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Abstract. — In a joint research programme with Jun-Muk Hwang we have been
investigating geometric structures on uniruled projective manifolds, especially Fano
manifolds of Picard number 1, defined by varieties of minimal rational tangents associ-
ated to moduli spaces of minimal rational curves. In this article we outline a heuristic
picture of the geometry of Fano manifolds of Picard number 1 with non-linear vari-
eties of minimal rational tangents, taking as hints from prototypical examples such as
those from holomorphic conformal structures. On an open set in the complex topol-
ogy the local geometric structure associated to varieties of minimal rational tangents
is equivalently given by families of local holomorphic curves marked at a variable
base point satisfying certain compatibility conditions. Differential-geometric notions
such as (null) geodesics, curvature and parallel transport are a source of inspiration
in our study. Formulation of problems suggested by this heuristic analogy and their
solutions, sometimes in a very general context and at other times applicable only to
special classes of Fano manifolds, have led to resolutions of a series of well-known
problems in Algebraic Geometry.
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Résumé. — Dans un programme de recherche avec Jun-Muk Hwang nous avons
étudié des structures géométriques sur les variétés projectives uniréglées, en partic-
ulier les variétés de Fano de nombres de Picard egaux à 1, definies par les variétés
de tangentes rationnelles minimales associées aux espaces de modules de courbes ra-
tionnelles minimales. Dans cet article nous esquissons un dessin heuristique sur la
géométrie des variétés de Fano de nombres de Picard egaux à 1 dont les variétés de
tangentes rationnelles minimales sont non linéaires, en prenant comme prototypes les
exemples tels ques les structures conformes holomorphes. Dans un ouvert par rapport
à la topologie complexe, la structure géométrique associée aux variétés de tangentes
rationnelles minimales equivaut aux données de familles de courbes holomorphes lo-
cales marquées à un point de base variable vérifiant des conditions de compatibilité.
Des notions de la géometrie différentielle comme les géodesiques (nulles), la courbure
et le transport parallèle constituent une source d’inspiration dans notre étude. Des
formulations de problèmes suggérés par cette analogie heuristique et leurs solutions,
des fois dans un contexte très générale et des fois applicables seulement aux classes
de variétés de Fano spéciales, ont conduit a des résolutions d’une série de problèmes
bien connus en géométrie algébrique.

1. Introduction

1.1. Background and motivation. — In 1979, Mori [45] established the funda-
mental existence result on rational curves on a projective manifold where the canonical
line bundle is not numerically effective, thereby resolving the Hartshorne Conjecture.
When the manifold is Fano, Miyaoka-Mori [38] (1986) proved that the manifold is
uniruled. In a joint research programme undertaken with Jun-Muk Hwang, we have
been studying algebro-geometric and complex-analytic problems on uniruled projec-
tive manifolds basing on geometric objects arising from special classes of rational
curves, viz., minimal rational curves. In this article the author would like to highlight
some geometric aspects of the underlying theory.

Given a uniruled projective manifold X and fixing an ample line bundle L, by a
minimal rational curve we will mean a free rational curve of minimal degree with
respect to L among all free rational curves. A connected component K of the space of
minimal rational curves will be called a minimal rational component. In practice we
will fix a minimal rational component K and consider only minimal rational curves
belonging to K. Associated to K, there is the universal family ρ : U → K, µ : U → X,
where ρ : U → K is a holomorphic P1-bundle, and µ : U → X is the evaluation
map. In connection with U there is the tangent map τ : U → PTX . For a minimal
rational curve C marked at x ∈ X and immersed at the marking, and for α denoting
a nonzero vector tangent to C at the marking, the tangent map associates to the
marked point the element [α] ∈ PTx(X). For a general point x ∈ X we define the
variety of minimal rational tangents (VMRT) Cx at x to be the strict transform of
the tangent map τx : Ux → PTx(X). The basic set-up of our study takes place on
the total space of the double fibration given by the universal family ρ : U → X,
µ : U → X, equipped with the tangent map τ : U → PTx(X) and the fibered space
π : C → X of VMRTs. The overriding question is the extent to which a uniruled
projective manifold X is determined by its VMRTs.
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Given a uniruled projective manifold (X,K) equipped with a minimal rational
component K, and a connected open subset U ⊂ X in the complex topology, we
consider (U, C|U ) as a complex manifold equipped with a geometric structure. Here
the term ‘geometric structure’ is understood by analogy to standard examples. As
a prototype in the context of smooth manifolds, a real m-dimensional Riemannian
manifold (M, g) can be understood as one equipped with a reduction of the frame
bundle from the structure group GL(m,R) to O(m). In the context of complex man-
ifolds, a simplest example of a holomorphic geometric structure relevant to the study
of uniruled projective manifolds is the case of holomorphic conformal structures, alias
hyperquadric structures. A holomorphic conformal structure on an n-dimensional
complex manifold X determines at every point x ∈ X its null-cone, defining equiva-
lently a holomorphic fiber subbundle Q ⊂ PTX consisting of fibers Qx isomorphic to
an (n − 2)-dimensional hyperquadric. It corresponds to a reduction of the holomor-
phic frame bundle from GL(n;C) to C∗ · O(n;C), and this reduction is completely
determined by Q ⊂ PTX . When X = Qn, the n-dimensional hyperquadric, Qx agrees
with the VMRT Cx, and by analogy we speak of the geometric structure on a uniruled
projective manifold (X,K) equipped with a minimal rational component as defined
by its fibered space π : C → X of VMRTs. As our geometric study of VMRTs are
in many cases motivated by differential-geometric consideration, especially in relation
to global properties that can be captured by local differential-geometric information,
we will be considering a general point x ∈ X, and the local geometric structure de-
fined by the germ of the fibered space π : C → X at x, equivalently the restriction
π|U : C|U :→ U to arbitrarily small Euclidean open neighborhoods U of x.

1.2. A heuristic picture. — While a substantial part of our programme applies
generally to any uniruled projective manifold, our focus of investigation has been
primarily on those of Picard number 1. These manifolds, which are necessarily Fano,
are not amenable to further reduction by means of extremal rays in Mori theory,
and as such they are called ‘hard nuts’ among Fano manifolds in Miyaoka [36]. Our
geometric theory on uniruled projective manifolds based on VMRTs serve in particular
as a basis for a systematic study of all Fano manifolds of Picard number 1. There
emerges a dichotomy between those for which the VMRT at a general point is the
union of finitely many projective linear subspaces and the rest. We will say that
(X,K) has linear VMRTs in the former case and non-linear VMRTs otherwise. The
linear case includes those for which VMRT at a general point is 0-dimensional, where
the fibered space π : C → X gives rise to a geometry on X resembling that of web
geometry. We will discuss in this article exclusively the non-linear case and refer the
reader to Hwang-Mok [20] (2003) for results in the case of 0-dimensional VMRTs, and
to Hwang [13] (2007) for a problem which necessitates the study of the hypothetical
case of linear VMRTs of higher dimensions.

At this stage of investigation we have the following heuristic picture in the case of
non-linear VMRTs. The universal P1-bundle ρ : U → K associated to the minimal
rational component K gives rise via the tangent map to a tautological multi-foliation
on the fibered space π : C → X of VMRTs, and the ‘local’ geometric structure (U, C|U )
on open subsets U ⊂ X in the complex topology corresponds to the data of families
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of local holomorphic curves marked at points x ∈ U . The local holomorphic curves
are then solutions to a system of partial differential equations which in the case of
holomorphic conformal structures correspond to the null geodesics. We may think
of the local holomorphic curves as analogues of (null) geodesics. The fact that these
‘geodesics’ can be extended to minimal rational curves on (X,K) should impose seri-
ous constraints on the underlying geometric structure. In the case of the holomorphic
conformal structure on the hyperquadric, the splitting type of the tangent bundles on
minimal rational curves is enough to force the vanishing of the holomorphic Bochner-
Weyl tensor and thus to force flatness of the structure. In the general case of (X,K),
for a general K-minimal rational curve the normal bundle has only direct summands of
degree 1 or 0. Such a rational curve, to be called a standard rational curve, resembles
minimal rational curves on a hyperquadric, and there ought to be partial ‘flatness’ of
the geometric structure of (X, C) along standard rational curves which places serious
restrictions on geometric structures that can possibly arise from VMRTs. The heuris-
tic analogy between minimal rational curves and (null) geodesics also goes further as
the former should serve to propagate geometric information from a germ of geometric
structure to the ambient Fano manifold X of Picard number 1. In this case, any two
general points can be connected by a chain of minimal rational curves, and the bad
set of ‘inaccessible points’ must be of codimension ≥ 2.

A further geometric concept that ought to play an important role in the study
of geometric structures defined by VMRTs is the notion of parallel transport along
a standard rational curve. In the special case of irreducible Hermitian symmetric
spaces of the compact type the VMRTs are invariant under parallel transport with
respect to any choice of a canonical Kähler-Einstein metric. For Fano manifolds of
Picard number 1, endowed with geometric structures arising from VMRTs but without
privileged local holomorphic connections the only general source for the notion of
parallel transport arises from splitting types over minimal rational curves. In this
direction it is found that for the germ of families of VMRTs along the tautological
lifting Ĉ of a standard rational curve, the second fundamental in the fiber directions
can be identified as a section of a flat bundle over C, and as such one can speak of
the parallel transport of second fundamental forms along a standard rational curve.

Other than geometric structures defined by VMRTs, in important classes of Fano
manifolds X of Picard number 1 there are additional underlying structures with
differential-geometric meaning. These are the cases where the VMRTs are positive-
dimensional, irreducible and linearly degenerate at a general point. They span distri-
butions which give rise to differential systems by taking Lie brackets. The study of this
class of manifolds, which is particularly important for questions on deformation rigid-
ity, reveals an intimate link between issues of integrability and projective-geometric
properties of the VMRT at a general point.

1.3. Summary and presentation of results. — While some aspects of the overall
heuristic picture on geometric structures defined by VMRTs can be confirmed to
a large extent, other aspects are only beginning to be explored. In the research
programme emphasis has been placed on solutions of concrete problems, and in some
cases confirmation of some conjectural properties on VMRTs can lead to important
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consequences. Here we describe general results and highlights of applications that fall
within the framework of the heuristic picture discussed.

For the prototypical examples of geometric structures on irreducible Hermitian
symmetric spaces S of the compact type and of rank ≥ 2, Ochiai’s result [47] (1970)
can be interpreted as saying that a local VMRT-preserving holomorphic map nec-
essarily extends to an automorphism of S. In Hwang-Mok [17] (1999), [18] (2001)
we established the analogous phenomenon, which we call Cartan-Fubini extension,
for Fano manifolds of Picard number 1 with positive-dimensional VMRTs under the
additional assumption that the Gauss map of the VMRT is generically finite, proving
at the same time that the tangent map at a general point is birational under the same
assumption. In conjunction with the works of Kebekus [25] (2002) on the tangent map
and Cho-Miyaoka-Shepherd-Barron [3] (2002) on a characterization of the projective
space in terms of minimal rational curves we proved in Hwang-Mok [22] (2004) that
the same results hold true for any Fano manifold of Picard number 1 with non-linear
VMRTs at a general point, resulting in a new solution of the Lazarsfeld Problem in
[32] (1984) regarding finite holomorphic maps on rational homogeneous spaces G/P
of Picard number 1 (Hwang-Mok [22]). Cartan-Fubini extension has recently been
extended to non-equidimensional VMRT-respecting local holomorphic maps between
uniruled projective manifolds in Mok [43] and Hong-Mok [9] with applications to the
characterization of certain submanifolds saturated with respect to minimal rational
curves, in analogy to totally geodesic submanifolds in Riemannian geometry.

The idea of exploiting the splitting type of the tangent bundle over standard ra-
tional curves to prove vanishing theorems on curvature has given rise to a character-
ization of irreducible Hermitian symmetric spaces S of the compact type and of rank
≥ 2 as the unique uniruled projective manifolds admitting G-structures for reductive
complex Lie groups G (Hwang-Mok [14] (1997), leading also to an analogous result
of Hong [6] (2000) for geometric structures modeled after Fano homogeneous contact
manifolds of Picard number 1. The idea of parallel transport of second fundamental
forms was first used in relation to the Campana-Peternell Conjecture, leading to the
characterization of Fano manifolds of Picard number 1 with 1-dimensional VMRTs
and nef tangent bundle under the additional assumption that the fourth Betti num-
ber equals 1 (Mok [41], 2001), a condition that was removed in Hwang [12] (2007),
resulting together with earlier works in the confirmation of the Campana-Peternell
Conjecture for 4 dimensions. The same idea was further exploited to yield for rational
homogeneous manifolds G/P of Picard number 1 defined by long simple roots a char-
acterization of G/P by the VMRT at a general point (Mok [42] and Hong-Hwang [8]).
The study of distributions spanned by irreducible linearly degenerate VMRTs has led
to projective-geometric necessary conditions on such VMRTs (Hwang-Mok [15], 1998;
[17], 1999), and applications of such results to deformation of complex structures are
important in the final confirmation of rigidity of rational homogeneous manifolds
G/P of Picard number 1 under Kähler deformation (Hwang-Mok [23] (2005) and ref-
erences therein). Another important element in relation to deformation rigidity is the
study of Lie algebras of holomorphic vector fields by means of prolongation theory
for infinitesimal automorphisms of VMRTs.
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In the current article results falling within the general geometric framework de-
scribed revolving around the geometry of VMRTs will be stated and discussed, with
(sketches of) proofs of special cases for the purpose of illustration, in an order different
from the above that conforms more (but not strictly) to the chronology. The reader
may consult Hwang-Mok [17], Hwang [11] (2000) for more systematic overviews at
earlier stages of the programme, Mok [40] (1999) for aspects of the theory in relation
to G-structures, Hwang-Mok [22] for general results on the tangent map, and Hwang
[12] (2007) for an overview on rigidity of rational homogeneous manifolds. We have
completely omitted the important role played by VMRTs on the geometry of moduli
spaces of stable vector bundles on an algebraic curve, for which the reader is referred
to Hwang-Ramanan [24] (2004) and the references contained therein.

Acknowledgement. This article is an outgrowth of a lecture given by the author
in the conference “Differential Geometry, Mathematical Physics, Mathematics and
Society” celebrating the 60th birthday of Professor Jean-Pierre Bourguignon held in
August 27-31, 2007 at IHES. He would like to thank the organizers and the IHES for
their invitation and for their hospitality during the conference. The author wishes
to dedicate this article to Jean-Pierre, with whom among many other things we co-
organized the France-Hong Kong Geometry Conference in Hong Kong, 2002, for his
relentless efforts to help bring together mathematicians across different cultures, and
for his unfailing friendship. While the article serves to elaborate on the author’s
lecture in the conference and his other recent lectures on the subject, needless to say
the bulk of the article is a rendition of the fruits of a long series of joint works with
Jun-Muk Hwang, to whom the author wishes to express his thankfulness.

2. Varieties of minimal rational tangents

2.1. Minimal rational curves. — By a projective P1-fibered space ν : Z →
B we mean an irreducible reduced projective variety Z equipped with a surjective
holomorphic map ν onto a projective variety B, such that the general fiber of ν is an
algebraic curve of genus 0, i.e., isomorphic to the Riemann sphere P1. A projective
manifold X is said to be uniruled if there exists a projective P1-fibered space ν :
Z → B and a dominant holomorphic map ϕ : Z → X onto X. By restricting ν to
a properly chosen subvariety of B of dimension equal to dim(X) − 1, without loss
of generality we may assume that the dominant holomorphic map ϕ : Z → X is
generically finite. Replacing Z by its normalization we may also assume that Z is a
projective manifold. By Miyaoka-Mori [38] (1986) any Fano manifold is uniruled.

By a parametrized rational curve on a projective manifold X we mean a noncon-
stant holomorphic map f : P1 → X from the Riemann sphere P1 into X. We say that
two parametrized rational curves f1 and f2 are equivalent if and only if they are the
same up to a re-parametrization of P1, i.e., if and only if there exists γ ∈ Aut(P1) such
that f2 = f1 ◦γ. By a rational curve we mean an equivalence class [f ] of parametrized
rational curves f : P1 → X under this equivalence relation. We will sometimes also
refer to the nontrivial image f(P1) = C (as a cycle) as a rational curve.
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Let X be a uniruled projective manifold and fix an ample line bundle L on X. By
the degree of an algebraic curve C on X will will mean the degree of C with respect
to L, i.e., the integral of a (positive) curvature form of L over C. Let ϕ : Z → X
be a generically finite dominant holomorphic map from a projective P1-fibered space
ν : Z → X onto X where Z is nonsingular. From the surjectivity of ϕ : Z → X
it follows that for a general P1-fiber E of ν : Z → X, λ : P1 ∼= E, and for the
parametrized rational curve f : P1 → X defined by f := ϕ ◦ λ, the holomorphic
vector bundle f∗TX must be spanned by global sections at a general point. By the
Grothendieck Splitting Theorem any holomorphic vector bundle over P1 splits into
the direct sum of holomorphic line bundles, and it follows that f∗TX is nonnegative
in the sense that it is a direct sum of holomorphic line bundles of degree ≥ 0.

By a free rational curve on X we mean the equivalence class of a nonconstant
holomorphic map f : P1 → X such that f∗TX is nonnegative. From the above
discussion it follows that any uniruled projective manifold admits a free rational curve.
Conversely, if a projective manifold X admits a free rational curve parametrized as
f : P1 → X, then H0(P1, f∗TX) is spanned by global sections, and H1(P1, f∗TX) = 0
since H1(P1,O(k)) = 0 whenever k ≥ −1, so that there is no obstruction in the
deformation of f : P1 → X as a parametrized rational curve. By deforming f and
considering Chow spaces it follows readily that there exists a projective P1-fibered
space ν : Z → B such that Z dominates X. As a consequence, a projective manifold
X is uniruled if and only if X admits a free rational curve.

By a minimal rational curve on X we will mean a free rational curve of minimal
degree among all free rational curves on X. The set of minimal rational curves can
be given naturally the structure of a complex manifold, a connected component of
which will be called a minimal rational component K. A rational curve belonging to
K will sometimes be called a K-curve. The degree of K, to be denoted by deg(K), is
the degree of one and hence any K-curve.

For a general reference on rational curves in Algebraic Geometry we refer the reader
to Kollár [29]. The reader may also consult Hwang-Mok ([15], §2; [17], (1.1)) for basic
facts on the deformation theory of rational curves relevant to our discussion.

2.2. The universal family of K-curves and the canonical double fibration.
— Associated to (X,K) there is the universal family ρ : U → K of K-curves, where U
is smooth and ρ : U → K is a holomorphic P1-bundle, constructed as follows. Let H
be the connected component of the space of all parametrized free rational curves f :
P1 → X such that K = H/Aut(P1). Since f∗TX is nonnegative, the obstruction group
H1(P1, f∗TX) = 0, henceH carries naturally the structure of a complex manifold with
tangent spaces Tf (H) = H0(P1, f∗TX). Recall that K is the quotient of H by the
group Aut(P1), which acts onH by setting γ(f) = f◦γ for γ ∈ Aut(P1) and f ∈ H. By
the minimality of K any f ∈ Hmust be generically injective, from which it follows that
Aut(P1) acts effectively on H, so that K inherits the structure of a complex manifold
with T[f ](K) = H0(P1, f∗TX)

/
df(H0

(
P1, TP1)). The canonical projection p : H → K

realizes H as a principal Aut(P1)-bundle over K. Aut(P1) ∼= SL(2,C)/{±I} is a 3-
dimensional complex Lie group which acts transitively on P1, and we can represent
P1 ∼= Aut(P1)

/
Aut(P1; 0)), as a homogeneous space, where Aut(P1; 0)) ⊂ Aut(P1)
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is the (2-dimensional) isotropy subgroup at 0 ∈ P1. Define U := H/Aut(P1; 0).
Associated to the principal Aut(P1)-bundle p : H → K we have thus a holomorphic
bundle of homogeneous spaces ρ : U → K with fibers Aut(P1)

/
Aut(P1; 0)) ∼= P1,

which gives the universal family π : U → K.
It can be proven that as a complex manifold K is biholomorphic to a quasi-

projective manifold. In fact, there is a canonical injective holomorphic map from
K into the Chow space of X whose image is a dense Zariski-open subset K0 of a pro-
jective subvariety Q of some irreducible component of the Chow space of X. Thus,
K can be identified as the normalization of K0 and must itself be quasi-projective.
From this identification the universal P1-bundle ρ : U → K can be compactified to a
projective P1-fibered space. In particular, U is also quasi-projective.

