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Abstract. Let X be a smooth projective variety of dimension
n over an algebraically closed field k with char(k) = p > 0 and
F : X → X1 be the relative Frobenius morphism. For any vector
bundle W on X, we prove that instability of F∗W is bounded
by instability of W ⊗ T`(Ω1

X) (0 ≤ ` ≤ n(p − 1))(Corollary 4.9).
When X is a smooth projective curve of genus g ≥ 2, it implies
F∗W being stable whenever W is stable.

Dedicated to Professor Zhexian Wan on the occasion of
his 80th birthday.

1. Introduction

Let X be a smooth projective variety of dimension n over an alge-
braically closed field k with char(k) = p > 0. Fix an ample divisor
H on X, by a semistable (resp. stable) torsion free sheaf, we mean a
H-slope semistable (resp. H-slope stable) sheaf in this paper. For a
torsion free sheaf F on X, there is a unique filtration

0 = F0 ⊂ F1 ⊂ · · · ⊂ Fk = F
such that Fi/Fi−1 (1 ≤ i ≤ k) are semistable torsion free sheaves and

µmax(F) := µ(F1) > µ(F2/F1) > · · · > µ(Fk/Fk−1) := µmin(F).

The instability of F was defined as I(F) = µmax(F)− µmin(F), which
measures how far from F being semi-stable. In particular, F is semi-
stable if and only if I(F) = 0. On the other hand, there are sub-bundles
T`(Ω1

X) ⊂ (Ω1
X)⊗`, 0 ≤ ` ≤ n(p− 1), which are the associated bundles

of Ω1
X through some elementary (perhaps interesting) representations

of GL(n). These representations do not appear in characteristic zero.
Let F : X → X1 be the relative Frobenius morphism, for any vector

bundle W on X, let I(W,X) be the maximal value of I(W ⊗ T`(Ω1
X))
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where 0 ≤ ` ≤ n(p − 1). Then one of our results in this paper shows
(Corollary 4.9): When KX · Hn−1 ≥ 0, we have

I(F∗W ) ≤ pn−1rk(W ) I(W,X) .

In particular, if the bundles W ⊗ T`(Ω1
X), 0 ≤ ` ≤ n(p − 1), are

semistable, then F∗W is semistable. In fact, when KX · Hn−1 > 0, we
can show that the stability of W ⊗ T`(Ω1

X), 0 ≤ ` ≤ n(p− 1), implies
the stability of F∗W (Theorem 4.8).

The main theorem has an immediate corollary that when X is a
smooth projective curve of genus g ≥ 2, the stability of W implies
stability of F∗W . This is in fact our original motivation stimulated by
a question raised by Herbert Lange at a conference. When W is a line
bundle, it is due to Lange and Pauly ([6, Proposition 1.2 ]). The present
version is based on our earlier preprint ([8]), where the theorem was
completely proved only for curves. It should be pointed out, in case of
curves, Mehta and Pauly have proved independently that semi-stability
of W implies semi-stability of F∗W in a different method. However,
their method was not able to prove the stability of F∗W when W is
stable. In fact, they asked the question: Is stability also preserved by
F∗ ? (cf. [7, Section 7] for the discussions).

To describe the idea of proof, let us compare it to its opposite case,
a Galois étale G-cover f : Y → X. Recall that for a semi-stable
bundle W on Y , to prove semistability of f∗W , one uses the fact that
f ∗(f∗W ) decomposes into pieces of W σ (σ ∈ G). To imitate this idea
for F : X → X1, we need a similar decomposition of V = F ∗(F∗W ).
Indeed, use the canonical connection∇ : V → V ⊗Ω1

X , Joshi-Ramanan-
Xia-Yu have defined in [4] for dim(X) = 1 a canonical filtration

0 = Vp ⊂ Vp−1 ⊂ · · · ⊂ V` ⊂ V`−1 ⊂ · · ·V1 ⊂ V0 = V

such that V`/V`+1
∼= W ⊗ (Ω1

X)⊗`. It is this filtration and its general-
ization that we are going to use for the study of F∗W .

As the first step, we generalize the canonical filtration to higher
dimensional X. Its definition can be generalized straightforwardly by
using the canonical connection ∇ : V → V ⊗ Ω1

X . The study of its
graded quotients are much involved. We show (Theorem 3.7) that
there exists a canonical filtration

0 = Vn(p−1)+1 ⊂ Vn(p−1) ⊂ · · · ⊂ V1 ⊂ V0 = V = F ∗(F∗W )

such that ∇ induces injective morphisms V`/V`+1
∇−→ (V`−1/V`)⊗Ω1

X of
vector bundles and the isomorphisms V`/V`+1

∼= W ⊗ T`(Ω1
X), where

T`(Ω1
X) ⊂ (Ω1

X)⊗` are subbundles given by representations of GL(n)
(cf. Definition 3.4). In characteristic zero, T`(Ω1

X) = Sym`(Ω1
X). In
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characteristic p > 0, T`(Ω1
X) ∼= Sym`(Ω1

X) only for ` < p. In general,
there is a resolution of T`(Ω1

X) (Proposition 3.5) by symmetric powers
of Ω1

X and exterior powers of F ∗(Ω1
X) (After [8] appeared, Indranil

Biswas told me that a similar filtration was defined and studied in
Proposition 4.1 of their preprint [1]. However, since their map (4.7)
was wrong, the Proposition 4.1 (also Proposition 4.2 consequently) of
[1] was wrong. After we pointed out these gaps, they have corrected
these mistakes in [2]).

To prove the main theorem, we also need to compare sub-sheaves of
V`/V`+1 to sub-sheaves of Vn(p−1)−`/Vn(p−1)−`+1 which are ∇-invariant
(Proposition 4.7). It is reduced to consider the (graded) K-algebra

R =
K[y1, y2, · · · , yn]

(yp
1, y

p
2, . . . , y

p
n)

=

n(p−1)⊕

`=0

R`

with a D-module structure, where

D =
K[∂y1 , · · · , ∂yn ]

(∂p
y1 , · · · , ∂p

yn)
= K[t1, t2, · · · , tn] =

n(p−1)⊕

`=0

D`

which acts on R through the partial derivations ∂y1 , ∂y2 , ..., ∂yn . For
any subspace V ⊂ R`, let L(D2`−n(p−1) · V ) be the linear subspace

spanned by D2`−n(p−1) · V ⊂ Rn(p−1)−`. Then we are reduced to ask if

dim(V ) ≤ dimL(D2`−n(p−1) · V ) when
n(p− 1)

2
≤ ` ≤ n(p− 1) ?

Our Lemma 4.5 and Proposition 4.7 give an affrmative answer to it.
When X is a smooth projective curve of genus g ≥ 1, the proof of

theorem is very elementary and simple, which does not need the more
involved arguments of higher dimensional case and shows the idea of
proof best. Thus, although it is a direct corollary of the general case
(Theorem 4.8), we still put its proof in an independent section. It
is also convenient for a reader who is only interested in the proof for
curves.

