceG is simple, σπ1(h−1(a))) is either trivial orG. Let h̃−1(a) be the universal

covering of h−1(a). Let π̃ : h̃−1(a)→ M̃ be a lift of p|h−1(a) : h−1(a)→ M to the
corresponding universal covering spaces. The holomorphic one forms ωi on M1 are
constructed from (π∗f∗dxi ⊗ C)1,0.

From construction, it follows that locally around a regular point x ∈ M̃1 of
f where f(x) lies in the interior of a chamber in an apartment in X, dh is locally

the same as the real part of dα. Hence as α is unbounded on h̃−1(a), so is f ◦ π̃ on

h̃−1(a). As a fundamental domain of h−1(a) is compact, we conclude that σ and
hence the Zariski closure σ(π1(h−1(a))) of σ(π1(h−1(a))) in G is non-trivial. Since
σ(π1(h−1(a))) is a normal subgroup of G, a simple algebraic group, this implies
that σ(π1(h−1(a))) = G.

On the other hand, we are going to show in the following that for a generic
choice of a, the set σ(π1(h−1(a))) is a proper subgroup of G(kp).

We need the following sublemma. We say that a subset S of the building X
is convex if the line segment joining any two points x1, x2 ∈ S has to line in S.

Sublemma 1. The set f ◦ π̃(Ha) is convex.

Proof Suppose Σ is an apartment of the building such that f ◦ π̃(Ha) ∩ Σ is
unbounded. We need to show that the image f ◦ π̃(Ha) ∩ Σ is isometric to R ∩ Σ

as a set with the Euclidean metric, if R ∩ Σ 6= ∅, where Ha = h̃−1(a). The earlier
discussions show that it is true for each chamber in Σ. Without loss of generality,
we may assume that the image of the ramification divisor R by f in an apartment
Σ containing an open set of La is defined by x2 − x3 = 0, so that La ∩ C for
some chamber C in Σ is a line segment defined by x2 − x3 = ca, a constant.
Hence R is defined by ω2 − ω3 = 0 on M1. We are done if f |eπ(Ha) is non-singular,
which implies that f ◦ π̃(Ha) is isometric to R. f ◦ π̃|Ha

has singularity only along
another ramification divisor R1 on M̃1, which is the stabilizer of an element ι ∈W
of order 2 since its image lies in the wall of a building. Hence we may assume
that the image of R1 in Σ is defined by x1 − x2 = 0. As the local covering group
generated by ι switches dx1 and dx2, we observe that f ◦ π̃|Ha

is extended beyond
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f ◦ π̃|Ha
∩ f ◦ π̃(R1) in a unique way as a line segment in the adjacent chamber of

C in Σ defined by x1 − x3 = c′a for some constant c′a determined by continuity.
Let τ be the global one form on M1 annihilating R1, defined locally by

1/2(κ1 + κ2), where κi = (p∗f∗(dxi) ⊗ C)1,0. τ is the pull back of a holomor-
phic one form τo on E := A/ ker(τ) by αo : M1

α→ A
q→ E. Let η = α∗o<(τo). Fix

zo ∈ Ha so that π̃(zo) is a regular point of f. Define Φ : M̃1 → R by Φ(z) =
∫ z
zo
η.

We claim that for each apartment Σ for which La ∩ Σ is unbounded, there
is a covering map Ψ : R = Φ(M̃1) → La ∩ Σ which is a local isometry, so that
Ψ ◦ Φ(z) = f ◦ π̃(z). Suppose Φ(z1) = Φ(z2). Join zi to zo by a unique geodesic
γi on Ha for i = 1, 2. It follows that for all t on γ1, there exists w(t) ∈ γ2 varying
continuously with respect to t such that Φ(w(t)) = Φ(t) ∈ R. It suffices for us to
show that f◦π̃(t) = f◦π̃(w(t)) for all t ∈ γ1 by continuity argument. This is clearly
so for t in a small neighborhood of zo or a regular point of f from definition of τ .
Hence we only need to make sure that the argument can be extended beyond the
singularity set S of f. Observe that the spectral covering is defined equivariantly
on M̃ and it suffices for us to discuss on M1. As formulated in §2 of the paper,
M1 is the desingularization of M1o, a connected component of M ′1 defined by the
single equation

∑`
i=0 αi(x)tl−i = 0 in T ∗M, where l = 6. Let p : M̃1 → M1 be

the universal covering. Then αo(p(t)) = αo(p(w(t))) = Q ∈ αo(S). It follows that
t, w(t) ∈ α−1(EQ), where EQ := q−1(Q) is connected in A. Here EQ ∩α(R23) = ∅
from construction, where R23 is defined by κ2−κ3 = 0 on M1. The Albanese map
α : M1 → A descends to αo : M1o → A, since from definition it contracts the
fibers of the desingularization map M1 →M1o. For the claim, it suffices for us to
make the observation, to be proved below, that α−1

o (EQ) is irreducible and is a
component of the ramification divisor containing both p(t), and p(w(t)). Let Ut
and Uw(t) be neighborhoods of t and w(t) on Ha. From the discussions in the first
paragraph above, the extension of f ◦ π̃|U(t) and f ◦ π̃|U(w(t)) through f ◦ π̃(t) =
f ◦ π̃(w(t)) is uniquely determined by the order two stabilizer of α−1(q−1(Q)) in
M1. The claim follows from continuity.

To explain the observation, suppose there are two different components D1o

and D2o of α−1
o (EQ), in which D1o is a ramification divisor of π and is defined

by κ1 − κ2 = 0. M1o does not support any divisor with negative self-intersection
contracted by αo. In fact, an irreducible divisor D′ of M1 contracted by α to the
abelian surface α(M1) has to be a rational curve. As M is hyperbolic, π(D′) is
a single point. Since the spectral covering M1o → M is (everywhere) finite, It
follows that the image of D′ in M1o is finite as well. With no curves of negative
self-intersection, by writing α∗EQ = D1o + D2o + R′, where R′ is the rest of the
components in α∗EQ, it follows from EQ ·EQ = 0 that actually D1o ·D2o = 0 and
hence D1o ∩D2o = ∅. On the other hand, their images as effective divisors on M
intersect at least at a point P ∈M, which follows from the fact that the images of
D1o and D2o on the quotient building X/ρ(Γ) by our mapping are the same as a
set, or from the assumption that the Picard number of M is one. Hence there are at
least two distinct points X1 and X2 at π−1(P )∩(D1o∪D2o). Since W = S3 acts on
M ′1, locally above a point y ∈ π(D1o) on M1, there are components of ramification
divisors ε1(D1o) = R23 and ε2(D1o) = R13 given by κ3 − κ2 = 0 and κ1 − κ3 = 0,
where εi = (i3) ∈ S3, i = 1, 2. If D1o meets neither ε1(D1o) nor ε2(D1o), α−1(EQ)
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is not meeting any ramification divisor and hence is regular everywhere, which
implies that image f(π(α−1(EQ′))) for a point Q′ near Q is a straight line in Σ
and we are done. Hence assume that Do meets, say ε1(D1o) on M ′1 at X1. As
ω1 = ω2 = ω3 at X1 from definition, ε2(Do) passes through X1 as well. It follows
that for a generic point X ′ in a small neighborhood U of X in M1, the cardinality
of U ∩ π−1(π(X ′)) is at least 6 and hence U ∩ π−1(π(X ′)) = π−1(π(X ′)). We
conclude that there cannot be another divisor D2o passing through another point
in X2 ∈ (π−1(P )− {X1}) ⊂ M1. This also follows from the fact that the orbit of
X1 by S3 is just X1 itself, implying that {X1} = π−1(P ) as a set.

Hence the claim is valid. From the claim, a connected unbounded component
of La∩Σ is covered isometrically by R. Recall also that Ha∩R = ∅ from definition,
since their image in A are disjoint fibers of q : A→ E. For a connected component
R̃ of the pull back of R to M̃1, it follows that (La ∩ σ(π∗(π1(M1)))f(R̃)) ∩Σ = ∅,
here σ(π∗(π1(M1)))f(R̃) ∩ Σ forms an infinite number of equally spaced parallel
straight lines given by x2 = x3 + k for different integers k when we represent Σ
as x1 + x2 + x3 = 0 in R3. Hence the connected set La lies in a strip confined
by two such parallel lines as above. From the proof of the claim, La can bend
only at intersection with some lines of form x1 = x2 + c or x1 = x3 + d for some
integers c and d in a unique way as described earlier. Recall that the stabilizer of
G acts on Σ by the affine Weyl group W := Z2 o S3. Bending along x1 = x2 + c
or x1 = x3 + d correspond to reflections (12), (23) ∈ S3 respectively. The fact
that no bending occurs along any line x2 = x3 + e for some integer e means
that σ(π1(h−1(a))) ∩ W does not contain element of type (a, (13)) ∈ Z2 o S3.
Hence only one of (12) of (23) may occur as element h for some element (b, h) ∈
(Z2 o S3) ∩ σ(π1(h−1(a))), for otherwise their product gives rise to some element
(b′, (13)) ∈ (Z2 oS3)∩σ(π1(h−1(a))). Suppose (b, (12)) does appear as an element
in (Z2oS3)∩σ(π1(h−1(a))). Then for all elements (b, h) ∈ (Z2oS3)∩σ(π1(h−1(a))),
h can only take the value of (1) or (12).We now show that the latter cannot happen.
Suppose on the contrary that (b1, (12)) belongs to (Z2 o S3) ∩ σ(π1(h−1(a))) for
some b1 ∈ Z2. It implies that a bend of la does occur at some x1 = x2+c. By taking
composition with another element in the infinite group (Z2 o S3)∩ σ(π1(h−1(a)))
if necessary, we may assume that a1 is non-trivial. Taking powers of such elements
shows that La, which is connected and unbounded in Σ, cannot be confined to a
strip between x2 = x3 + k1 and x2 = x3 + k2 for some fixed integers k1 and k2,
by considering a sequence of line segments in the apartment which can only be
parallel either to x2 = x3 or x1 = x2 and bend only at intersection with lines of
form x1 = x2 + ci, ci ∈ Z in the way determined by the claim. Hence h = 1 and
σ(π1(h−1(a))) ∩W can only act by translation, corresponding to the first factor
in Z2 o S3. Since La is isometric to R from the claim, it means that La sits as a
straight line in Σ. This concludes the proof of the Sublemma.