The fiber ρ−1(κ) ∼= P1 of a point κ ∈ K gives a copy of the Riemann sphere P1

corresponding to the rational curve represented by κ. From any choice of parametriza-
tion f : P1 → X of κ, a point on ρ−1(κ) gives a point of the cycle C = f(P1) ⊂ X
determined by κ, and we have in fact a canonical holomorphic map µ : U → X which
we call the evaluation map. From the nonnegativity of f∗TX it follows readily that
µ : U → X must be a holomorphic submersion. Thus, the universal family comes
equipped with a canonical double fibration ρ : U → K, µ : U → X such that µ(U) must
contain a dense Zariski-open subset of X. As X is of Picard number 1, any K-curve
must intersect any nontrivial divisor D, hence K-curves must cover the complement
of a subvariety Z ⊂ X of codimension ≥ 2; i.e., µ(U) ⊃ X − Z.

2.3. K-curves marked at a point. — Fix a point x ∈ X and consider the set Hx

of all holomorphic maps f : P1 → X belonging to H such that f(0) = x. As a space
of free rational curves marked at x, Hx carries naturally the structure of a complex
manifold, as follows. The infinitesimal deformation of f ∈ Hx as a parametrized
rational curve marked at x is given by H0(P1, f∗TX ⊗ I0), while the obstruction
group to the deformation of f fixing the marking at x is given by H1(P1, f∗TX ⊗I0),
where I0 stands for the ideal sheaf defined by the reduced point 0 ∈ P1. Since f∗TX is
nonnegative, f∗TX ⊗I0

∼= f∗TX ⊗O(−1) is a direct sum of holomorphic line bundles
of degree ≥ −1, and we still have H1(P1, f∗TX ⊗ I0) = 0. Again Aut(P1; 0) acts
effectively on Hx, and we have a nonsingular quotient manifold Kx = Hx/Aut(P1; 0)
serving as the base manifold of a holomorphic principal Aut(P1; 0)-bundle qx : Hx →
Kx. Through a general point x ∈ X any rational curve of degree ≤ deg(K) must
be free. It follows that K-curves marked at such a point x cannot be decomposed
into two or more irreducible components under deformations fixing the base point x.
Thus, Kx must be compact, hence projective for a general point x ∈ X.

For a point x ∈ X, although the complex structures on Hx and H arise from
two distinct classification problems, set-theoretically Hx can still be identified with
a subset of the complex manifold H. For every f ∈ Hx the canonical inclusion
i : Hx ⊂ H identifies the tangent space Tf (Hx) = H0(P1, f∗TX ⊗ I0) as a vector
subspace of H0(P1, f∗TX) = Tf (H) so that i : Hx ⊂ H is a holomorphic immersion,
hence an embedding. We can therefore identify Hx as a complex submanifold of
H. After this identification, in the construction of the universal family ρ : U → K,
µ : U → X the µ-fiber Ux over any x ∈ X is nothing other than Hx/Aut(P1; 0), so
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that Kx can be identified with Ux. On the other hand, ρ|Ux : Ux → K need not be an
embedding. In fact, it need not be bijective as a priori the cycle C = f(P1) underlying
f ∈ Hx may be locally reducible at x. At the same time, a simple calculation also
shows that ρ|Ux

is an immersion at u ∈ U precisely when the K-curve κ = ρ(u)
is immersed at x := µ(u). Thus, it fails to be an immersion at a point u ∈ Ux

corresponding to a cusp on the minimal rational curve κ = ρ(u).

2.4. The tangent map and varieties of minimal rational tangents. — By
Mori’s Breaking-up Lemma, on a projective manifold X there does not exist any
nontrivial algebraic family of rational curves fixing 2 distinct points. In fact, to each
nontrivial algebraic 1-parameter family of rational curves fixing two distinct points
one can associate a ruled surface π : S → B over an algebraic curve B equipped with
two disjoint holomorphic sections Γ0 and Γ∞ corresponding to the two distinct fixed
points. On the one hand, each of the two sections must have negative self-intersection
number as it is an exceptional divisor on S. On the other hand, Γ2

0 = −Γ2
∞ as disjoint

sections of a ruled surface, thus leading to a contradiction.
Let now (X,K) be a uniruled projective manifold equipped with a minimal rational

component. For x ∈ X denote by Kx the moduli space of K-curves marked at x. From
Mori’s Breaking-up Lemma one deduces (cf. Mok [39], Lemma (2.4.3), pp.203ff.)

Lemma 1. — For a general point x ∈ X, a general member [f ] ∈ Kx is standard in
the sense that f∗TX

∼= O(2)⊕ [O(1)]p ⊕Oq for some nonnegative integers p and q.

Proof. — Suppose otherwise. Then, a general K-curve is not standard. Hence there
exists a nonempty open subset W ⊂ H and a holomorphic vector field Z on W
such that for every f ∈ W, Z(f) vanishes at 0,∞ ∈ P1 and does not belong to
df(H0(P1, TP1)). Integrating Z and descending fromH to K we obtain some nontrivial
holomorphic 1-parameter family {Φt : t ∈ ∆} of K-curves passing through two distinct
points x, y ∈ X. Identifying K as the normalization of a Zariski-open subset K0 of a
projective subvariety Q of the Chow space of X, the set of K-curves passing through x
and y is naturally endowed the structure of a quasi-projective variety. The existence
of a nontrivial holomorphic 1-parameter family of such curves implies therefore that
there also exists a nontrivial algebraic 1-parameter family {Ψt : t ∈ B} of such curves.
We may choose x such that any rational curve passing through x of degree ≤ deg(K)
must be free, in which case any K-curve passing through x cannot decompose under
deformation fixing x, and the base curve B can be taken to be projective, leading to
a contradiction with Mori’s Breaking-up Lemma.

We have the following important notion of the tangent map and the associated
varieties of minimal rational tangents.

Definition 1 (the tangent map & VMRTs). — Let (X,K) be a uniruled projec-
tive manifold equipped with a minimal rational component K. Over a general point
x ∈ X we have a rational map called the tangent map τx : Kx → PTx(X) defined
by assigning each rational curve [f ] marked and immersed at x to the complex line
Cdf(T0(P1)) ⊂ Tx(X). The total transform Cx := τx(Kx) ⊂ PTx(X) is called the
variety of minimal rational tangents, alias VMRT, of (X,K) at x.
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Note that a standard rational curve is immersed, since the natural map ν : O(2) ∼=
TP1 → f∗TX

∼= O(2) ⊕ O(1)]p ⊕ Oq is injective at every point. For x ∈ X a general
point and [α] ∈ Cx a smooth point such that α is tangent to a standard K-curve
`, assumed embedded for convenience, we write Pα for the positive part (O(2) ⊕
O(1)p)x ⊂ Tx(X) at x with respect to a splitting of TX |`. The following result
highlights the role of standard rational curves in relation to the tangent map.

Lemma 2. — Let (X,K) be a uniruled projective manifold equipped with a minimal
rational component. Suppose x ∈ X, and λ ∈ Kx is a marked K-curve which is
immersed at its marking at x. Then, the tangent map τx : Kx → PTx(X) is a holo-
morphic immersion at λ if and only if the underlying K-curve is standard. Moreover,
writing τx(λ) = Cα, in the latter case we have T[α](Cx) = Pα/Cα.

Proof. — Parametrize λ by f : P1 → X such that f(0) = x. A tangent vector in
Tλ(Hx) is equivalently a holomorphic section σ ∈ H0(P1, f∗TX ⊗ I0). Write σ :=
σ mod df(T0(P1) ⊗ I0). Let η ∈ T0(P1) and write α := df(η) ∈ Tx(X). Let Γ ⊂ X
be a germ of holomorphic curve at x ∈ X which is the image under f of the germ
of P1 at 0. The germ of s at 0 corresponds to a section s in H0(Γ, TX) vanishing at
x. Extend s to a holomorphic vector field s̃ on a neighborhood of x in X. Choose
any holomorphic coordinate system at x ∈ X and denote by ∇ the flat connection
defined by it. ∇α(s̃) is independent of the extension s̃, and it is further independent
of the choice of holomorphic coordinates since s(x) = 0. The differential of the
tangent map dτx at s ∈ Tλ(Kx) is an element of Hom

(
Tλ(Kx), T[α](PTx(X))

)
. Now

T[α](PTx(X)) ∼= Hom
(
Cα, Tx(X)/Cα

)
, so that we can interpret dτx as an element of

Hom
(
Tλ(Kx)⊗ Cα, T[α](PTx(X))/Cα

)
canonically. In local coordinates we have

dτx(s)(α) = ∇α(s̃) mod Cα.

Thus s ∈ Ker(dτx) if and only if ∇α(s̃) ∈ Cα, which is the case if and only if s vanishes
to the order ≥ 2 at x modulo Cα. Hence Ker(dτx) = 0 if and only if f ∈ Hx ⊂ H is
standard. The last statement in Lemma 2 follows readily from the proof.

By a line on a projective subvariety S ⊂ PN we will mean a projective line lying
on S. Regarding minimal rational components and their VMRTs on a projective
submanifold X ⊂ PN uniruled by lines we have

Lemma 3. — Let X ⊂ PN be a projective submanifold equipped with the polarization
inherited from the projective space, and K be a minimal rational component of X
corresponding to a uniruling of X by lines. Then, at a general point x ∈ X, the
variety of minimal rational tangents Cx ⊂ PTx(X) is nonsingular, and the tangent
map τx : Kx → PTx(X) is a biholomorphism onto Cx.

Proof. — A K-curve is a line ` on X, and we have TX |` ⊂ TPn |` ∼= O(2)⊕O(1)N−1.
When ` is a free rational curve on X, TX |` is a direct sum of holomorphic line bundles
of degree ≥ 0. Since O(2) ∼= T` ⊂ TX |`, we conclude that TX |` ∼= O(2)⊕O(1)p ⊕Oq

for some nonnegative integers p and q. Now every K-curve passing through a general
point x is free, and the moduli space Kx of K-curves marked at x is projective. By
Lemma 2 the tangent map τx : Kx → PTx(X) is a holomorphic immersion. On the
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other hand, for each nonzero vector ξ ∈ Tx(X) ⊂ Tx(PN ) there is at most one line `
on X tangent to ξ, so that τx must be injective. In other words, τx : Kx → PTx(X)
is a biholomorphism onto its image Cx, the VMRT at x, as desired.

While for projective submanifolds X ⊂ PN uniruled by lines the tangent map at a
general point is an isomorphism, and the same remains true for all known examples, on
a theoretical level the behavior of the tangent map on an abstract uniruled projective
manifold (X,K) is far from being fully understood. In Hwang-Mok [17] (1999) it was
proven that the tangent map τx : Kx → PTx(X) is birational under an additional
non-degeneracy assumption on the Gauss map of the VMRT. On the other hand, the
tangent map τx is holomorphic whenever every K-curve marked at x is immersed at
the marking. In 2002, Kebekus [25] showed by studying cusps of rational curves on
X that this is indeed the case at a general point x ∈ X. He proved in fact that the
tangent map is a finite holomorphic map at a general point x ∈ X. In conjunction
with [25] and Cho-Miyaoka-Shepherd-Barron [3], we proved

Theorem 1 (Hwang-Mok [22]). — Let (X,K) be a uniruled projective manifold
equipped with a minimal rational component K and x be a general point on X. Then,
(Kx is projective and) the tangent map τx : Kx → Cx is a finite birational holomorphic
map onto its image. In other words, Kx is the normalization of the variety of minimal
rational tangents Cx at a general point x ∈ X.

Remarks. — The results on the tangent map apply to a rational component K
whenever the variety of K-tangents is projective at a general point. In the literature
K is referred to as a non-splitting family of rational curves on X. One may extend
the notion in (2.1) of a minimal rational component to mean a rational component
K such that the variety of K-tangents at a general point is projective. In this article
we use the term ‘minimal’ to mean minimality of degrees among free rational curves,
but statements of results remain valid for the extended meaning of ‘minimality’.

2.5. Examples. — As first examples we consider the n-dimensional Fermat hyper-
surface X of degree d in Pn+1, where 1 ≤ d ≤ n. Thus,

X :=
{
[z0, z1, · · · , zn+1] ∈ Pn+1 : zd

0 + zd
1 + · · ·+ zd

n+1 = 0
}

To determine the VMRT at a general point x = [z0, z1, . . . , zn+1] ∈ X, it is equivalent
to find all (w0, w1, . . . , wn+1) such that for every t ∈ C, [z0 + tw0, z1 + tw1, . . . , zn+1 +
twn+1] ∈ X. In other words, we have

(z0 + tw0)d + · · ·+ (zn+1 + twn+1)d = 0, i.e.,

(zd
0 + · · ·+ zd

n) + t(zd−1
0 w0 + · · ·+ zd−1

n+1wn+1) · d

+ t2(zd−2
0 w2

0 + · · ·+ zd−2
n+1w

2
n+1) ·

d(d− 1)
2

+ · · ·+ td(wd
0 + wd

1 + · · ·+ wd
n+1) = 0.

When (z0, z1, . . . , zn+1) is fixed, we get d + 1 homogeneous equations given by

([)k zd−k
0 wk

0 + · · ·+ zd−k
n+1w

2
n+1; 0 ≤ k ≤ d

The equation ([)0 says that x = [z0, z1, · · · , zn+1] lies on X. The equation ([)1 says
that the vector (w0, w1, · · · , wn+1) mod C(z0, z1, · · · , zn+1) is tangent to X at x. The
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d− 1 other equations describe Cx as the intersection of d− 1 hypersurfaces of degree
2, 3, · · · , d in PTx(X) ∼= Pn−1. Geometrically the system of equations ([)k, 0 ≤ k ≤ d,
says that a line ` touching X at x to the order ≥ d must necessarily lie on X. By
Lemma 3, Cx is smooth for a general point x ∈ X. The anti-canonical line bundle of
Pn+1 is isomorphic to O(n + 2). Since X ⊂ Pn+1 is of degree d, the normal bundle
NX|Pn+1 on X is isomorphic to the restriction of O(d) to X. By the Adjunction
Formula, det(TX) ∼= O(n + 2 − d)|X . Over a line ` ⊂ X ⊂ Pn+1 which is free as
a rational curve we have TX |` ∼= O(2) ⊕ (O(1))n−d ⊕ Od−1 by the proof of Lemma
3, so that the VMRT at a general point of X is of dimension n − d. It follows that
for 1 ≤ d ≤ n, the degree-d Fermat hypersurface X ⊂ Pn+1 is uniruled by lines
such that the VMRT at a general point is the (n − d)-dimensional smooth complete
intersection of d− 1 hypersurfaces on PTx(X) ∼= Pn−1, which is necessarily connected
whenever n− d > 0. With exactly the same argument the VMRT at a general point
of any smooth Fano hypersurface of Pn+1 of degree d ≤ n − 1 must necessarily be a
(connected) smooth complete intersection of dimension n− d ≥ 1.

Note that in general for any smooth hypersurface X ⊂ Pn+1, K−1
X

∼= O(n + 2− d)
is in fact ample for 1 ≤ d ≤ n + 1. In the case where d = n + 1, the minimal rational
curves are however no longer lines. They are quadric curves C of Pn+1 which lie on
X, and TX |C ∼= O(2)⊕On−1, so that VMRTs are 0-dimensional at a general point.

The following table gives a description of the (smooth) VMRT at a general point
of a smooth Fano hypersurface of degree ≤ n in Pn+1 highlighting some examples of
special interest. Here we denote by Xn

d a smooth hypersurface of degree d in Pn+1.

VMRT at a general point for smooth hypersurfaces of degree d ≤ n in Pn+1

X VMRT Cx at a general point

Pn Pn−1

Qn Qn−2 ⊂ Pn−1

smooth cubic ⊂ Pn+1 quadric ∩ cubic in Pn−1

X5
3 ⊂ P6 K3 − surfaces

Xn
n ⊂ Pn+1 n! points

Xn
d ⊂ Pn+1, d ≤ n codim−(d− 1) complete intersection ⊂ Pn−1

of hypersurfaces of degrees 2, . . . , d

The first problem that we treated in our programme is the question of rigidity
of irreducible Hermitian symmetric spaces under Kähler deformation (Hwang-Mok
[15]) by a study of deformation of their VMRTs. The following table, taken from [15],
((2.1), p.440), gives their VMRTs. In this table G stands for the identity component of
the isometry group of (S, g), where g is a canonical Kähler-Einstein metric on S, and
K ⊂ G denotes the isotropy subgroup at 0 ∈ S. G(p, q) stands for the Grassmannian
of p-planes in Cp+q, GII(n, n) ⊂ G(n, n) the complex submanifold of n-planes in C2n

isotropic with respect to a non-degenerate symmetric form, GII(n, n) ⊂ G(n, n) the
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complex submanifold of n-planes in C2n isotropic with respect to a symplectic form.
O stands for the octonions.

Table of irreducible Hermitian symmetric spaces S
of the compact type and their VMRTs C0

Type G K G/K = S C0 Embedding

I SU(p + q) S(U(p)× U(q)) G(p, q) Pp−1 × Pq−1 Segre
II SO(2n) U(n) GII(n, n) G(2, n− 2) Plücker
III Sp(n) U(n) GIII(n, n) Pn−1 Veronese
IV SO(n + 2) SO(n)× SO(2) Qn Qn−2 by O(1)
V E6 Spin(10)× U(1) P2(O)⊗R C GII(5, 5) by O(1)
VI E7 E6 × U(1) exceptional P2(O)⊗R C Severi

3. Linearly degenerate VMRTs

3.1. Distributions and differential systems generated by VMRTs. — Let
(X,K) be a uniruled projective manifold equipped with a minimal rational component.
Suppose the VMRT Cx at a general point x ∈ X is irreducible and linearly degenerate.
Then, it spans a meromorphic distribution W ( TX . The singularity set Sing(W ) is of
codimension ≥ 2 in X. Suppose W is integrable, then a leaf L of W is quasi-projective,
and its compactification L can be obtained as follows. Pick a point x ∈ X−Sing(W ).
Consider the subvariety V1(x) swept out by all K-curves passing through x. Enlarge
V1(x) to obtain V2(x) by adjoining all minimal rational curves passing through general
points on V1(x) and taking topological closure. Repeating this process a finite number
of times, we obtain a compactification of the leaf Lx through x (Hwang-Mok [15],
Proposition 11). By definition, any K-curve `0 emanating from x lies on Lx, and
by the deformation theory of rational curves `0 can always be deformed to avoid the
set Sing(W ) which is of codimension ≥ 2 in X, yielding a K-curve ` disjoint from a
hypersurface H ⊂ X swept out by compactifications of leaves of W . This is possible
only if X is of Picard number ≥ 2. We have in fact

Proposition 1. — Let (X,K) be a Fano manifold of Picard number 1. Suppose
for a general point x ∈ X the associated variety of minimal rational tangents Cx is
irreducible and linearly degenerate. Then, the distribution W spanned at a general
point by C̃x cannot be integrable. More generally, any proper distribution D on X
containing W cannot be integrable.