Acknowledgements: I would like to thank Hélène Esnault, Eckart
Viehweg, Hourong Qin, Manfred Lehn, Indranil Biswas, Herbert Lange,
Christian Pauly for their interest and discussions. The proof of the
purely combinatorial Lemma 4.6 is due to Fusheng Leng. I thank him
very much for his help. Finally, I would like to thank the referee for
the helpful comments.
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2. The case of curves

Let k be an algebraically closed field of characteristic p > 0 and X
be a smooth projective curve over k. Let F : X → X1 be the relative
k-linear Frobenius morphism, where X1 := X ×k k is the base change
of X/k under the Frobenius Spec (k) → Spec (k). Let W be a vector
bundle on X and V = F ∗(F∗W ). It is known ([5, Theorem 5.1]) that
V has a canonical connection ∇ : V → V ⊗ Ω1

X with zero p-curvature.
In [4, Section 5], the authors defined a canonical filtration

0 = Vp ⊂ Vp−1 ⊂ · · · ⊂ V` ⊂ V`−1 ⊂ · · ·V1 ⊂ V0 = V(2.1)

where V1 = ker(V = F ∗F∗W ³ W ) and

V`+1 = ker(V`
∇−→ V ⊗ Ω1

X → V/V` ⊗ Ω1
X).(2.2)

The following lemma belongs to them (cf. [4, Theorem 5.3]).

Lemma 2.1. (i) V0/V1
∼= W , ∇(V`+1) ⊂ V` ⊗ Ω1

X for ` ≥ 1.

(ii) V`/V`+1
∇−→ (V`−1/V`)⊗Ω1

X is an isomorphism for 1 ≤ ` ≤ p−1.
(iii) If g ≥ 2 and W is semistable, then the canonical filtration (2.1)

is nothing but the Harder-Narasimhan filtration.

Proof. (i) follows by the definition, which and (ii) imply (iii). To prove
(ii), let I0 = F ∗F∗OX , I1 = ker(F ∗F∗OX ³ OX) and

I`+1 = ker(I`
∇−→ I0 ⊗ Ω1

X ³ I0/I` ⊗ Ω1
X)(2.3)

which is the canonical filtration (2.1) in the case W = OX .
(ii) is clearly a local problem, we can assume X = Spec (k[[x]]) and

W = k[[x]]⊕r. Then V0 := V = F ∗(F∗W ) = I⊕r
0 , V` = I⊕r

` and

V`/V`+1 = (I`/I`+1)
⊕r ⊕∇−−→ (I`−1/I` ⊗ Ω1

X)⊕r = V`−1/V` ⊗ Ω1
X .(2.4)

Thus it is enough to show that

I`/I`+1
∇−→ (I`−1/I` ⊗ Ω1

X(2.5)

is an isomorphism. Locally, I0 = k[[x]]⊗k[[xp]] k[[x]] and

∇ : k[[x]]⊗k[[xp]] k[[x]] → I0 ⊗OX
Ω1

X ,(2.6)

where ∇(g ⊗ f) = g ⊗ f ′ ⊗ dx. The OX-module

I1 := ker(k[[x]]⊗k[[xp]] k[[x]] ³ k[[x]])(2.7)

has a basis {xi⊗1−1⊗xi}1≤i≤p−1. Notice that I1 is also an ideal of the
OX-algebra I0 = k[[x]]⊗k[[xp]] k[[x]], let α = x⊗ 1− 1⊗x, then αi ∈ I1.
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It is easy to see that α, α2, . . . , αp−1 is a basis of the OX-module I1

(notice that αp = xp ⊗ 1− 1⊗ xp = 0), and

∇(α`) = −`α`−1 ⊗ dx.(2.8)

Thus, as a free OX-module, I` has a basis {α`, α`+1, . . . , αp−1}, which
means that I`/I`+1 has a basis α`, (I`−1/I`)⊗Ω1

X has a basis α`−1⊗dx
and ∇(α`) = −`α`−1⊗dx. Therefore ∇ induces the isomorphism (2.5)
since (`, p) = 1, which implies the isomorphism in (ii). ¤

Theorem 2.2. Let X be a smooth projective curve of genus g ≥ 1.
Then F∗W is semi-stable whenever W is semi-stable. If g ≥ 2, then
F∗W is stable whenever W is stable.

Proof. Let E ⊂ F∗W be a nontrivial subbundle and

0 ⊂ Vm ∩ F ∗E ⊂ · · · ⊂ V1 ∩ F ∗E ⊂ V0 ∩ F ∗E = F ∗E(2.9)

be the induced filtration. Let r` = rk( V`∩F ∗E
V`+1∩F ∗E ) be the ranks of quo-

tients. Then, by the filtration (2.9), we have

µ(F ∗E) =
1

rk(F ∗E)

m∑

`=0

r` · µ(
V` ∩ F ∗E

V`+1 ∩ F ∗E ).(2.10)

By Lemma 2.1, V`/V`+1
∼= W ⊗ (Ω1

X)⊗` is stable, we have

µ(
V` ∩ F ∗E

V`+1 ∩ F ∗E ) ≤ µ(W ) + 2(g − 1)`.(2.11)

Then, notice that µ(V ) = µ(W ) + (p− 1)(g − 1), we have

µ(F∗W )− µ(E) ≥ 2g − 2

p · rk(E)
·

m∑

`=0

(
p− 1

2
− `)r`(2.12)

which becomes equality if and only if the inequalities in (2.11) become
equalities. It is clear by (2.12) that µ(F∗W ) − µ(E) > 0 if m ≤ p−1

2
.

Thus we can assume that m > p−1
2

, then we can write

m∑

`=0

(
p− 1

2
− `)r` =

p−1∑

`=m+1

(`− p− 1

2
)rp−1−`(2.13)

+
m∑

`> p−1
2

(`− p− 1

2
)(rp−1−` − r`) ≥ 0.
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On the other hand, since the isomorphisms V`/V`+1
∇−→ (V`−1/V`)⊗Ω1

X

in Lemma 2.1 (ii) induce the injections

V` ∩ F ∗E
V`+1 ∩ F ∗E ↪→ V`−1 ∩ F ∗E

V` ∩ F ∗E ⊗ Ω1
X

we have r0 ≥ r1 ≥ · · · ≥ r`−1 ≥ r` ≥ · · · ≥ rm. Thus

µ(F∗W )− µ(E) ≥ 2g − 2

p · rk(E)

m∑

`=0

(
p− 1

2
− `)r` ≥ 0 .

If µ(F∗W )− µ(E) = 0, then (2.12) and (2.13) become equalities. That
(2.12) becomes equality implies inequalities in (2.11) become equalities,
which means r0 = r1 = · · · = rm = rk(W ). Then that (2.13) become
equalities implies m = p − 1. Altogether imply E = F∗W , we get
contradiction. Hence F∗W is stable whenever W is stable. ¤

3. The filtration on higher dimension varieties

Let X be a smooth projective variety over k of dimension n and
F : X → X1 be the relative k-linear Frobenius morphism, where X1 :=
X ×k k is the base change of X/k under the Frobenius Spec (k) →
Spec (k). Let W be a vector bundle on X and V = F ∗(F∗W ). We have
the straightforward generalization of the canonical filtration to higher
dimensional varieties.

Definition 3.1. Let V0 := V = F ∗(F∗W ), V1 = ker(F ∗(F∗W ) ³ W )

V`+1 := ker(V`
∇−→ V ⊗OX

Ω1
X → (V/V`)⊗OX

Ω1
X)(3.1)

where ∇ : V → V ⊗OX
Ω1

X is the canonical connection (cf. [5, Theorem
5.1]).

