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1 Introduction

The study of holomorphic isometries between complex manifolds is a classical topic in complex geometry. For
Kähler manifolds, the early work dates back to Calabi’s seminal work in 1953 [1]. In 2003 [2], for the purpose
of characterizing modular correspondences among other correspondences in arithmetic geometry, Clozel and
Ullmo were led to study holomorphic isometric embeddings of an irreducible bounded symmetric domain
Ω into its product spaces Ωp, p ≥ 2, up to scalar constants (the isometric constants). Here all bounded
symmetric domains are equipped with their Bergman metrics. As explained in their paper, if the rank of Ω
is at least 2, then it follows from Mok’s work on Hermitian metric rigidity that the isometric embeddings are
necessarily totally geodesic (i.e. the diagonal embeddings). When the rank is equal to 1, i.e. Ω = Bn, the
methods in Hermitian metric rigidity do not apply. Nevertheless, for n ≥ 2, Mok in [3] (see the remark in
this section) proved that the embeddings are also totally-geodesic. Thus, there remains the case with n = 1,
i.e. Ω = ∆, when the domain is the unit disk.

For their purpose, Clozel and Ullmo in [2] showed that an isometric embedding of ∆ into ∆p is totally
geodesic under the assumption that the image is invariant under certain automorphisms of the target polydisk.
They then conjectured that the invariance property is not needed (Conjecture 2.2 in [2]). However, Mok [4]
constructed a non-totally geodesic isometric embedding of ∆ into ∆p for each p ≥ 2, which we will call the
p-th root embedding. Among the p-th root embeddings, together with the diagonal embeddings, we can form
compositions or reparametrize them by Möbius transformations to obtain more isometric embeddings of the
unit disk into polydisks. The question of whether all isometric embeddings can be obtained in such a way is
certainly very interesting.

The purpose of this paper is to show that under certain restrictions on the sheeting number of their
algebraic extensions, all isometric embeddings can be constructed in this way. As a corollary, we can determine
all isometric embeddings of ∆ into ∆2 and ∆3. They are the diagonal embeddings and those embeddings
constructed from the square root embedding and the cube root embedding. In the final part of the paper,
we will also prove a “splitting theorem”, which essentially says that the study of isometric embeddings of ∆q

into ∆p reduces to the study of isometric embeddings of ∆ into ∆p.

Our work is based on the following functional equation

p∏

i=1

(1− |fi|2) = (1− |z|2)k, (1.1)

where z 7→ (f1(z), . . . , fp(z)) is an isometric embedding of ∆ into ∆p with the isometric constant equal to
k. It is derived from the isometry condition on the Kähler potentials of ∆ and ∆p. From the functional
equation it can then be proven that the graph of the embedding extends algebraically and the extension is a
finite branched cover over the domain. After establishing the algebraic extension, some general properties of
the embedding like the distribution of poles and the branchings of the component functions can be obtained.
These properties then enable us to give classifications under certain restrictions on the sheeting number.

Remark: In [3], the main theorem was only proven for dimension greater than 1 while it was stated for
all dimension in the article. For the details, please refer to the erratum [5] of the article.

Acknowledgement: This article essentially derives from the author’s thesis in the University of Hong
Kong and he would like to express the gratitude to his supervisor Professor Ngaiming Mok for his inspiring
guidance and encouragement.
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2 The functional equation

Let λ be a positive real number and (M, gM ), (N, gN ) be Kähler manifolds. A map F : M −→ N is said to be
an isometric embedding with the isometric constant λ if F : (M, λgM ) −→ (N, gN ) is an isometric embedding.

Let F : ∆ −→ ∆p, F (z) = (f1(z), . . . , fp(z)) be an isometric embedding with the isometric constant λ. So
we will be studying isometric embeddings of ∆ into ∆p up to scalar constants.

Without loss of generality, we may assume that F (0) = 0. The Bergman metric on ∆ is given by

ds2
∆ = 2Re(gdz ⊗ dz̄), where g = −2

∂2

∂z∂z̄
log(1 − |z|2). We can take as Kähler potentials for ds2

∆ and

ds2
∆p the real analytic functions −2 log(1 − |z|2) and −2

∑p
i=1 log(1 − |zi|2) respectively. By the assumption

F ∗ds2
∆p = λds2

∆ it follows that

−2
√−1∂∂

p∑

i=1

log(1− |fi|2) = −2λ
√−1∂∂ log(1− |z|2),

hence

−
p∑

i=1

log(1− |fi|2) = −λ log(1− |z|2) + Re h

for some holomorphic function h on ∆. Since F (0) = 0, comparing Taylor expansions we conclude as in
Clozel-Ullmo [2] that h ≡ 0. Therefore we obtain

−
p∑

i=1

log(1− |fi|2) = −λ log(1− |z|2).

i.e.
p∏

i=1

(1− |fi|2) = (1− |z|2)λ.

By the standard polarization technique, we have the polarized functional equation:
p∏

i=1

(1− fi(z)fi(w)) = (1− zw)λ, (2.1)

where (1− zw)λ ≡ eλ log(1−zw).

For the unit disk, the isometric constant λ is necessarily an integer. This can be obtained quite easily once
the existence of algebraic extension is established. The following is proven in Mok [4].

Theorem 2.1 (Mok). Let Ω b Cn and Ω′ b CN be bounded symmetric domains in their Harish-Chandra
realizations. Let λ be any positive real number and f : (Ω, λds2

Ω) −→ (Ω′, ds2
Ω′) be a germ of holomorphic

isometry at 0 ∈ Ω with f(0) = 0. Then, the germ of the graph of f extends to an affine algebraic variety
S# ⊂ Cn ×CN such that S = S# ∩ (Ω×Ω′) is the graph of a holomorphic isometric embedding F : Ω −→ Ω′

extending the germ of the holomorphic map f .