In general, from W ( X one can derive a finite series of distributions W = W1 (
W2 ( · · · ( Wk = Wk+1 = · · · where Wi is defined by induction by setting Wj+1 =
[Wj ,Wj ] as sheaves. We have thus the weak derived system generated by W . In case
X is of Picard number 1, Proposition 1 applies to D = Wk to show that the tangent
bundle can be recovered from W by successively taking Lie brackets.
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3.2. Integrability of distributions via projective geometry of VMRTs. —
While [(3.1), Proposition 1] forces a distribution spanned by the VMRT at a general
point to be non-integrable when the uniruled projective manifold X is of Picard
number 1, we prove on the other hand that sufficient conditions for integrability of
W can be deduced from projective-geometric properties of VMRTs. The argument
goes as follows. The lack of integrability of W is encoded in the Frobenius form
ϕ : Λ2W → TX/W , and integrability amounts to the vanishing of ϕ by the Frobenius
Theorem. To prove that W is integrable it suffices to produce at a general point
x ∈ X enough elements of Ker(ϕx) to span Λ2Wx. In particular, if Σ is a germ of
complex-analytic integral surface of W passing through x and Tx(Σ) is spanned by η1

and η2, then η1 ∧ η2 ∈ Ker(ϕx). We consider a standard K-curve ` passing through
x and smooth at x, and take a smooth point x0 ∈ ` distinct from x. Then, any
pencil of rational curves emanating from x0 including ` and smooth along ` produces
a germ of surface Σ at x. Since the pencil fixes y, Tx(Σ) is spanned by Tx` = Cα

and a vector belonging to Pα. Thus Tx(Σ) ⊂ Pα ⊂ Span(C̃x) = Wx. An analogous
statement holds for any y ∈ Σ sufficiently close to x, implying that Σ is a germ
of integral surface of W at x. By linear algebra as explained in Hwang-Mok ([14],
§2) we derived the following sufficient conditions for the integrability of W in terms
of projective-geometric properties of VMRTs. For the formulation, given a finite-
dimensional complex vector space V and any irreducible subvariety Z ⊂ PV , its
tangent variety T ⊂ P(Λ2V ) is by definition the closure of the set of elements [α∧ β]
where α is a smooth point of Z̃ and β ∈ Tα(Z̃). We have

Proposition 2. — The distribution W is integrable if the tangent variety Tx ⊂
P(Λ2Wx) of Cx is linearly non-degenerate for a general point x ∈ X. The latter is in
particular the case whenever the second fundamental form σ[α] : T[α](Cx)×T[α](Cx) −→
NCx|PWx,[α] at a general smooth point [α] of Cx is surjective.

Proposition 3. — Suppose at a general point x ∈ X the variety of minimal rational
tangents Cx ⊂ PW ⊂ PTx(X) is irreducible and smooth and dim(Cx) > 1

2 rank(W)−1.
Then, W is integrable.

3.3. Fano homogeneous contact manifolds. — From the perspective of geo-
metric structures associated to VMRTs, after the irreducible Hermitian symmetric
spaces of the compact type one naturally turns to rational homogeneous manifolds
S = G/P of Picard number 1. Here G is simple and P ⊂ G is a maximal parabolic,
corresponding to the choice of a simple root in the Dynkin diagram of the Lie alge-
bra g of G. For the background on rational homogeneous manifolds, especially root
space decompositions, graded Lie algebras and G-invariant distributions we refer the
reader to Hwang-Mok ([16], (3.3)-(3.4)). Among them, the Fano homogeneous con-
tact manifolds were studied in relation to rigidity under Kähler deformation in Hwang
[10] (1997). On a complex manifold X of dimension ≥ 2, a holomorphic distribution
W ⊂ TX is said to be a contact distribution if and only if W is of co-rank 1 and the
Frobenius form ϕ : Λ2W → TX/W is non-degenerate at every point x ∈ X.
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For the classification of Fano homogeneous contact manifolds we follow Boothby
[1]. In the case of g = Ak, k ≥ 2, S is of Picard number 2, S ∼= PT ∗Pk . For the
case of g = Ck we have S ∼= P2k−1 as a complex manifold. These cases will be
excluded. For any other simple complex Lie algebra g there is a unique choice of a
long simple root in the Dynkin diagram of g, corresponding to a choice of a maximal
parabolic subalgebra p ⊂ g, such that the associated rational homogeneous manifold
S = G/P is of contact type. We write S = K(g). In the following table we list the
relevant Fano homogeneous contact manifolds of Picard number 1 according to the
classification of g, with information on the Levi factor q ⊂ p, and a description of the
VMRT C0 ⊂ PW0 as given in Hwang ([10], Proposition 5).

Table of Fano contact homogeneous spaces S 6∼= P2n−1 of Picard number 1
and their varieties of minimal rational tangents

g q C0 Embedding

Bk A1 ×Bk−2 P1 ×Q2k−5 Segre∗

Dk A1 ×Dk−2 P1 ×Q2k−6 Segre∗

G2 A1 P1 by O(3)

F4 C3 GII(3, 3) by O(1)

E6 A5 G(3, 3) by O(1)

E7 D6 GII(6, 6) by O(1)

E8 E7 exceptional∗∗ by O(1)

∗ Here k ≥ 3 for g = Bk, k ≥ 4 for g = Dk. The embedding arises from the Segre
embedding of P1 × Pm into P2m+1 and the canonical embedding Qm−1 ⊂ Pm.

∗∗ In this case C0 is biholomorphic to the irreducible compact Hermitian symmetric
space of type VI pertaining to E7, of dimension 27.

As examples of Fano homogeneous contact manifolds described in geometric terms
consider those arising from hyperquadrics as follows. For the hyperquadric Qn of
dimension n ≥ 5 consider the minimal rational component K(Qn), i.e., the moduli
space of lines ` on Qn, which is a rational homogeneous manifold. We have TQn |` ∼=
O(2)⊕(O(1))n−2⊕O for every ` ∈ K(Qn). The normal bundle N`|Qn ∼= (O(1))n−2⊕O.
At any ` ∈ K(Qn) the tangent space T`(K(Qn)) can be identified with the vector space
H0(`, N`|Qn) and it contains a vector subspace H0(`, (O(1))n−2)) of codimension 1
which defines, as ` varies, a holomorphic distribution D ⊂ TK(Qn) of co-rank 1. Since
n ≥ 5, Cx

∼= Qn−2 is of Picard number 1, and the base manifold K(Qn) of the double
fibration µ : U → Qn, ρ : U → K(Qn) is also of Picard number 1. For any x ∈ Qn

any vector α tangent to Cx arises from an element of H0(`,N`|Qn) vanishing at x,
thus taking values in (O(1))n−2, and Cx projects under the canonical map ρ′ : C → K
to a submanifold Qx ∈ K(Qn) which is tangent to D. The VMRT Cx is isomorphic
to Qn−2 ∼= Pn−1, and it contains a projective line λ whose image under ρ′ gives a
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minimal rational curve on K(Qn). (For this n ≥ 4 is enough.) Thus, any minimal
rational curve on K(Qn) is tangent to D. From [(3.1), Proposition 1], D ⊂ TK(Qn)

is not integrable. Qn is associated to the classical groups G of type Bk or Dk, for
which every rational homogeneous manifold S = G/P of Picard number 1 has at
most 1 proper G-invariant distribution. Hence, denoting by ϕ : Λ2D → TK(Qn)/D
the Frobenius form, the kernel Ker(ϕ) ( D must be trivial, and we conclude that the
Frobenius form ϕ defines a twisted symplectic form on the distribution D, and K(Qn)
is a Fano homogeneous contact manifold of Picard number 1.

For any ` ∈ K(Qn), any x ∈ `, Tx(`) = Cα, PT`(Qx)∩PT`(K(Qn)) parametrizes the
space of lines on Cx passing through [α], and it defines a hyperquadric in PT[α](Cx),
of dimension n − 4. As the point x varies over `, we recover a P1-family of disjoint
(n−4)-dimensional hyperquadrics which exhausts the VMRT C′` ∈ PT`(K(Qn)). This
family is actually isomorphic to the product P1 ×Qn−4. (This product structure can
be explained in terms of the parallel transport of second fundamental forms along ` to
be given in (6.2).) For n = 2k− 1 with k ≥ 3, K(Qn) = K(Bk) and C′` ∼= P1×Q2k−5;
for n = 2k − 2 with k ≥ 4 we have K(Qn) = K(Dk) and C′` ∼= P1 ×Q2k−6.

Excepting for P2n−1 of dimension≥ 3, which we exclude, for any Fano homogeneous
contact manifold (S,D) of Picard number 1, dim(S) = 2s + 1, the line bundle L :=
TS/D is isomorphic to O(1), the positive generator of the Picard group Pic(S). Thus
for any minimal rational curve ` on S, T`

∼= O(2) must project to 0 on L = TS/D, so
that ` is tangent to D. Over a minimal rational curve ` on S we have D|` = O(2)⊕
(O(1))p⊕Op⊕O(−1) by root space decomposition. All known Fano contact manifolds
are homogeneous. The question of characterization of Fano contact manifolds (X,D)
is known to be reducible to the essential case where X is of Picard number 1 and where
L := TX/D ∼= O(1) (Kebekus-Peternell-Sommese-Wísniewski [27] (2000)). Kebekus
[25] (2001) proved in this case that X is uniruled by degree-1 curves. From elementary
consideration involving splitting types and the non-degeneracy of the Frobenius form
ϕ : Λ2D → L one deduces readily that all minimal rational curves ` passing through
a general point x are standard. In [25] it was proven that ` is actually smooth. Thus,
Cx ⊂ PTx(X) is a Lagrangian submanifold with respect to the symplectic form ϕx.
It is tempting to believe that the complex structure of X can be recovered from its
VMRTs.

Conjecture 1. — Let X be a Fano contact manifold. Then, X is biholomorphic to
a Fano homogeneous contact manifold.

Confirmation of Conjecture 1 would imply the same for the LeBrun-Salamon Con-
jecture (LeBrun [34], 1995), according to which a compact quaternionic Kähler mani-
fold (M, h) of positive scalar curvature is Riemannian symmetric. The link is given by
the twistor construction, by which one obtains from (M, h) a twistor space X which
admits the structure of a Fano contact manifold. We note that for a Fano contact
manifold X of Picard number 1 other than P2n−1, the contact structure is unique
since the contact distribution is spanned at a general point by the VMRT.

Among Fano homogeneous contact manifolds of Picard number 1 other than P2n−1,
the one of smallest dimension is K(G2), of dimension 5, where the VMRT is the cubic
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rational curve in PDx
∼= P3 for the contact distribution D of rank 4. Other than

the projective plane P2 and the 3-dimensional hyperquadric Q3, K(G2) is the only
rational homogeneous manifold of Picard number 1 with 1-dimensional VMRTs.

3.4. Applications to rigidity under Kähler deformation. — Regarding the
problem of rigidity of rational homogeneous manifolds S = G/P of Picard number
1 under Kähler deformation, the first result was established for the special case of
irreducible Hermitian symmetric spaces of the compact type in Hwang-Mok ([15],
1998). After a series of articles we have now settled the problem, as follows.

Theorem 2 (Hwang-Mok [23]). — Let S = G/P be a rational homogeneous man-
ifold of Picard number 1. Let π : X → ∆ := {t ∈ C, |t| < 1} be a regular family of
projective manifolds such that Xt := π−1(t) is biholomorphic to S for t 6= 0. Then,
X0 is also biholomorphic to S.

S = G/P is determined by the choice of a simple root in the Dynkin diagram.
When it is a long root, considerations on integrability of distributions spanned by or
derived from VMRTs enter in an essential way. In the case of irreducible Hermitian
symmetric spaces S, excluding the obvious case of Pn, we make use of S-structures (cf.
(4.2)). An S-structure on a complex manifold M can be equivalently defined by the
varieties of highest weight tangents π : W(M) → M , and in the case of M = S, the
latter agrees with the fibered space π : C → S of VMRTs. The idea is to consider the
VMRT Cx0(X0) at a general point of X0. Suppose Cx0(X0) ⊂ PTx0(X0) is congruent
to the model C0 ⊂ PT0(S). From closedness of the flatness condition (cf. (4.3)) the
S-structure at x0 ∈ X0 is flat. By Matsushima-Morimoto [35] the moduli space of
projective submanifolds A ⊂ PV congruent to C0 ⊂ PT0(S) is isomorphic to an affine
algebraic variety. Let E ⊂ X0 be the singularity set of the S-structure defined at
general points of X0. Since E ⊂ X is of codimension ≥ 2 we have by [35] Hartogs
extension of S-structures on the relative tangent bundle of π : X → ∆, and X0 carries
a flat S-structure, implying that X0 is isomorphic to the model space S from Ochiai’s
Theorem [47] on S-structures (cf. (4.2) here) and the method of developing maps.

Thus it remains to identify the VMRT at a general point x0 ∈ X0 with that of
the model space. For t ∈ ∆, at xt ∈ Xt denote by Kxt the moduli space of minimal
rational curves marked at xt. For a generic choice of holomorphic section σ : ∆ → X ,
as t varies over ∆, {Kσ(t)} constitutes a regular family of projective manifolds such
that Kσ(t)

∼= C0(S) for t 6= 0. Noting that C0(S) is itself a Hermitian symmetric
space (cf. (2.5)), irreducible except in the case of the Grassmannian, by an inductive
argument coupled with cohomological considerations in the case of the Grassmannian,
Kσ(0) remains biholomorphically equivalent to C0(S). To reconstruct an S-structure
on X0 it remains to examine the tangent map τσ(0) : Kσ(0) → PTσ(0)(X0). From
the rigidity of Kσ(t) at t = 0, degeneration of VMRTs can only arise from a linear
projection on the model C0(S). If this happens at a general point of X0, we obtain a
distribution W ( TX0 generated at a general point by its VMRT. On the one hand,
by [(3.1), Proposition 1] W is not integrable since X0 is of Picard number 1. On the
other hand, from the description of C0(S) as the closure of the graph of a vector-valued
quadratic polynomial, at any [α] ∈ C0(S) the second fundamental form σ is surjective.
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By linear projection the same remains true for Cσ(0)(X0), and by [(3.2), Proposition
2] the distribution W ⊂ TX0 is integrable, yielding a contradiction and proving that
the VMRT is linearly non-degenerate at a general point of X0, implying X0

∼= S.
In the case where S is a Fano homogeneous contact manifold other than P2n−1,

the VMRT C0(S) ⊂ PD0, where D ⊂ TS is the contact distribution. The kernel of
the Frobenius form ϕ0 : Λ2D0 → T0(S)/D0

∼= C is of codimension 1. Theorem 2
for the contact case was established in Hwang [10]. Following the same scheme as
in the Hermitian symmetric case, the problem reduces to showing that for a generic
choice of a holomorphic section σ : ∆ → X , the linear span Wσ(0) of Cσ(0)(X0) is of
codimension 1, and Cσ(0)(X0) ⊂ Wσ(0) is congruent to the model C0(S) ⊂ PD0. In
fact, granting this one can recover the structure of a Fano contact manifold on the
central fiber X0, and we have X0

∼= S by the local rigidity result of LeBrun [34] for
Fano contact manifolds. It remains to rule out degeneration of VMRTs at a general
point x0 ∈ X0 corresponding to a proper linear projection of C0(S). Such a linear
projection cannot occur, because the second fundamental form σ0 of C0 ⊂ PD0 at
[α] ∈ C0(S) has image of codimension 1, and any proper linear projection χ of C0(S)
renders the second fundamental form σ[β] surjective at a general point [β] of the image
χ(C0(S)). In other words, if the VMRT at a general point on X0 were more linearly
degenerate than the model case, the distribution W on X0 would become integrable,
violating [(3.2), Proposition 2].

Given a distribution on a complex manifold, one can define a differential system
by successively taking Lie brackets. On a uniruled projective manifold (X,K) with
an irreducible and linearly degenerate VMRT a general point, the distribution W
spanned by VMRTs gives rise to such a differential system. When S = G/P is
defined by a long simple root but is neither of the symmetric nor of the contact
type, Theorem 2 was solved by Hwang-Mok ([19], 2001). We make use of the work
of Yamaguchi [51] on symbol algebras arising from differential systems on rational
homogeneous manifolds. Following the same scheme of proof for Theorem 2 as above
and making use of [51], the key issue is to prove that the differential system on the
central fiber derived from the VMRTs is isomorphic to that of the model space. The
VMRTs are tangents to minimal rational curves, and the argument using pencils of
minimal rational curves in (3.2) produces elements in the kernel of the Frobenius
form ϕx : Λ2Wx0 → Tx0(X0)/Wx0 at a general point x0 ∈ X0. We can consider the
universal Lie algebra defined by taking elements of Wx0 as generators, and by taking
the relations to be those generated by the argument of pencils of minimal rational
curves in (3.2). Using Serre relations, we show that this universal Lie algebra is
isomorphic to the symbol algebra at 0 ∈ S defined by T0(S) as a nilpotent algebra.
In particular, proper linear projection of C0(S) will yield a distribution such that
the maximal distribution obtained by successively taking Lie brackets, which is by
definition integrable, remains a proper distribution W] ( TX0 . This violates [(3.2),
Proposition 1] and solves the key difficulty of Theorem 2 for the long root case being
considered.

The method of using distributions associated to VMRTs does not in general work
for the short root case. In all remaining cases one imitates the same scheme of proof,
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but in a typical case defined by a short root the key difficulty occurs after we already
know that the VMRT at a general point of the central fiber agrees with that of the
model space. New ideas are needed to complete the proof of Theorem 2. In (4.4)
we will examine the degeneration of the Lie algebras of holomorphic vector fields
associated to π : X → ∆ by resorting to a study of prolongation of algebras of
infinitesimal automorphisms associated to VMRTs.

4. Holomorphic G-structures and prolongations associated to VMRTs

4.1. Holomorphic conformal structures. — By a holomorphic metric on a com-
plex manifold M we mean a nowhere degenerate holomorphic symmetric 2-tensor. In
local holomorphic coordinates (zi), we have g =

∑
gij(z)dzi⊗dzj such that det(gij)(z)

is nowhere zero. For x ∈ M , a tangent vector α ∈ Tx(M) is called a null vector if
and only if g(α, α) = 0. The space Nx of null vectors at x is called the null cone at
x. It corresponds to a hyperquadric Qx ⊂ PTx(M) which we call the variety of null
tangents. On (M, g) there is a unique holomorphic torsion-free connection ∇ such
that ∇g = 0 on M , analogous to the Levi-Civita connection in Riemannian geometry,
given by the same formula

Γk
ij =

1
2

∑

`

gk`
(∂gi`

∂zj
+

∂gj`

∂zi
− ∂gij

∂z`

)

for the Riemann-Christoffel symbols (Γk
ij). On a complex manifold M two holomor-

phic metrics g and g̃ on are said to be conformally equivalent to each other if and
only if there exists a nowhere vanishing holomorphic function λ such that g̃ = λg.
The Riemann-Christoffel symbols (Γ̃k

ij) of g̃ are related to those of g by

Γ̃k
ij =

∑

`

1
2λ

gk`
( ∂

∂zj
(λgi`) +

∂

∂zi
(λgj`)− ∂

∂z`
(λgij)

)

= Γk
ij +

1
2

δk
i

∂

∂zj
log λ +

1
2

δk
j

∂

∂zi
log λ− 1

2

( ∑

`

gk` ∂

∂z`
log λ

)
gij .

A (parametrized) complex geodesic on M is a nonconstant holomorphic map γ : D →
M defined on some domain D ⊂ C satisfying in analogy to geodesics in Riemannian
geometry the second order differential equation

∂2γ

∂t2
+ Γγ̇γ̇ = 0 .