We first consider the special case W = OX and give some local
descriptions. Let I0 = F ∗(F∗OX), I1 = ker(F ∗F∗OX ³ OX) and

I`+1 = ker(I`
∇−→ I0 ⊗OX

Ω1
X → I0/I` ⊗OX

Ω1
X).(3.2)

Locally, let X = Spec (A), I0 = A⊗Ap A, where A = k[[x1, · · · , xn]],
Ap = k[[xp

1, · · · , xp
n]]. Then the canonical connection ∇ : I0 → I0 ⊗Ω1

X

is locally defined by

∇(g ⊗Ap f) =
n∑

i=1

(g ⊗Ap

∂f

∂xi

)⊗A dxi(3.3)
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Notice that I0 has an A-algebra structure such that I0 = A⊗Ap A ³ A
is a homomorphism of A-algebras, its kernel I1 contains elements

αk1
1 αk2

2 · · ·αkn
n , where αi = xi ⊗Ap 1− 1⊗Ap xi,

n∑
i=1

ki ≥ 1.(3.4)

Since αp
i = xp

i⊗Ap1−1⊗Apxp
i = 0, the set {αk1

1 · · ·αkn
n | k1+· · ·+kn ≥ 1}

has pn − 1 elements. In fact, we have

Lemma 3.2. Locally, as free A-modules, we have, for all ` ≥ 1,

I` =
⊕

k1+···+kn≥`

(αk1
1 · · ·αkn

n )A.(3.5)

Proof. We first prove for ` = 1 that {αk1
1 · · ·αkn

n | k1 + · · · + kn ≥ 1}
is a basis of I1 locally. By definition, I1 is locally free of rank pn − 1,
thus it is enough to show that as an A-module I1 is generated locally
by {αk1

1 · · ·αkn
n | k1 + · · ·+ kn ≥ 1} since it has exactly pn− 1 elements.

It is easy to see that as an A-module I1 is locally generated by
{xk1

1 · · · xkn
n ⊗Ap 1−1⊗Ap xk1

1 · · ·xkn
n | k1 + · · ·+kn ≥ 1, 0 ≤ ki ≤ p−1 }.

It is enough to show that any xk1
1 · · · xkn

n ⊗Ap 1 − 1 ⊗Ap xk1
1 · · · xkn

n is
a linear combination of {αk1

1 · · ·αkn
n | k1 + · · · + kn ≥ 1}. The claim is

obvious when k1 + · · ·+ kn = 1, we consider the case k1 + · · ·+ kn > 1.
Without loss generality, assume kn ≥ 1 and there are fj1,...,jn ∈ A such
that

xk1
1 · · · xkn−1

n ⊗Ap 1−1⊗Ap xk1
1 · · ·xkn−1

n =
∑

j1+···+jn≥1

(αj1
1 · · ·αjn

n ) ·fj1,...,jn .

Then we have

xk1
1 · · ·xkn

n ⊗Ap 1− 1⊗Ap xk1
1 · · · xkn

n =
∑

j1+···+jn≥1

(αj1
1 · · ·αjn+1

n ) · fj1,...,jn

+
∑

j1+···+jn≥1

(αj1
1 · · ·αjn

n ) · fj1,...,jnxn + αn · (xk1
1 · · · xkn−1

n ).

For ` > 1, to prove the lemma, we first show

∇(αk1
1 · · ·αkn

n ) = −
n∑

i=1

ki(α
k1
1 · · ·αki−1

i · · ·αkn
n )⊗A dxi(3.6)

Indeed, (3.6) is true when k1 + · · · + kn = 1. If k1 + · · · + kn > 1, we
assume kn ≥ 1 and αk1

1 · · ·αkn−1
n =

∑
gj ⊗Ap fj. Then

αk1
1 · · ·αkn

n =
∑

j

xngj ⊗Ap fj −
∑

j

gj ⊗Ap fjxn .
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Use (3.3), straightforward computations show

∇(αk1
1 · · ·αkn

n ) = αn∇(αk1
1 · · ·αkn−1

n )− (αk1
1 · · ·αkn−1

n )⊗A dxn

which implies (3.6). Now we can assume the lemma is true for I`−1 and

recall that I` = ker(I`−1
∇−→ I0 ⊗A Ω1

X ³ (I0/I`−1)⊗A Ω1
X). For any

β =
∑

k1+···kn≥`−1

(αk1
1 · · ·αkn

n ) · fk1,...,kn ∈ I`−1, fk1,...,kn ∈ A,

by using (3.6), we see that β ∈ I` if and only if∑

k1+···+kn=`−1

(αk1
1 · · ·αkj−1

j · · ·αkn
n ) · kjfk1,...,kn ∈ I`−1(3.7)

for all 1 ≤ j ≤ n. Since {αk1
1 · · ·αkn

n | k1 + · · ·+ kn ≥ 1} is a basis of I1

locally and the lemma is true for I`−1, (3.7) is equivalent to

For given (k1, . . . , kn) with k1 + · · ·+ kn = `− 1(3.8)

kjfk1,...,kn = 0 for all j = 1, . . . , n

which implies fk1,...,kn = 0 whenever k1 + · · · + kn = ` − 1. Thus I` is

generated by {αk1
1 · · ·αkn

n | k1 + · · ·+ kn ≥ ` }. ¤
Lemma 3.3. (i) I` = 0 when ` > n(p−1), and ∇(I`+1) ⊂ I`⊗Ω1

X

for ` ≥ 1.

(ii) I`/I`+1
∇−→ (I`−1/I`)⊗Ω1

X are injective in the category of vector
bundles for 1 ≤ ` ≤ n(p− 1). In particular, their composition

∇` : I`/I`+1 → (I0/I1)⊗OX
(Ω1

X)⊗` = (Ω1
X)⊗`(3.9)

is injective in the category of vector bundles.

Proof. (i) follows from Lemma 3.2 and Definition 3.1. (ii) follows from
(3.6).

¤
In order to describe the image of ∇` in (3.9), we recall a GL(n)-

representation T`(V ) ⊂ V ⊗` where V is the standard representation of
GL(n). Let S` be the symmetric group of ` elements with the action
on V ⊗` by (v1⊗ · · · ⊗ v`) · σ = vσ(1)⊗ · · · ⊗ vσ(`) for vi ∈ V and σ ∈ S`.
Let e1, . . . , en be a basis of V , for ki ≥ 0 with k1 + · · ·+ kn = ` define

v(k1, . . . , kn) =
∑
σ∈S`

(e⊗k1
1 ⊗ · · · ⊗ e⊗kn

n ) · σ(3.10)

Definition 3.4. Let T`(V ) ⊂ V ⊗` be the linear subspace generated by
all vectors v(k1, . . . , kn) for all ki ≥ 0 satisfying k1 + · · · + kn = `. It
is clearly a representation of GL(V ). If V is a vector bundle of rank
n, the subbundle T`(V) ⊂ V⊗` is defined to be the associated bundle
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of the frame bundle of V (which is a principal GL(n)-bundle) through
the representation T`(V ).