From the existence of algebraic extensions, we can prove

Proposition 2.2. Let (∆, λds2
∆) −→ (∆p, ds2

∆p) be an isometric embedding. Then λ is a positive integer.

Proof. By Theorem 2.1, we know that the embedding can be extended across a general point on the unit
circle. Let z0 be a point on the unit circle at which the embedding can be extended across in a neighborhood.
If we consider Eq. (2.1) and substitute w = z0, then because each factor on the L.H.S. can only vanish with
an integral order at z = z0 and therefore λ on the R.H.S. must be a positive integer.

Remark: The integrality also follows from a slight variation of the simpler arguments of Mok [3] on algebraic
extension.

We will henceforth denote the isometric constant of an embedding of the unit disk into a polydisk by k
as in Eq.(1.1), suggesting its integrality. It follows easily from Schwarz’s lemma that if the target is ∆p, then
k ≤ p and the embedding is the diagonal embedding when k = p. Thus, for isometric embeddings of ∆ into
∆p, the non-trivial cases are those with k ∈ {1, . . . , p− 1}.
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3 Examples

For each positive integer p ≥ 2, Mok [4] constructed a non-totally geodesic isometric embedding of ∆ into ∆p

with k = 1. The examples are best expressed when we transform the unit disk into the upper-half plane H.
For τ ∈ H, write τ = reiθ with r > 0 and 0 < θ < π. We denote the Poincaré metrics of H and Hp by ds2

H
and ds2

Hp .

Proposition 3.1 (Mok). Let p ≥ 2 be a positive integer and γ = eiπ/p. Then the map F : (H, ds2
H) −→

(Hp, ds2
Hp) defined by F (τ) = (τ

1
p , γτ

1
p , . . . , γp−1τ

1
p ) is an isometric embedding, where τ

1
p = r

1
p e

iθ
p .

This embedding will be called the p-th root embedding.

Given an isometric embedding F : ∆ −→ ∆p, we can construct a family of isometric embeddings
parametrized by α ∈ ∆ defined by

Fα(w) = T

(
F

(
w + α

1 + αw

))
,

where T ∈ Aut(∆p) with T (F (α)) = 0 ∈ ∆p such that we have Fα(0) = 0. Fα will be called a reparametriza-
tion of F .

Besides reparametrizations, we can also form “compositions” among isometric embeddings. More ex-
plicitly, for any two isometric embeddings, F : ∆ −→ ∆p and G : ∆ −→ ∆q, they induce an isomet-
ric embedding H : ∆ −→ ∆p −→ ∆p+q−1 given by H = G# ◦ F , where G# : ∆p −→ ∆p+q−1 and
G#(z1, . . . , zp) = (z1, . . . , zp−1, G(zp)). Thus, we have already acquired a great bunch of isometric embeddings
by the above constructions from the p−th root embeddings. We will prove that these constructions exhaust
all isometric embeddings of ∆ into ∆2 and ∆3.

4 Algebraic extension

Although the algebraic extension has already been established in Theorem 2.1, we here give a more elementary
proof under the assumption that the isometric constant is an integer. Let F : U −→ ∆p be a germ of an
isometric embedding with the isometric constant k, where U ⊂ ∆ is an open neighborhood containing the
origin and F (0) = 0. We will assume that every component function is non-constant. We regard ∆ as a
domain in P1. We identify P1 as C ∪ {∞} and use the inhomogeneous coordinate.

Lemma 4.1. Let f, g : Ω ⊂ Cm −→ Cn, f = (f1, . . . , fn), g = (g1, . . . , gn) be holomorphic maps such that
‖f‖2 = ‖g‖2, then there exists a unitary transformation U in Cn such that U ◦ f = g.

Proof. Let fj(Z) =
∞∑

|I|=0

fjIZ
I and gj(Z) =

∞∑

|I|=0

gjIZ
I , where I is a multi-index. Suppose

|f1|2 + · · ·+ |fn|2 = |g1|2 + · · ·+ |gn|2.

Polarizing the power series expansion of the equation, we get

f1If1J + · · ·+ fnIfnJ = g1Ig1J + · · ·+ gnIgnJ

for every I, J ∈ Nm.

Let fI = (f1I , . . . , fnI) and gI = (g1I , . . . , gnI), then for the two families {fI}I∈Nm and {gI}I∈Nm of vectors
in Cn, we know that there is an n× n unitary matrix U such that U fI = gI , ∀I ∈ Nm. Hence,

U

∞∑

|I|=0

fIzI =
∞∑

|I|=0

gIz
I ⇐⇒ U ◦ f = g.

Proposition 4.2. There exists an irreducible one-dimensional projective algebraic subvariety V in P1× (P1)p

extending the graph of F . In addition, by considering the projection map from V onto the first factor, V is a
finite branched cover over P1.
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Proof. f1, · · · , fp satisfy the functional equation

p∏

i=1

(1− |fi|2) = (1− |z|2)k.

Expand the brackets and rearrange the above equation to a form

d∑

j=0

|Aj |2 =
e∑

j=0

|Bj |2,

where Aj , Bj are analytic functions and Ai = fi for 1 ≤ i ≤ p. Here e + 1 = d = 2p−1 + k
2 if k is even and

d = e = 2p−1 + k−1
2 if k is odd. If k is even, we add a term Bd := 0 to the R.H.S. making both sides having

the same number of terms. Then for each k, Lemma 4.1 says that there exists a d× d unitary matrix U such
that 



A1

A2

...
Ad


 = U




B1

B2

...
Bd


 .