Replacing g by g̃ = λg we have

∂2γ

∂t2
+ Γ̃γ̇γ̇ = (∂γ̇ log λ)γ̇ − 1

2

(∑

`

gk` ∂

∂z`
log λ

)
gγ̇γ̇ .

where γ̇ stands for ∂γ
∂t . In invariant form the differential equation is given by ∇γ̇ γ̇ = 0.

A complex geodesic γ is called a null geodesic if and only if γ̇(t) lies on the null cone
Nγ(t) for every t ∈ D. Since ∇g = 0, for a complex geodesic gγ̇γ̇ is a constant. In
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particular, γ is a null geodesic if and only if γ̇ is a null vector at one point. Suppose γ
is a null geodesic on (M, g). Then, with respect to the holomorphic metric g̃ we have

∂2γ

∂t2
+ Γ̃γ̇γ̇ = (∂γ̇ log λ)γ̇ .

Write f(t) := ∂γ̇ log λ(t). At a point t0 ∈ D, making a local holomorphic change of
variable s = s(t) at t0 and writing t = ϕ(s), γ(t) = µ(s), we have

∂2µ

∂s2
+Γ̃

(∂µ

∂s
,
∂µ

∂s

)
= ϕ′(s)2

∂2γ

∂t2
+ϕ′′(s)

∂γ

∂t
+ϕ′(s)2Γ̃γ̇γ̇ = ϕ′′(s)+

(
ϕ′(s)2f(ϕ(t))

)∂γ

∂t
.

Thus, making a change of variables by solving by means of power series the second
order differential equation ϕ′′(s)+

(
ϕ′(s)2f(ϕ(s)) = 0 which admits a unique solution

subject to a choice of s0 = ϕ−1(t0) and a choice of ϕ′(s0). In other words, a germ
of null geodesic on (M, g) can be re-parametrized to give a germ of null geodesic
on (M, g̃). We will sometimes speak of a complex geodesic to mean the image of a
parametrized complex geodesic. In this sense, the space of null geodesics on (M, g) is
a property of the conformal equivalence class of g.

By a holomorphic conformal structure on M we will mean a holomorphic line
subbundle Λ ⊂ S2T ∗M , generated at each point by a non-degenerate holomorphic
symmetric 2-tensor. Equivalently, it is given by the data (Uα, gα)α∈A consisting of
holomorphic metrics gα on open subsets Uα covering M such that over the non-
empty overlaps Uαβ = Uα∩Uβ , gα and gβ are conformally equivalent. A holomorphic
conformal structure on M is equivalently defined by the fibered space of varieties
of null tangents π : Q → M , and we will speak of (M,Q) as a complex manifold
equipped with a holomorphic conformal structure. Each null geodesic lifts to a lo-
cal holomorphic curve on Q by sending a point γ(t) to [γ̇(t)] ∈ Q[γ(t)], which we
call the tautological lifting, and we have a 1-dimensional holomorphic foliation on
(M,Q) by liftings of null geodesics. In Riemannian geometry, for computations at a
given base point one often makes use of local coordinates with respect to which the
Riemann-Christoffel symbols (Γk

ij) vanish at the base point 0. The proof of existence
of such coordinates works verbatim in the holomorphic situation. Starting with a
given holomorphic local coordinate system (zi) at a point x ∈ M , z(x) = 0, such
that gij(0) = δij , we introduce a new holomorphic coordinate system (wj) such that
w(0) = 0 and ∂wk

∂zi
(0) = δk

i . Writing

∑

i,j

gijdzi ⊗ dzj =
∑

k,`

hk`dwk ⊗ dw` , hk` =
∑

i,j

gij
∂zi

∂wk

∂zj

∂w`
;

∂hk`

∂ws
(0) =

∂gk`

∂zs
(0) +

∂2z`

∂ws∂wk
(0) +

∂2zk

∂ws∂w`
(0) .

Now choose (wk) such that zk = wk +
∑

s,` ck
s`w

sw`, where ck
s` = ck

`s. Then, setting

ck
s` = − 1

2

(∂gk`

∂zs
+

∂gks

∂z`
− ∂gs`

∂zk

)
(0) = −Γk

s`(0) .

we conclude that ∂hk`

∂ws
(0) = 0, and as a consequence Γ̃k

ij(0) = 0 in w coordinates.
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In Riemannian geometry for a given base point x there is a privileged coordinate
system adapted to x given by the geodesic normal coordinates in terms of which
in particular the Riemann-Christoffel symbols vanish at x. The notion of geodesic
normal coordinates generalizes in the setting of holomorphic metrics.

To start with we note that complex geodesics can be re-parametrized by a rescaling
of the domain variable. Let D ⊂ C be a domain containing 0, x ∈ M , and γ : D → M
be a parametrized complex geodesic such that γ(0) = x. Then, given any nonzero
complex number λ ∈ C, the function δ : 1

λ D → M defined by δ(t) = γ(λt) is again
a parametrized complex geodesic, as can be seen from the defining equation for a
complex geodesic. On the total space π : L → PTx(M) of the tautological line bundle
over PTx(M), for a sufficiently small neighborhood U of PTx(M) one can define a
holomorphic map Φ0 : U → M , as follows. For [α] ∈ PTx(M) and η ∈ L[α] = Cα,
η = tα sufficiently small, let Φ0(λ) be γα(t), where γ is the unique germ of complex
geodesic at 0 ∈ C such that γ(0) = x and ∂γ

∂t |t=0 = α. If we replace α by λα for
some nonzero λ, then γλα( t

λ ) = γα(t) from uniqueness of geodesics with fixed initial
value and initial first derivative. It follows that Φ(η) is well-defined, and we have a
holomorphic map Φ0 : U → M which collapses PTx(M) to x, from which it follows
readily that Φ0 descends to a holomorphic map Φ : Ω → M , where Ω is a neighborhood
of 0 in Tx. From the construction we have readily dΦ(0) = id. ϕ is the holomorphic
exponential map, and it defines holomorphic geodesic normal coordinates at x. With
respect to these coordinates, obviously the Riemann-Christoffel symbols vanish at
0. Moreover, by the same proof as in Riemannian geometry, the holomorphic metric
admits a power series expansion at 0 in terms of the curvature tensor and its covariant
derivatives at x. In particular, if the curvature vanishes identically, the holomorphic
geodesic normal coordinates define a coordinate system with respect to which the
holomorphic metric tensor (gij) is of constant coefficients. We may take gij to be δij .

Exactly as in Riemannian geometry, the curvature tensor Rijk
` of (M, g) admits a

decomposition Rijk
` = Aijk

`+Wijk
`, where W = (Wijk

`) ∈ H0(M, Λ2T ∗M⊗End(TM ))
is the Bochner-Weyl tensor, which is unchanged when a holomorphic metric is modi-
fied by a conformal factor. A holomorphic metric is by definition conformally flat if
and only if W = 0. A conformally flat holomorphic metric g is conformally equivalent
to a holomorphic metric h with vanishing curvature, i.e., Rh = 0. Using holomorphic
geodesic normal coordinates for h, we have seen that g is conformally flat if and only
of it is given locally by gij = λδij for an appropriate choice of holomorphic coordinates
and for some non-zero holomorphic function λ.

4.2. G-structures associated to irreducible Hermitian symmetric spaces of
rank ≥ 2. — The model space of a holomorphic conformal structure is the hyper-
quadric Qn, n ≥ 3. In terms of Harish-Chandra coordinates on an open Schubert
cell U ⊂ Qn, the Euclidean translations on U extend to automorphisms of Qn, and
the null-cones Ñ on Qn form a constant family since they are invariant under auto-
morphisms of Qn, showing that the the holomorphic conformal structure on U ⊂ Qn

is defined by the equivalence class of a holomorphic metric of constant coefficients.
Holomorphic conformal structures will also be referred to as hyperquadric structures,
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or Qn-structures, in a sense that applies in general to Hermitian symmetric spaces
S of the compact type and of rank ≥ 2. In this general context the hyperquadric
structure on Qn is said to be flat (or integrable) in the sense that there exists local
holomorphic coordinates (the Harish-Chandra coordinates) with respect to which the
null cones N ⊂ TQn form constant families over the coordinate charts.

The notion of a hyperquadric structure generalizes to S-structures for any irre-
ducible Hermitian symmetric space of rank ≥ 2. For the fibered space of null cones
π : N → M of a complex manifold M equipped with a holomorphic conformal struc-
ture, there is an underlying complex Lie group consisting of linear transformations
preserving a model light cone N0 ⊂ V := T0(Qn). The group is precisely the re-
ductive complex Lie subgroup C · O(n;C) ⊂ GL(V ). In general for any complex Lie
subgroup G of GL(V ) for a finite-dimensional complex vector space we have the no-
tion of a (holomorphic) G-structure. For its formulation let n be a positive integer,
V be an n-dimensional complex complex vector space, and M be any n-dimensional
complex manifold. In what follows all bundles are understood to be holomorphic.
The frame bundle F(M) is a principal GL(V )-bundle with the fiber at x defined as
F(M)x = Isom(V, Tx(M)).

Definition 2 (G-structure). — Let G ⊂ GL(V ) be any complex Lie subgroup. A
holomorphic G-structure is a G-principal subbundle G(M) of F(M). An element of
Gx(M) will be called a G-frame at x. For G ( GL(V ) we say that G(M) defines a
holomorphic reduction of the tangent bundle to G.

We have in general the notion of a flat G-structure, as follows.

Definition 3 (flat G-structure). — In terms of Euclidean coordinates we identify
F(Uα) with the product GL(V )× Uα. We say that a G-structure G(M) on M is flat
if and only if there exists an atlas of charts {ϕα : Uα → V } such that the restriction
G(Uα) of G(M) to Uα is the product G× Uα ⊂ GL(V )× Uα.

Let (S, g) be an irreducible Hermitian symmetric space of the compact type and
of rank ≥ 2. Write Gc for the identity component of the isometry subgroup of (S, g),
and K ⊂ Gc be the isotropy subgroup at a reference point 0 ∈ S. As a rational
homogeneous manifold S = G/P , where G is a complexification of Gc and P ⊂ S is
a maximal parabolic subgroup. We have the Harish-Chandra decomposition of the
Lie algebra g of G, g = m+ ⊕ kC ⊕ m−, in which kC is the complexification of the
Lie algebra k of K. Regarding g as the Lie algebra of holomorphic vector fields on
S, m− stands for the vector space of holomorphic vector fields vanishing to the order
≥ 2 at 0. P admits a Levi decomposition P = KC ·M−. Here KC = exp(kC) is the
reductive group consisting of automorphisms of S fixing 0, identified with a complex
linear subgroup of GL(T0(S)) where γ ∈ KC is mapped to dγ(0), and M− = exp(m−).
S then carries a G-structure with G = KC. Regarding S-structures we have

Theorem 3 (Ochiai [47]). — Let S be an irreducible Hermitian symmetric space
of the compact type and of rank ≥ 2. Let X be a compact simply-connected complex
manifold with a flat S-structure. Then, X is biholomorphic to S.
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KC acts irreducibly on the model vector space V = T0(S), and its highest weight
orbits define a rational homogeneous manifold W0 ⊂ PT0(S), leading to a fibered
space of highest weight tangents π : W → M on any complex manifold equipped with
a KC-structure. Let (M1,G1) resp. (M2,G2) be two complex manifolds equipped with
G-structures, G = KC, with fibered spaces of highest weight tangents π1 : W1 → M1

resp. π2 : W2 → M2. A biholomorphism f : M1 → M2 preserves the G-structures if
and only if it preserves the fibered spaces of highest weight tangents, i.e., f∗W1 = W2.

Denote by O(1) the ample line bundle on S which is the positive generator of
the Picard group of S. S can be embedded into the projective space by O(1), e.g.,
the Grassmannian is embedded by the Plücker embedding. With respect to this
embedding, S is uniruled by lines. When S itself is considered as the underlying
space of an S-structure, the variety of highest weight tangents Wx agrees with the
VMRT Cx at any x ∈ S. This follows from the construction of lines on S by means
of SL(2,C) orbits highest weight vectors (cf. Mok [40], (1.4)) for a verification in
the case of Grassmannians). To give a proof of Ochiai’s Theorem using VMRTs, the
starting point is the following result on local VMRT-preserving holomorphic maps.

Lemma 4. — Let S be an irreducible Hermitian symmetric space of the compact
type and of rank ≥ 2. Let D, D′ ⊂ S be nonempty connected open subsets of S and
f : D → D′ be a VMRT-preserving biholomorphic map. Then, for any line on S
intersecting D, f(L ∩D) is an open subset of some line L′ of S

Proof. — Denote by π : C → S the fibered space of VMRTs over S and by F the
tautological foliation on C. By assumption [df ](C|D) = C|D′ . We have to show that
for any line L ⊂ S such that L ∩ D 6= ∅, [df ](L̂ ∩ C|D) is an integral curve of the
tautological foliation on S. This is the case if and only if f∗F agrees with F on C|D,
i.e., if and only if the image under [df ] of each L̂ ∩ C|D is tangent at every point to
the tautological lifting L̂′ of some line L′. Equivalently this means that the image
of each L ∩ D is tangent at every point to a line on S up to the second order. To
prove Lemma 4 it suffices therefore to show that ∂2f(α, α) is proportional to df(α)
for any minimal rational tangent [α]. In these coordinates π : C → S is a constant
family. Let α, β be vectors in C̃0. (For a projective subvariety A ⊂ PN we denote
by Ã ⊂ CN+1 − {0} its homogenization.) Then, ∂2f(α, β) = ∂α(df(β])), where β]

stands for the constant vector field on D such that β](0) = β. Thus, ∂2f(α, β) is the
tangent at β to some holomorphic curve on C̃0, so that ∂2f(α, β) ∈ Pβ = Tβ(C̃0). By
symmetry we have ∂2f(α, β) ∈ Pα ∩ Pβ .

It remains to derive that for any α ∈ C̃, ∂2f(α, α) = λα for some λ. On a
non-linear projective submanifold, by Zak’s Theorem (Zak [52]) the Gauss map is
non-degenerate at a general point. Thus, the kernel of the second fundamental form
σ is trivial at a general point. In the case of C0 ⊂ PT0(S), which is homogeneous as a
projective submanifold, Ker(σ̃) = 0 everywhere. Equivalently, lifting to homogeniza-
tions, Ker(σ̃α) = Cα for the (Euclidean) second fundamental form σ̃α at any α ∈ C̃0,
and it remains for the proof of Lemma 4 to show that ∂2f(α, α) ∈ Ker(σ̃α) for any
such α. Fix now α ∈ C̃0 and let β = α(t), α(0) = α, vary holomorphically on C̃0 in the
complex parameter t. Writing ξ = ∂t(α)(0), from ∂2f(α, α(t)) ∈ Pα it follows that
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∂2f(α, ξ) ∈ Pα. On the other hand ∂t(∂2f(α(t), α(t))|t=0 = 2∂2f(α, ξ), and hence
∇ξ(∂2f(α(t), α(t))|t=0 ∈ Pα in terms of the Euclidean flat connection ∇ on T0(S). It
follows that σ̃α(ξ, ∂2f(α, α)) = 0. Since ξ can be chosen to be any tangent vector in
Tα(C̃0) = Pα, we conclude that ∂2f(α, α) ∈ Ker(σ̃α), and we are done.

By means of Lemma 4 the mapping f : D → D′ can be analytically continued to
give an automorphism of S. The idea is to pass to the moduli space K of lines. For
each x ∈ S denote by Qx ⊂ K the projective submanifold consisting of lines passing
through x. We may assume D to be convex in Harish-Chandra coordinates. For any
` ∈ K sufficiently close to Qx, ` ∩ D is non-empty and connected, and f(` ∩ D) is
an open subset of some line `′. Thus, for a sufficiently small open neighborhood U
of Qx in K, f induces a holomorphic map f ] : U → K. The problem of analytic
continuation can be solved first by meromorphically extending f ] to F ] : K → K and
then by recovering F : S → S by considering a point y ∈ S as the intersection of
all lines passing through it, and by defining f(y) :=

⋂ {
f ](`) : y ∈ `

}
for a general

point y ∈ S. The meromorphic extension of f ] to F ] is plausible because U is a
‘big’ open set in an analytic sense, as it contains the projective subvarieties Qy for
y sufficiently close to x. This latter extension problem can be solved by methods of
Hartogs extension as done in Mok-Tsai [44]. The extension F : S → S thus obtained
may have singularities, but they are proven to be removable by arguments involving
deformation theory of rational curves (cf. Mok [40], (2.4)).

4.3. Flatness of G-structures via VMRTs. — Let V be a fixed n-dimensional
complex vector space and G ⊂ GL(V ) be a connected complex Lie subgroup. Let X
be an n-dimensional complex manifold endowed with a G-structure G ⊂ F(X). We
examine necessary and sufficient conditions for the G-structure to be flat. Recall that
the G-structure G is flat if local holomorphic trivializations of G can be realized by
choices of local holomorphic coordinates on X. Flatness imposes therefore differential
constraints on (X,G). The problem of identifying flat G-structures was solved in
terms of obstructions to prolongations of G-structures (cf. Guillemin [4]).

Given a G-structure (X,G) and a biholomorphic map f : X → Y onto another
complex manifold Y , we have an induced G-structure (Y, f∗G). Let (X,G) and (X ′,G′)
be two complex manifolds endowed with G-structures. For x ∈ X denote by (X, x) the
germ of complex manifolds defined by X at x, etc. A germ of local biholomorphism
f : (X, x) → (X ′, x′) is said to be (0-th order) structure-preserving if (f∗G)x′ = G′x′ .
For k a positive integer, f is said to be k-th order structure-preserving if furthermore
f∗G is tangent to G′ along G′x to an order ≥ k. This notion depends only on the (k+1)-
jet of f . For k ≥ 0 the G-structure (X,G) is said to be k-flat at x if there exists a
local biholomorphism f : (X, x) → (V, 0) which is k-th order structure-preserving,
when V is endowed with the trivial G-structure V ×G.

When (X,G) is uniformly k-flat, i.e., k-flat at every point x ∈ X, one can de-
fine in a canonical way some structure function ck on some prolongation bundle over
G, such that ck ≡ 0 if and only if (X,G) is uniformly (k + 1)-flat (Guillemin [5],
Cor. to Theorem 4.1). By the Cartan-Kähler Theorem (Singer-Sternberg [49]) a
G-structure is flat if and only if it is k-flat for every integer k ≥ 0. In the case
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where G is reductive, the structure functions can be translated as obstruction ten-
sors θk ∈ H0

(
X, Hom(Λ2TX , TX ⊗ SkT ∗X)

)
. In the case of S-structures (cf. (4.2))

corresponding to G = KC it is known that (X,G) is flat if and only if it is uni-
formly 2-flat. When S is Qn, n ≥ 3, given a point x ∈ X the fibered space
π : Q → X of null tangents is always tangent at x to that of the flat Qn-structure
in terms of holomorphic normal coordinates at x. Thus, the only obstruction tensor
is θ1 ∈ H0

(
X, Hom(Λ2TX , End(TX))

)
, which agrees with the Bochner-Weyl tensor

(Wijk
`) of the holomorphic conformal structure.

Theorem 4 (Hwang-Mok [14]). — Let X be a uniruled projective manifold ad-
mitting an irreducible reductive G-structure, G ( GL(V ). Then, X is biholomorphic
to an irreducible Hermitian symmetric space of the compact type and of rank ≥ 2.

Outline of Proof. — Associated to a G-structure with G ( GL(V ) reductive, there
is on X the fibered space λ : W → X of highest weight tangents. We show first of
all that the latter agrees with the fibered space π : C → X of VMRTs. The proof
makes use of Grothendieck’s classification of G-principal bundles on P1 in [4]. Then,
we show that the G-structure is flat by proving successively the vanishing of the
structure functions ck. Finally, we identify the candidates of VMRTs on X to show
that they correspond to S-structures in the Hermitian symmetric case, and conclude
that X ∼= S by observing that X is rationally connected, hence simply connected.