Let us now continue with the proof that the stabilizer of σ(π1(h−1(a))) is a
proper subgroup of G(kp). Let us now fix such a generic value a. On each fixed
apartment, clearly we may assume that c = 0 after moving by some isometry on
the apartment. From the second remark above, it follows that the isometry can
be extended to a global isometry on X so that c = 0 for all apartments. As a
result, f ◦ π(h−1(a)) ∩ Σ is contained in a linear subspace ∆ of codimension one
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defined on Σ by xi − xj = 0 on each apartment, where xi, xj are consistently
defined throughout X and is independent of the apartments. For our building
X associated to G(kp) = SL(3, kp), vertices of an apartment Σ correspond to
equivalence classes [L] of lattices of the form

L =< pr1e1, p
r2e2, p

r3e3 >Okp

with integer values ri in a 3 dimensional vector space V =< e1, e2, e3 >. Without
loss of generality, we assume that ωo = ω1−ω3 and the image f ◦π(h−1(a))∩Σ is

described by x1−x3 = 0. Since xi = ri−
P3

j=1 rj

3 , this corresponds to r1 = r3 in all
the lattices corresponding to the image f ◦ π(h−1(a)) ∩Σ. Consider a two dimen-
sional vector subspace V ′Σ =< e1 + e3, e2 > of V . The set of lattices in V ′Σ with
e′1 = e1 +e3 and e′2 = e2 as a basis contributes to an apartment Σ′ of a rank 2 sim-
plicial complex X ′Σ associated to V ′Σ. From the earlier remarks, V ′Σ1

= V ′Σ2
for two

apartments Σ1, Σ2 sharing a common chamber and hence that V ′ = V ′Σ is inde-
pendent of Σ for which f1(M1)∩Σ contains at least a chamber. In this way, V ′ is a
well-defined two dimensional subspace of V since it is independent of the chambers
chosen. The image of f1 is a subset on which G′(kp) = SL(V ′, kp) ∼= SL(2, kp)
as a subgroup of G(kp) = SL(V, kp) ∼= SL(3, kp) acts. Hence the stabilizer of
σ(π1(h−1(a))) lies in G′(kp), a proper subgroup of G(kp). This contradicts the
fact that G involved is absolutely simple as mentioned earlier. Hence Roπ is empty.

Since Roπ = ∅, all codimension one components in Rπ are contracted by π.
It means that π̃o : N → M in §4.4 is unramified except at a finite number of
points. Since the ramification divisor of π̃o is obtained by identifying two roots of
the equation

∑m
i=0(−1)iσixm−i = 0 in the cotangent bundle, its image in M̃ is the

zero set of the discriminant of the above polynomial on M . Hence the ramification
locus of π̃o has to be of codimension 1 if it is non-trivial. This implies that π is
an unramified covering. This completes the proof of the lemma.

4.6

Lemma 3. There is a real two torus T 2 and a real analytic mapping of q :
Alb(M1) → T 2, so that the lift of q to the universal covering q̃ : C2 → R2 is
the projection into the real coordinates.

Proof The lift of the Albanese map to the universal covering of M̃1 is given by
α̃ : M̃1 → C2. Consider the mapping h̃R : M̃1 → R2 defined by

h̃R(z) = (
∫ z

zo

(f ◦ π)∗dx1,

∫ z

zo

(f ◦ π)∗dx2,

∫ z

zo

(f ◦ π)∗dx3)

∈ {(w1, w2, w3) ∈ R3|
3∑
i=1

wi = 0} ∼= R2,

where f is the harmonic map into the building, and xi’s are the affine functions
in defining an apartment of X as discussed in §4.4. Clearly h̃R(z) is just the
projection of α̃ onto the real part of C2. We need to show that the projection of
the lattice points involved is discrete on R2.
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From construction, at a regular point π(z) of the harmonic map f so that
f(π(z)) lies on an apartment Σ ⊂ X, df is the same as dh̃R on identifying Σ
with R isometrically. When Σ is equipped with the Euclidean metric, the stabi-
lizer of Σ in G(kv) acts discretely on Σ, since the action moves any vertex of Σ
into another vertex. Here we recall that the topology is with respect to the stan-
dard metric on X which on each apartment is isometric to R2. We conclude that
(h̃R)∗π1(M1)(h̃R(z)) = h̃R(π1(M1)z) is a discrete set of points on the h̃R(M̃1).

Suppose z ∈ ◦f−1S, where S is the set of singular points of the harmonic map
f̃1. After translating by some element w ∈ h̃R(M̃1), we may assume that w+ h̃R(z)
lies in the image h̃R(zo) of some regular point zo of f̃1. Then (h̃R)∗π1(M1)(w +
h̃R(z)) is discrete on h̃R(M̃1) ∼= R2 from the discussions in the last paragraph.
Clearly it also means that (h̃R)∗π1(M1)(h̃R(z)) is discrete since (h̃R)∗π1(M1) by
definition of the Albanese map is abelian and commutes with the translations.
Hence h̃R(π1(M1)z) is discrete in R2.

It follows that h̃R induces a pluriharmonic map of real rank 2, hR : M1 →
T = R2/(h̃R)∗(π1(M1)), a real 2-torus. This concludes the proof for the lemma.

We can now finish the proof for integrality of the lattice. Let R be the
ramification divisor of α and B = α(R). B is a complex analytic subvariety of
Alb(M1). For a generic p, q−1(p) ∩ B is an isolated set of points on the two
real dimensional set q−1(p) ∼= T 2. On the real two subtorus torus q−1(p) of
Alb(M1), we may choose standard curves γ and η representing H1(q−1(p)), so
that γ and η and −γ − η meet pairwise at a single point. By moving the curves
slightly if necessary, we may choose such three curves to be avoiding B, so that
α : α−1(D) → D is unramified, where D = γ ∪ η ∪ (−γ − η). A connected
component of α−1(D) consists of the three components, which we name as γ1, τγ1

and τ2γ1 under deck transformation corresponding to A3 of S3.
Let γo = π(γ1). Now from definition, π : α−1(D) → γo is an unramified

covering as π is unramified, and hence α−1D is a smooth (one dimenisonal real)
manifold. On the other hand, α−1D contains non-empty singular set since α :
α−1D → D is unramified and D as the union of the three curves has cross-overs
at the pairwise intersections of the three curves γ, η and −γ − η. We reach a
contradiction.

We remark that the proof given here does not need the assumption that the
Picard number is 1 in an essential way.

4.7 Step B: Archimedean superrigidity

From Step A, we know that there is totally real number field k and an
Archimedean place vo such that G(kvo) ∼= PU(2, 1) and Π ∩ G(Ok) has finite
index in Π, where Π is the fundamental group of the given fake projective plane.