Among the above e equations, the first p of them are of the form

fi = Qi(z, f1, . . . , fp), i = 1, . . . , p,

where Qi are polynomials in which every term is either an odd power of z or a product of an even number of
the factors fi. Applying the Implicit Function Theorem at the point 0 ∈ P× (P1)p, we see that the projective
algebraic subvariety defined by these p equation is smooth at 0. If we let V be the irreducible component
of this subvariety containing 0, then V is one dimensional. It is clear that the germ of the graph of F is
contained in V . Denote by π the projection map from P1 × (P)p to the first factor. By the Proper Mapping
theorem, π(V ) = P1 and since V is connected, there exists an integer n such that for a generic point z ∈ P1,
#(π−1(z)) = n.

Let the sheeting number of V relative to π be n. Consider the projection maps Pi : V −→ P1×P1 defined
by Pi(z, ξ1, . . . , ξp) = (z, ξi). Then Vi = Pi(V ) ⊂ P1 × P1 is a one-dimensional projective algebraic subvariety
containing the germ of the graph of the component function fi : U −→ ∆. If we also define πi : Vi −→ P1 be
the projection map to the first factor, then π can be factorized as π = πi ◦ Pi and therefore we see that Vi is
a finite branched cover over P1 with the sheeting number being a factor of n.

We are going to show that the defining equation of every Vi takes a very specific form. At first, note that
there exists a discrete subset A ⊂ P such that when restricting to V \ π−1(A), π is a holomorphic covering
map. This is obvious if V is smooth and in the general case we can pass to its normalization.

Lemma 4.3. Let (z, a1, . . . , ap), (w, b1, . . . , bp) be any two points on V , then

p∏

i=1

(1− aibi) = (1− zw)k. (4.1)

Proof. We first consider the polarized functional equation

p∏

i=1

(1− fi(z)fi(w)) = (1− zw)k

in a small neighborhood U ⊂ ∆ of the origin, where z, w ∈ U . We can fix z and do analytic continuation on
the variable w and vice versa. Therefore Eq.(4.1) is true for all the points on V \ π−1(A). But V \ π−1(A) is
an open dense subset of V and therefore Eq.(4.1) is true for any two points on V .

Lemma 4.4. Let (z, a1, . . . , ap) be a point on V . Then ai is finite for all i if z is finite, i.e. z ∈ C ⊂ P1 =⇒
(a1, . . . , ap) ∈ Cp ⊂ (P1)p.
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Proof. Suppose (z, a1, . . . , ap) is a point on V with z ∈ C and a1 = ∞. Let U ⊂ C \ A be an open set such
that, π−1(U) =

⋃n
l=1 Wl and Wl are disjoint. Take any of the Wl, say W1, for all (w, f1, . . . , fp) ∈ W1, we

have from Eq.(4.1),
p∏

i=1

(1− aifi) = (1− zw)k.

Now the R.H.S is always finite and because a1 = ∞, we either have f1(w) ≡ 0 or (1− ajfj) ≡ 0 for some j.
Both will imply that one component function is constant and hence a contradiction.

We fix an i ∈ {1, . . . , p} and write h = fi. We also denote Vi by Vh and πi by πz.

Proposition 4.5. Let the sheeting number of Vh relative to πz be q, then Vh ⊂ P1 × P1 is defined by the
equation

hq + Pq−1(z)hq−1 + Pq−2(z)hq−2 + · · ·+ P1(z)h + P0(z) = 0 (4.2)

where ∀j, Pj(z) = ajz + bj, aj , bj ∈ C and b0 = 0.

Proof. There exists a discrete subset A ⊂ P1 such that πz is a covering map when restricting to π−1
z (P1 \A).

We consider the elementary symmetric functions of h relative to the covering map πz and they will be
meromorphic functions on P1 \ A. Since h is just a coordinate in P1 × P1, we see that these elementary
symmetric functions can be extended to the whole P1 and hence they are rational functions. Therefore the
defining equation of Vh is of the form

hq + Pq−1(z)hq−1 + · · ·+ P1(z)h + P0(z) = 0 (4.3)

where P1, . . . , Pq−1 are rational functions. We are now going to show that every Pi must in fact be a linear
polynomial in z. First of all, by the Implicit Function Theorem, for a generic choice of (z0, h0) ∈ Vh with
|h0| = 1, there exists a neighborhood U0 ⊂ C containing h0 such that z can be expressed as an analytic
function of h. From the functional equation, we see that for h ∈ U0 and |h| = 1, we have |z| = 1. Therefore
the Schwarz’s reflection principle implies that

z(
1
h̄

) =
1

z(h)
.

for h, 1/h̄ ∈ U0. This means (z, h) satisfies Eq.(4.3) if and only if (1/z̄, 1/h̄) does. Let r be the maximum
of the degrees of all Pi. Suppose r > 1, then for a generic choice of h# ∈ U0 we can solve Eq.(4.3)(when
h = h#) with r distinct solutions of z1, . . . , zr such that (z1, h

#), . . . , (zr, h
#) do not lie in the singular

part of Vh. Due to the reflection principle, when h = 1/h#, the solutions of Eq.(4.3) are 1/z1, . . . , 1/zr and
(1/z1, 1/h#), . . . , (1/zr, 1/h#) are regular points of Vh. Now we can make a reparametrization of the isometric
embedding such that (z1, h

#) 7→ (0, 0). Then 1/h# 7→ ∞ and that means h takes ∞ on r distinct points on
P1 which contradicts Lemma 4.4. Hence r must be equal to 1. Furthermore, due to Lemma 4.4 again, Pj(z)
cannot have poles in C and therefore they are linear polynomials in z. Finally, b0 = 0 follows from h(0) = 0
and the proof is complete.