To prove the vanishing of the structure functions ck it suffices to prove the van-
ishing of the obstruction tensors θ = θk, which give in the reductive case sections in
H0

(
X, Hom(Λ2TX , TX ⊗ SkT ∗X)

)
. Let ` be a standard rational curve, assumed em-

bedded for convenience, so that TX |` ∼= O(2)⊕ (O(1))p ⊕Oq. Each direct summand
of (TX⊗SkT ∗X)|` is of degree ≤ 2. If we fix x ∈ X, then θx(α, ξ) = 0 whenever α ∈ C̃x

and ξ ∈ Tα(C̃x) = Pα, since α∧ ξ belongs to a direct summand of degree 3. By [(3.2),
Proposition 3], such elements generate Λ2Tx(X), and we conclude that θ ≡ 0.

In the same vein Hong ([6], Proposition (3.1.4)) established the following character-
ization of Fano homogeneous contact manifolds of Picard number 1. The statement
here is a slight modification of the original one which is implicit from the proof there.

Theorem 5 (Hong [6]). — Let S be a Fano homogeneous contact manifold of Pi-
card number 1 different from an odd-dimensional projective space. Let C0 ⊂ PT0(S)
be the VMRT of S at a reference point 0 ∈ S. Let X be a Fano manifold of Picard
number 1 whose VMRT Cx ⊂ PTx(S) at x ∈ X is isomorphic to C0 ⊂ PT0(S) as
a projective subvariety for x lying outside a subvariety Z ⊂ X of codimension ≥ 2.
Denoting by D the distribution on X spanned by VMRTs, assume that the Frobenius
form ϕ : Λ2D → TX/D is everywhere non-degenerate on X−Z. Suppose furthermore
that at every point x ∈ X − Z, a general minimal rational curve passing through x
lies on X − Z. Then, X is biholomorphic to S.

4.4. Prolongation of linear subalgebras of infinitesimal automorphisms of
VMRTs. — Let (X,K) be a uniruled projective manifold equipped with a minimal
rational component with non-linear VMRTs, and x ∈ X be a general point. Regarding
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the VMRTs in a neighborhood of x as defining a germ of geometric structure at x,
we are interested to study its germs of infinitesimal automorphisms vanishing at x.
By Cartan-Fubini extension, as to be explained in §5, this is the same as studying
holomorphic vector fields on X vanishing at x. As a preparation we have

Lemma 5. — Let X be a complex manifold, x ∈ X be any point, m ≥ 1 be a positive
integer and Z be a holomorphic vector field vanishing at x to the order ≥ m. Let {ϕt}
be the complex 1-parameter group of automorphisms on X generated by Z. Let E ⊂
PTX be an irreducible subvariety invariant under the induced automorphisms {Φt} on
PTX . Assume that π|E : E → X is a holomorphic submersion at a general smooth
point of Ex := E∩PTx. In terms of local holomorphic coordinates (zi) at x; zi(x) = 0;
write Z =

∑
i1...im;k Ak

i1···im
zi1 · · · zim ∂

∂zk
+ O(|z|m+1), where the Taylor coefficients

Ak
i1,··· ,im

are symmetric in i1, · · · im. Then, regarding the Taylor coefficients of m-th
order terms as coefficients of a homomorphism A : SmTx → Tx; for any choice of
m−1 tangent vectors η1, · · · , ηm−1; the linear vector field

∑
i wiA(η1, · · · , ηm−1,

∂
∂wi

)
on Tx is tangent to Ẽx at its smooth points.

Proof. — Write ϕk
t (z) = z +

∑
Bk

i1···im
(t)zi1 · · · zim + O(|z|m+1) for z lying on a

small neighborhood of x and for t sufficiently small, where the summation is over
(i1, · · · , im). We have ∂

∂tB
k
i1···im

(t)|t=0 = Ak
i1···im

. Writing (wi) for fiber coordinates
for TX induced by (zi), the induced automorphism Φt on TX is given by

Φt(z, w) =
(
ϕt(z); dϕt(z)(w)

)
=

∑(
Bk

i1···im
(t)zi1 · · · zimek + O(|z|m+1); mBk

i1···im
(t)zi1 · · · zim−1wimεk + O(|z|m|w|)

)

Here ek = ∂
∂zk

and εk = ∂
∂wk

. Since ϕt preserves the subvariety Ẽ, the infinitesimal

automorphism Z̃ = ∂
∂tΦt|t=0 is tangent to Ẽ at smooth points. It is given by

Z̃ =
∑(

Ak
i1···im

zi1 · · · zimek +O(|z|m+1); mAk
i1···im

zi1 · · · zim−1wimεk +O(|z|m|w|)
)
,

showing that the latter vanishes on Tx to the order ≥ m − 1. Taking partial deriva-
tives m − 1 times against horizontal constant vector fields η1, · · · ηm−1. we obtain
σ :=

∑
i,k Ak

η1···ηm−1iw
i ∂
∂wk

=
∑

i wiA
(
η1, η2, · · · , ηm−1,

∂
∂wi

)
. When m = 1 no dif-

ferentiation is involved, and σ is simply the restriction of Z̃ to Tx. Since at a smooth
point of Ẽx, σ is both tangent to Ẽ and to Tx, it must be tangent to Ẽx, as desired.

Lemma 6. — Let X be an n-dimensional uniruled projective manifold admitting
a minimal rational component whose VMRT Cx ⊂ PTx at a general point x is p-
dimensional; 0 < p < n−1; nonsingular and linearly non-degenerate. Given a general
point x ∈ X, let Z be a holomorphic vector field vanishing at x to the order ≥ 2. In
terms of local holomorphic coordinates (zi) in a neighborhood of x; zi(x) = 0; write
Z =

∑
i,j,k Ak

ijz
izj ∂

∂zk
+O(|z|3), where Ak

ij = Ak
ji. Then, regarding Ak

ij as coefficients

of a linear homomorphism A : S2Tx → Tx we have Aαα ∈ Cα for any α ∈ C̃x.

Proof. — By Lemma 5, for any η ∈ Tx and any nonzero α ∈ C̃x we have Aαη ∈
Tα(C̃x) = Pα. In particular, if η is itself a nonzero vector in C̃x, we have from the
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symmetry of A the property that Aαβ ∈ Pα ∩ Pβ . The rest of the proof is the same
as in Lemma 2. (Here Aαβ plays the same role as ∂2f(α, β) there.)

Proposition 4. — Under the hypothesis in Lemma 6 and in the notations there,
suppose for the holomorphic vector field Z vanishing at x to the order ≥ 2 we have
Aαα = 0 for any α ∈ Cx, then A ≡ 0.

Sketch of proof. — Fixing η ∈ Tx(X), Aαη ∈ Pα. From Aαα = 0 for every α ∈
Cx, varying α = α(t) holomorphically and differentiating against t we conclude that
Aαξ = 0 for every ξ ∈ Pα. Thus, regarding Aα as an endomorphism of Tx(X) given
by Aα(η) = Aαη, we have Im(Aα) ⊂ Pα ⊂ Ker(Aα), so that A2

α = 0. Thus, choosing
sufficiently general points α, β ∈ Cx, the closure of the orbit of [α] under exp(tAβ) is
a line joining [α] to [ξ], where ξ := Aαβ 6= α, β; likewise with α and β interchanged.
Hence Cx is rationally 2-connected by lines. Proposition 4 is proven inductively. We
denote by K′ a minimal rational component consisting of lines on Cx, and C′[α] the
associated VMRT at [α]. For induction we replace x by [α], X by Cx, and consider
the VMRT C′[α] at [α] ∈ Cx. Given a holomorphic vector field Z vanishing at x to the
order ≥ 2 for which Aαα = 0 for every α ∈ Cx, we derive a holomorphic vector field
Z on Cx vanishing at [α] to the order ≥ 2 such that Aµµ = 0 for every µ ∈ C′α.

Starting with the data
(
X,K, x, Cx, Z, (Aij)

)
we derive

(Cx,K′, [α], C′[α],Z, (Ak`)
)
,

noting that C′[α] is nonsingular at a general point [α] ∈ Cx, by Lemma 3. To be able
to proceed by induction on the dimension, it remains to prove that C′[α] ⊂ PT[α](Cx)
is linearly non-degenerate. From the fact that C′[α] is rationally 2-connected by lines,
it follows that dim(C′[α]) ≥ 1

2 dim(PT[α](Cx)), and by [(3.2), Proposition 3] it would
follow that C′[α] is linearly non-degenerate in PT[α](Cx), if we knew that C[α] is of
Picard number 1. However, the latter need not be the case. Nonetheless, the proof
of Proposition 3 still works since we know that the VMRT is rationally 2-connected
by lines as explained, making it possible to prove Proposition 4 by induction.

Write f for the germs of C-preserving holomorphic vector fields at x. For ` ≥ −1,
write f` for the vector subspace of all Z ∈ f vanishing to the order ≥ ` + 1 at x.
Then Proposition 4 says that, under the assumption that the VMRT Cx ( PTx(X)
is irreducible, nonsingular and linearly non-degenerate, there is an injection of f1

into Γ(Cx, Hom(L2, L)) = Γ(Cx, L∗), where L stands for the tautological line bundle
over PTx(X). If furthermore Cx is linearly normal in PTx(X), i.e., the embedding of
Cx ⊂ PTx(X) is defined by a complete linear system, then dim(f1) ≤ n. From the
proof of Proposition 4 it follows readily that f` = 0 for ` ≥ 2, i.e., there does not
exist any nontrivial holomorphic vector field vanishing at x to the order ≥ 3. In fact,
if a C-preserving germ of holomorphic vector field Z vanishes at x to the order ≥ 2,
and Aijk are the coefficients of the third order terms of the Taylor expansion of Z at
x, then for any γ ∈ Tx(X), Bαβ = Aαβγ defines a 2-tensor for which the arguments
apply, and from there the vanishing of Aijk follows easily. The same arguments apply
to the leading terms of any nontrivial holomorphic vector field Z vanishing at x to
the order s ≥ 3, and we have a contradiction unless Z ≡ 0.
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Lemma 5 can be stated in the language of prolongation theory for Lie subalgebras
of End(Tx(X)), as follows. Let V complex vector space, dim V = n, and g ⊂ End(V )
be a Lie subalgebra. For k ≥ −1 denote by g(k) ⊂ Sk+1V ∗ ⊗ V the vector subspace
consisting of all σ ∈ Sk+1V ∗⊗V such that, writing σv1,··· ,vk

(v) = σ(v; v1, . . . , vk), we
have σv1,...,vk

∈ g. Let now Y ⊂ PV be a projective subvariety, and Ỹ ⊂ V be its
lifting to V . We write aut(Y ) := {A ∈ End(V ) : exp(tA)(Ỹ ) ⊂ Ỹ for all t ∈ C}. Then
for every ` ≥ 0, f` ⊂ aut(Y )(`). The argument in the proof of Proposition 4 applies to
elements of aut(Cx)(`) to imply that that dim(aut(Cx)(1) ≤ dim Γ(Cx, L∗), and hence
that aut(Cx)(`) = 0 whenever ` ≥ 2. In relation to holomorphic vector fields on a Fano
manifold of Picard number 1 there are the following conjectures and results.

Conjecture 2. — Let X be a Fano manifold of Picard number 1. Then, at a general
point x ∈ X there does not exist any nontrivial holomorphic vector field Z vanishing
at x to the order ≥ 3.

Conjecture 3. — Let X be an n-dimensional Fano manifold of Picard number 1,
Then, dim(Aut(X)) ≤ n2 + 2n. Moreover, equality holds if and only if X ∼= Pn.

Theorem 6 (Hwang-Mok [23]). — Let (X,K) be a uniruled projective manifold
equipped with a minimal rational component. Suppose the variety of minimal rational
tangents Cx ⊂ PTx(X) at a general point x ∈ X is irreducible, nonsingular and
linearly non-degenerate. Then, at a general point x ∈ X there does not exist any
nontrivial holomorphic vector field vanishing at x to the order ≥ 3. If furthermore
Cx ⊂ PTx(X) is linearly normal, then dim(aut(Cx)(1)) ≤ n, and equality holds if
and only if Cx ⊂ PTx(X) is congruent to C0 ⊂ PT0(S) for the variety of minimal
rational tangents of an irreducible Hermitian symmetric space of the compact type.
Furthermore, dim(Aut(X)) ≤ n2 + 2n, and equality holds if and only if X ∼= Pn.

Remarks. — As will be seen in (6.3) the statement that Cx ⊂ PTx(X) is congruent
to C0 ⊂ PT0(S) implies that X is biholomorphic to S.

Corollary 1. — Let X be an n-dimensional Fano manifold of Picard number 1, and
denote by O(1) the positive generator of Pic(X) ∼= Z. Assume that O(1) is very
ample. Suppose c1(X) > n+1

2 . Then, for a general point x ∈ X there does not exist
any nontrivial holomorphic vector field vanishing at x to the order ≥ 3. Suppose X

satisfies the stronger condition c1(X) > 2(n+2)
3 , then dim(Aut(X)) ≤ n2 + 2n, and

equality holds if and only if X ∼= Pn.

In relation to VMRTs in general the following conjecture summarizes what one can
optimistically hope as compared to known results in [(2.4), Theorem 1].

Conjecture 4. — Let (X,K) be a uniruled projective manifold equipped with a min-
imal rational component, and π : C → X be the fibered space of varieties of minimal
rational tangents associated to K. Then, at a general point x ∈ X, either Cx is finite,
or it is irreducible, nonsingular and linearly normal in its linear span PWx ⊂ PTx(X).

Regarding Conjectures 2 and 3, the fundamental assumption in the partial result
(Theorem 6) is the linear non-degeneracy of the VMRT Cx at a general point. At
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least the statement regarding vanishing order of holomorphic vector field is accessible
whenever an irreducible component of Cx is linearly non-degenerate.

4.5. Applications to rigidity under Kähler deformation. — We return to the
question of rigidity of rational homogeneous manifolds S = G/P of Picard number
1 under Kähler deformation, as given in [(3.4), Theorem 2]. In (3.4) we explained
that for the case of P ⊂ G defined by a long simple root, the problem is solved
by studying the integrability of distributions spanned by or derived from VMRTs.
In Hwang-Mok [21] we settled the problem for G = F4 for the 20-dimensional F4-
homogeneous space associated to a short root. There we have the nilpotent graded
algebra n = g1 ⊕ g2 ⊕ g3 ⊕ g4. As opposed to the long root case the VMRT does not
lie in PD1 for the minimal proper G-invariant distribution D1, but it remains linearly
degenerate, spanning the proper G-invariant distribution D2 6= TS , and the method
using distributions spanned by VMRTs and Yamaguchi [51] is still applicable.

What remain are the cases of S = G/P defined by short simple roots in the cases
of Cn, and the 15-dimensional case of type F4. In both cases we have n = g1⊕g2, the
VMRT Cx at any point x ∈ S is almost homogeneous with two orbits corresponding
to highest weight vectors in g1 resp. g2, and Cx ⊂ PTx(S) is linearly non-degenerate.
The problem is solved in Hwang-Mok [23] (2005). To proceed we showed that the
VMRT at a general point of the central fiber X0 of π : X → ∆ remains isomorphic
to that of the model space C0 ⊂ PT0(S). On X0 we still have a 2-step filtration
0 ⊂ D1 ⊂ D2 = TX0 , but Cx0 ∩ PD1

x0
does not have an algebro-geometric meaning,

and the methods involving distributions spanned by VMRTs do not apply.
To solve the problem we examine the Lie algebra of holomorphic vector fields on

X0 which occur as limits of those on Xt, t 6= 0, with an aim to recuperating the
Lie algebra g on X0. For illustration we consider the Hermitian symmetric case and
sketch a proof in the last step using holomorphic vector fields in place of Ochiai’s
Theorem on S-structures. We assume already known that, over a suitably chosen
holomorphic section σ : ∆ → X , the VMRTs of Cσ(t) ⊂ PTσ(t)(Xt) on Xσ(t) form a
holomorphically trivial family of projective submanifolds all congruent to C0 ⊂ T0(S)
on the model space S. Writing T for the relative tangent sheaf of π : X → ∆, the
direct image V = π∗T is the sheaf of germs of sections of a holomorphic vector bundle
V on ∆, where for t 6= 0, gt := Vt carries naturally the structure of a Lie algebra
isomorphic to the Lie algebra g of G = Aut0(S), and our aim is to prove that this
remains true at t = 0. The idea is to reconstruct the Lie algebra structure from data
that can be recovered along σ : ∆ → X . For the model space S = G/P we have the
decomposition of the Lie algebra g of G as a graded Lie algebra, and equivalently the
Harish-Chandra decomposition (in the notations of (4.2)) given by

g = g−1 ⊕ g0 ⊕ g1 = m− ⊕ kC ⊕m+;

[m−, m−] = [m+,m+] = 0, where m− = {Z ∈ Γ(S, TS) : ord0Z ≥ 2}.
For k, k′ ∈ kC, m+ ∈ m+ and m− ∈ m− the Lie brackets [k, m+] ∈ m+, [k,m−] ∈
m−, [k, k′], [m−,m+] ∈ kC are completely determined by the leading terms of the Lie
algebra elements at 0. Here the leading term stands for the 0-th order term for m+,
the first-order term for k and k′, and the second-order term for m−. For a holomorphic
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vector field Z on Xt vanishing at σ(t) we denote by AZ the coefficient matrix for the
linear term of Z, which defines an element of End(Tσ(t)(Xt)). Define

J
(k)
t = {Z ∈ gt : ordσ(t)(Z) ≥ k}; It = {Z ∈ gt : Z(σ(t)) = 0 , AZ ∈ C · id} .

For t 6= 0 we have dimJ
(2)
t = n; dim J

(k)
t = 0 for any k ≥ 3, and dim It = n + 1, and

any Z ∈ It, AZ 6≡ 0 determines a C∗-action. Since Cσ(0) ⊂ PTσ(0)(It) is conjugate to
C0 ⊂ PT0(S), by [(4.4), Theorem 6] we have

dim J
(2)
0 ≤ n , J

(k)
0 = 0 for k ≥ 3 .

Thus, dim I0 ≤ n+1 while dim I0 ≥ n+1 by upper semicontinuity of dim It in t ∈ ∆.
Therefore, dim I0 = n + 1, so that there exists Z ∈ I0 such that AZ 6≡ 0 and such
that eλZ defines a C∗-action on X0 of period 2πi in λ. This C∗-action on X0 can be
extended to a holomorphic family Tt of C∗-actions on Xt, of period 2πi in λ, given
by Tt(λ) = eλEt , E0 = Z. Finally, defining

gt
i := {Z ∈ gt : [Et, Z] = iZ}; we have gt = gt

−1 ⊕ gt
0 ⊕ gt

1 .

For t 6= 0,
gt
0
∼= {A ∈ Endσ(t)(Tσ(t)) : A|eCσ(t)

is tangent to C̃σ(t)}.
Dimension count forces the same for t = 0. The Lie algebra structure on g0 is
determined by leading terms at σ(0) of elements in g0

−1, g0
0 and g0

1. Clearly, the rules
for taking Lie brackets by means of the leading terms at σ0 agrees with those at 0 ∈ S
for the model space, and we have shown that X0 = G/P ∼= S.