By sending any ek1
1 ek2

2 · · · ekn
n ∈ Sym`(V ) to v(k1, . . . , kn), we have

Sym`(V ) ³ T`(V )(3.11)

which is an isomorphism in characteristic zero. When char(k) = p > 0,
we have v(k1, . . . , kn) = 0 if one of k1, . . . , kn is bigger than p − 1.
Thus (3.11) is not injective when ` ≥ p, and T`(V ) is isomorphic to the
quotient of Sym`(V ) by the relations ep

i = 0, 1 ≤ i ≤ n. In particular,

T`(V ) ∼= Sym`(V ) when 0 < ` < p(3.12)

and T`(V ) = 0 if ` > n(p − 1). For any 0 < ` ≤ n(p − 1), T`(V ) is a
simple representation of highest weight

(

a︷ ︸︸ ︷
p− 1, · · · , p− 1,

n−a︷ ︸︸ ︷
b, 0, · · · , 0), where ` = (p− 1)a + b, 0 ≤ b < p− 1

and is called a ‘Truncated symmetric power’ (cf. [3]). In next proposi-
tion, we will describe T`(V ) using symmetric powers and exterior pow-
ers. The case of GL(2) is extremely simple, it is a tensor product of
symmetric powers and exterior powers. In general, let F ∗V denote the
Frobenius twist of the standard representation V of GL(n) through the
homomorphism GL(n) → GL(n) ((aij)n×n → (ap

ij)n×n), we have only a

resolution of T`(V ) using symmetric powers of V and exterior powers
of F ∗V . Fix a basis e1, ... , en of V , we define the k-linear maps

Sym`−q·p(V )⊗k

q∧
(V )

φ−→ Sym`−(q−1)·p(V )⊗k

q−1∧
(V )(3.13)

such that for any h = f`−q·p ⊗ ek1 ∧ · · · ∧ ekq (k1 < · · · < kq), we have

φ(h) =

q∑
i=1

(−1)i−1ep
ki

f`−q·p ⊗ ek1 ∧ · · · ∧ êki
∧ · · · ∧ ekq .(3.14)

Proposition 3.5. (i) When n = 2, as GL(2)-representations, we have

T`(V ) =

{
Sym`(V ) when ` < p;

Sym2(p−1)−`(V )⊗ det(V )`−(p−1) when ` ≥ p
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(ii) Let `(p) ≥ 0 be the unique integer such that 0 ≤ `− `(p) · p < p.
Then, in the category of GL(n)-representations, we have exact sequence

0 → Sym`−`(p)·p(V )⊗k

`(p)∧
(F ∗V )

φ−→ Sym`−(`(p)−1)·p(V )⊗k

`(p)−1∧
(F ∗V )

→ · · · → Sym`−q·p(V )⊗k

q∧
(F ∗V )

φ−→ Sym`−(q−1)·p(V )⊗k

q−1∧
(F ∗V )

→ · · · → Sym`−p(V )⊗k F ∗V
φ−→ Sym`(V ) → T`(V ) → 0.

Proof. (i) When ` < p, T`(V ) = Sym`(V ) follows the construction.
When ` ≥ p, the simple representation T`(V ) has highest weight

(p− 1, `− p + 1) = (2p− 2− `, 0) + (`− p + 1) · (1, 1)

where (2p − 2 − `, 0) and (1, 1) are the highest weights of the simple
representations Sym2p−2−`(V ) and ∧2(V ) = det(V ) respectively. Thus

T`(V ) = Sym2(p−1)−`(V )⊗ det(V )`−(p−1).

(ii) The elements ep
1, ep

2, . . . , ep
n ∈ Sym•(V ) form clearly a regu-

lar sequence for Sym•(V ), thus the Koszul complex K•(e
p
1, . . . , e

p
n) of

Sym•(V )-modules is a resolution of

Sym•(V )

(ep
1, e

p
2, . . . , e

p
n)Sym•(V )

where K1 = Sym•(V ) ⊗k V with basis 1 ⊗k e1, . . . , 1 ⊗k en and Ki =
∧iK1. Notice ∧iK1

∼= Sym•(V ) ⊗k ∧iV (as Sym•(V )-modules), the
sequence in the proposition is exact in the category of k-linear spaces
(This was pointed out by Manfred Lehn).

We only need to show the k-linear maps φ in (3.13) are maps of
GL(n)-representations if ∧·V is twisted by Frobenius. It is enough to
show, for any A = (aij)n×n ∈ GL(n) and h = 1⊗ ek1 ∧ · · · ∧ ekq , that

φ(A · h) = A · φ(h)

To simplify notation, we assume h = 1⊗ e1 ∧ · · · ∧ eq, then

A · h = 1⊗
∑

k1<···<kq

D

(
k1, k2, . . . , kq

1, 2, . . . , q

)
ek1 ∧ · · · ∧ ekq , where

D

(
k1, k2, . . . , kq

1, 2, . . . , q

)
=

∣∣∣∣∣∣∣∣∣

ap
1k1

, ap
1k2

, . . . , ap
1kq

ap
2k1

, ap
2k2

, . . . , ap
2kq

...
... · · · ...

ap
qk1

, ap
qk2

, . . . , ap
qkq

∣∣∣∣∣∣∣∣∣



DIRECT IMAGES OF BUNDLES UNDER FROBENIUS MORPHISM 11

Then, by definition of φ, we have

φ(A · h) =
∑

k1<···<kq

q∑
i=1

(−1)i−1ep
ki
⊗k D

(
k1, k2, . . . , kq

1, 2, . . . , q

)
ek1 ∧ · · · ∧ êki

∧ · · · ∧ ekq

=
∑

k1<···<kq

q∑
i=1

ep
ki
⊗k

q∑
j=1

(−1)j−1ap
jki

D

(
k1, . . . , k̂i, . . . , kq

1, . . . , ĵ, . . . , q

)
ek1 ∧ · · · ∧ êki

∧ · · · ∧ ekq

=

q∑
j=1

(−1)j−1
∑

k1<···<kq

q∑
i=1

ap
jki

ep
ki
⊗k D

(
k1, . . . , k̂i, . . . , kq

1, . . . , ĵ, . . . , q

)
ek1 ∧ · · · ∧ êki

∧ · · · ∧ ekq .

On the other hand, we will show

∑

k1<···<kq

q∑
i=1

ap
jki

ep
ki
⊗k D

(
k1, . . . , k̂i, . . . , kq

1, . . . , ĵ, . . . , q

)
ek1 ∧ · · · ∧ êki

∧ · · · ∧ ekq

=

(
n∑

i=1

ap
jie

p
i

)
⊗k

(
n∑

i=1

ap
1iei

)
∧ · · ·

̂(
n∑

i=1

ap
jiei

)
· · · ∧

(
n∑

i=1

ap
qiei

)

−
∑

i1<···<iq−1

(
q−1∑

k=1

ap
jik

ep
ik

)
⊗k D

(
i1, . . . , iq−1

1, . . . ĵ . . . , q

)
ei1 ∧ · · · ∧ eiq−1

and
q∑

j=1

(−1)j−1ap
jik
·D

(
i1, . . . , iq−1

1, . . . ĵ . . . , q

)
= 0 (1 ≤ k ≤ q − 1). Thus

φ(A · h) = A · φ(h).