Let vi, i = 2, . . . , n be the other Archimedean places of k so that we may
consider Rk/Q(G)(R) = G(kvo

) × G(kv2) × · · ·G(kvn
). From the type of Lie

algebra under consideration, we conclude that G(kvi
) ∼= PGL(3,R), PGL(3,C)

or PU(p, 3 − p) for p = 0, 1 or 2. Note that Π := π1(M) is the fundamental
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group of a fake projective plane and hence is a Kähler group. Let us consider
ρ : Π→ G = G(kvo

) as the identity embedding and identify Π with ρ(Γ). The ho-
momorphism ρv : Π→ G(kv) induced by another Archimedean place is a faithful
rigid representation and is Zariski dense. From Lemma 4.5 and the list of Hodge
groups on page 50 of Simpson [Sim2], we know that PSL(3,R) and PSL(3,C)
cannot be the Zariski closure of the image of a faithful rigid representation from
the fundamental group of a Kähler manifold. Hence we are reduced to the cases
that G(kvi

)(R) ∼= PU(3, 0) or PU(2, 1).
Let us analyze the situation that one of them, say, G2 := G(kv2)(R) is ∼=

PU(2, 1). Let K2 be a maximal compact subgroup of G2 and M̃2 = G2/K2. M̃2

is naturally equipped with an invariant complex structure and is biholomorphic
to B2

C. There exists a Π-equivariant holomorphic map Φ : M̃ → M̃2 obtained
as follows. Lemma 4.5 of [Sim2] implies that ρv has to come from a complex
variation of Hodge structure, which means that ρv induces an equivariant mapping
Φ : M̃ → M̃2 such that Φ can be lifted to a holomorphic map M̃ to a Griffiths’
Period domain Ñ above M̃2

∼= B2
C. Since B2

C is the only Griffiths’ Period domain
above B2

C, we conclude that Φ is holomorphic. Alternatively, existence of such
a holomorphic map also follows from existence of harmonic maps (cf. [ES], [Co]
and [Lab]), and holomorphicity of harmonic maps (cf. [Siu2] and §7 of [CT])
into complex hyperbolic spaces. From an observation of Kollár ([Ko2], Lemma
8.3), KfM2

= 3H modulo torsion as Πσ-equivariant bundles. On the other hand,
as explained earlier, KM = 3H modulo torsion for some line bundle H, where
H · H = 1. Hence modulo torsion, H can be considered as a generator of the
Neron-Severi group modulo torsion. From Hurwitz Formula, we know that KfM =
nΦ∗KfM2

+ R regarded as equivariant line bundles, where n is the degree of the
mapping and R is the ramification divisor. Since KM is known to be three times a
generator of the Neron-Severi group modulo torsion in the case of fake projective
planes as mentioned above, it follows that ramification divisor R = 0 and n = 1.
Hence Φ is a biholomorphism. The invariant metric on B2

C is up to a constant the
Bergman metric, which is a biholomorphic invariant. This implies that Φ induces
an isometry from M̃ to M̃2. As Go := G(kvo

)(R) and G2 are the automorphism
groups of M̃ and M̃2 as Riemannian manifolds equipped with the Bergman metrics
respectively, we conclude that Φ induces an isomorphism between the two real Lie
groups Go and G2.

Hence we conclude that for i > 2, either G(kvi)(R) ∼= PU(3, 0) and is hence
compact, or ρv induces an isomorphism between Go and G(kvi). From Step A, we
also know that ρ(Π) is integral. According to Lemma 6.1.6 and 6.1.7 and their
proofs in [Zimmer], we conclude that G can be defined over a real number field
k so that Π ⊂ Gk and Π is integral. With a real number field k, the properties
of ρv proved above implies that ρv is standard in the sense of Appendices C 3.5
of [Mag] or §22 of [Mo2]. Applying a criterion of arithmeticity for lattices in the
same references, see also Cor 12.2.8 of [DM], we conclude that Π is arithmetic.

This concludes the proof of Step B.

4.8 Theorem 7 shows that the fundamental group of any fake projective plane is an
arithmetic subgroup of PU(2, 1). Its inverse image in SU(2, 1) (under the natural
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surjective homomorphism ϕ : SU(2, 1) → PU(2, 1)) is an arithmetic subgroup
of SU(2, 1). Note that SU(2, 1) is a group of type 2A2 (Tits [Ti1]). Given an
arithmetic subgroup Γ of SU(2, 1), let k be the associated number field and G the
associated k-form of SU(2, 1). Let ` be the quadratic extension of k over which
G is an inner form. Then k is a totally real number field of degree d and ` a
totally complex quadratic extension of k. G can be described as follows. There is
a division algebra D with center ` and of degree s :=

√
[D : `], s|3, D given with

an involution σ of the second kind such that k = {x ∈ ` |x = σ(x)}, and there is
a non-degenerate hermitian form h on D3/s defined in terms of the involution σ
such that G is the special unitary group SU(h) of h, and such that for a real place,
say vo, of k, G(kvo) ∼= SU(2, 1), and for all archimedean places v 6= vo, G(kv) is
isomorphic to the compact Lie group SU(3). The group Γ is commensurable with
G(Ok).

For convenience of notation, we call Γ an arithmetic lattice of first type (re-
spectively second type) if D = ` (respectively [D : `] > 1) in the above formulation.

Theorem 7, the classification above, and the fact that the Euler-Poincaré
characteristic of a fake projective plane is 3 point us to a classification of fake
projective plane by listing all possible k, `,D and h. This is possible due to a
fundamental result of Prasad [Pra] giving the covolume of any arithmetic subgroup.
In the next section, we will introduce the covolume formula of Prasad.

5 Covolume formula of Prasad

5.1 The search for a precise covolume formula for an arithmetic group has a long
history. For lattices beyond those of PGL(2,R), it can be traced back to the work
of Siegel. In [Pra], G. Prasad gave a very general volume formula which works for
all principal arithmetic lattices in any semi-simple algebraic group. The statement
and proof of the covolume formula relies deeply on the theory of algebraic groups
and the Bruhat-Tits Theory. In the following we only go through the formulation
of the formula needed for our later exposition. We refer the reader to the original
paper of Prasad [Pra] for the proof. An expository account of the covolume formula
can be found in the Bourbaki Seminar report of Rémy [Re].

5.2 In this section, we fix some notation to be used in later discussions. We refer
the reader to [Pra] and [Ti2] for more elaborate discussion. Let k be a number
field. Denote by Dk the absolute value of the discriminant of k. Let V∞ and Vf
be the set of archimedean and non-archimedean places of k respectively. For each
v ∈ V = V∞ ∪ Vf , denote by | · |v the absolute value associated to v and kv the
completion of k with respect to v. For v ∈ Vf , denote by Ov the ring of integers
and fv the (finite) residue field of kv. Let qv be the order of fv. We also denote by
A = A(k) the ring of adèles of k.

Let G be a simply connected, absolutely almost simple algebraic group. For
v ∈ Vf , let Xv be the Bruhat-Tits building of G(kv). An Iwahori subgroup of
G(kv) is the subgroup fixing a chamber in Xv. A parahoric subgroup of G(kv) is
the stabilizer of a simplex of Xv. A parahoric subgroup is a compact subgroup of
G(kv) containing an Iwahori subgroup of Xv. A vertex x of Xv is called special if
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the affine Weyl group is a semidirect product of the translation subgroup by the
isotropy group of x. A parahoric subgroup P is special if it fixes a special vertex
of Xv. Let k̂v be the maximal unramified extension of kv and X̂v the Bruhat-
Tits building associated to G(k̂v). Xv can be identified with the fixed point set of
Gal(k̂v/kv) in X̂v. If G splits over k̂v, and is quasi-split over kv, a special vertex
of X̂v lying in Xv is called hyperspecial, and the corresponding isotropy group is
called a hyperspecial parahoric subgroup.

Let P = (Pv)v∈Vf
be a collection of parahoric subgroups Pv for each finite

place v ∈ Vf . P is called coherent if
∏
v∈V∞ G(kv) ·

∏
v∈Vf

Pv is an open subgroup
of the adèle group G(A). Let P be a coherent collection of parahoric subgroups.
Let S be finite set of primes containing V∞. We assume that G(kv) is non-compact
(equivalently, G is isotropic over v) for some v ∈ V∞. Let GS =

∏
v∈S G(kv) and

Λ be the natural projection of G(k) ∩
∏
v∈S Pv in GS . Λ is then an arithmetic

subgroup of G and is called a principal S-arithmetic determined by P.

5.3 We can now state the covolume formula of Prasad in the case of SU(2, 1). In
this case, following the discussions in §4.8, k is a totally real number field and `
is a totally complex quadratic extension of k. Denote d = [k : Q]. G is an outer
anisotropic k-form of SL3. Let Λ be a principal arithmetic subgroup. The formula
of Prasad is given by

µ(G(kvo
)/Λ) = D4

k(D`/D
2
k)5/2(16π5)−dE ;

where E =
∏
v∈Vf

e(Pv), and the value of e(Pv) is given in §2.4 of [PY1].
It turns out that

E = ζk(2)L`|k(3)
∏
v∈T

e′(Pv),

where T is the set of places v ∈ Vf for which either Pv is not maximal, or Pv is
not hyperspecial and v is not ramified in `. The values of e′(Pv) are given in §2.5
of [PY1]. Note that for all v, e′(Pv) is an integer.

In conclusion,

µ(G(kvo)/Λ) = (D5/2
` /Dk)(16π5)−dζk(2)L`|k(3)

∏
v∈T

e′(Pv) (5.1)

= 2−2dζk(−1)L`|k(−2)
∏
v∈T

e′(Pv), (5.2)

where we used the functional equations for the Dedekind zeta function and the
Dirichlet L-function.

6 Formulation of proof

6.1 The purpose of this section is to explain the idea of proof of the main result
of [PY1]. The strategy used is as follows. Let M be a fake projective plane, with
fundamental group given by a torsion-free cocompact lattice Π ⊂ PU(2, 1), the
automorphism group of B2

C. Since Π is arithmetic according to Theorem 7, we can
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apply Prasad’s Covolume Formula in Theorem 8 and the constraint χ(M) = 3 to
restrict the possibilities for k, ` andD appearing in §4.8 in the description of Π as an
arithmetic lattice. Once we reduce the list of all possible (k, `,D) to a sufficiently
small one, we either construct an example in each class or use more refine method
to eliminate it. The actual proof makes use of techniques in analytic number
theory for the estimates, and Bruhat-Tits theory for the construction. Tables of
number fields of low degree and relatively small discriminant, and computations
with the help of computers are also employed.