Corollary 4.6. For every i, there exists a rational function Ri such that z = Ri(fi(z)). Furthermore,
Ri : P1 −→ P1 maps the unit circle into the unit circle.

Corollary 4.7. Eq.(4.2) is invariant under the transformation (z, h) 7→ 1/z, 1/h). In particular, for |z| = 1,
if hj, 1 ≤ j ≤ q, are the q roots of Eq.(4.2), then 1/hj, 1 ≤ j ≤ q, is a permutation of the roots.

Definition 4.8. The sheeting number of a component function fi is defined to be the degree of Ri in Corol-
lary 4.6.

From the results of Clozel-Ullmo [2] or Mok [4], every germ of an isometric embedding of the unit disk
into a polydisk can be extended over the whole unit disk. But P1 \∆ is biholomorphic to the unit disk, so
we conclude that the branch points of h must lie on the unit circle. Let z1, . . . , zm be the branch points of h
and bi the branching order at zi. Then from Riemann-Hurwitz formula, we have

m∑

i=1

bi = 2(q − 1). (4.4)

The branching orders bi will be important for classifying isometric embeddings. For example, we will use the
following lemma later.
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Lemma 4.9. Let h be a component function of an isometric embedding of ∆ into ∆p and its sheeting number
be q. If h has exactly two branch points, then up to reparametrizations, h is a component function of the q-th
root embedding.

Proof. Since the sheeting number of h is q, the branching order at each branch point is q − 1. Also, we know
that the branch points of h lie on the unit circle. Now, by Cayley transformations, we can consider h as a
map from the upper half plane into the upper half plane. By Corollary 4.6, there is a rational function R
of degree q such that τ = R(h(τ)). We can assume that the branch points of h are 0 and ∞ by doing some
reparametrization. Then we have R(h) = αhq, where α ∈ C. By Corollary 4.6 again, R maps the real axis
into the real axis, therefore α ∈ R. We can further make the coordinate transformation h 7→ |α|1/qh and now
we have τ = hq or τ = −hq. These two equations define 2q branches of analytic function from the upper-half
plane into the complex plane. Among them there are q of them mapping the the upper-half plane into the
upper-half plane and they are exactly the q component functions of the q−th root embedding.

5 Sheeting numbers

We now return to the isometric embedding itself. For all i, let si be the sheeting number of fi. Let us
introduce the notations ∆+ = ∆ and ∆− = P1 \ ∆. By Corollary 4.6, for each i, there exists a rational
function Ri of degree si such that z = Ri(fi(z)) and Ri maps the unit circle into the unit circle. As just
mentioned, the branch points of the algebraic extension of the map must lie on the unit circle. Therefore we
have π−1

i (∆+) =
⋃si

j=1 Uj;i ⊂ P1 × P1, Uj;i are disjoint and each lies entirely in either ∆+ ×∆+ or ∆+ ×∆−.

Similarly we also have π−1(∆+) =
⋃n

j=1 Uj ⊂ P1 × (
P1

)p, where Uj are disjoint and n is the sheeting
number of V . We can associate a “parity” to each Uj , defined as (χj;1, . . . , χj;p), χj;i ∈ {+,−} when
Pi(Uj) ⊂ ∆+ ×∆χj;i .

Lemma 5.1. If Ui and Uj have the same parity, then Ui = Uj.

Proof. Let the parity of Ui and Uj be (+, . . . , +). We can consider Ui and Uj as the graphs of two isometric
embeddings of ∆ into the ∆p, denoted by Fi and Fj . From the functional equation, we see that Fi(0) =
Fj(0) = 0 ∈ (∆+)p. Thus, Fi and Fj agree at the origin. However, every point in the unit disk can become
the origin by reparametrization. More explicitly, for every α ∈ ∆+, we consider the reparametrization of Fi

given by Fα
i (w) = T (Fi( w+α

1+αw )), where T is an automorphism of (∆+)p such that T (Fi(α)) = 0. We can
find a path γ : [0, 1] −→ P1 with γ(0) = γ(1) = 0 such that when we perform the analytical continuation Fi

along γ, we will come up with Fj at the end. We can correspondingly perform the analytical continuation of
Fα

i along γα, where γα is the image of γ under the transformation z = w+α
1+αw . Denote by F̃α

i the resulting

extension, then we have F̃α
i (w) = T (Fj( w+α

1+αw )). Observe that F̃α
i (0) = 0 because F̃α

i (∆+) ⊂ (∆+)p and F̃α
i

satisfies the functional equation. Hence T (Fj(α)) = 0 =⇒ Fi(α) = Fj(α). Since α is arbitrary, this implies
Ui = Uj . By doing coordinate transformations (z 7→ 1/w), the same is true for other parities.

Among the 2p different parities, we see that there are only 2p−1 of them consistent with the functional
equation, hence we have

Proposition 5.2. The sheeting number of V relative to π is at most 2p−1, i.e. n ≤ 2p−1.

Remark: The maximum 2p−1 is attainable by composing the square root embedding. More precisely,
consider the isometric embedding of ∆ into ∆p given by F = Fp−1 ◦ Fp−2 ◦ · · · ◦ F1, where F1 : ∆ −→
∆2, F (z) = (α(z), β(z)) is the square root embedding and Fi : ∆i −→ ∆i+1, defined by F (z1, . . . , zi) =
(z1, . . . , zi−1, α(zi), β(zi)). Then the sheeting number of the graph of F is 2p−1.

It follows from Proposition 4.5 that for each fi takes ∞ on one and only one branch among its si branches.
This observation leads to the following.