Let n ≥ 2 and W be a 2n-dimensional complex vector space equipped with a
symplectic form ν. For 1 < k < n we denote by Sk,n the symplectic Grassmannian of
k-planes V in W isotropic with respect to ν. The symplectic Grassmannian S = Sk,n

is clearly homogeneous under the group G of symplectic transformations of W , G ∼=
Sp(n,C). It is a complex submanifold of the Grassmannian Gr(k,W ) of k-planes in
W . With respect to the Plücker embedding p : Gr(k,W ) → PN , a line ` on S passing
through the point [V ] ∈ S, where V = V (k), is defined by the choices of a (k − 1)-
plane E(k−1) and a (k+1)-plane F (k+1) such that E(k−1) ⊂ V (k) ⊂ F (k+1). There are
precisely two distinct isomorphism classes of lines with respect to the action of Sp(W ),
according to whether ν|F is isotropic or otherwise. The VMRT C0 at 0 ∈ S is only
almost homogeneous with precisely two orbits. Since S ⊂ Gr(k,W ) ⊂ PN is uniruled
by lines, C0 ⊂ PT0(S) is non-singular. As a rational homogeneous manifold Sk,n is of
type Cn, corresponding to a short simple root αk, 1 < k < n. The tangent bundle
of TSk,n

has exactly one proper invariant distribution, and we have a decomposition
g = g−2 ⊕ g−1 ⊕ g0 ⊕ g1 ⊕ g2. From this description the SL(2,C)-orbit of a highest
weight vector of g1 gives a highest weight line which is a minimal rational curve. Such
a line corresponds to a line ` ⊂ Sk,n arising from the choice of some F (k+1) ⊃ E(k) for
which ν|F ≡ 0. When S = G/P is defined by a short simple root, the SL(2,C)-orbit
Cs defined by a highest weight vector of gs need not be of degree s. In the case of
s = 2 for S = Sk,n, C = C2 is in fact a line, and it corresponds to the generic choice of
F (k+1) so that ν|F 6≡ 0. From this description the VMRT C0 ⊂ PT0(Sk,n) is linearly
non-degenerate, and the question of rigidity under Kähler deformation of symplectic



GEOMETRIC STRUCTURES DEFINED BY VMRTS 31

Grassmannians Sk,n, 1 < k < n is therefore susceptible to be studied by means of the
method of prolongation of infinitesimal automorphisms of VMRTs, as is the case of
irreducible Hermitian symmetric spaces of rank ≥ 2.

The proof of deformation rigidity for Sk,n and also for the remaining 15-dimensional
case of type F4 were settled along the line of arguments as sketched for the Hermitian
symmetric case. For the graded Lie algebra g = g−2 ⊕ g−1 ⊕ g0 ⊕ g1 ⊕ g2 of the
model space, the summands gi can be described in terms of conditions on vanishing
orders and leading terms of holomorphic vector fields, and the multiplication table of
g as a Lie algebra can be determined to a good extent from the leading terms. For
instance, denoting by D ⊂ TS the proper invariant distribution D ⊂ TS , g−1 consists
of holomorphic vector fields Z vanishing at 0 ∈ S to the order ≥ 1 with leading term
corresponding to AZ ∈ End(T0(S)) satisfying A|D1 ≡ 0, and g−2 ⊂ g is the subspace
consisting of holomorphic vector fields vanishing to the order ≥ 2. Nonetheless, as
opposed to the Hermitian symmetric case, the structure of the Lie algebra g thus
obtained is incomplete. In the case of the symplectic Grassmannian S = Sk,n the
missing element is some symplectic form appearing implicitly in the Frobenius form
ϕ : Λ2D → TS/D. From π : X → ∆ we are able to identify the structure of the Lie
algebra g0 of limit holomorphic vector fields at the central fiber X0, thereby showing
that X0 is obtained by blowing down some holomorphic fiber bundle, and the final step
is achieved by showing that, in the event that there is actually a degeneration of the
Lie algebra structure, singularities must occur in the blown-down space, contradicting
the starting point that π : X → ∆ is a regular family.

5. Analytic continuation of VMRT-preserving maps

5.1. Characterization of the tautological foliation under a non-degeneracy
condition on the Gauss map. — Let x ∈ X be a general point and u ∈ Ux be a
point such that κ := ρ(u) ∈ K is a standard rational curve. Then, the tangent map τ
is a holomorphic immersion at u, and it maps some open neighborhood W of u in U
biholomorphically onto some locally closed complex submanifold Ω of PTX . Ω gives
the germ of some irreducible branch of C at [α]. Choosing x and u ∈ Ux sufficiently
general and W sufficiently small we assume furthermore that [α] ∈ C is a smooth
point and that Ω is a neighborhood of [α] in C.

On Ω we define a distribution P, as follows. Let f : P1 → U be a parametrization
of κ. The base point x ∈ X is a smooth point of the support C := µ(ρ−1(κ)) of the
standard rational curve κ. The decomposition f∗TX

∼= O(2)⊕ (O(1))p ⊕Oq over P1

gives a filtration TP1 ⊂ Q ⊂ f∗TX of f∗TX over P1, where Q = O(2) ⊕ (O(1))p is
the positive part of f∗TX , which is well-defined since Q ⊗ O(−1) ⊂ f∗TX ⊗ O(−1)
is the vector subbundle spanned by global sections. At the point x = f(0) we have
correspondingly a filtration Tx(C) ⊂ Px ⊂ Tx(X), where Px = df(Q0). Define now
P[α] ⊂ T[α](C) to be the vector subspace consisting of all tangent vectors η such that
dπ(η) ∈ Px. The tangent vector η is equivalently the image under dτ of some σ, where
σ ∈ H0(P1, f∗TX), and σ := σ mod df(H0(P1, TP1 ⊗I0)). For the universal family ρ :
U → K we have dρ(σ) = σ mod df(H0(P1, TP1). Equivalently, writing ρ̂ := ρ◦τ−1 over
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Ω, where τ−1 : Ω → W, we have dρ̂(η) = σ mod df(H0(P1, TP1)). The assumption
that dπ(η) ∈ Px means precisely that σ(0) ∈ Q0, thus σ′ := σ mod Q ∈ H0(P1,Oq)
must vanish at 0 and hence on all of P1, showing that σ ∈ H0(P1, Q). On an open
neighborhood U of κ in K consisting solely of standard rational curves we define a
distribution D ⊂ TK|U by setting Dκ := H0(P1, Q) mod df(H0(P1, TP1)) ∼= C2p. Then,
for ξ ∈ T[α] we have dρ̂(ξ) ∈ Dκ if and only if dπ(ξ) ∈ Px, hence P[α] = (dρ̂)−1(Dκ).
Finally there is a 1-dimensional distribution underlying the tautological foliation F
on Ω which will be denoted by the same symbol F . Thus, F[α] := T[α](ρ̂ −1(κ)).

To relate the distributions F ,P on Ω and the distribution D on G we recall the
notion of the Cauchy characteristic of a distribution. Given a complex manifold M
and a holomorphic distribution E ⊂ TM and denoting by E the corresponding locally
free sheaf of germs of holomorphic sections of E, then Ch(E) ⊂ E is the subsheaf
consisting of germs of holomorphic sections ζ such that [ζ, E ] ⊂ E . Thus, the Cauchy
characteristic Ch(E) = E if and only if E ⊂ TM is integrable. Outside an analytic
subvariety of codimension ≥ 2 the Cauchy characteristic is locally free, and from now
on we will make no distinction between a distribution and its associated locally free
sheaf, and think of the Cauchy characteristic as a distribution defined outside an
analytic subvariety of codimension ≥ 2. To proceed we note

Lemma 7. — Let U ⊂ Cn, V ⊂ Cm be Euclidean domains, and λ : U×V → V be the
canonical projection. Let S ⊂ TV be a holomorphic distribution and G := (dλ)−1(S).
Write H ⊂ TU×V for the distribution corresponding to the foliation by fibers of λ,
i.e., H = (dλ)−1(0). Then, H ⊂ Ch(G).

At a general point of the fibered space π : C → X of VMRTs, a priori there can
be more than one tautological foliation coming from different sets of families of local
holomorphic curves. The question whether the tangent map τx is birational at a
general point x ∈ X has to do with uniqueness of the tautological foliation. Such a
uniqueness result would follow if the tautological foliation F can be characterized as
in fact the Cauchy characteristic of P at a general point of C. We have proven that
F ⊂ Ch(P). For the inverse inclusion we impose an additional assumption on the
Gauss map on the VMRT Cx ⊂ PTx(X) at a general point, a condition that is always
satisfied whenever the Cx is nonsingular and non-linear.

Proposition 5. — Let (X,K) be a uniruled projective manifold equipped with a min-
imal rational component, and π : C → X be the associated fibered space of VMRTs.
Let Ω ⊂ C be a connected nonempty open subset consisting of nonsingular points on
which both a tautological foliation F by standard K-curves and hence the correspond-
ing distribution P are defined. Suppose at a general point [α] ∈ Ω, π([α]) := x, the
Gauss map of Cx ⊂ PTx(X) is a holomorphic immersion at [α]. Then, F = Ch(P).

Proof. — In what follows we denote by Ω̃ = π−1(Ω) ⊂ C̃, P̃ = (dπ)−1(P), etc., by
lifting to homogenizations. At a general point α ∈ Ω̃ choose local holomorphic co-
ordinates (z1, · · · , zn) at x = π̃(α) and corresponding fiber coordinates (w1, · · · , wn)
on TX in a neighborhood of u. Suppose s :=

∑
gi ∂

∂zi
+

∑
hj ∂

∂wj
is a germ of holo-

morphic section of P̃ at u such that [s, η] is a germ of P̃ at α. Denote by V ⊂ P the
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subbundle of vertical vectors, i.e., of vectors tangent to the fibers Cy of π|Ω. Now for
η an arbitrary germ of vertical holomorphic vector field at α we have[ ∑

gi ∂

∂zi
+

∑
hj ∂

∂wj
,
∑

ηk ∂

∂wk

]
=

∑
ηk ∂gi

∂wk

∂

∂zi
mod Ṽ . (∗)

The condition that [s, η] takes values in P̃ implies that
∑

ηk ∂gi

∂wk

∂
∂wi

∈ Pα. Since the
germ of vertical vector field η is arbitrary, it follows that

∑
gi ∂

∂wi
(α) ∈ Ker(σ̃α) = Cα.

Thus, s = λ
∑

wi ∂
∂zi

+
∑

hj ∂
∂wj

for some λ holomorphic. Suppose the holomorphic

vector field
∑

wi ∂
∂zi

+
∑

rj ∂
∂wj

takes values in F̃ . Since F̃ ⊂ Ch(P̃), comparing s

with F̃ we conclude that for ξ :=
∑

(hj−λrj) ∂
∂wj

∈ Ch(P̃), and to prove Proposition
5 it remains to show that ξ is pointwise a multiple of the Euler vector field

∑
wj ∂

∂wj

(which descends to 0 when we project from C̃ to C). Write ξj := hj−λrj . By the same
formula (∗) above for Lie bracket, replacing ηk by ξk and letting

∑
gi ∂

∂zi
+

∑
hj ∂

∂wj

now stand for an arbitrary germ of P̃-valued holomorphic vector field at α we conclude
that

∑
ξk ∂gi

∂wk

∂
∂wi

∈ Pα for any choice of (gi) such that
∑

gi ∂
∂wi

is a Ṽ-valued germ
of holomorphic vector field at α. Hence ξ ∈ Ker(σα) = Cα, as desired.

5.2. Birationality of the tangent map and Cartan-Fubini extension. —
The characterization of the tautological foliation under the Gauss map condition (†)
in [(4.1), Propoition 5] implies the birationality of the tangent map τx : Kx → Cx

under the same condition (Hwang-Mok [17], 1999). Kebekus [25] (2002) proved that
any K-curve marked at a general point x is immersed at the marking, and deduced

Theorem 7 (Kebekus [25]). — Let (X,K) be a uniruled projective manifold equip-
ped with a minimal rational component. Then, at a general point x ∈ X, the tangent
map τx : Kx → PTx(X) is a finite holomorphic map.

Together with Theorem 7 one obtains a proof of [(2.4), Theorem 1], the structure
theorem on the tangent map and VMRTs stating that the tangent map is a birational
finite holomorphic map at a general point, under the additional Gauss map condition
(†). To remove (†) the first question is to characterize the case where Cx = PTx(X).
This was obtained by Cho-Miyaoka-Shepherd-Barron ([2], 2002) by a method involv-
ing the holomorphicity of the tangent map made possible by Kebekus [25].

Theorem 8 (Cho-Miyaoka-Shepherd-Barron [3]). — Let (X,K) be a uniruled
projective manifold equipped with a minimal rational component, dim(X) := n. Sup-
pose at a general point x ∈ X the associated variety of minimal rational tangents Cx

is the same as PTx(X). Then, X is biholomorphic to Pn.

To prove [(2.4), Theorem 1] in its full generality, we considered in Hwang-Mok
[22] (2004) the integrable distribution Ch(P) for the distribution P defined in (4.1).
We showed using [25] and [3] that a local leaf of Ch(P) is the projectivized tangent
bundle of a locally closed complex submanifold on X which extends to an immersed
projective space, and deduce from there the birationality of the tangent map at a
general point, leading to a proof of Theorem 1.
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The statement of birationality of the tangent map leads to a method of analytic
continuation, which we call Cartan-Fubini extension, for local VMRT-preserving bi-
holomorphic maps. In 2004 we proved

Theorem 9 (Hwang-Mok [22]). — Let X and X ′ be Fano manifolds of Picard
number 1 with minimal rational components. Assume that at a general point x ∈ X
the variety of minimal rational tangents Cx(X) of X is non-linear and of positive
dimension. Let f : U → U ′ be a biholomorphic map from an open connected subset
U ⊂ X onto U ′ ⊂ X ′. Suppose the differential df sends each irreducible component of
C(X)|U to an irreducible component of C(X ′)|U ′ biholomorphically. Then, f extends
to a biholomorphic map F : X → X ′.

Sketch of proof. — In the case of an irreducible Hermitian symmetric space S of the
compact type and of rank ≥ 2, Cartan-Fubini extension is equivalent to Ochiai’s
Theorem, and in (4.2) we sketched a proof using VMRTs. The analogue of [(4.2),
Lemma 4] for Theorem 9 under the additional Gauss map condition (†) is given by
[(5.1), Proposition 5]. In Hwang-Mok [18] we proved Theorem 9 under the condition
(†), and in [22] the latter condition was removed starting with an extension of the
birationality result for non-linear VMRTs. To explain the special case in [18], along
the line of argument of (4.2) for a proof of Ochiai’s Theorem we can likewise pass to
the moduli space K resp. K′ of minimal rational curves on X resp. X ′. Picking a
base point x ∈ X, and denoting by Qx ⊂ K the subspace of minimal rational curves
passing through x, f : U ∼= U ′ extends by Proposition 5 to some holomorphic map
f ] on some neighborhood U of Qx in K as in (4.2). In the general case we do not
however have the Hartogs-type extension theorem as used in Mok-Tsai [MT] to extend
f ] meromorphically to K. Instead, we developed in [18] a method of parametrized
analytic continuation along minimal rational curves. Let ρ : U → K, µ : U → X
be the universal family of (X,K). Fix a standard K-curve ` ∈ K passing through
x ∈ U . We have a map λ := f ] ◦ ρ ◦ τ−1 which is defined on some arbitrarily small
neighborhood Ω of the tautological lifting ̂̀ of ` in C. To extend f meromorphically
on a neighborhood of ` ∈ X by the argument in (4.2) in which a point y is regarded
as the intersection of minimal rational curves passing through y, it is not necessary
to have λ defined on all of C|`. It suffices to have λ defined on the arbitrarily small
neighborhood Ω of ̂̀, and the upshot is that we can do meromorphic extension of
f and f ] simultaneously along a standard K-curve issuing from U . Each general
point of X is accessible from U by a finite chain of standard K-curves. Since X is
of Picard number 1, the inaccessible points can be cut down to codimension ≥ 2. A
major difficulty in completing the proof after meromorphic extension along standard
K-curves lies in the lack of univalence, and, after proving univalence, there remains
the difficulty due to singularities of the extended map. Overcoming these difficulties
necessitates the use of the deformation theory of rational curves, and for the latter
difficulty we need to further use the Fano property of both X and X ′, which gives
rise to projective embeddings using positive powers of the anti-canonical line bundle.
The proof of Theorem 9 in the general case requires a combination of [18] and the use
of integral manifolds of Ch(P) as mentioned in relation to Theorem 8.
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The method of analytic continuation on VMRT-preserving maps makes explicit use
of the geometry arising from minimal rational curves. From the perspective of Several
Complex Variables, it would be of interest to prove an extension result solely basing
on the neighborhood structure of the cycles Qx ⊂ K. Examination of the Hermitian
symmetric case suggests that in general one can hope for constructing a fundamen-
tal system of pseudoconcave neighborhoods Qx, thereby guaranteeing meromorphic
extension of f ] and hence of f from methods in Several Complex Variables. In this
direction the following formulation in a special case is of independent interest.

Conjecture 5. — Let (X,K) be a Fano manifold of Picard number 1 equipped with
a minimal rational component. Assume that at a general point x ∈ X the moduli
space Kx of K-curves marked at x is irreducible and non-linear, and that the tangent
map τx : Kx → Cx is a biholomorphism onto Cx, so that, denoting by p : Kx → K the
canonical map, the image Qx = p(Kx) is nonsingular. Let U ⊃ Qx be any connected
open neighborhood of Qx in K. Then, any meromorphic function on U extends to a
meromorphic function on K.

5.3. The Lazarsfeld Problem and other applications of Cartan-Fubini ex-
tension. — As an application of the Cartan-Fubini extension on uniruled projective
manifolds with non-linear VMRTs ([(5.2), Theorem 9]) we have the following result
on the local rigidity of generically finite surjective holomorphic maps of a fixed pro-
jective manifold X ′ onto a Fano manifold (X,K) of Picard number 1 equipped with
a minimal rational component with non-linear VMRTs. We have

Theorem 10 (Hwang-Mok [22]). — Let π : X → ∆ := {t ∈ C, |t| < 1} be a
regular family of Fano manifolds of Picard number 1 so that X0 = π−1(0) has a
minimal rational component with non-linear varieties of minimal rational tangents.
For a given projective manifold Y , suppose there exists a surjective holomorphic map
f : Y = Y × ∆ → X respecting the projections to ∆ so that ft : Y → Xt is a
generically finite for each t ∈ ∆. Then, there exists ε > 0 and a holomorphic family
of biholomorphic maps Φt : X0 → Xt for |t| < ε, satisfying Φ0 = id and ft = Φt ◦ f0.

Sketch of proof. — Fix a minimal rational component K0 on X0 with non-linear VM-
RTs. To simplify notations we assume minimal rational curves to be embedded. Let
`0 ⊂ X0 be a K0-curve. `0 is also free on X since TX |`0 = TX0 |`0 ⊕ O. Consider
the space K of free rational curves on X obtained by deforming some `0 in X . Any
` ∈ K must lie on some Xt, t ∈ ∆. We may think of (X ,K) as a holomorphic family
of (Xt,Kt) fibered over ∆. To simplify the discussion we assume that the VMRTs are
irreducible at a general point of X = X0. Shrinking ∆ around 0 if necessary we may
assume that the VMRT at a general point of Xt remains irreducible.

In Hwang-Mok [16] we introduced the notion of varieties of distinguished tangents
on a projective manifold Y (cf. Hwang-Mok [17], §5) which generalizes the notion of
VMRTs. Let y ∈ Y be a very general point, i.e., a point outside some countable union
of proper subvarieties. Consider an irreducible component M of the Chow space of
curves on Y , and denote by My ⊂M the subvariety corresponding to curves through
y. For curves belonging to My and smooth at y we have the notion of the tangent
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map. The rank on the tangent map leads to stratifications of My such that the
tangent map is of constant rank on each stratum. Fix a uniruled projective manifold
(X,K) equipped with a minimal rational component and denote by Cx ⊂ PTx(X) the
VMRT at a general point x ∈ X. For a generically finite surjective holomorphic map
h : Y → X and for a very general point y ∈ Y such that dh(y) is of maximal rank at
y, [dh(y)]−1(Ch(y)) is a variety of distinguished tangents at y.