6.2 We now go deeper into the details. Since PU(2, 1) is the quotient of SU(2, 1) by
its center, which is the cyclic group of order 3, we have the following commutative
diagram.

0→ Z3 → G(kσo) = SU(2, 1)
ϕ→ PU(2, 1)

∪ ∪
0→ Z3 → Π̃ = ϕ−1(Π) → Π = π1(M)

The group Π is arithmetic. Let k be the number field and G be the k-form
of SU(2, 1) associated with Π in §4.8. G is a simple simply connected algebraic
k-group such that for a real place, say vo, of k, G(kvo) ∼= SU(2, 1), and for all
archimedean places v 6= vo, G(kv) is isomorphic to the compact Lie group SU(3).
Π̃ := ϕ−1(Π) is then an arithmetic subgroup of G(kvo

).
Let Vf be the set of nonarchimedean places of k. For all v ∈ Vf , we fix a

parahoric subgroup Pv of G(kv) which is minimal among the parahoric subgroups
of G(kv) normalized by Π.

Let Λ := G(k)∩
∏
v∈Vf

Pv. Then Λ is a principal arithmetic subgroup ([Pra],

3.4) which is normalized by Π, and therefore also by Π̃. Let Γ be the normalizer
of Λ in G(kvo), and Γ be its image in G(kvo

). Then Γ ⊂ G(k) ([BP], 1.2). As the
normalizer of Λ in G(k) equals Λ, Γ ∩G(k) = Λ.

Since the Euler-Poincaré characteristic χ(Π) = 3, we conclude that the orb-
ifold Euler-Poincaré characteristic χ(Π̃) of Π̃ equals 1. It follows that the orbifold
Euler-Poincaré characteristic χ(Γ) of Γ is a reciprocal integer

We observe that

χ(Γ) = 3µ(G(kvo)/Γ) =
3µ(G(kvo)/Λ)

[Γ : Λ]
, (6.1)

where the first equality was explained in §4 of [BP], following from Hirzebruch
Proportionality Principle and the fact that the Euler-Poincaré characteristic of
P 2

C, the compact dual of the symmetric space B2
C, is 3. Following results of Borel-

Prasad in [BP], the factor [Γ : Λ] was bounded from above by an expression ([PY1],
§2.3) involving h`,3, where h`,3 is the order of the subgroup of the class group of
` consisting of elements of order dividing 3. Hence 0 < h`,3 6 h`, where h` is the
class number of `. Together with the explicit factors in the expression of e′v in §2.5
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of [PY1], we come up with

1
3

> µ(G(kv0)/Γ)

=
D

5/2
` ζk(2)L`|k(3)

(16π5)d[Γ : Λ]Dk

∏
v∈T

e′(Pv) (6.2)

>
D

5/2
` ζk(2)L`|k(3)

3(16π5)dh`,3Dk

∏
v∈T

e′′(Pv),

where e′′(Pv) > 1 and e′(Pv) ∈ Z are given explicitly as follow, see [PY1], §2.5.
(i) e′′(Pv) = e′(Pv)

3 = (q2v+qv+1)(qv+1)
3 , if v splits in `, G splits at v and Pv is

Iwahori.
(ii) e′′(Pv) = e′(Pv) = (q2

v + qv + 1), if v splits in `, G splits at v and Pv not
Iwahori.
(iii) e′′(Pv) = e′(Pv)

3 = (qv−1)2(qv+1)
3 , if v splits in ` and G is anisotropic at v.

(iv) e′′(Pv) = e′(Pv) = (q3
v + 1), if v is inert in ` and Pv is Iwahori.

(v) e′′(Pv) = e′(Pv) = (q2
v − qv + 1), if v is inert in ` and Pv is a non-hyperspecial

maximal parahoric.

6.3 The strategy in [PY1] consists of five steps.
(A). We limit k for fake projective plane by (5.1), (6.2) using estimates from
analytic number theory. and the fact that χ(Γ) 6 1.
(B). For each k left in step 1, we list all possible `.
(C). For each of those possible (k, `) left behind, we use the fact that χ(Γ) is a
reciprocal integer and hence that the numerator of 2−2dζk(−1)L`|k(−2) is a power
of 3 ([PY1], Proposition 2.12).
(D). We use local Euler factor E ′ to narrow down the possibilities of D.
(E). For each of the few remaining cases of (k, `,D), we either construct examples
or make use of more specific number theoretic or geometric information to rule
out the case.

In the following, we will elaborate on each of the above steps.

6.4 Step A We are going to apply estimates in (6.2). To obtain an estimate on
h`,3(6 h`), we use the following estimates of Brauer-Siegel. For all δ > 0,

h`R` 6 δ(1 + δ)w`Γ(1 + δ)d(
D`

(2π)2d
)(1+δ)/2ζ`(1 + δ), (6.3)

where R` is the regulator of ` and w` is the number of roots of unity in `. These two
number theoretic invariants can however be estimated by the results of Zimmert
[Zimmert] and its variant due to Slavutskii [Sl],

Zimmert: R` > 0.02w`e0.1d (6.4)
Slavutskii: R` > 0.00136w`e0.57d. (6.5)
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Substituting (6.3)(6.5) into (6.2),

D
1/d
k 6 D

1/2d
` < f(δ, d)

:=
[δ(1 + δ)

0.00136
]1/(3−δ)d · [23−δπ4−δΓ(1 + δ)ζ(1 + δ)2e−0.57

]1/(3−δ)
Here we used the fact that ζ`(1 + δ) 6 ζ(1 + δ)2d. The first key fact is that f(δ, d)
is decreasing in d.

On the other hand, we let Mr(d) := minK D
1/d
K , over all totally real number

fields K of degree d. The precise values of Mr(d) is known only for small d listed
below.

d 2 3 4 5 6 7 8
M(d)d 5 49 725 14641 300125 20134393 282300416

It is useful to have a good lower bound for the root discriminant Mr(d) in terms
of the degree d = [k : Q]. Using geometry of numbers, Minkowski (cf. [L]) proved
that Mr(d) > 1 for each d, and gave the first non-trivial estimates that Mr(d) >√

π
4 (d2/(d!)2/d. From analytic properties of the Dedekind zeta function, Stark

observed that Dk can be related to the zeroes of ζk. In this direction, Odlyzko [O]
obtained the following interesting lower bound of Mr(d).

Let b(x) = [5 + (12x2 − 5)1/2]/6. Define

g(x, d) = exp
[

log(π)− Γ′

Γ (x/2) + (2x−1)
4

(
Γ′

Γ

)′(b(x)/2)

+ 1
d{−

2
x −

2
x−1 −

2x−1
b(x)2

− 2x−1
(b(x)−1)2 }

]
.

Let α =
√

14−
√

128
34 . Then from [O], M(d) > g(x, d) provided that x > 1 and

b(x) > 1 + αx.
Let xo be the positive root of the quadratic equation b(x) = 1 + αx.

xo = α+
√

2−5α2

2(1−3α2) = 1.01....
Define N(d) = lim supx>xo

g(x, d). Then the second key fact is that for each d > 1,
Mr(d) > N(d) and N(d) is an increasing function of d.

From the first key fact, for d > 20,

Mr(d) 6 f(0.9, 20) < 16.38.

From the second key fact,

Mr(d) > N(20) > g(1.43, 20) > 16.4

We reach a contradiction. Hence d 6 20.

Refinement of the above estimates allows us to eliminate the cases 15 6
d 6 19 as well. The argument becomes more sophisticated as we decrease the
degree d of k. Nevertheless, using the theory of Hilbert class fields (i.e. maximal
unramified abelian extension of `) and the best estimates of D1/2d

` available for
complex multiplication fields, we eliminate the cases of 8 6 d 6 14.

The cases for 2 6 d 6 7 are more delicate and involved. We devise an
iterative scheme to decrease the upper bound for discriminant D` systematically.
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There are several ingredients used. First of all we use more precise estimates for
R` and w` for number fields of small degrees and small discriminants. Part of the
information is provided by Friedman [F]. Then we need to have sharper estimates
for M(d) provided by the table in [Mat] and [O2]. Together with the use of Hilbert
Class Fields, this allows us to reduce possible candidates to those with sufficiently
small discriminants Dk and D`. When the size of the discriminants of the number
fields are small enough to be listed in the tables of number fields in [1], we can read
off the value of the class number h`, apply equation (6.2) directly and in turn get
a better bound on discriminant bound. Iteration of the above arguments allows
us to eliminate the cases of d = 5, 6, 7.

In the case of 2 6 d 6 4, the above procedure allows us to show that the pair
of number fields involved satisfy D1/d

k 6 D
1/2d
` 6 10, D`/D

2
k 6 104 and h`,3 6 3.

At this step, Gunter Malle [Mal] provided us the list of all number fields (k, l)
satisfying the above constraints. There are altogether 40 such pairs, labelled as
Ci, i = 1, · · · , 40 as in [PY1], §8.2.

As a brief summary, apart from the case of k = Q, there are only forty pairs
of (k, `) available to be defining number fields of the arithmetic lattice associated
to a fake projective plane.