In fact, the second equality corresponds to developing a determinant
having the ik-th column repeated. To show the first equality, write

(
n∑

i=1

ap
jie

p
i

)
⊗k

(
n∑

i=1

ap
1iei

)
∧ · · · ∧

̂(
n∑

i=1

ap
jiei

)
∧ · · · ∧

(
n∑

i=1

ap
qiei

)

=
∑

i1<···<iq−1

(
n∑

i=1

ap
jie

p
i

)
⊗k D

(
i1, . . . , iq−1

1, . . . ĵ . . . , q

)
ei1 ∧ · · · ∧ eiq−1

.
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For given i1 < · · · < iq−1, let S = {i1, . . . , iq−1}, write(
n∑

i=1

ap
jie

p
i

)
⊗k D

(
i1, . . . , iq−1

1, . . . ĵ . . . , q

)
ei1 ∧ · · · ∧ eiq−1 =

∑

t/∈S

ap
jte

p
t ⊗k D

(
i1, . . . , iq−1

1, . . . ĵ . . . , q

)
ei1 ∧ · · · ∧ eiq−1+

q−1∑

k=1

ap
jik

ep
ik
⊗k D

(
i1, . . . , iq−1

1, . . . ĵ . . . , q

)
ei1 ∧ · · · ∧ eiq−1

notice that for any t /∈ S there is a unique k1 < · · · < kq with ki = t

such that (k1, ..., k̂i, ..., kq) = (i1, ..., iq−1), we have

∑

t/∈S

ap
jte

p
t ⊗k D

(
i1, . . . , iq−1

1, . . . ĵ . . . , q

)
ei1 ∧ · · · ∧ eiq−1 =

∑

k1<···<kq

ap
jki

ep
ki
⊗k D

(
k1, . . . , k̂i, . . . , kq

1, . . . , ĵ, . . . , q

)
ek1 ∧ · · · ∧ êki

∧ · · · ∧ ekq

where the summation is taken for all k1 < · · · kq satisfying

(k1, ..., k̂i, ..., kq) = (i1, ..., iq−1).

Then, taking summation for all i1 < · · · < iq−1 and exchange the order
of two summations, we got the claimed equality. ¤
Lemma 3.6. With the notation in Definition 3.4, the composition

∇` : I`/I`+1 → (Ω1
X)⊗`(3.15)

of the OX-morphisms in Lemma 3.3 (ii) has image T`(Ω1
X) ⊂ (Ω1

X)⊗`.

Proof. It is enough to prove the lemma locally. By Lemma 3.2, I`/I`+1

is locally generated by

{αk1
1 · · ·αkn

n | k1 + · · ·+ kn = ` }.(3.16)

By using formula (3.6) and the formula of permutations with repeated
objects, we have

∇`(αk1
1 · · ·αkn

n ) = (−1)`
∑
σ∈S`

(dx⊗k1
1 ⊗ · · · dx⊗kn

n ) · σ(3.17)

which implies that ∇`(I`/I`+1) = T`(Ω1
X) ⊂ (Ω1

X)⊗`. ¤
Theorem 3.7. The filtration defined in Definition 3.1 is

0 = Vn(p−1)+1 ⊂ Vn(p−1) ⊂ · · · ⊂ V1 ⊂ V0 = V = F ∗(F∗W )(3.18)

which has the following properties
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(i) ∇(V`+1) ⊂ V` ⊗ Ω1
X for ` ≥ 1, and V0/V1

∼= W .

(ii) V`/V`+1
∇−→ (V`−1/V`) ⊗ Ω1

X are injective morphisms of vector
bundles for 1 ≤ ` ≤ n(p− 1), which induced isomorphisms

∇` : V`/V`+1
∼= W ⊗OX

T`(Ω1
X), 0 ≤ ` ≤ n(p− 1).

The vector bundle T`(Ω1
X) is suited in the exact sequence

0 → Sym`−`(p)·p(Ω1
X)⊗ F ∗Ω`(p)

X

φ−→ Sym`−(`(p)−1)·p(Ω1
X)⊗ F ∗Ω`(p)−1

X

→ · · · → Sym`−q·p(Ω1
X)⊗ F ∗Ωq

X

φ−→ Sym`−(q−1)·p(Ω1
X)⊗ F ∗Ωq−1

X

→ · · · → Sym`−p(Ω1
X)⊗ F ∗Ω1

X

φ−→ Sym`(Ω1
X) → T`(Ω1

X) → 0

where `(p) ≥ 0 is the integer such that `− `(p) · p < p.

Proof. It is a local problem to prove the theorem. Thus Vn(p−1)+1 = 0
follows from Lemma 3.2. (i) is nothing but the definition. (ii) follows
from Lemma 3.3, Proposition 3.5 and Lemma 3.6. ¤
Corollary 3.8. When dim(X) = 2, we have

V`/V`+1 =

{
W ⊗ Sym`(Ω1

X) when ` < p

W ⊗ Sym2(p−1)−`(Ω1
X)⊗ ω

`−(p−1)
X when ` ≥ p

Proof. It follows from (i) of Proposition 3.5. ¤

4. stability in higher dimensional case

Let X be a smooth projective variety over k of dimension n and H
a fixed ample divisor on X. For a torsion free sheaf E on X, we define

µ(E) =
c1(E) · Hn−1

rk(E)
.

Definition 4.1. A torsion free sheaf E on X is called semistable (resp.
stable) if, for any 0 6= E ′ ⊂ E , we have

µ(E ′) ≤ µ(E) (resp. µ(E ′) < µ(E)).

For any torsion free sheaf E on X, there is a unique filtration, the
so-called Harder-Narasimhan filtration

0 = E0 ⊂ E1 ⊂ · · · ⊂ Ek = E

such that Ei/Ei−1 (1 ≤ i ≤ k) are semistable torsion free sheaves and

µmax(E) := µ(E1) > µ(E2/E1) > · · · > µ(Ek/Ek−1) := µmin(E).

The instability of E was defined as

I(E) = µmax(E)− µmin(E).



14 XIAOTAO SUN

Then it is easy to see that for any subsheaf F ⊂ E we have

µ(F )− µ(E) ≤ I(E) = µmax(E)− µmin(E).(4.1)

Let F : X → X1 be the relative k-linear Frobenius morphism and
W a vector bundle of rank r on X.

Lemma 4.2. Let c1(Ω
1
X) = KX . Then, in the chow group Ch(X1)Q,

c1(F∗W ) =
r(pn − pn−1)

2
KX1 + pn−1c1(W ),(4.2)

µ(F ∗F∗W ) = p · µ(F∗W ) =
p− 1

2
KX · Hn−1 + µ(W ).

Proof. The proof is just an application of Riemann-Roch theorem. In-
deed, by Grothendieck-Riemann-Roch theorem, we have

c1(F∗W ) =
rpn

2
KX + F∗(c1(W )− r

2
KX).(4.3)

We remark here that for any irreducible subvariety Y ⊂ X, its image
FX(Y ) ⊂ X (under the absolute Frobenius FX : X → X) equals to Y ,
and the induced morphism FX : Y → FX(Y ) = Y is nothing but the
absolute Frobenius morphism FY : Y → Y (which has degree pdim(Y )).
In particular, F∗(c1(W ) − r

2
KX) = pn−1(c1(W ) − r

2
KX1) proves (4.2).

That µ(F ∗F∗W ) = p · µ(F∗W ) also follows from this remark. ¤
Let V = F ∗F∗W , recall Theorem 3.7, we have the canonical filtration

0 = Vn(p−1)+1 ⊂ Vn(p−1) ⊂ · · · ⊂ V1 ⊂ V0 = V = F ∗(F∗W )(4.4)

with V`/V`+1
∼= W ⊗OX

T`(Ω1
X).