If we take y ∈ Y to be a very general point of Y , a variety of distinguished tangents
at y is the closure under the tangent map of a stratum of My. Since there are only
countably many irreducible components of the Chow space of curves on Y , from the
construction by stratification there are at most countably many varieties of distin-
guished tangents passing through y. In the context of Theorem 10, choose a connected
open subset U ⊂ Y such that ft is a biholomorphism of U onto Vt ⊂ Xt. Let y ∈ Y be
a very general point lying on U . We have a holomorphic family of VMRTs Cft(y)(Xt).
Then, for each t ∈ ∆, f−1

t (Cft(y))(Xt)) := Dt ⊂ PTy(Y ) is a variety of distinguished
tangent at y. By the countability of the space of varieties of distinguished tangents
at y it follows that Dt is actually independent of t. There is an obvious identification
ϕt : Vt

∼= V0 given by ϕt = ft ◦ f−1
0 , and we have [dϕt](Cf(t)(Xt)) = Cf(0)(X0). Thus

ϕt is VMRT-preserving, and by Cartan-Fubini extension as given in Theorem 9, ϕt

extends to a biholomorphism Φt : X0
∼= Xt such that f0 = Φt ◦ ft.

In relation to finite holomorphic maps on rational homogeneous manifolds S =
G/P , Lazarsfeld [32] proved that for any finite holomorphic map f : Pn → X from
the complex projective space onto a projective manifold X, X must itself be biholo-
morphic to Pn. He raised the question of characterizing finite holomorphic maps
f : S → X from a rational homogeneous manifold S of Picard number 1 onto a
projective manifold. Hwang-Mok [16] solved the problem in 1999, and obtained [22]
(2004) a new proof using Cartan-Fubini extension as given in Theorem 10.

Theorem 11 (Hwang-Mok [16], [22]). — Let S = G/P be a rational homoge-
neous manifold of Picard number 1. Let f : S → X be a nonconstant surjective holo-
morphic map onto a projective manifold X. Then either X ∼= Pn, where n = dim(S);
or f is a biholomorphism.

In the first proof in [16] we considered intertwining maps of f : S → X, as follows.
Suppose f : S → X is not a biholomorphism and X 6∼= Pn, and write s for the
sheeting number of the map. The image manifold X is necessarily Fano. Equip
X with a minimal rational component K. Denote by Cx the variety of K-tangents
at x and assume known in the ensuing discussion that Cx 6= PTx(X) at a general
point. Let x ∈ X be outside the branch locus of f , and let V be a sufficiently small
connected open neighborhood of x in X such that f−1(V ) decomposes into a union
of s open subsets Ui, 1 ≤ i ≤ s,, where fi := f |Ui : Ui → V is a biholomorphism
for each i. For i 6= j let ϕ : Ui → Uj be defined by ϕ(z) = f−1

j ◦ fi. Consider
the pull-back D := [df ]−1(C|V ). We have tautologically [dϕ] : D|Ui

∼= D|Uj . For a
general point s ∈ S, Ds is a variety of distinguished tangents. At any such point
Ds is shown to be invariant under the isotropy subgroup Ps ⊂ G at s. For instance,
in the Hermitian symmetric case this implies that Ds must be one of the finitely
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many proper Ps-invariant subsets defined in terms of ranks of tangent vectors, D is
actually G-invariant, and the condition [dϕ] : D|Ui

∼= D|Uj
forces [dϕ] to be VMRT-

preserving, since at s ∈ S the variety of minimal rational tangents Cs(S) is the
most singular Ps-invariant stratum of Ds. In this case by Ochiai’s Theorem [47]
the intertwining map must extend to an automorphism of S, and that is enough to
force a contradiction. In the general case there may be continuous families of Ps-
orbits, but using the fact that there are at most countably many distinct varieties of
distinguished tangents at s ∈ S, it remains true that D is G-invariant. This leads to
the conclusion that either Ds ⊂ PTs(S) is linearly non-degenerate, in which case we
proved using Hwang-Mok [14] that S must be Hermitian symmetric, or Ds ⊂ PTs(S)
is linearly degenerate, and the intertwining map ϕ must preserve some proper G-
invariant distribution, after which we can work with results of Yamaguchi [51] to
show that ϕ extends to Φ ∈ Aut(S) to reach a contradiction. This line of argument
has been recently generalized to the case of rational homogeneous spaces of Picard
number ≥ 2, leading to a solution to a generalized Lazarsfeld Problem.

Theorem 12 (Lau [31]). — Let G be a simple complex Lie group and Q ⊂ G be
a parabolic subgroup. Denote by S = G/Q the corresponding rational homogeneous
manifold, dim(S) = n. Let f : S → X be a surjective holomorphic map from S onto
a projective manifold X. Then one of the following holds: (1) f is a biholomorphism;
(2) f : S → X is a finite map and X is the projective space Pn; (3) there exists a
parabolic subgroup Q′ of G containing Q as a proper subgroup such that f factors
through a finite map g : G/Q′ → X.

The generalized Lazarsfeld Problem for S = G/Q of Picard number ≥ 2 leads to
a Fano manifold (X,K) equipped with a minimal rational component and admitting
the structure of a holomorphically fibered space λ : X → B such that the K-curves
lie on the fibers of λ. The principal algebro-geometric difficulty, solved in [31], is to
produce a minimal rational component K′ such that the K′-curves are transversal to
the fibration λ. After that Lau made use of multi-graded differential systems using
Yamaguchi [51]. As in [16] the proof involves a substantial amount of Lie theory.

As far as the original Lazarsfeld Problem is concerned, Hwang-Mok [22] gave a new
proof which frees the solution from Lie theory, deriving Theorem 11 as a consequence
of Theorem 10, as follows. Let S = G/P be an n-dimensional rational homogeneous
manifold of Picard number 1 and f : S → X be a generically finite surjective holomor-
phic map onto a projective manifold X, which is necessarily Fano, such that X 6∼= Pn

and f is not a biholomorphism. Equip X with a minimal rational component K and
suppose that the associated VMRT at a general point is non-linear. Let θ be a holo-
morphic vector field on S and Θt = exp(tθ) be a holomorphic 1-parameter group of
automorphism of S. Write ft = f ◦Θt. Then, applying the local rigidity result Theo-
rem 11 we have ft = Φt◦f . Thus dft(η) = 0 whenever df(η) = 0. Thus the non-empty
ramification divisor R of f = f0 remains the ramification divisor of ft for t 6= 0. On
the other hand from the definition ft = f ◦Θt it follows that the ramification divisor
of ft is Θ−t(R), and a contradiction is obtained when we choose the vector field θ
not to vanish identically on R. Finally, it remains to rule out the possibility that the
VMRT of (X,K) is linear at a general point x ∈ X. Choose a general point x ∈ X
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lying outside the branching locus of f , s ∈ S such that f(s) = x. An irreducible com-
ponent of [df ]−1(Cx) then gives a Ps-invariant projective linear subspace of PTs(S),
giving rise to one of the finitely many G-invariant holomorphic distributions on S.
D is non-integrable since S is of Picard number 1. On the other hand in the case
of linear VMRTs on X an irreducible component of C over a sufficiently small open
subset corresponds to an integrable distribution, a contradiction.

It would be interesting to give a proof of Theorem 12 along the line of Cartan-Fubini
extension for special classes of Fano manifolds of Picard number ≥ 2.

6. Parallel transport of the second fundamental form

6.1. VMRTs in a differential-geometric context-parallel transport in the
solution of the Generalized Frankel Conjecture. — In Algebraic Geometry
Hartshorne conjectured that over an algebraically closed field a projective manifold
with ample tangent bundle is isomorphic to the projective space. The conjecture was
solved by Mori [45] (1979) by proving an existence theorem on rational curves using
methods of characteristic p > 0, and the deformation theory of rational curves. In
the context of Kähler Geometry, Frankel conjectured that a compact Kähler man-
ifold of positive holomorphic bisectional curvature is biholomorphic to the complex
projective space. The conjecture was resolved in the affirmative by the method of
stable harmonic maps by Siu-Yau [50] (1980) who further formulated the conjecture
that a compact Kähler manifold of nonnegative holomorphic bisectional curvature is
locally symmetric. The latter conjecture, commonly called the Generalized Frankel
Conjecture, was resolved in the affirmative by Mok [39] (1988).

Mok [39] made use of the Kähler Ricci flow, proving that nonnegativity of holomor-
phic bisectional curvature is preserved under the flow for the evolved metric gt, t > 0.
From earlier reduction of the problem, to confirm the Generalized Frankel Conjecture
it suffices to consider the case where we have a compact Kähler manifold (X, g) of
nonnegative holomorphic bisectional curvature and of positive Ricci curvature at some
point such that furthermore b2(X) = 1. For the latter class of (X, g), the evolved
Kähler metric (X, gt) is shown to be of positive Ricci curvature. Thus, X is Fano
and hence uniruled by Miyaoka-Mori [38]. Since (X, g) is of nonnegative holomorphic
bisectional curvature, the pull-back of its tangent bundle by any f : P1 → X is non-
negative, hence every rational curve on X is free. In [39] we studied minimal rational
curves on X and the associated varieties of minimal rational tangents Cx ⊂ PTx(X)
(although the terminology was not used there). We proved that there are the follow-
ing alternatives on the evolved metrics gt defined for t > 0 sufficiently small. For such
t > 0, either (X, gt) is of positive holomorphic bisectional curvature, or (X, gt) admits
non-trivial zeros of holomorphic bisectional curvature at any point of X. Write n for
dim(X). If the VMRT Cx ⊂ PTx(X) is of dimension p < n− 1 at a general point, we
showed that C is invariant under parallel transport of (X, gt). If however Cx agrees
with PTx(X), we showed that there exists a hypersurface S ⊂ PTX such that S is
invariant under parallel transport of (X, gt). In either case we applied Berger’s The-
orem which characterizes Riemannian locally symmetric spaces by the fact that at
any point there exists some proper subset of the unit sphere invariant under parallel
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transport. Thus (X, gt) is an irreducible Hermitian symmetric space of the compact
type for t > 0 and hence for t = 0; g0 = g. More precisely we have proved

Theorem 13 (Mok [39]). — Let (X, g) be a compact Kähler manifold of nonnega-
tive holomorphic bisectional curvature and of positive Ricci curvature at some point.
Assume that X is of Picard number 1. Then, either X is biholomorphically equiv-
alent to the complex projective space, or (X, g) is biholomorphically isometric to an
irreducible Hermitian symmetric space S of rank ≥ 2.

On an irreducible Hermitian symmetric space of the compact type and of rank ≥ 2,
the fibered space π : C → S is invariant under parallel transport with respect to any
choice of a canonical Kähler-Einstein metric, an elementary fact that follows from the
parallelism of the Riemannian curvature tensor. Theorem 13 says in particular that on
S this basic fact can be derived from curvature properties. In the negative direction,
Berger’s Theorem implies that for a rational homogeneous manifold S = G/P of
Picard number 1 which is not isomorphic to a Hermitian symmetric space, the VMRTs
are not invariant under parallel transport. In an algebro-geometric context it remains
interesting to introduce some algebraic notion of parallel transport applicable to any
uniruled projective manifold (X,K) equipped with a minimal rational component. A
related problem is the Campana-Peternell Conjecture, which is a form of Generalized
Hartshorne Conjecture (cf. (6.4)). Here the principal geometric problem is whether
the notion of invariance of VMRTs under some restricted form of parallel transport is
sufficient to characterize rational homogeneous manifolds S = G/P of Picard number
1 by means of some algebro-geometric condition of nonnegativity on the tangent
bundle. Such an approach in a very special situation has been established for Fano
manifolds of Picard number 1 with nef tangent bundle and 1-dimensional VMRTs by
Mok [41] (2001) and Hwang [13] (2007).

6.2. Propagation of the second fundamental form along a standard rational
curve. — Let (X,K) be a uniruled projective manifold equipped with a minimal
rational component, ρ : U → K, µ : U → X be the universal family of K-curves and
π : C → X be the fibered space of varieties of minimal rational tangents. Let B ⊂ X
be the largest subvariety, necessarily of codimension ≥ 2, such that π|X−B : C|X−B →
X−B is flat. Let f : P1 → X be a parametrized standard rational curve, f(P1) := C,
such that C ⊂ X −B. C lifts canonically to C̃ ⊂ U , whose image under the tangent
map gives the tautological lifting Ĉ ⊂ C. At each of the finitely many points x̃k of
C̃∩µ−1(x) there is an open neighborhood Uk such that τx embeds Uk holomorphically
onto a smooth submanifold Ck

x , which is the germ of some irreducible component of
Cx at [αk] = τx(x̃k). In what follows Ĉ will mean the pull-back of the tautological
lifting of C to f∗C, so that Ĉ is smooth. For t ∈ P1 we write Ct for (f∗C)t, [α(t)]
for Ĉ ∩ Ct, and Vt for f∗Tf(t)(X). We have Ct ⊂ PVt. For every t ∈ P1 we have a
germ of smooth projective submanifold Co

t ⊂ Ct ⊂ PVt at [α(t)] corresponding to one
of the germs Ck

x , x = f(t), chosen in such a way that the union of Co
t is a germ of

complex submanifold along the smooth curve C̃ ⊂ PV . Write T[α(t)] for T[α(t)](Co
t ).

In Mok [14] (§3.2, p.2651ff.) we introduced implicitly the notion of parallel transport
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of the second fundamental form along the tautological lifting Ĉ of a standard rational
curve C. By this we mean that the second fundamental form can be interpreted in a
natural way as a holomorphic section of a vector bundle which is trivial over Ĉ. We
formulate the notion of isomorphisms of second fundamental forms and the result on
parallel transport, as follows.

Definition 4. — Let V and V ′ be two complex Euclidean spaces of the same di-
mension, and A ⊂ PV , A′ ⊂ PV ′ be two local complex submanifolds of the same
dimension. Let a ∈ A, a = [α]; a′ ∈ A′, a′ = [α′]. Write Ta(A) = PE/Cα (resp.
Ta(A′) = PE′/Cα′ where E ⊂ V (resp. E′ ⊂ V ′) is a vector subspace containing α
(resp. α′). We say that the second fundamental form σa of A ⊂ PV at a ∈ A is
isomorphic to the second fundamental form σa′ of A′ ⊂ PV ′ at a′ ∈ A′ if and only if
there exists a linear isomorphism ϕ : V ∼= V ′ such that ϕ(α) = α′, ϕ(E) = E′, and
such that ϕ satisfies the following additional property (])

(]) Let ϕ : V/E → V ′/E′ be the linear map induced by ϕ, ϕ(E) = E′, and denote
by σ̃α (resp. σ̃α′) the second fundamental form of Ã at α (resp. of Ã′ at α′).
Then, for any ξ, η ∈ E we have σ̃α′

(
ϕ(ξ), ϕ(η)

)
= ϕ

(
σ̃α(ξ, η)

)
.

Proposition 6. — For every t ∈ P1, denote by σ[α(t)] : S2T[α(t)] → NCo
t |PVt,[α(t)]

the second fundamental form of Co
t ⊂ PVt at [α(t)]. Then, for t1, t2 ∈ P1, σ[α(t1)] is

isomorphic to σ[α(t2)].

Proof. — Write ν : PV → P1 for the canonical projection, where V = f∗TX , and Tν

for its relative tangent bundle. Write λ = ν|f∗C , and recall that T[α(t)] = T[α(t)](Co
t ).

Write N[α(t)] = Tν,[α(t)]/T[α(t)]. Putting together T[α(t)], t ∈ P1, we obtain a holomor-
phic vector bundle Tλ| bC on Ĉ. Likewise, putting together N[α(t)], t ∈ P1, we obtain
a holomorphic vector bundle Nλ| bC on Ĉ. For a nonzero vector α(t) ∈ Vt we have
the canonical isomorphism T[α(t)](PVt)⊗ L[α(t)]

∼= ν∗Vt/L[α(t)], where L[α(t)] = Cα(t)
is the tautological line at [α(t)]. Varying over Ĉ we obtain a canonical isomorphism
Tν ⊗ L ∼= ν∗Vt/L over Ĉ. Since L| bC ∼= T bC canonically, and C is a standard rational
curve, we have ν∗V | bC ∼= O(2)⊕ (O(1)

)p ⊕Oq, so that

Tν | bC ∼= ν∗V | bC
/
T bC ⊗ T ∗bC

∼=
((O(1)

)p ⊕Oq
)⊗O(−2) ∼=

(O(−1)
)p ⊕ (O(−2)

)q
.

Since at [α(t)], T[α(t)] ⊗ L[α(t)]
∼= Pα(t)/Cα(t), where Pα(t) ⊂ Vt is the positive part

of Vt at [α(t)], over Ĉ we have Tλ| bC ∼=
(O(1)

)p ⊗ O(−2) ∼=
(O(−1)

)p and Nλ| bC ∼=
Oq ⊗O(−2) ∼=

(O(−2)
)q. Thus, over Ĉ

Hom
(
S2Tλ| bC , Nλ| bC

) ∼= Hom
((O(−2)

) p(p+1)
2 ,

(O(−2)
)q

)
∼= O qp(p+1)

2

is holomorphically trivial. Hence, at t1, t2 ∈ P1 the second fundamental forms σ[α(ti)] :
S2T[α(t)] → N[α(t)]; i = 1, 2; must be isomorphic to each other, as desired.

Taking σ[α(t)] as defining a holomorphic section of a holomorphically trivial vector
bundle E := S2Tλ| bC ⊗ Nλ| bC over P1, parallel transport of the second fundamental
form from t1 ∈ P1 to t2 ∈ P1 can be understood as sending an element of εt1 ∈
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Et1 to the unique element εt2 ∈ Et2 for which there exists ε ∈ Γ(P1, E) such that
ε(t1) = εt1 , ε(t2) = εt2 . Fixing a decomposition of V = f∗TX over P1 given by
V = O(2)⊕ (O(1))p⊕Oq. there is a linear isomorphism ϕ : Vt1 → Vt2 which respects
the decomposition of V and which induces parallel transport from σ[α(t1)] and σ[α(t2)].

6.3. Recognition of certain rational homogeneous manifolds from VMRTs
at a general point. — We consider the question of characterizing certain rational
homogeneous manifolds of Picard number 1 by their VMRTs at general points. Let
S be an irreducible Hermitian symmetric space of Picard number 1, and denote its
VMRT at 0 ∈ S by C0 ⊂ PT0(S). Suppose (X,K) is a uniruled projective manifold
equipped with a minimal rational component such that at a general point x ∈ X the
VMRT Cx ⊂ PTx(X) is congruent to C0 ⊂ PT0(S) of the model space. Let B ⊂ X
be a proper subvariety such that π|X−B : C → X is a locally trivial holomorphic
fiber bundle with fibers Cx ⊂ PTx(X) being congruent to C0 ⊂ PT0(S) as a projective
submanifold. By [(4.3), Theorem 4], which in particular characterizes irreducible
Hermitian symmetric spaces S of rank ≥ 2 by means of S-structures, to prove X ∼= S
it suffices to show that B can be reduced to the empty set by methods of holomorphic
extension. By Hartogs extension of S-structures (cf. (3.4)) it is enough to show
that for every irreducible component Ei ⊂ B of codimension 1 in X and any general
point y ∈ Ei, there exists a neighborhood Uy of y such that π|Uy−Ei : C|Uy−Ei →
Uy −Ei extends holomorphically across Uy ∩Ei as a holomorphic fiber subbundle of
π : PTUy → Uy. Since X is of Picard number 1, for y ∈ Ei sufficiently general there
exists a standard parametrized rational curve f : P1 → X such that f(0) 6∈ B and
f(∞) = y. The idea is to consider the tautological lifting of C = f(P1) to Ĉ ⊂ f∗C,
and to recapture C∞ which corresponds to Cy by knowing its second fundamental
form at the point [α(∞)] ∈ C∞ corresponding to [df(∞)] ∈ Cy.