6.5 Step B Let us consider the case of k = Q. In this case Dk = DQ = 1.
Estimates (6.2), (6.3) and (6.4) leads to

D` < (2π)2
(52 · δ(1 + δ) · Γ(1 + δ)ζ(1 + δ)2

e0.1ζ(2)1/2

)2/(4−δ)
. (6.6)

Choosing δ = 0.34, we find that D` 6 460.
From the table of imaginary quadratic number fields of discriminant bounded

by 500 as in [BS], we know that the class number h` 6 21, and hence, h`,3 6
n`,3 6 9. The precise bound of h`,3 allows us to use (6.2) directly to yield D` 6 63.
Iteration of the argument leads to ` = Q(

√
−a), where a is one of the following

eleven integers, 1, 2, 3, 5, 6, 7, 11, 15, 19, 23, 31.

6.6 Step C At this point, we have the forty pairs of (k, `) in Ci, i = 1, . . . , 40
given at the end of Step A and the eleven pairs of (Q,Q(

√
−a)) given at the end of

Step B as possible candidates for the defining number fields for the fundamental
group of a fake projective plane. In this step, we use the constraint that µ :=
2−2dζk(−1)L`|k(−2) is a power of 3 to eliminate some more cases from the above
lists.

To compute the values of µ, starting from a classical result of Siegel [Sie], we
know that both ζk(−1) and L`|k(−2) are rational numbers in Q. For our purpose,
we need to know the precise values of ζk(−1) and L`|k(−2). Explicit formula for
computation of values of ζk(−1) were already available in Siegel [Sie] in terms of
coefficients of appropriate Eisenstein series. For L`|k(−2), explicit formulae were
available in Tsuyumine [Ts1]. The formula are involved. Nowadays one can use
software such as Magma or PARI/GP to compute the zeta and L values to high
order of accuracy. On the other hand, the theoretical formula of [Sie] allows one to
bound the size of the denominator of the zeta values. Similarly, Tsuyumine [Ts2]
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explained to us that the denominators of all the L values we needed associated
to the above pairs of (k, `) can be found explicitly using [Ts1]. These theoretical
results allow us to conclude that the zeta and L values we obtained from Magma
with accuracy of forty digits are actually the precise values. Here is the list of µ
for k = Q.

a 1 2 3 5 6 7 11 15 19 23 31
µ 1

96
1
16

1
216

5
8

23
24

1
21

1
8

1
3

11
24 1 2

Hence we conclude from the requirement that the numerator of µ is a power
of 3 that for (k, `) = (Q,Q(

√
−a), a can only take the values of 1, 2, 3, 7, 11, 15 and

23.

In the case of [k : Q] > 1, we refer the readers to [PY1] §8.2 for the values of
ζk(−1) and L`|k(−2) for Ci, i = 1, . . . , 40 mentioned above. In particular, it shows
that only fifteen of those Ci are possible candidates for defining number fields for
Λ associated to a fake projective plane ([PY1] §8.4)

6.7 Step D Let us again illustrate the argument for the cases of k = Q among
the lists of examples at the beginning of Step C. We are going to make use of the
local Euler factor in the volume formula.

The reason behind Proposition 2.12 of [PY1] is that the numerators of the ex-
pression µ

∏
p∈T e

′(Pv) is a power of 3. Let To = {v ∈ T : G is anisotropic over kv}.
Every prime v ∈ To splits in ` as mentioned in [PY1] §2.2. Note from Godement
Criterion and compactness of a fake projective plane, we know that D 6= ` (see §4.1
of [PY1]). Hence To is non-empty. Since we are considering k = Q, we may just
write v as p for some rational prime p. In this case, each p ∈ To would contribute a
factor of e′(Pv) = (p− 1)2(p+ 1) to E ′, according to the explicit formulae in §6.2.
Hence going through the table in Step C again with factors of e′(Pp) taken into
account, we conclude as in [PY1], §4.4 and Addendum the following.

Case I: k = Q, either
(i) T = T0 consists of a single prime, and the pair (a, p), where ` = Q(

√
−a), and

T0 = {p}, belongs to the set {(1, 5), (2, 3), (7, 2), (15, 2), (23, 2)}; or
(ii) (a, T ) = (1, {2, 5}), (2, {2, 3}), (7, {2, 3}) or (7, {2, 5}).

The case of [k : Q] > 1, is more complicated. The general principle is the
same, using the fact that the numerator of 2−2dζk(−1)L`|k(−2)

∏
v∈T e

′(Pv) are
powers of 3, but technically more involved. We have to separate into two cases,
where we used notations in [PY1]. Here is the conclusion.

Case II: k is a totally real number field of degree > 2.
(i) [D, `] > 1: (k, `) is given by one of the pairs C2, C3, C10, C18, C20, C26, C31, C35

and C39. ([PY1] §8.6 and Addendum). Moreover, To = {v}, where v is the unique
place of k lying over 2 except for the pairs C3 and C18, for C3 it is the unique place
of k lying over 5, and for C18 it is the unique place of k lying over 3. Except for
C18 and C20, T = To. If (k, `) = C18, then T either equals To = {v} or it is {v, v2},
where v2 is the unique place of k = Q(

√
6) lying over 2. In the case of C20, T



Classification of fake projective planes 27

either equals To = {v} or it is {v, v′3} or {v, v′′3}, where v′3, v
′′
3 are the places of

k = Q(
√

7) above 3.
(ii) D = ` : (k, `) can only be one of the following five: C1, C8, C11, C18 and C21

For convenience of the readers, we include the list of the thirteen pairs (k, `)
appearing in (i) and (ii).

C1 (Q(
√

5),Q(ζ5)),
C2 (Q(

√
5),Q(

√
5, ζ3)),

C3 (Q(
√

5),Q(
√

5, ζ4))
C8 (Q(

√
2),Q(ζ8))

C10 (Q(
√

2),Q(
√
−7 + 4

√
2)),

C11 (Q(
√

3),Q(ζ12))
C18 (Q(

√
6),Q(

√
6, ζ3)),

C20 (Q(
√

7),Q(
√

7, ζ4)),
C21 (Q(

√
33),Q(

√
33, ζ3))

C26 (Q(
√

15),Q(
√

15, ζ4)),
C31 (Q(ζ7 + ζ−1

7 ),Q(ζ7)),
C35 (Q(ζ20 + ζ−1

20 ),Q(ζ20)),
C39 (Q(

√
5 + 2

√
2),Q(

√
5 + 2

√
2, ζ4)).

6.8 Step E As a result of discussions from Step A to Step D, we know that the
arithmetic group associated to a fake projective plane should be determined by
principal arithmetic groups Λ expressed in terms of (k, `,D, G, (Pv)v∈Vf

) satisfying
the constraints given in those steps. The purpose is either to construct examples
of fake projective planes from each of this set of data, or to find some other means
to rule them out.

Recall that Λ gives rise to the normalizer Γ in G(kvo
). Denote by Λ = ϕ(Λ)

and Γ = ϕ(Γ) in the notation of §6.2. Each Λ gives rise to a unique Γ. From
definition, χ(Λ) is an integral multiple of χ(Γ). Hence finding the fundamental
group of a fake projective plane amounts to finding a subgroup Π of Γ satisfying
(i) [Γ : Π] = 3/χ(Γ),
(ii) Π is torsion-free,
(iii) b1(Π) = 0.

Notice that (i) and (ii) implies that M = B2
C/Π is a smooth projective variety

with χ(M) = 3. (iii) implies b3(Π) = 0 from Poincaré Duality. As χ(M) = 3, it
follows that b2(M) = 1 as well. This implies that M is a fake projective plane.

Let us now confine to the case of k = Q to explain the idea involved. In this
case, as we have explained earlier, [D : `] > 1 from compactness and Godement
Criterion. Suppose we can find a congruence subgroup Π satisfying (i) and (ii),
we can apply Rogawski’s result in [Ro] to conclude (iii). Hence the problem is
reduced to finding a torsion free subgroup of Γ satisfying (i), (ii) and (iii) for each
of the cases listed at the end of Step D (k = Q cases).

We define

AΛ := A(k,`,D,G,(Pv)v∈Vf
) = {Π : Π satisfies (i), (ii), (iii)}.



28 Sai-Kee Yeung

To find a lattice in AΛ, we first need to have precise value of [Γ : Λ] for the
principal arithmetic group Λ specified in Step D. This is given by [Γ : Λ] = 31+#To

for all the cases in Step D ([PY1] §5.4). Here is the list of indices [Γ : Π] required
by (i) for all the entries of Case I, k = Q listed.

a 1 2 7 15 23 7 7
T {5} {3} {2} {2} {2} {2, 3} {2, 5}

[Γ : Π] 3 3 21 3 1 3 1

The constraints set by (ii) and (iii) are more difficult to check. In [PY1]
§5 and Addendum, It is proved that for all Λ associated to the cases of k = Q
listed at the end of Step D, AΛ 6= ∅. In fact, there exists a congruence subgroup
of Γ of index given in the above table satisfying (i), (ii) and (iii), once the data
(k, `,D, G, (Pv)v∈Vf

) or equivalently Λ is fixed. For Congruence subgroups, Con-
dition (iii) is satisfied automatically by a theorem of Rogawski [Ro] as mentioned
above. Condition (ii) requires careful case by case checking making sure that the
lattice involved is torsion free. Here we use algebraic number theory and results
on strong approximation.