Lemma 4.3. With the same notation in Theorem 3.7, we have

c1(T
`(Ω1

X)) =
`

n




`(p)∑
q=0

(−1)qCq
n · C`−qp

n+`−q−1


 KX(4.5)

rk(T`(Ω1
X)) =

`(p)∑
q=0

(−1)qCq
n · C`−qp

n+`−q−1.

In particular, we have µ(T`(Ω1
X)) = `

n
KX · Hn−1.

Proof. The formula of rk(T`(Ω1
X)) follows directly from the exact se-

quence in Theorem 3.7 (ii). To compute c1(T
`(Ω1

X)), we use the fact
that for any vector bundle E of rank n, we have

c1(Symq(E)) = Cq−1
n+q−1 · c1(E)(4.6)

c1(∧qE) = Cq−1
n−1 · c1(E).(4.7)
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Then, use the exact sequence in Theorem 3.7 (ii) and note that

c1(F
∗Ωq

X) = p · c1(Ω
q
X),

we have the formula (4.5) of c1(T
`(Ω1

X)). ¤
Let E ⊂ F∗W be a nontrivial subsheaf, the canonical filtration (4.4)

induces the filtration (we assume Vm ∩ F ∗E 6= 0)

0 ⊂ Vm ∩ F ∗E ⊂ · · · ⊂ V1 ∩ F ∗E ⊂ V0 ∩ F ∗E = F ∗E .(4.8)

Lemma 4.4. In the induced filtration (4.8), let

F` :=
V` ∩ F ∗E

V`+1 ∩ F ∗E ⊂
V`

V`+1

, r` = rk(F`).

Then there is an injective morphism F`
∇−→ F`−1 ⊗ Ω1

X and

µ(F∗W )− µ(E) ≥KX · Hn−1

np · rk(E)

m∑

`=0

(
p− 1

2
n− `) · r`

− 1

p

m∑

`=0

r` · I(W ⊗ T`(Ω1
X))

rk(E)

(4.9)

the equality holds if and only if equalities hold in the inequalities

µ(F`)− µ(V`/V`+1) ≤ I(W ⊗ T`(Ω1
X)) (0 ≤ ` ≤ m).(4.10)

Proof. The injective morphisms V`/V`+1
∇−→ (V`−1/V`)⊗Ω1

X in Theorem
3.7 (ii) induces clearly the injective morphisms

F`
∇−→ F`−1 ⊗ Ω1

X , ` = 1, . . . , m.

To show (4.9), note µ(F∗W )− µ(E) = 1
p
(µ(F ∗F∗W )− µ(F ∗E)) and

µ(F ∗E) =
1

rk(E)

m∑

`=0

r` · µ(F`),

using Lemma 4.2, we have

µ(F ∗F∗W )− µ(F ∗E) =(4.11)

1

rk(E)

m∑

`=0

r`

(
p− 1

2
KX · Hn−1 + µ(W )− µ(F`)

)
.

For F` ⊂ V`/V`+1 = W ⊗ T`(Ω1
X) (0 ≤ ` ≤ m), using Lemma 4.3,

µ(F`) ≤ µ(W ) +
`

n
KX · Hn−1 + I(W ⊗ T`(Ω1

X)).(4.12)

Substitute (4.12) into (4.11), one get (4.9) and the equality holds if and
only if all of inequalities (4.12) become equalities.
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¤
Let K be a field of characteristic p > 0, consider the K-algebra

R =
K[y1, · · · , yn]

(yp
1, · · · , yp

n)
=

n(p−1)⊕

`=0

R`,

where R` is the K-linear space generated by

{ yk1
1 · · · ykn

n | k1 + · · ·+ kn = `, 0 ≤ ki ≤ p− 1 }.
The polynomial ring P = K[∂y1 , · · · , ∂yn ] acts on R through partial
derivations, which induces a P-module structure on R. Note that ∂p

yi

(i = 1, 2, . . . , n) act on R trivially, the P-module structure is in fact a
D-module, where

D =
K[∂y1 , · · · , ∂yn ]

(∂p
y1 , · · · , ∂p

yn)
= K[t1, t2, · · · , tn] =

n(p−1)⊕

`=0

D`,

where D` is the linear space of degree ` homogeneous elements and
t1, t2, . . . , tn are the classes of ∂y1 , ∂y2 , . . . , ∂yn .

Lemma 4.5. Let V ⊂ D` be a linear subspace. Then, when ` ≤ n(p−1)
2

,
there is a basis {di ∈ V } of V and monomials {δi ∈ Dn(p−1)−2`} such
that {δidi ∈ Dn(p−1)−`} are linearly independent.

Proof. We reduce firstly the lemma to the case when V has a basis of
monomials. Define the Lexicographic order on the set of monomials of
D`, Dn(p−1)−` respectively. For any v ∈ D`, one can write uniquely

v = λvmv +
∑

m>mv

λmm

where 0 6= λv, λm ∈ K, mv and m are monomials of D`.
Let dim(V ) = s, then it is easy to see that there is a basis

di = λimi +
∑

m>mi

λi,mm, λi 6= 0, (1 ≤ i ≤ s)

of V such that {m1, . . . , ms} are different monomials of D`. If there
are monomials {δi ∈ Dn(p−1)−2`}1≤i≤s such that {δimi ∈ Dn(p−1)−`}1≤i≤s

are different monomials, then we claim that

{δidi ∈ Dn(p−1)−`}1≤i≤s

are linearly independent. To prove the claim, we only remark that for
any monomials m, m′ ∈ D` and monomial δ ∈ Dn(p−1)−2`, we have

m < m′ ⇒ δm < δm′ whenever δm, δm′ are nonzero.



DIRECT IMAGES OF BUNDLES UNDER FROBENIUS MORPHISM 17

Thus we have

δidi = λiδimi +
∑

δim>δmi

λi,mδim (1 ≤ i ≤ s),

which are linearly independent.
If we identify the set of monomials of D` with the set

M ` = { v = (v1, . . . , vn) |0 ≤ vi ≤ p− 1 (1 ≤ i ≤ n),
n∑

i=1

vi = ` }.

Then the lemma is equivalent to the existence of an injective map

ϕ : M ` → Mn(p−1)−`

such that for any v ∈ M `, we have v ≤ ϕ(v): vi ≤ ϕ(v)i (1 ≤ i ≤ n).
The existence of ϕ is a special case of the following lemma. ¤

For any (a1, . . . , an) ∈ Zn
≥0, let M `

n(a1, . . . , an) be the set

{ v = (v1, . . . , vn) |0 ≤ vi ≤ ai (1 ≤ i ≤ n),
n∑

i=1

vi = ` }.