The simplest case for this to work is the case of the n-dimensional hyperquadric
Qn, n ≥ 3. For the family f∗C ⊂ P(f∗TX), the general fiber is isomorphic to a
hyperquadric in Pn−1. Degeneration of the hyperquadrics can occur at t = ∞, to give
a degenerate hyperquadric defined by a degenerate symmetric bilinear form. However,
this is precisely the case if and only if the second fundamental form σ at a general
point of C∞ is degenerate. The method of parallel transport of second fundamental
forms then rules out the latter possibility, showing that Cy ⊂ PTy(X) is congruent
to the VMRT of the model space for a general point y of the hypersurface Ei. With
this holomorphic extension result of VMRTs across general points of hypersurfaces
and Hartogs extension for bad sets of codimension ≥ 2 we have shown that X is
biholomorphically isomorphic to the hyperquadric whenever the VMRT at a general
point is congruent to Qn−2 ⊂ Pn−1.

As seen from the table in (2.4) in the general symmetric case the VMRT C0 ⊂
PT0(S) is itself a Hermitian symmetric space, either of rank 2 and embedded by the
minimal canonical embedding, or of rank 1 and embedded by the second canonical
embedding. In some sense they are quadratic objects. In fact, C0 is the closure
of the graph of a vector-valued quadratic function Q on the tangent space T[α](C0).
Q is essentially the second fundamental form. To illustrate how the argument of
parallel transport of second fundamental forms works in the other cases, we consider



42 N. MOK

the cases where C0 ⊂ PT0(S) is an irreducible Hermitian symmetric space of rank
2, so that it carries a canonical G-structure for some reductive Lie subgroup of the
general linear group. In the notations analogous to those in the preceding discussion,
C∞ ⊂ P(f∗TX) has the same second fundamental form at [α(∞)] as that of the
model space. C0 ⊂ PT0(S) is uniruled by lines. Denoting by K′ the minimal rational
component on C0 consisting of lines, the G-structure of C0 is completely determined
by VMRTs C′[α] associated to (C0,K′), where C′[α] is defined by the set of non-zero
tangent vectors η ∈ T[α](C0) such that σ[α](η, η) = 0. Parallel transport of second
fundamental forms then implies that C∞ inherits a G-structure. By making use of
developing maps C∞ ⊂ P(f∗Ty(X) can be shown to be congruent to C0 ⊂ PT0(S).
Here one has to exclude the possibility of linear degeneration of C∞ ⊂ P(f∗Ty(X), a
possibility that is ruled out by the surjectivity of the second fundamental σ[α] on the
model space, and hence of σ[α(∞)] at y = f(∞) on X by parallel transport.

The preceding line of argumentation can be strengthened to yield

Theorem 14 (Mok [42], Hong-Hwang [8]). — Let G be a simple complex Lie
group, P ⊂ G be a maximal parabolic subgroup corresponding to a long simple root,
and by S := G/P be the corresponding rational homogeneous manifold of Picard num-
ber 1. Denote by C0 ⊂ PT0(S) the variety of minimal rational tangents at a reference
point 0 ∈ S associated to the minimal rational component of lines on S. Let X be
a Fano manifold of Picard number 1 and K be a minimal rational component on X.
Suppose the variety of K-tangents Cx ⊂ PTx(X) at a general point x ∈ X is congruent
to C0 ⊂ PT0(S) as a projective submanifold. Then, X is biholomorphic to S.

For the case where S is the projective space Theorem 14 follows from [3]. A sketch
of the proof for S Hermitian symmetric and of rank ≥ 2 has been given in the above.
When P ⊂ G corresponds to a long simple root, the VMRT C0 ⊂ PD0 for the minimal
nontrivial G-invariant distribution D on S. C0 is the highest weight orbit in PD0, and
it is itself a Hermitian symmetric space. D 6= TS unless S is Hermitian symmetric.
When S is non-symmetric and C0 is irreducible as a Hermitian symmetric space, it
is of rank 3, embedded by the minimal canonical embedding. In general C0 ⊂ PD0

is of rank 3 as an embedded Hermitian symmetric space, when the degree for the
embedding on each irreducible factor of C0 is taken into account in the obvious way.
In fact, C0 ⊂ PD0 is a cubic object, being the closure of the graph of a vector-valued
cubic polynomial on the tangent space T[α](C0) (cf. Hwang-Mok [17], p.377). The
cubic nature of the VMRT is reflected in the table for Fano contact homogeneous
manifolds of Picard number 1 in (3.1), and applies in general to the long-root case.

For non-symmetric S there is an additional notion of the third fundamental form
for C0 ⊂ PD0, defined as follows. The image of the second fundamental form σ[α] :
S2T[α] → T0(S)/Pα is not surjective. For α ∈ C̃0 one can define a filtration Cα ⊂
Pα ⊂ Qα ⊂ T0(S), where Qα is obtained by adjoining the image of the second
fundamental form at α. This filtration corresponds to the splitting D|` ∼= O(2) ⊕
(O(1))p⊕Oq⊕ (O(−1))r for the minimal proper distribution D ⊂ TS . At every point
[α] ⊂ C0 one can define the third fundamental form κ[α] : S3T[α] → T0(S)/Qα. In the
case of a Fano manifold X of Picard number 1 satisfying the hypothesis of Theorem
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14 for a non-symmetric S defined by a long simple root, Proposition 6 generalizes to
show that over a standard parametrized rational curve f : P1 → X, the corresponding
third fundamental form on its tautological lifting Ĉ defines a holomorphic section of a
holomorphically trivial vector bundle over P1. Using this we have a version of parallel
transport of the third fundamental form κ, with which one can prove extension results
of VMRTs across a general point of a hypersurface as in the Hermitian symmetric
case. In the contact case Theorem 14 is proved in Mok [42] by resorting to Hong’s
characterization of Fano contact homogeneous manifolds of Picard number 1 in [Ho].
In the remaining cases Theorem 14 was established in Hong-Hwang [8].

In view of Theorem 14, one may raise the following conjecture.

Conjecture 6. — Let S = G/P be any Fano homogeneous contact manifold of Pi-
card number 1 and denote by C0(S) ⊂ PT0(S) its variety of minimal rational tangents
at a reference point 0 ∈ S. Let (X,K) be a Fano manifold of Picard number 1 equipped
with a minimal rational component such that the associated VMRT at a general point
is congruent to C0(S) ⊂ PT0(S). Then, X is biholomorphic to S.

To resolve Conjecture 6 it remains to consider the short-root case. Confirmation of
the conjecture would provide a unified proof of rigidity of Fano homogeneous manifolds
of Picard number 1 under Kähler deformation [(3.4), Theorem 2].

6.4. Projective manifolds with nef tangent bundles and 1-dimensional VM-
RTs. — In analogy with the Generalized Frankel Conjecture in Kähler Geometry
one can formulate a Generalized Hartshorne Conjecture in Algebraic Geometry. This
is given by the Campana-Peternell Conjecture [2] (1991). In particular, restricting
to Fano manifolds X of Picard number 1, the Campana-Peternell Conjecture asserts
that X is biholomorphic to a rational homogeneous manifold S = G/P whenever
the tangent bundle of X is nef, i.e., numerically effective. The latter assumption
implies that the deformation of any rational curve on X is unobstructed. As a con-
sequence, for any choice of a minimal rational component K on X, the evaluation
map µ : U → X associated to the universal family for K gives a regular family of
projective manifolds. This imposes some restrictions on possible complex structures
of moduli spaces Kx

∼= Ux of K-curves marked at x by restricting U over minimal
rational curves. While there is so far no strong evidence why the Campana-Peternell
Conjecture should hold, with the latter fact in mind Mok [41] considered a special
case of the conjecture, under the restrictive assumption that the VMRT at a general
point is 1-dimensional. In [42] we considered Fano manifolds whose second and fourth
Betti numbers are equal to 1. The condition on the fourth Betti number was removed
recently by Hwang [12], and we have now

Theorem 15. — (Mok [42], Hwang [12]) Let X be a Fano manifold of Picard
number 1 with nef tangent bundle. Suppose X is equipped with a minimal ratio-
nal component for which the variety of minimal rational tangents at a general point
x ∈ X is 1-dimensional. Then, X is biholomorphic to the projective plane P2, the
3-dimensional hyperquadric Q3, or the 5-dimensional Fano contact homogeneous man-
ifold K(G2) of type G2. In particular, X is a rational homogeneous manifold.
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We note that the only algebro-geometric property used which arises from the nef-
ness of the tangent bundle is the fact that the restriction of the tangent bundle to
any K-curve is nonnegative. In particular, the nefness assumption in Theorem 15 can
be replaced by the assumption that any rational curve on X is free. The approach of
[41] was to reconstruct X under the given assumptions from its VMRTs by making
use of the canonical double fibration ρ : U → K , µ : U → X associated to K.We note
that no a priori assumption is placed on dim(X).

To start with, restricting µ : U → X to a minimal rational curve we obtain an
algebraic surface Σ holomorphically fibered over P1 which admits a holomorphic sec-
tion Γ corresponding to the tautological lifting of the minimal rational curve. Thus,
Γ ⊂ Σ is an exceptional curve. Since the base is P1, if the fibers are of genus ≥ 1
the family must be holomorphically trivial, and the existence of the exceptional curve
Γ ⊂ Σ forces a contradiction. Thus, any Ux is isomorphic to P1. At a general point
x ∈ X the tangent map τx : Ux → PTx(X) is a holomorphic map. To determine the
VMRT at a general point the next step is to bound d := deg(τ∗x (O(1)). For this pur-
pose we introduce the use of Chern class inequalities. First, the universal P1-bundle
ρ : U → K gives rise to a holomorphic rank-2 vector bundle ν : V → K such that
PV ∼= U . We prove that V is stable and deduce that d ≤ 4 from the Bogomolov
inequality c2

1(V ) · [ω]n−2 ≤ 4c2(V ) · [ω]n−2 for stable rank-2 vector bundles V over
an n-dimensional projective manifold, where ω stands for the first Chern form of a
positive line bundle on X, and [ω] for its cohomology class. It is here that we make
use of the assumption b4(X) = 1 when applying Chern class inequalities. Using the
existence of Hermitian-Einstein metrics due to Uhlenbeck-Yau the equality case in
the Bogomolov inequality can be ruled out, and we end up with d = 1, 2, 3, which we
eventually prove to correspond to the three examples in the statement of Theorem
15. To proceed we make use of results from (2.3) on the integrability of differential
systems generated by VMRTs to show that in each of the three cases d = 1, 2, 3 the
VMRT Cx ⊂ PTx(X) is congruent to C0 ⊂ S of the model space, and the proof is com-
pleted by invoking special cases of Theorem 14. The condition b4(X) = 1 is removed
in Hwang [10] by resorting to the determination of a certain Chow group pertinent
to the problem in the application of the Bogomolov inequality.

Finally, from Theorem 15, together with earlier works of Campana-Peternell [2] and
Zheng [53], and Miyaoka’s characterization of the hyperquadric [37], one confirms the
Campana-Peternell Conjecture up to 4 dimensions. More precisely, we have

Theorem 16. — Let X be a Fano manifold of dimension ≤ 4 on which all rational
curves are free. Then, X is biholomorphic to a rational homogeneous manifold.

7. Privileged subvarieties of uniruled projective manifolds

7.1. Subvarieties saturated with minimal rational curves. — In analogy to
totally geodesic submanifolds in Riemannian geometry we introduce for uniruled pro-
jective manifolds (XK) endowed with minimal rational components the notion of
K-saturated subvarieties, as follows.
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Definition 5. — Let (X,K) be a uniruled projective manifold equipped with a min-
imal rational component, π : CX → X be the associated fibered space of varieties
K-tangents. Let Σ ⊂ X be an irreducible analytic subvariety of some connected open
subset U ⊂ X and E ⊂ CX

∣∣
Σ

be an analytic subvariety. For y ∈ Σ denote by Ey the
fiber of E over y. We say that (Σ, E) ↪→ (X, CX) is K-saturated if and only if

(a) Ey = PTy(Σ) ∩ CX 6= ∅ for a smooth point y ∈ Σ, and
(b) for a general smooth point y on Σ, and for the germ C of an irreducible branch of

a standard K-curve passing through y, C must lie on Σ whenever
[
Ty(C)

] ∈ Ey.

When the choice of K is understood, we simply say that Σ is saturated with respect
to minimal rational curves. If we take a minimal rational curve on (X,K) to play
the role of a geodesic, a K-saturated subvariety is the analogue of a totally geodesic
subspace in Riemannian geometry, except that the ‘geodesics’ are now only defined
for tangent directions corresponding to varieties of minimal rational tangents.

7.2. A relative version of the Gauss map condition for linear sections of
VMRTs. — In (5.1) we have introduced a non-degeneracy condition (†) on the
Gauss map of the variety of minimal rational tangents Cx at a general point x of
a uniruled projective manifold (X,K) equipped with a minimal rational component,
viz., we require that the Gauss map is generically finite on Cx. Equivalently (†) is
satisfied if and only if at a general smooth point [α] of Cx, the kernel Ker σ[α] = 0 for
the second fundamental form σ[α] at [α] ∈ Reg(Cx). We extend this to the situation
of a linear section of Cx and define a non-degeneracy condition (††) which reduces
to (†) when the linear section is Cx itself. Recall that a variety is said to be of pure
dimension n if and only if each irreducible component is of the same dimension n.

Definition 6. — Let m ≥ 2, A ⊂ Pm be a projective subvariety of pure dimension
a ≥ 1. Let Π ⊂ Pm be a projective linear subspace, and B := Π ∩ A be a non-empty
projective subvariety of pure dimension b ≥ 1. We say that the pair (B,A) satisfies the
non-degeneracy condition (††) if and only if for every general smooth point [β] ∈ B,
[β] is also a smooth point of A and Ker σ[β]

(
T[β](B), ·) = 0.

By an adaptation of the proof of Cartan-Fubini extension in the equidimensional
case under the non-degeneracy assumption (†) as explained in (5.2) we have the
following non-equidimensional analogue of Cartan-Fubini extension under some non-
degeneracy assumption involving (††) on second fundamental forms. For the formu-
lation a point x ∈ X is said to be a good point if and only if every minimal rational
curve passing through x is free, and a general element of every irreducible component
of Kx represents a standard rational curve, otherwise x is called a bad point. The
bad locus of (X,K) is the set of bad points on X, which is a subvariety of X.

Theorem 17 (Hong-Mok [8]). — Let (Z,H) and (X,K) be two uniruled projec-
tive manifolds equipped with minimal rational components. Assume that Z is of Pi-
card number 1 and that Cz(Z) is of positive dimension at a general point z ∈ Z.
Let U ⊂ Z be a connected open subset and f : U → X be a holomorphic embed-
ding onto a locally closed complex submanifold S ⊂ X lying outside the bad locus
of (X,K). Suppose f respects varieties of minimal rational tangents in the sense
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that df(C̃z(Z)) = df(Tz(Z)) ∩ C̃f(z)(X). Assume furthermore that at a general point
x ∈ S, the non-degeneracy condition (††) on second fundamental forms is satisfied for
the pair (Cx ∩ PTx(S), Cx). Then, f extends to a rational map F : Z → X.

In terms of the holomorphic map f , the non-degeneracy condition on second fun-
damental forms translate into

Ker σ̃df(α)

(
Tdf(α)(df(C̃z(Z))), · ) = Cdf(α).

As an important intermediate step in the proof of Theorem 17, Hong-Mok established
under the assumption there the following result.

Proposition 7. — Under the assumptions of Theorem 17 and in the notations there,
f sends germs of standard H-curves into germs of standard K-curves. In particular,
(S, C ∩ PTS) ⊂ (X, C) is saturated with respect to K-curves.

7.3. Parallel transport of VMRTs along minimal rational curves. — As an
application of non-equidimensional Cartan-Fubini extension, Mok [43] gave a charac-
terization of standard embeddings between Grassmannians of rank ≥ 2. The result
by itself had been known and proven by different methods by Neretin [46] and Hong
[7]. Our proof started with non-equidimensional Cartan-Fubini extension in the Her-
mitian symmetric case with a proof relying on the use of Harish-Chandra coordinates.
More recently, Hong-Mok [9] have established the general form of Proposition 7, ob-
taining at the same time a characterization of a general class of standard embeddings
between rational homogeneous manifolds of Picard number 1. On a rational homo-
geneous manifold Y of Picard number 1 we consider the minimal rational component
consisting of lines on Y and denote by Cy(Y ) the associated VMRT at y ∈ Y .

Theorem 18 (Hong-Mok [9]). — Let X = G/P be a rational homogeneous man-
ifold of Picard number 1 associated to a long simple root and let Z = G0/P0 be a
rational homogeneous space associated to a subdiagram of the marked Dynkin diagram
of G/P . Assume that Z is not linear. If f : U → X is a holomorphic embedding from
a connected open subset U of Z into X satisfying dfz(C̃z(Z)) = dfz(Tz(Z))∩ C̃f(z)(X)
for a general point z ∈ U , then f extends to a standard embedding of Z into X.

Sketch of proof. — A marked Dynkin subdiagram defines naturally an embedding λ
from Z = G0/P0 into X = G/P . By a standard embedding from Z into X we mean
ϕ ◦ λ for some ϕ ∈ Aut(X). For the proof of Theorem 18, first of all the method
of non-equidimensional Cartan-Fubini extension as given in [(7.2), Theorem 17] can
be implemented by checking the validity of the non-degeneracy condition (††) on the
Gauss map yielding therefore a rational extension F : Z → X. Write S = F (Z) for
the total transform of F . By Proposition 7, S ⊂ X is K-saturated. The condition
dfz(C̃z(Z)) = dfz(Tz(Z))∩C̃f(z)(X) says that S is tangent at a general point s ∈ f(U)
to a (unique) copy Zs of a standard embedding of Z into X. Extending f : U → X
to F : Z → X the same applies for a general point s ∈ S.

Start with a base point 0 ∈ Z, f(0) = 0. Z0 and S are tangent to each other at
0 and they share the same VMRTs at 0. Let A be the subvariety on Z0 swept out
by lines ` on Z0 passing through 0. Since S ⊂ X is K-saturated, ` ∈ A ⊂ Z0 ∩ S.



GEOMETRIC STRUCTURES DEFINED BY VMRTS 47

At a general point s ∈ `, write Es := PTs(S) ∩ Cs(X) = PTs(Zs) ∩ Cs(X). We
argue that Z0 and S are tangent at s ∈ `, i.e., Cs(Z0) = Es. Write Ts(`) = Cα.
From deformation theory of rational curves T[α](Cs(Z0)) = Ts(A)/Ts(`) while also
T[α](Es) = Ts(A)/Ts(`). This means that Es and Cs(Z0) are tangent to each other at
[α]. In general the tangency property does not imply identity of the two VMRTs, but
we have found that this is the case for pairs (Z, X) of rational homogeneous manifolds
of Picard number 1 as given in Theorem 18. We may think of this as a form of parallel
transport of VMRTs for K-saturated subvarieties along a minimal rational curve in
special situations. Thus, Zs = Z0 for any line ` on Z0 passing through 0 and for a
general point s ∈ `. It follows that Zs = Z0 for a general point s ∈ A, and s can now
play the same role as the initial base point 0. Finally, S = F (Z) can be recovered
from the single point 0 ∈ Z in a finite number of steps by the procedure of adjoining
minimal rational curves (cf. (3.1)), and we have proven that S = Z0, as desired.
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