Proposition 5.3. The sheeting numbers si satisfy

p∑

i=1

1
si

= k, si|n,∀i. (5.1)
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Proof. As noted after Proposition 4.2, si is a factor of n. Within the n branches of F , each coordinate function
fi has si distinct branches and each distinct branch repeats itself n/si times. Among the si distinct branches,
there is only one branch such that fi(∞) = ∞ and hence fi takes infinite value n/si times at infinity within
the n branches of F . It is easy to deduce from the polarized functional equation that there are exactly k
component functions taking infinite value at infinity on each branch of F . Therefore the sum of n/si over i
is equal to kn.

From Proposition 5.3, we obtain a lower bound for n.

Corollary 5.4. The sheeting number of V relative to π is greater or equal to p/k, i.e. n ≥ p/k.

Proof. Write Eq. (5.1) as
p∑

i=1

n

si
= nk, si|n,∀i.

Since n/si ≥ 1, we have nk ≥ p.

6 Two theorems

In this section, we will prove two theorems about the classification of isometric embeddings of the unit disk
into polydisks with the isometric constant k = 1. We will continue to use V to denote the irreducible projective
algebraic subvariety in P1×(P1)p extending the germ of an isometric embedding of ∆ into ∆p. Denote also by
π the projection map onto the first factor and n the sheeting number of V relative to π. By Proposition 5.2
and Corollary 5.4, we have p ≤ n ≤ 2p−1. The two theorems are on the extremal cases.

6.1 On the minimal case

Let p be an odd number. Let F : ∆ −→ ∆p, F (z) = (f1(z), . . . , fp(z)) be an isometric embedding with the
isometric constant k = 1 and n = p. From Proposition 5.3, we deduce that the sheeting number of every fi

is p. In what follows, a complex number of modulus 1 will be called unimodular.

If z0 ∈ ∂∆ is not a branch point of any fi, then there exists a small neighborhood U of z0 containing
no branch points and such that π−1(U) =

⋃p
j=1 Uj , where Uj are disjoint and each Uj can be regarded

as the graph of a branch of the embedding over U . Let us denote the p branches of the embedding by
F j(z) = (f j

1 , . . . , f j
p ), 1 ≤ j ≤ p.

Lemma 6.1. Let z0 ∈ ∂∆ such that it is not a branch point of any component function. For each j, among
the set {f j

i (z0) : 1 ≤ i ≤ p}, there is exactly one unimodular value.

Proof. Consider the polarized functional equation

p∏

i=1

(1− f j
i (z)f j

i (w)) = 1− zw,

where z, w ∈ U . Substitute w = z0, we get

p∏

i=1

(1− f j
i (z)f j

i (z0)) = 1− zz0.

Since the order of zero at z = z0 is 1 on the right hand side and hence on the left hand side, we therefore
obtain the desired result.

Lemma 6.2. Let z0 ∈ ∂∆ such that it is not a branch point of any component function. For each i, among
the set {f j

i (z0) : 1 ≤ j ≤ p}, there is exactly one unimodular value. In particular, the rational function
Ri : P1 −→ P1 in Corollary 4.6 satisfying z = Ri(fi(z)) maps the unit circle bijectively onto the unit circle.
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Proof. By Corollary 4.7, r ∈ {f j
i (z0) : 1 ≤ j ≤ p} if and only if 1/r̄ ∈ {f j

i (z0) : 1 ≤ j ≤ p}. Since p is odd, at
least one element of {f j

i (z0) : 1 ≤ j ≤ p} is unimodular. Combining with Lemma 6.1, we see that exactly one
of them is unimodular.

Now we take an arbitrary point z′ ∈ ∂∆. If it happens that z′ is a branch point of some fi, then we
cannot define branches of the embedding as above. On the other hand, since each component function fi

satisfies an equation of the form as Eq.(4.2), so we can still talk about the p “values” of fi(z′) by taking them
as the p roots of Eq.(4.2) when z = z′. For each i, let βl;i, 1 ≤ l ≤ ri, be the distinct values of fi(z′) and
nl;i, 1 ≤ l ≤ ri, be the corresponding multiplicities.

Lemma 6.3. The number ri and the set {nl;i : 1 ≤ l ≤ ri} are independent of i.

Proof. We fix a fi and take a sufficiently small neighborhood U ′ of z′ such that U ′ does not contain any branch
point of any component function other than z′. Recall the notation that πi : Vi −→ P1 is the projection map
onto the first factor for the graph of fi. Since fi is the inverse of a rational function, by taking U ′ sufficiently
small we have π−1

i (U ′) =
⋃ri

l=1 W l
i , where W l

i are the connected components of π−1
i (U ′) and each W l

i is
biholomorphic to some open neighborhood of the graph of ζ = ξnl;i at the origin in C2, where (ζ, ξ) are the
coordinates in C2. Now take two component functions fi and fj . Since V , Vi and Vj are all p-sheeted cover
over P1, the projection maps Pi : V −→ Vi and Pj : V −→ Vj are both generically one to one and fibre
preserving. Hence, there is also a generically one to one and fibre preserving map between Vi and Vj , in
particular, between π−1

i (U ′) and π−1
j (U ′). We therefore conclude that ri = rj and after rearranging the index

l if necessary, nl;i = nl;j for every l.

In other words, the branching loci of all the component functions are the same and we do not need to refer
to a specific component function when we speak of branch points. Furthermore, if for each i, we let Ri be the
rational function such that z = Ri(fi(z)), then for any point (z, a1, . . . , ap) on V , the ramification orders of Ri

at ai, 1 ≤ i ≤ p, are the same. Thus, we can define the ramification order of π at a point (z, a1, . . . , ap) ∈ V
to be the ramification order of any Ri at ai.

Lemma 6.4. Let z′ ∈ ∂∆ be a branch point. At each point of π−1(z′), the ramification order of π is at least
3.