For any v ∈ M `
n(a1, . . . , an) and v′ ∈ M ` ′

n (a1, . . . , an), by v ≤ v′, we
mean vi ≤ v′i (1 ≤ i ≤ n). Then we have the following lemma, its proof
was suggested by Fusheng Leng

Lemma 4.6. Let σ =
n∑

i=1

ai. Then, when ` ≤ 1
2
σ, there exists an

injective map ϕ : M `
n(a1, . . . , an) → Mσ−`

n (a1, . . . , an) such that

v ≤ ϕ(v) , ∀ v ∈ M `
n(a1, . . . , an).

Proof. The strategy of proof is to do induction for n and σ. The lemma
is clearly true when n = 1. Assume the lemma is true for n − 1. To
show the lemma for n, we do induction for σ. The lemma is trivially
true for any n when σ = 1. Thus we can assume n ≥ 2 and σ ≥ 2.

Without loss of generality, we assume an−1 > 0 and an > 0. Let

S` = { v ∈ M `
n(a1, . . . , an) | vn−1 = an−1 or vn = 0 },

Sσ−` = { v ∈ Mσ−`
n (a1, . . . , an) | vn−1 = an−1 or vn = 0 },

C` = M `
n(a1, . . . , an) \S` and Cσ−` = Mσ−`

n (a1, . . . , an) \Sσ−`. We will
show the existence of injective maps

ϕ1 : S` → Sσ−` , ϕ2 : C` → Cσ−`
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with v ≤ ϕ1(v), v ≤ ϕ2(v) (∀ v ∈ S`, ∀ v ∈ C`) by induction of n, σ
respectively. In order to use the induction, we identify S` (resp. Sσ−`)
with M `

n−1(a1, . . . , an−1 + an) (resp. Mσ−`
n−1(a1, . . . , an−1 + an)) by

f` : S` → M `
n−1(a1, . . . , an−1 + an), f`(v) = (v1, . . . , vn−2, vn−1 + vn)

(resp. fσ−` : Sσ−` → Mσ−`
n−1(a1, . . . , an−1 + an)). Indeed, f` (resp. fσ−`)

is a bijective map. To see the injectivity of f`, if f`(v) = f`(v
′), then

vi = v′i (1 ≤ i ≤ n − 2) and vn−1 + vn = v′n−1 + v′n. We claim that
vn−1+vn = v′n−1+v′n implies vn = v′n (thus vn−1 = v′n−1) since v, v′ ∈ S`.
Indeed, if vn = 0 then v′n = 0, otherwise v′n−1 = an−1 (by definition of
S`) and vn−1 = an−1 + v′n > an−1 (a contradiction to the definition of
M `

n(a1, . . . , an)). Similarly, v′n = 0 implies vn = 0. If both vn and v′n
are not zero, by definition of S`, vn−1 = an−1 = v′n−1, thus vn = v′n.
To see it being surjective, for any w ∈ M `

n−1(a1, . . . , an−1 + an), notice
that wi ≤ ai (1 ≤ i ≤ n− 2) and wn−1 ≤ an−1 + an, we define

v =

{
(w1, . . . , wn−2, wn−1, 0) if wn−1 ≤ an−1

(w1, . . . , wn−2, an−1, wn−1 − an−1) if wn−1 > an−1

then v ∈ S` such that f`(v) = w. Similarly, fσ−` is bijective.
By the inductive assumption for n, there exists an injective map

ψ1 : M `
n−1(a1, . . . , an−1 + an) → Mσ−`

n−1(a1, . . . , an−1 + an)

such that v ≤ ψ1(v) (∀ v ∈ M `
n−1(a1, . . . , an−1 + an)). Then, we define

ϕ1 = f−1
σ−` · ψ1 · f` : S` → Sσ−`.

For any v = (v1, . . . , vn) ∈ S`, we need to show v ≤ ϕ1(v). Let

ψ1(f`(v)) = (w1, . . . , wn−2, wn−1) ∈ Mσ−`
n−1(a1, . . . , an−1 + an).

Then vi ≤ wi (1 ≤ i ≤ n− 2), vn−1 + vn ≤ wn−1 and

ϕ1(v) =

{
(w1, . . . , wn−2, wn−1, 0) if wn−1 ≤ an−1

(w1, . . . , wn−2, an−1, wn−1 − an−1) if wn−1 > an−1

by the definition of f`, ψ1 and fσ−`. Thus vi ≤ ϕ1(v)i (1 ≤ i ≤ n− 2).
We still need to check vn−1 ≤ ϕ1(v)n−1 and vn ≤ ϕ1(v)n. If vn = 0
(thus vn ≤ ϕ1(v)n), then vn−1 ≤ wn−1 (since vn−1 + vn ≤ wn−1), thus

vn−1 ≤ min{wn−1, an−1} ≤ ϕ1(v)n−1.

If vn 6= 0, by the definition of S`, vn−1 = an−1, which implies

an−1 < an−1 + vn = vn−1 + vn ≤ wn−1.

Thus ϕ1(v)n−1 = an−1 and ϕ1(v)n = wn−1 − an−1 = wn−1 − vn−1 ≥ vn.
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Next we construct the injective map ϕ2 : C` → Cσ−` by using induc-
tion for σ. By the definition of C` and Cσ−`, we have

C` = {v ∈ M `
n(a1, . . . , an) | vn−1 ≤ an−1 − 1, vn ≥ 1 }

Cσ−` = {v′ ∈ Mσ−`
n (a1, . . . , an) | v′n−1 ≤ an−1 − 1, v′n ≥ 1 }.

Let σ̄ = a1 + · · ·+ an−2 + (an−1 − 1) + (an − 1) = σ − 2 and ¯̀= `− 1,
we have the following clear identifications

π` : C` → M
¯̀

n(a1, . . . , an−2, an−1 − 1, an − 1)

πσ−` : Cσ−` → M σ̄−¯̀

n (a1, . . . , an−2, an−1 − 1, an − 1)

where π`(v) = (v1, . . . , vn−1, vn − 1), πσ−`(v
′) = (v′1, . . . , v

′
n−1, v

′
n − 1).

Notice that ¯̀≤ 1
2
σ̄, by induction for σ, there exists an injective map

ψ2 : M
¯̀

n(a1, . . . , an−2, an−1−1, an−1) → M σ̄−¯̀

n (a1, . . . , an−2, an−1−1, an−1)

such that v ≤ ψ2(v) for any v ∈ M
¯̀
n(a1, . . . , an−2, an−1− 1, an− 1). Let

ϕ2 = π−1
σ−` · ψ2 · π` : C` → Cσ−`.

For any v = (v1, . . . , vn) ∈ C`, we have to check that v ≤ ϕ2(v). Let

ψ2(π`(v)) = (w1, . . . , wn) ∈ M σ̄−¯̀

n (a1, . . . , an−2, an−1 − 1, an − 1),

then vi ≤ wi (1 ≤ i ≤ n− 1), vn − 1 ≤ wn and

ϕ2(v) = (w1, . . . , wn−1, wn + 1) ∈ Cσ−`

by the definition of π`, ψ2 and πσ−`. Thus vn ≤ wn + 1 = ϕ2(v)n and
we have shown the lemma.

¤

Proposition 4.7. Let V ⊂ R` be a linear subspace, L(D2`−n(p−1) · V )

be the linear subspace generated by D2`−n(p−1) · V ⊂ Rn(p−1)−`. Then,

dim(V ) ≤ dimL(D2`−n(p−1) · V ) when
n(p− 1)

2
≤ ` ≤ n(p− 1).