Let us now consider Case II, k is a totally real number field of degree 2 over
Q. Consider the subcase (i) that [D, `] > 1. Among the pairs listed at the end
of Step D, it is observed that χ(Γ) = 3 for C3, C26, C31, C35 and C39. Hence no
subgroup of Γ can be the fundamental group of a fake projective plane except Γ
itself. However it is shown using an intricate argument in [PY1] §9.7 and A10 in
the Addendum that Γ always contains an element of order 3 in these three cases.
Hence none of them is a candidate for the fundamental group of a fake projective
plane.

For the remaining ones, here is the list of indices. Recall that To consists of
vp as explained in §9 and Addendum of [PY1], where vp is the unique place above
p ∈ Q, and in the case of C20, v′3, v

′′
3 are the places of k = Q(

√
7) above 3.

(k, `) C2 C10 C18 C20

T {v2} {v2} {v3} or {v2, v3} {v2} or {v2, v
′
3} or {v2, v

′′
3}

[Γ,Π] 9 3 9 or 1 or 3 21 or 3 or 3

For each of the above three pairs (k, `), we show that there exists a torsion
free congruence subgroup of appropriate index satisfying all the properties (i), (ii)
and (iii), thereby providing examples of fake projective planes ([PY1], §9.3, 9.5).
For C18, it turns out that the constraints given by the volume formula also allow
us to choose for the place v2 of k lying over 2, either the Iwahori subgroup or a
nonhyperspecial maximal parahoric in G(kv2) to obtain Λ and Γ, with [Γ,Π] given
by 1 or 3 for the case of iwahori subgroup or nonhyperspecial maximal parahoric
subgroup respectively. In each of the three cases, a torsion-free subgroup satisfying
conditions (i), (ii), (iii) exists, as shown in [PY1] and the addendum to the paper.

A natural strategy to find all subgroups of appropriate index satisfying (i),
(ii) and (iii) is as follows. We try to find a generating set for Γ. Then list all
subgroups of small index as above. One then checks whether there is any torsion
element in the group. For the first Betti number, one checks whether Π/[Π,Π] is
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infinite. The procedure has been carried out successfully by Cartwright and Steger
with sophisticated group theoretical arguments and computer programmings. In
particular, they have eliminated the five cases in II(ii) for D = `. We will mention
their results in greater details in the next section.

Finally, we give two remarks regarding uniqueness of examples obtained in
the above.

6.9 Remarks

1. First of all from Mostow’s Strong Rigidity (cf. Theorem 4c in §3), we know
that Π1

∼= Π2 implies that B2
C/Π1 is isometric to B2

C/Π2 as Riemannian manifolds
equipped with the Killing metric.

2. As far as biholomorphic structures on a compact complex ball quotient are con-
cerned, it follows from [Siu2] that there are at most two different complex surfaces
in each class, corresponding to a complex structure and its complex conjugate.
According to [KK], the conjugate complex structure does give rise to a different
complex structure up to biholomorphism. Hence the underlying Riemannian man-
ifold with respect to the Killing metric gives rise to two biholomorphically different
fake projective planes.

3. Suppose v is a nonarchimedean place of k which ramifies in `, there are two
possible choices of a maximal parahoric subgroup Pv of G(kv) up to conjugation.
Moreover, all the hyperspecial parahoric subgroups of G(kv) are conjugate to each
other under G(kv) := (AutG)(kv) ([PY1] §2.2, 9.6). Furthermore, if P = (Pv)v∈Vf

and P ′ = (P ′v)v∈Vf
are two coherent collections of parahoric subgroups such that

for every v, P ′v is conjugate to Pv under an element of G(kv), then there is an
element G(k) which conjugates P ′ to P if h`,3 = 1 or (a, p) = (23, 2) above ([PY1]
Proposition 5.3). As a consequence, each of Case I and also C2, C10 in Case II(i)
gives rise to two different classes of fake projective planes, while C18 of Case II(i)
gives rise to three classes of fake projective planes by choosing Pv3 to be either
hyperspecial or a nonhyperspecial maximal parahoric, or an iwahori subgroup.

7 Statements of the results

7.1 Let us first recall our notation of class AΛ = A(k,`,D,G,(Pv)v∈Vf
) used in the last

section. Here k is a totally real number field, ` is a totally imaginary quadratic ex-
tension of k, D is a cubic division algebra with center ` equipped with an involution
of the second kind, G(k) = {z ∈ D× | zσ(z) = 1 and Nrd(z) = 1} and (Pv)v∈Vf

is a coherent collection of parahoric subgroups of G(kv). Furthermore, there is an
archimedean place vo of k such that G(ko) ∼= SU(2, 1) and G(kv) ∼= SU(3) for all
v ∈ V∞\{vo}. Then Λ = G(k)∩

∏
v∈Vf

Pv is a principal arithmetic subgroup. The
normalizer Γ = NG(kvo )(Λ) ⊂ SU(2, 1) projects to a lattice Γ ⊂ PU(2, 1). A class
of fake projective planes in [PY1] is defined to be the ones with the fundamental
group in the following set

AΛ = {Π ≤ Γ : [Γ : Π] =
3

χ(Γ)
, |Π/[Π,Π]| <∞, and Π is torsion-free, }
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where we use the notation A ≤ B to denote that a group A is a subgroup of
another group B.

Here is the main theorem of [PY1], see also the Addendum.

Theorem 8. (a) There are twenty-eight non-empty classes AΛ, eighteen coming
from Case I with k = Q, and ten coming from Case II(i) with real quadratic k and
[D : `] > 1, including two from C2, two from C10, three from C18, and three from
C20.
(b) There can at most be five more classes of fake projective planes, corresponding
to Case II(ii), namely, C1, C11 and C18, two for each of the first two cases, and
one for the last one.

7.2 Remark

1. The cases in Theorem 8(b) should not contain any fake projective plane accord-
ing to Conjecture 1. These cases have been eliminated by Cartwright and Steger
very recently, see Theorem 9 below.

2. The two cases of T 6= To in Case I (k = Q), the case of C18, T 6= To, and cases
of C20 in Case II(i) were left out in the original paper [PY1]. This was pointed out
to us by Steger, and was corrected in the Addendum to [PY1].

3. The fake projective plane of Mumford [Mu] corresponds to a subgroup of class
with (a, p) = (7, 2) in Case I. The two cases of Ishida-Kato [IK] correspond to
(a, p) = (15, 2) in Case I. The example of Keum [Ke] corresponds to (a, p) = (7, 2)
in Case I as well.

4. The scheme of proof in the last section actually provides a rough listing of all
arithmetic lattices Π of B2

C of volume bounded by 3 when the B2
C is equipped with

the PU(2, 1)-invariant metric normalized in such a way that the total volume is the
same as the Euler-Poincaré characteristic of B2

C/Π. In principle, the same scheme
can be applied to find the list of all ball quotients, compact or non-compact with
finite volume, of normalized volume bounded by some number Vo if Vo is sufficiently
small.

5. Related to the above remark, the scheme of proof provides another verification
of the fact that the smallest number among Euler-Poincaré characteristics of a
cofinite non-cocompact arithmetic lattice of PU(2, 1) is 1, which is achieved by
a Picard modular surface. The result was first proved by Holzapfel [H]. §3.6 of
[PY1] provides another proof.

7.3 At this point, let us deduce some geometric consequences to the above theorem.

Corollary 1. ([PY1]) Let M be a fake projective plane belonging to Case I or
Case II(i). Then the following hold.
(a). The first homology group H1(M,Z) is always non-trivial.
(b). The orders of the automorphism groups of a fake projective planes are given
by one of the following numbers, 1, 3, 7, 9 or 21.
(c). For all the fake projective planes constructed, except for some of those coming



Classification of fake projective planes 31

from C18, the lattice Λ can be embedded as a lattice in SU(2, 1).

The results are proved in [PY1] §10. Note that (a) means that there is always
torsion in the homology class. This is proved in Theorem 10.1 in [PY1]. (b) follows
rather easily from the table of indices in Step D of the proof in the last section. A
consequence of (c) is that the canonical line bundle KM of a fake projective plane
(for k = Q) can be written as 3H for a generator H of Neron-Severi group modulo
torsion. Recall that we have observed in the proof of Theorem 5 that KM = 3H
modulo torsion for all fake projective planes from Poincaré Duality. Hence the key
point here is that the identity is true with no adjustment by a torsion line bundle.

We also remark that following the recent result of Cartwright and Steger [CS],
see Theorem 9, the five cases C1, C11 and C18 of Case II(ii) listed in Theorem 8
can be eliminated as candidates to accommodate fake projective planes and hence
(a) is true for all fake projective planes. For (c), Cartwright and Steger show that
there exist examples of fake projective planes in the case of C18 for which Λ cannot
be embedded as a lattice in SU(2, 1), see §7.5.