Proof. We first prove that there is no point in π−1(z′) having the ramification order 1. Suppose there are
r such points, denoted by v1, . . . , vr. We have r < p because z′ is a branch point. At each vj , there is
a small open neighborhood Uj in V such that Uj is the graph of some branch of the holomorphic map
z 7→ (f1(z), . . . , fp(z)). At each vj , there is one and only one component function taking a unimodular value
(c.f Lemma 6.1). Therefore at most r component functions can take unimodular values at the points v1, . . . , vr.
On the other hand, for each fixed i, fi has r simple roots for its defining equation Eq.(4.2) when z = z′. If
r is odd, Corollary 4.7 implies that at least one of these roots is unimodular and that means every fi takes
a unimodular value at some vj and this is a contradiction. If r is even, Corollary 4.7 then implies that an
even number of these roots are unimodular. But from Lemma 6.2, over any z′, each fi can only take one
unimodular value, therefore all the simple roots are non-unimodular and that means at each vj no component
function takes unimodular value. This is again a contradiction. Thus, we conclude that there is no point in
π−1(z′) having the ramification order 1.

Next, we argue that there is no point in π−1(z′) having the ramification order 2. Suppose v ∈ π−1(z′),
v = (z′, a1, . . . , ap) is a point with a ramification order 2. By definition, the ramification of Ri at ai is 2 for
every i. We claim that this implies that ai is non-unimodular for every i. For if Ri has a ramification order
2 at a point on the unit circle, then the unit circle will not be mapped injectively by Ri and it contradicts
Lemma 6.2. Thus, all fi are non-unimodular at v and hence non-unimodular in a neighborhood W of v. We
can always find a point w ∈ W such that π(w) is not a branch point and the fact that no fi takes unimodular
value at w contradicts Lemma 6.1.

Theorem 6.5. Let p be an odd number. If F : ∆ −→ ∆p is an isometric embedding with the isometric
constant k = 1 and with the sheeting number n equal to p, then up to reparametrizations, F is the p-th root
embedding.
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Proof. Fix a component function, say f1. Let {z1, . . . , zm} be the branch points and {b1, . . . , bm} be their
branching orders respectively. Then

m∑

j=1

bj = 2(p− 1).

But bj = p − rj , where rj is the number of distinct values of f1(zj). Since the multiplicity of each of these
distinct values is at least 3, we must have rj ≤ p/3. Then

2(p− 1) =
m∑

j=1

bj =
m∑

j=1

(p− rj) ≥
m∑

j=1

2p

3
=

2mp

3

=⇒ 3(p− 1)
p

≥ m.

So m = 1, 2. But m is at least 2 so by Lemma 4.9, up to some reparametrization, f1 is a component function
of the p-th root embedding. This is true for every fi and since all fi have the same branch points it is clear
from the proof of Lemma 4.9 that there exists a single reparametrization such that every fi will become one
of the component functions of the pth-root embedding. Note that if i 6= j, then fi 6= fj because on each
branch of F , only one component function can take the value ∞ at infinity . So the component functions of
F are precisely the p component functions of the p-th root embedding.

6.2 On the maximal case

Let p ∈ N+ and F : ∆ −→ ∆p, F (z) = (f1(z), . . . , fp(z)) be an isometric embedding with the isometric
constant k = 1.

Lemma 6.6. Let r, s be two positive integers and r ≤ s. Then the following equation

r∑

l=1

2tl =
s∑

l=1

2l−1, 0 ≤ t1 ≤ t2 ≤ · · · ≤ tr.

has an integral solution if and only if r = s and the solution is unique, i.e. tl = l − 1.

Proof. By induction on s.

Lemma 6.7. Let g : ∆ −→ ∆ be a component function of an isometric embedding of ∆ into ∆p. If the
sheeting number of g is 2, then there exists an analytic function h : ∆ −→ ∆ such that F = (g, h) is an
isometric embedding of ∆ into ∆2 with the isometric constant k = 1.

Proof. If the sheeting number of g is 2, then Riemann-Hurwitz formula implies that g has exactly two branch
points and therefore after some reparametrization g → gα, gα is one of two component functions of the
square-root embedding and the lemma follows.

Theorem 6.8. Let F : ∆ −→ ∆p, F (z) = (f1(z), . . . , fp(z)) be an isometric embedding with the isometric
constant k = 1. For all i, let si be the sheeting number of fi. Assume that s1 ≤ s2 ≤ · · · ≤ sp. If
sp = 2p−1, then the embedding can be factorized as F = Fp−1 ◦ Fp−2 ◦ · · · ◦ F1, where each intermediate
map Fi : ∆i −→ ∆i+1 is given by Fi(z1, . . . , zi) = (z1, · · · , zi−1, αi(zi), βi(zi)) and z 7→ (αi(z), βi(z)) is some
isometric embedding of ∆ into ∆2 with the isometric constant equal to 1. In other words, we can write

f1 = α1;
f2 = α2 ◦ β1;
f3 = α3 ◦ β2 ◦ β1;

...
fp−1 = αp−1 ◦ βp−2 ◦ · · · ◦ β1;

fp = βp−1 ◦ βp−2 ◦ · · · ◦ β1,

where for all i, z 7→ (αi(z), βi(z)) is an isometric embedding of ∆ into ∆2.
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Proof. First note that since every si is a factor of n and n ≤ 2p−1, we must have n = 2p−1 and every si is a
power of 2 with a power less than or equal to p − 1. Let ri = n/si = 2ui . By assumption, rp = 1 and from
Proposition 5.3 we have

∑p
i=1 n/si = n, thus,

p−1∑

i=1

2ui = 2p−1 − 1 =
p−1∑

i=1

2i−1, 0 ≤ up−1 ≤ up−2 ≤ · · · ≤ u1.