Proof. Let ω = yp−1
1 yp−1

2 · · · yp−1
n ∈ Rn(p−1). Then the D-module struc-

ture on R induces surjective morphisms

φ` : D`
·ω−→ Rn(p−1)−`(4.13)

of linear spaces for any 0 ≤ ` ≤ n(p− 1). They must be isomorphisms
since dim(D`) = dim(Rn(p−1)−`). To show the equality of dimensions,
it is enough to show

dim(D`) ≥ dim(Rn(p−1)−`) = dim(Dn(p−1)−`) ≥ dim(R`) = dim(D`).
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The two inequalities hold because we have the surjective homomor-
phisms φ` and φn(p−1)−`. The two equalities hold because

n(p−1)⊕

`=0

R` = R ∼= D =

n(p−1)⊕

`=0

D`

as (graded) K-algebras. In particular,

φn(p−1)−` : Dn(p−1)−` → R` , φ` : D` → Rn(p−1)−`(4.14)

are isomorphisms. Since 0 ≤ ¯̀ = n(p − 1) − ` ≤ n(p−1)
2

, we can use

Lemma 4.5 for V ′ = φ−1
n(p−1)−`(V ) ⊂ D¯̀ = Dn(p−1)−` , thus there is a

basis {di ∈ V ′}1≤i≤s and monomials {δi ∈ Dn(p−1)−2¯̀ = D2`−n(p−1)}1≤i≤s

such that {δidi ∈ Dn(p−1)−¯̀ = D`}1≤i≤s are linearly independent. Thus

{φ`(δidi) = δi(diω) ∈ D2`−n(p−1) · V ⊂ Rn(p−1)−`}1≤i≤s

are linearly independent, where s = dim(V ′) = dim(V ). We have
proven the proposition. ¤

Let X be an irreducible smooth projective variety of dimension n
over an algebraically closed field k with char(k) = p > 0. For any
vector bundle W on X, let

I(W,X) = max{I(W ⊗ T`(Ω1
X)) | 0 ≤ ` ≤ n(p− 1) }

be the maximal value of instabilities I(W ⊗ T`(Ω1
X)).

Theorem 4.8. When KX · Hn−1 ≥ 0, we have, for any E ⊂ F∗W ,

µ(F∗W )− µ(E) ≥ −I(W,X)

p
.(4.15)

In particular, if W ⊗ T`(Ω1
X), 0 ≤ ` ≤ n(p − 1), are semistable, then

F∗W is semistable. Moreover, if KX · Hn−1 > 0, the stability of the
bundles W ⊗ T`(Ω1

X), 0 ≤ ` ≤ n(p− 1), implies the stability of F∗W .

Proof. Since KX ·Hn−1 ≥ 0, by the inequality (4.9) in Lemma 4.4 (see
also the notation in (4.8) and the lemma), it is enough to show

m∑

`=0

(
n(p− 1)

2
− `)r` ≥ 0.



DIRECT IMAGES OF BUNDLES UNDER FROBENIUS MORPHISM 21

If m ≤ n(p−1)
2

, it is clear. If m > n(p−1)
2

, then we have

m∑

`=0

(
n(p− 1)

2
− `)r` =

n(p−1)∑

`=m+1

(`− n(p− 1)

2
)rn(p−1)−`(4.16)

+
m∑

` >
n(p−1)

2

(`− n(p− 1)

2
)(rn(p−1)−` − r`).

We will use Proposition 4.7 to show that

r` ≤ rn(p−1)−` when
n(p− 1)

2
≤ ` ≤ n(p− 1).

It is clearly a local problem, we can consider all of the torsion free
sheaves as vector spaces over the function field K = k(X) of X. With-
out loss of generality, we assume rk(W ) = 1. Then, from the discus-
sions in Section 3, we know that V`/V`+1

∼= T`(Ω1
X) (0 ≤ ` ≤ n(p− 1))

are precisely isomorphic to R` (0 ≤ ` ≤ n(p − 1)) in Proposition 4.7.

Since the morphisms V`/V`+1
∇−→ (V`−1/V`) ⊗ Ω1

X induce morphisms

F`
∇−→ F`−1 ⊗ Ω1

X , by the formula (3.6), we have

D2`−n(p−1) · F` ⊂ Fn(p−1)−` .

Then, by Proposition 4.7, r` = dim(F`) ≤ dimL(D2`−n(p−1) · F`) , we
have r` ≤ rn(p−1)−`, thus (4.15).

If the bundles W ⊗ T`(Ω1
X) (0 ≤ ` ≤ n(p− 1)) are stable, then

µ(F∗W )− µ(E) ≥ 0.

It becomes equality if and only if inequalities (4.10) become equalities

and
m∑

`=0

(n(p−1)
2

−`)r` = 0. Thus m > n(p−1)
2

and each term in (4.16) must

be zero (since KX · Hn−1 > 0), which forces m = n(p − 1). Then the
fact that inequalities (4.10) become equalities implies E = F∗W . ¤

Corollary 4.9. Let X be a smooth projective variety of dim(X) = n,
whose canonical divisor KX satisfies KX · Hn−1 ≥ 0. Then

I(F∗W ) ≤ pn−1rk(W ) I(W,X).

Proof. It is just Theorem 4.8 plus the following trivial remark: For any
vector bundle E, if there is a constant λ satisfying µ(E ′) − µ(E) ≤ λ
for any E ′ ⊂ E. Then I(E) ≤ rk(E)λ. ¤



22 XIAOTAO SUN

References

[1] Biswas, I., Holla, Y. : Comparison of fundamental group schemes of a pro-
jective variety and an ample hypersurface, arXiv: math.AG./0603299v1, 13
March, (2006).

[2] Biswas, I., Holla, Y. : Comparison of fundamental group schemes of a projec-
tive variety and an ample hypersurface, J. Algebraic Geom. 16 (2007), 547-597.

[3] Doty, S., Walker, G.: Truncated symmetric powers and modular representa-
tions of GLn, Math. Proc. Camb. Phil. Soc. 119 (1996), 231-242.

[4] Joshi, K., Ramanan, S., Xia, E.Z., J.-K., Yu: On vector bundles destabilized
by Frobenius pull-back, arXiv: math.AG./0208096 v1, 13 Aug. (2002). Com-
positio Math. 142 (2006), 616-630.

[5] Katz, N.: Nilpotent connection and the monodromy theorem: Application of
a result of Turrittin, I.H.E.S. Publ. Math. 39 (1970), 175-232

[6] Lange, H., Pauly, C. : On Frobenius-destabilized rank two vector bundles over
curves, arXiv: math.AG./0309456 v2, 6 Oct. (2005).

[7] Mehta, V., Pauly, C. : Semistability of Frobenius direct images over curves,
arXiv: math.AG./0607565 v1, 22 July, (2006).

[8] Sun, X. : Stability of direct images under Frobenius morphisms, arXiv:
math.AG./0608043 v1, 2 Aug. (2006).

Academy of Mathematics and Systems Science, Chinese Academy of
Science, Beijing, P. R. of China

E-mail address: xsun@math.ac.cn