7.4 As mentioned in the last section, a natural way to construct all examples in a
class AΛ is to find a set of generators of Γ and try to see if all subgroups of finite
index in Γ satisfying the three properties in the definition of AΛ can be determined.
Suppose χ(Γ) = 3 as for the case of k = Q, ` = Q(

√
−23) and T = T0 = {2} listed

as Case I in §6.7. It follows from definition that AΛ = {Γ} is a singleton and
there is only one fake projective plane in such class. In general we only need to
enumerate all subgroups of small index 3, 7, 9 or 21 for each of the classes with
χ(Γ) 6= 3. This is however difficult and technically very involved, and is finally
completed very recently by Cartwright and Steger [CS].

Cartwright and Steger [CS] developed powerful computational tools to study
lattices associated to the classes described in Theorem 8. It requires sophisticated
group theory, powerful computer programming and clever human intervention.
Here are the main steps.

First of all, from the description of the maximal arithmetic lattice involved
in terms of (k, `,D, G, (Pv)v∈Vf

) as explained in §6, a matrix representation of Γ
is found which gives a set of matrix generators and relations. To show that the
generators exhaust Γ, Cartwright and Steger constructed a fundamental domain
and verify the necessary facts from covolume formula of Prasad as given in §5.
Secondly, with the help of computer softwares, the set of generators is reduced
to a sufficiently small size with manageable set of relations. Finally to exhaust
the list of torsion free subgroup of index which is not too large but still beyond
the current capability of computer power, they have to combine group theoretical
knowledge and clever enumeration scheme with the help of computer softwares to
achieve the goal.

As a consequence, Cartwright and Steger succeeded in listing all possible
fake projective planes in each class in Theorem 8a and eliminate the five classes
in Theorem 8b as candidates for fake projective planes. Here is the results they
obtained.
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Theorem 9. (Cartwright-Steger [CS]) (a) There are altogether 31 examples of
fake projective planes as a Riemannian manifold in Case I, the case of k = Q.
Here is the break down of the cardinality |AΛ| of a class AΛ according to the
earlier listing.

a 1 2 7 15 23 1 2 7 7
T {5} {3} {2} {2} {2} {2, 5} {2, 3} {2, 3} {2, 5}∑

Λ |AΛ| 2 2 7 10 2 1 1 4 2

(b) There are altogether seven examples of fake projective planes as a Riemannian
manifold for C2, two examples for C10, five examples for C18 and five examples for
C20 in Case II(i).
(c) Hence as complex surfaces, there are 100 fake projective planes up to biholo-
morphism.

Let us recall the remark about complex and conjugate complex structure
mentioned in §6.9. In Theorem 8 (a), (b) and earlier discussions, we are classify-
ing fake projective planes according to the semi-simple algebraic group G. Hence as
a Riemannian manifold equipped with the Killing metric, according to Mostow’s
Strong Rigidity Theorem, each class consists of a single Riemannian manifold.
Each such Riemannian manifold supports two non-biholomorphic complex struc-
tures according to §6.9(2). Hence each example in (a) and (b) gives rise to two
different fake projective planes.

7.5 The table below gives a complete list of fake projective planes according to
the scheme of [PY1] and [CS], where N1 is the number of classes and N2 is the
number of fake projective spaces classified up to isometry for each pair of number
fields. Hence there are 2N2 fake projective planes classified up to biholomorphism
after considering complex conjugates.

(k, `) T N1 N2

(Q,Q(
√
−1)) {5} 2 2

{2, 5} 1 1
(Q,Q(

√
−2)) {3} 2 2

{2, 3} 1 1
(Q,Q(

√
−7)) {2} 2 7

{2, 3} 2 4
{2, 5} 2 2

(Q,Q(
√
−15)) {2} 4 10

(Q,Q(
√
−23)) {2} 2 2

(Q(
√

5),Q(
√

5, ζ3)) {v2} 2 7
(Q(
√

2),Q(
√
−7 + 4

√
2)) {v3} 2 2

(Q(
√

6),Q(
√

6, ζ3)) {v3} 1 1
{v2, v3} 2 4

(Q(
√

7),Q(
√

7, ζ4)) {v2} 1 1
{v2, v

′
3} 1 2

{v2, v
′′
3} 1 2
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7.6 Remark
Some of the examples found by Cartwright-Steger [CS] illustrate interesting geo-
metric and group theoretical properties. We only mention the following two.

1. Some of the examples found correspond to non-congruence subgroups of the
maximum arithmetic lattice Γ, including some for (k, `) = (Q,Q(

√
7)) in Case I

and some for (k, `) = C2 in Case II.

2. Some of the lattices obtained in the case of (k, `) = C18 as subgroup of PU(2, 1)
cannot be lifted in a one-to-one manner to SU(2, 1).

7.7 Here we mention another geometric consequence of the above study of fake
projective planes. Explicit geometric construction of complex hyperbolic surfaces
was rare in the literature. A well-known general construction was the one initi-
ated by Picard [Pi] related to monodromy groups associated to some appropriate
hypergeometric series. The construction has been studied and clarified by Pi-
card, Le Vavasseur, Terada and Deligne-Mostow. We refer the readers to [DM]
for general references and call such a surface a Deligne-Mostow surface. Toledo
has conjectured that a fake projective plane can never be commensurable with a
Deligne-Mostow surface. This is now confirmed by the table in §7.5. The con-
jecture in fact would follow from Theorem 8 once the cases C1, C8 and C11 were
eliminated, which was completed by Cartwright and Steger in [CS].

7.8 Finally, as a generalization of the Severi problem mentioned in the Introduction
in §1, we may now mention the following strong topological characterization of P 2

C.

Theorem 10. Any smooth complex surface with the same singular homology
groups as P 2

C is biholomorphic to P 2
C.

Proof Let M be smooth surface with the same singular homology groups as P 2
C.

Assume that M is not biholomorphic to P 2
C. From definition, M is a fake projective

plane. According to Theorem 3(a), M is the quotient of B2
C by a lattice in PU(2, 1).

The lattice is arithmetic by Theorem 7. From Theorem 8 and Theorem 9, we
conclude that the lattice involved are all of type [D : `] > 1. According to Corollary
1 to Theorem 8, H1(M,Z) is non-trivial. This contradicts the assumption that M
has the same singular homology groups as P 2

C.

8 Further studies

8.1 One of the reasons that a fake projective plane is interesting is that it provides
a concrete geometric example with small numerical invariants and rich structure
which is useful for various mathematical studies. In this section we will mention
two directions for further study.

A potential application of the research of [PY1] is that it provides a list
of projective algebraic surfaces equipped with a finite non-trivial automorphism
group and small Chern numbers that may be useful in constructing new interesting
surfaces in the uncharted parts of the geography of surfaces of general type. For
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example, it is mentioned in Corollary to Theorem 8 that the automorphism groups
H of the fake projective planes M involved have orders given by one of 1, 3, 7, 9
and 21. As we explained earlier, M has the smallest Euler-Poincaré characteristics
among smooth surfaces of general type. Suppose the order |H| of H is greater
than 1. This implies H cannot be torsion free, for otherwise the quotient would
be a surface of general type of smaller Euler-Poincaré. According to results of
Chevalley and Prill (cf. [Pri]), a fixed point of H maps to a smooth point on the
quotient M/H if and only if H is generated by complex reflection at the point.
Since the mirror of any complex reflection is a totally geodesic curve, which does
not exist on arithmetic complex ball quotient of second type and in particular on
the list of M in Theorem 8a, we conclude that M/H is singular at each of the
image of the fixed point set of H. Desingularization of such surfaces would give
interesting surfaces with relatively small numerical invariants such as the Chern
numbers.

Let us illustrates the above discussion by considering the case that Z3 is a
subgroup of the automorphism group of M. Let µ be a generator of Z3. First of
all we observe that in our cases, M is defined by an arithmetic lattice of second
type and hence there is no totally geodesic curves on M . This implies that the
fixed point set of µ, which has to be totally geodesic, does not have dimension one
components and hence consists of isolated points. By the usual Lefschetz Fixed
point theorem, there are three fixed points, each of order 3 since the local index is
a divisor of 3, the degree of the projection M → N = M/Z3. Each singularity is
hence a singularity of type A3,2 or of type A3,1 (cf. [BHPV]). However, from the
Holomorphic Lefschetz Fixed Point Formula, we know that

1 = L(f,O) =
∑

µ(p)=p

1
det(I − J (µ)(p))

,

where J (µ)(p) is the Jacobian of µ at p. From direct computation, singularity of
type A3,2 (resp. A3,1) contributes 1/3 (resp. 1/(3ω) for some cube root of unity
ω). Holomorphic Lefschetz Fixed Point Formula allows us to conclude that all the
fixed points of Z3 are of type A3,2.

Since Z3 acts on M with three isolated singularities, we may represent KN as
a Cartier divisor not passing through the singular points onN. The fact that Picard
number ρ(M) = 1 implies ρ(N) = 1. Hence KN is a positive rational multiple of
an effective curve on N and KN · KN = KM · KM/3 = 3. Direct counting also
gives Euler-Poincaré characteristic e(N) = 3. As a singularity of type A3,2 has
Milnor number 0, Laufer’s formula as in [Lau] implies that the arithmetic genus
of Ñ , a minimal resolution of N , is given by χ(O eN ) = (e(N) +K2

N )/12 = 1. The
self intersection K eN ·K eN = 3 follows from direct counting using the configuration
of the resolution, or from the fact that the singularity is rational. The smooth
surface Ñ is of general type since the set of pluricanonical sections of Ñ contains
the pull-back of pluricanonical sections of N, on which KN is a positive rational
multiple of an ample divisor.