Therefore by Lemma 6.6,
sj = 2i , i = 1, . . . , p− 1.

We prove the theorem by induction on p. It is trivial for p = 2. Suppose the theorem has been proven for
∆p−1. Let α1 = f1, since the sheeting number of α1 is 2, by Lemma 6.7, we can find an analytic function β1

such that z 7→ (α1(z), β1(z)) is an isometric embedding of ∆ into ∆2, satisfying (1−|α1|2)(1−|β1|2) = 1−|z|2.
Hence from the functional equation, we have

p∏

i=2

(1− |fi|2) = 1− |β1|2.

Since 0 is not a branch point, there exists a local inverse β−1
1 : U ⊂ ∆ −→ ∆ of β1. Then

p∏

i=2

(1− |fi ◦ β−1
1 (z)|2) = 1− |z|2

for z ∈ U . So we see that
(
f2 ◦ β−1

1 , . . . , fp ◦ β−1
1

)
constitute an isometric embedding of U into ∆p−1.

We already have known that such an embedding can always be extended to the whole unit disk and let
G(z) = (g2, . . . , gp) be the extension. For 2 ≤ i ≤ p, we have fi ◦ β−1

1 = gi and hence fi = gi ◦ β1 on some
open set. Thus, we have for the local inverses f−1

i = β−1
1 ◦ g−1

i . Recall that each of these local inverses is
just the restriction of some rational function on an open set. Since the sheeting numbers of f−1

i , β−1
1 are 2i, 2

respectively, we deduce that the sheeting number of g−1
i is 2i−1. Therefore by the induction assumption, we

can write

g2 = α2,

g3 = α3 ◦ β2,

...
gp−1 = αp−1 ◦ βp−2 ◦ · · · ◦ β2,

gp = βp−1 ◦ βp−2 ◦ · · · ◦ β2,

where z 7→ (αi(z), βi(z)), 2 ≤ i ≤ p, are isometric embeddings of ∆ into ∆2 with the isometric constant equal
to 1. Since f1 = α1 and fi = gi ◦ β1 for 2 ≤ i ≤ p, the proof is complete.

7 Classification for ∆2

For isometric embeddings of ∆ into ∆2, we have already known that there are only the diagonal embedding
and its reparametrizations when the isometric constant k = 2. So the only interesting case is where k = 1.

Theorem 7.1. Let F : ∆ −→ ∆2 be an isometric embedding with the isometric constant k = 1, then up to
reparametrizations, F is the square root embedding.

Proof. Let F (z) = (f1(z), f2(z)). By Proposition 5.2 and Corollary 5.4, the sheeting number must be 2.
It then follows from Proposition 5.3 that the sheeting numbers of f1 and f2 are both 2. So from Riemann-
Hurwitz formula (c.f. Eq.(4.4)), both f1 and f2 have two branch points. Then Lemma 4.9 says that after some
reparametrization we can take f1 to be one of the two component functions of the square root embedding.
But once f1 is known, f2 is also uniquely determined (up to a constant factor of modulus 1) and therefore up
to reparametrizations F is the square root embedding.
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8 Classification for ∆3

The classification of isometric embeddings of ∆ into ∆3 can be obtained from Theorem 6.5 and Theorem 6.8.
By Proposition 5.2 and Corollary 5.4, if the isometric constant is k, then 3

k ≤ n ≤ 4, where n is the sheeting
number of V relative to π. For k = 3, there are only the diagonal embedding and its reparametrizations. We
first consider the case where k = 1.

Theorem 8.1. Let F : ∆ −→ ∆3 be an isometric embedding with the isometric constant k = 1. Then up
to reparametrizations, F is either the cube root embedding or F can be factorized as F = F2 ◦ F1, where
F1 : ∆ −→ ∆2, F1(z) = (α1(z), β1(z)) is an isometric embedding with the isometric constant equal to 1 and
F2 : ∆2 −→ ∆3, F2(z1, z2) = (z1, α2(z2), β2(z2)), in which z 7→ (α2(z), β2(z)) is an isometric embedding of ∆
into ∆2 with the isometric constant equal to 1.

Proof. As k = 1, we have 3 ≤ n ≤ 4. For n = 3, the result follows from Theorem 6.5. For n = 4,
by Proposition 5.3 there exists one fi with a sheeting number equal to 4 because the only solution (up to
permutations) to Eq.(5.1) is 1

2 + 1
4 + 1

4 = 1. The result then follows from Theorem 6.8.

Next, when k = 2, we have

Theorem 8.2. Let F : ∆ −→ ∆3 be an isometric embedding with the the isometric constant k = 2. Then up
to reparametrizations, F (z) = (z, α(z), β(z)), where z 7→ (α(z), β(z)) is an isometric embedding of ∆ into ∆2

with the isometric constant equal to 1.

Proof. As k = 2, we have 2 ≤ n ≤ 4. For n = 2, the only solution (up to permutations) to Eq.(5.1) is
1
1 + 1

2 + 1
2 = 2. So the sheeting numbers of f1, f2, f3 are 1, 2, 2 respectively. It is then clear that f1(z) = γz

for some |γ| ∈ C with |γ| = 1 and we may take γ = 1. Thus, the functional equation reduces to

(1− |f2|2)(1− |f3|2) = 1− |z|2,

and therefore f2(z), f3(z) constitute an isometric embedding from ∆ into ∆2 with the isometric constant
equal to 1. For n = 3, there is no solution for Eq.(5.1). For n = 4, the only solution (up to permutation)
is 1

1 + 1
2 + 1

2 = 2 and the sheeting numbers of f1, f2, f3 are 1, 2, 2 respectively and it is the same as the case
when n = 2 and hence is not possible.

9 Isometric embeddings between polydisks

In this section, we will consider isometric embeddings of ∆q into ∆p, where q ≤ p. The polydisks will be
equipped with product Poincaré metrics. We will show that all these embeddings “split”, in the sense that
they are induced from isometric embeddings of the unit disk into polydisks.

Let F : ∆q −→ ∆p, F (z1, . . . , zq) = (f1(z1, . . . , zq), . . . , fp(z1, . . . , zq)) be an isometric embedding with the
isometric constant k. Assume that F (0) = 0, then it satisfies the functional equation

p∏

i=1

(1− |f1(z1, . . . , zq)|2) =
q∏

j=1

(1− |zj |2)k. (9.1)

The isometric constant k is necessarily an integer. It can be argued in the same way as in the case of the unit
disk. (c.f. Proposition 2.2)

We now fix z2, . . . , zq and consider Eq.(9.1) as a functional equation in z1. By taking −√−1∂∂ log on
both sides (with respect to z1 only), we see that z1 7→ F (z1, . . . , zq) is an isometric embedding of ∆ into ∆p

for every (z2, . . . , zq) ∈ ∆q−1. Except when z2 = . . . = zq = 0, the embedding does not preserve the origin.

Lemma 9.1. For each i, if
∂fi

∂z1
is not constantly zero, then

fi(0, z2, . . . , zq) = 0

for all (z2, . . . , zq) ∈ ∆q−1.
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Proof. Fix (z2, . . . , zq) ∈ ∆q−1, by following the same reasoning leading to Lemma 4.4, we see that for each i,
fi(z1, z2, . . . , zq) (as a multi-valued function of z1) can only take the value infinity ∞ at z1 = ∞. And it is
clear from the functional equation that fi as a function of z1 satisfies the Schwarz’s reflection principle (c.f.
Proposition 4.5), therefore fi(0, z2, . . . , zq) = 0.

Lemma 9.2. Let W ⊂ C be an open set and (fw;1(z), fw;2(z), . . . , fw;p(z)) be a complex analytic family of
holomorphic functions on ∆ with w ∈ W being the parameter such that

p∏

i=1

(1− |fw;i|2) = (1− |z|2)k.

Then for all i,
∂fw;i

∂w
≡ 0.

Proof. We can determine the algebraic subvariety extending the embedding for every w in the same way as
in Proposition 4.2. But from Lemma 4.1 we see that the unitary matrix required is independent of w and
therefore the algebraic subvariety hence obtained is also independent of w. It then follows that the embedding
does not depend on w.

Theorem 9.3. Let F : ∆q −→ ∆p, F = (f1, . . . , fp) be an isometric embedding with the isometric constant
k. Then after rearranging the component indices if necessary, there exist positive integers p1, . . . , pq with
p1 + . . . + pq = p such that

f1, . . . , fp1 depend on z1 only;
fp1+1, . . . , fp1+p2 depend on z2 only;

...
...

fp1+···+pq−1+1, . . . , fp depend on zq only.

In particular, the i-th group of the above q groups of functions constitute an isometric embedding of ∆ into
∆pi with the isometric constant equal to k.

Proof. By Lemma 9.1, if
∂fi

∂z1
is not constantly zero, then fi(0, z2, . . . , zq) = 0, ∀(z2, . . . , zq) ∈ ∆q−1. From

the functional equation Eq.(9.1), we see that this cannot happen to all fi. Without loss of generality, we may

assume that
∂fi

∂z1
≡ 0, p1 + 1 ≤ i ≤ p, for some positive integer p1. Then we can write fi(z1, z2, . . . , zq) =

fi(z2, . . . , zq), for p1 + 1 ≤ i ≤ p. If we substitute z1 = 0 in Eq.(9.1), we get

p∏

i=p1+1

(1− |fi(z2, . . . , zq)|2) =
q∏

j=2

(1− |zj |2)k. (9.2)

Divide Eq.(9.1) by Eq.(9.2), we obtain

p1∏

i=1

(1− |fi(z1, z2, . . . , zq)|2) = (1− |z1|2)k.

So we have a complex analytic family(with parameters z2, . . . , zq) of functions satisfying the above functional
equation in z1 and by Lemma 9.2, for 1 ≤ i ≤ p1, fi is a function of z1 only. Now we can argue in the same
way for the variable z2 in Eq.(9.2). By induction, the proof is complete.

Corollary 9.4. If F : ∆q −→ ∆p is an isometric embedding with the isometric constant equal to k, then

p ≥ qk.

Proof. As pi ≥ k, we have

p =
q∑

i=1

pi ≥ qk.

12



References

[1] Calabi E. Isometric embeddings of complex manifolds. Ann. of Math., 58(2):1–23, 1953.

[2] Clozel L. and Ullmo E. Correspondances modulaires et mesures invariantes. J. Reine Angew. Math.,
558:47–83, 2003.

[3] Mok N. Local holomorphic isometric embeddings arising from correspondences in the rank-1 case. In Chern
S.S., Fu L., and Hain R., editors, Contemporary Trends in Algebraic Geometry and Algebraic Topology,
pages 155–166. Nankai Tracts in Mathematics, Vol 5, World Scientific, New Jersey 2002.

[4] Mok N. Extension of germs of holomorphic isometries up to normalization constants with respect to the
Bergman metric. Preprint: http://hkumath.hku.hk/∼imr/IMRPreprintSeries/2009/IMR2009-9.pdf.

[5] Mok N. http://hkumath.hku.hk/∼nmok/Erratum.pdf.

Sui-Chung Ng, The University of Hong Kong, Pokfulam Road, Hong Kong
(Email: suichung@hku.hk)

13