In conclusion, we obtain a smooth surface of general type Ñ with K eN ·K eN =
3, first Betti number b1(Ñ) = 0 and h2,0(Ñ) = 0.
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We remark that the singularities of M/H for a general fake projective plane
M described in Theorem 9 and an automorphism group H have recently been
studied and completed by Keum [Ke2] by different arguments. The results have
also been verified independently by explicit computations by Cartwright-Steger
[CS] as will be seen from the following discussions.

8.2 The above discussions do not give information about the fundamental group
of N and hence Ñ . Since the lattices are explicitly defined in terms of the number
fields and parahorics, one may hope to be able to determine the fundamental group
and hence all the topological information about M/H and their desingularization,
if for example, one has a good way to write down the generators of lattice. This
happens to be a difficult task. As mentioned in the last section, Cartwright and
Steger [CS] recently manage to find generators for the classes of fake projective
planes in Case I as stated in Theorem 8 and Theorem 9. As a consequence, they
have constructed many interesting surfaces with small topological invariants.

Theorem 11. (Cartwright-Steger [CS]) There exists smooth surfaces S with K2
S =

3, b1(S) = 0 and pg = 0 and π1(S) one of the following groups obtained from
resolving the singularities of appropriate quotients of the fake projective planes in
Theorem 8 and Theorem 9 by its automorphism group.

{1,Z2,Z3,Z4,Z2 × Z2,Z2 × Z3,Z2 × Z4,Z7,Z2 × Z7,Z13,Z14, S3, Q8, D8}

In the above, S3 is the symmetry group of three elements, Q8 is the quater-
nionic eight-group, and D8 is the 8-element symmetry group of a square. We re-
mark that a simply connected surface of general type with pg = 0 and K2 = 3 has
been recently constructed by H. Park, J. Park and D. Shin [PPS1]. More recently,
they have also constructed by similar method such an example with π1(S) = Z2

in [PPS2]. The method used by Park et al is very different from the method of
[CS]. It uses blow-down surgery and Q-Gorenstein smoothing theory.

Cartwright and Steger [CS] listed five simply connected examples with trivial
fundamental group, including three from C2 and two from C18. We are going to
name these as Cartwright-Steger surfaces as in [PY1], Addendum. Let us explain
the Cartwright-Steger surfaces in the case C2 = (Q(

√
5),Q(

√
5, ζ3)) with some

details. As explained in Theorem 9, Cartwright and Steger found seven fake
projective planes associated to C2, including the two constructed in [PY1]. If we
take the one constructed in [PY1] with automorphism group is Z3 × Z3, there
are four subgroups of order 3. Cartwright and Steger show that a quotient N
of M by any of the four subgroups of order 3 is a simply connected singular
surface. N contains three singularities of type A3,2, providing an alternate and
direct verification of the argument in §8.1. The minimal resolution Ñ of N is
simply connected since the same is true for N. From the same reason as before,
K eN ·K eN = 3, first Betti number b1(Ñ) = 0 and h2,0(Ñ) = 0. In this way, we get
four Cartwright-Steger surfaces.

8.3 Another direction for further study is to consider similar problems for higher
dimensions. For this purpose, let us make the following definition.
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Definition Let G be a connected semi-simple real algebraic group of adjoint type.
Let X be the symmetric space of G(R) and Xu be the compact dual of X. We shall
say that the quotient X/Π of X by a cocompact torsion-free arithmetic subgroup Π
of G(R) is an arithmetic fake Xu if its Betti numbers are same as that of Xu; X/Π
is an irreducible arithmetic fake Xu if, further, Π is irreducible (i.e., no subgroup
of Π of finite index is a direct product of two infinite normal subgroups).

In particular, a Kähler manifold M of complex dimension n is an arithmetic
fake projective space if it is the quotient of BnC by a cocompact torsion-free arith-
metic lattice and has the same Betti numbers as PnC .

Theorem 12. (Prasad-Yeung [PY2])
(a) There exists no arithmetic fake projective space of dimension different from 2
and 4.
(b) There are at least four classes of arithmetic fake projective spaces in dimension
4. Furthermore, they arise from k = Q, ` = Q(

√
−7).

(c) There are at least four distinct arithmetic fake Gr2,5 and at least five irreducible
arithmetic fake P2

C ×P2
C

The examples in (b) and (c) provide non-trivial examples for geography of
four and six dimensional projective algebraic manifolds of general type. The geo-
metric and arithmetic properties of such 4-folds are yet to be studied.

In general, Hermitian symmetric spaces have been classified by Élie Cartan.
We recall that the irreducible hermitian symmetric spaces are the symmetric spaces
of Lie groups SU(n + 1 −m,m), SO(2, 2n − 1), Sp(2n), SO(2, 2n − 2), SO∗(2n),
an absolutely simple real Lie group of type E6 with Tits index 2E16′

6,2 , and an
absolutely simple real Lie group of type E7 with Tits index E28

7,3 respectively (for
Tits indices see Table II in [Ti1]). The complex dimensions of these spaces are
(n+ 1−m)m, 2n− 1, n(n+ 1)/2, 2n− 2, n(n− 1)/2, 16 and 27 respectively. The
Lie groups listed above are of type An, Bn, Cn, Dn, Dn, E6 and E7 respectively.
Our goal is to classify all fake arithmetic fake Hermtian symmetric spaces.

Very recently, the following result is obtained.

Theorem 13. (Prasad-Yeung [PY3]) There is no arithmetic fake Hermitian sym-
metric space of type other than An.

The analysis for fake compact Hermitian symmetric spaces of Type A is
almost complete as well. As an application, we observe that if Π is a torsion-free
cocompact discrete subgroup of G, then there is a natural embedding of H∗(Xu,C)
in H∗(X/Π,C), see [B], 3.1 and 10.2, and hence X/Π is a fake Xu if and only if
the natural homomorphism H∗(Xu,C)→ H∗(X/Π,C) is an isomorphism. Hence
Theorme 13 has the following corollary.

Corollary 2. Apart from the case that G is of type A, there exists no associ-
ated locally Hermitian symmetric space X/Γ, where Γ is an arithmetic cocompact
torsion-free lattice, such that X/Γ and its compact dual have isomorphic rational
cohomology groups.
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Related to the discussions in §8.1 and §8.2, it is to be hopeful that quotients
by appropriate finite groups of automorphisms of any arithmetic fake Hermitian
symmetric spaces constructed will yield interesting concrete examples of higher
dimensional algebraic manifolds.

8.4 Related to results in §8.3, we may define a fake compact hermitian symmetric
space to be a Kähler manifold which has the same Betti numbers as a hermtian
symmetric space of compact type of the same dimension. It comes naturally the
geometric problem of deciding when a fake compact hermtian symmetric space
is an arithmetic fake compact hermitian symmetric space. The two notions are
the same for fake projective planes, but the problem is much more complicated
and essentially open in higher dimensions. To understand the difficulty of the
problem, let us restrict our discussions to fake projective spaces. First of all if the
complex dimension of the Kähler manifold is odd, there exists fake projective three
spaces given by hyperquardrics but there is no arithmetic fake projective three
space according to Theorme 12a. Hence the two notions can possibly be identified
only for even complex dimensions. Not much is known about the problem. The
following is a positive result in this direction.

Theorem 14 (Ye3). A fake projective four space is uniformized by a complex
hyperbolic four space if any of the following conditions is satisfied.
(i) c41(M) 6= 225,
(ii) H4(M,Z) modulo torsion is generated by θ ∪ θ, where θ is a generator of
H2(M,Z) modulo torsion, or
(iii) The cycle corresponding to the canonical line bundle KM is not a generator
of the Neron-Severi group.

The proof is achieved by characterizing all the possible Chern numbers for a
homology complex projective four space. More precisely, we show that the Chern
numbers (c41, c1c3, c

2
1c2, c

2
2, c4) of a smooth rational homology complex projective

space of complex dimension 4 can only take one of the following two sets of values,
(i). (625, 50, 250, 100, 5), or, (ii). (225, 50, 150, 100, 5). This is achieved by gener-
alizing an argument of Libgober and Wood [LW]. The theorem is then proved by
utilizing a Chern number inequality given by Yau (cf. [Be]).

Equipped with Theorem 14, we may now generalize the argument in §4, where
the corresponding result in complex dimension two was known in the work of [Kl]
and [Ye1], to conclude that a fake projective four space with one of the extra
condition posted in Theorem 14 is an arithmetic fake projective four space. It is
however not known if the extra condition can be removed. Equivalently, we do not
know if the Chern numbers given by (c41, c1c3, c

2
1c2, c

2
2, c4) = (225, 50, 150, 100, 5)

can be realized by any connected Kähler manifold. To illustrate the intricate
nature of the problem, according to a result of Milnor, there exists disconnected
algebraic manifolds with Chern numbers given as above (cf. [H1]).

The problem of uniformization in higher dimensions appears to be challeng-
ing.
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