On holomorphic isometric embeddings of the unit disk into polydisks

Sui-Chung, Ng

1 Introduction

The study of holomorphic isometries between complex manifolds is a classical topic in complex geometry. For Kähler manifolds, the early work dates back to Calabi's seminal work in 1953 [1]. In 2003 [2], for the purpose of characterizing modular correspondences among other correspondences in arithmetic geometry, Clozel and Ullmo were led to study holomorphic isometric embeddings of an irreducible bounded symmetric domain Ω into its product spaces $\Omega^{p}, p \geq 2$, up to scalar constants (the isometric constants). Here all bounded symmetric domains are equipped with their Bergman metrics. As explained in their paper, if the rank of Ω is at least 2 , then it follows from Mok's work on Hermitian metric rigidity that the isometric embeddings are necessarily totally geodesic (i.e. the diagonal embeddings). When the rank is equal to 1 , i.e. $\Omega=\mathbb{B}^{n}$, the methods in Hermitian metric rigidity do not apply. Nevertheless, for $n \geq 2$, Mok in [3] (see the remark in this section) proved that the embeddings are also totally-geodesic. Thus, there remains the case with $n=1$, i.e. $\Omega=\Delta$, when the domain is the unit disk.

For their purpose, Clozel and Ullmo in [2] showed that an isometric embedding of Δ into Δ^{p} is totally geodesic under the assumption that the image is invariant under certain automorphisms of the target polydisk. They then conjectured that the invariance property is not needed (Conjecture 2.2 in [2]). However, Mok [4] constructed a non-totally geodesic isometric embedding of Δ into Δ^{p} for each $p \geq 2$, which we will call the p-th root embedding. Among the p-th root embeddings, together with the diagonal embeddings, we can form compositions or reparametrize them by Möbius transformations to obtain more isometric embeddings of the unit disk into polydisks. The question of whether all isometric embeddings can be obtained in such a way is certainly very interesting.

The purpose of this paper is to show that under certain restrictions on the sheeting number of their algebraic extensions, all isometric embeddings can be constructed in this way. As a corollary, we can determine all isometric embeddings of Δ into Δ^{2} and Δ^{3}. They are the diagonal embeddings and those embeddings constructed from the square root embedding and the cube root embedding. In the final part of the paper, we will also prove a "splitting theorem", which essentially says that the study of isometric embeddings of Δ^{q} into Δ^{p} reduces to the study of isometric embeddings of Δ into Δ^{p}.

Our work is based on the following functional equation

$$
\begin{equation*}
\prod_{i=1}^{p}\left(1-\left|f_{i}\right|^{2}\right)=\left(1-|z|^{2}\right)^{k} \tag{1.1}
\end{equation*}
$$

where $z \mapsto\left(f_{1}(z), \ldots, f_{p}(z)\right)$ is an isometric embedding of Δ into Δ^{p} with the isometric constant equal to k. It is derived from the isometry condition on the Kähler potentials of Δ and Δ^{p}. From the functional equation it can then be proven that the graph of the embedding extends algebraically and the extension is a finite branched cover over the domain. After establishing the algebraic extension, some general properties of the embedding like the distribution of poles and the branchings of the component functions can be obtained. These properties then enable us to give classifications under certain restrictions on the sheeting number.

Remark: In [3], the main theorem was only proven for dimension greater than 1 while it was stated for all dimension in the article. For the details, please refer to the erratum [5] of the article.

Acknowledgement: This article essentially derives from the author's thesis in the University of Hong Kong and he would like to express the gratitude to his supervisor Professor Ngaiming Mok for his inspiring guidance and encouragement.

2 The functional equation

Let λ be a positive real number and $\left(M, g_{M}\right),\left(N, g_{N}\right)$ be Kähler manifolds. A map $F: M \longrightarrow N$ is said to be an isometric embedding with the isometric constant λ if $F:\left(M, \lambda g_{M}\right) \longrightarrow\left(N, g_{N}\right)$ is an isometric embedding.

Let $F: \Delta \longrightarrow \Delta^{p}, F(z)=\left(f_{1}(z), \ldots, f_{p}(z)\right)$ be an isometric embedding with the isometric constant λ. So we will be studying isometric embeddings of Δ into Δ^{p} up to scalar constants.

Without loss of generality, we may assume that $F(0)=\mathbf{0}$. The Bergman metric on Δ is given by $d s_{\Delta}^{2}=2 \operatorname{Re}(g d z \otimes d \bar{z})$, where $g=-2 \frac{\partial^{2}}{\partial z \partial \bar{z}} \log \left(1-|z|^{2}\right)$. We can take as Kähler potentials for $d s_{\Delta}^{2}$ and $d s_{\Delta^{p}}^{2}$ the real analytic functions $-2 \log \left(1-|z|^{2}\right)$ and $-2 \sum_{i=1}^{p} \log \left(1-\left|z_{i}\right|^{2}\right)$ respectively. By the assumption $F^{*} d s_{\Delta^{p}}^{2}=\lambda d s_{\Delta}^{2}$ it follows that

$$
-2 \sqrt{-1} \partial \bar{\partial} \sum_{i=1}^{p} \log \left(1-\left|f_{i}\right|^{2}\right)=-2 \lambda \sqrt{-1} \partial \bar{\partial} \log \left(1-|z|^{2}\right)
$$

hence

$$
-\sum_{i=1}^{p} \log \left(1-\left|f_{i}\right|^{2}\right)=-\lambda \log \left(1-|z|^{2}\right)+\operatorname{Re} h
$$

for some holomorphic function h on Δ. Since $F(0)=\mathbf{0}$, comparing Taylor expansions we conclude as in Clozel-Ullmo [2] that $h \equiv 0$. Therefore we obtain

$$
-\sum_{i=1}^{p} \log \left(1-\left|f_{i}\right|^{2}\right)=-\lambda \log \left(1-|z|^{2}\right)
$$

i.e.

$$
\prod_{i=1}^{p}\left(1-\left|f_{i}\right|^{2}\right)=\left(1-|z|^{2}\right)^{\lambda}
$$

By the standard polarization technique, we have the polarized functional equation:

$$
\begin{equation*}
\prod_{i=1}^{p}\left(1-f_{i}(z) \overline{f_{i}(w)}\right)=(1-z \bar{w})^{\lambda} \tag{2.1}
\end{equation*}
$$

where $(1-z \bar{w})^{\lambda} \equiv e^{\lambda \log (1-z \bar{w})}$.
For the unit disk, the isometric constant λ is necessarily an integer. This can be obtained quite easily once the existence of algebraic extension is established. The following is proven in Mok [4].

Theorem 2.1 (Mok). Let $\Omega \Subset \mathbb{C}^{n}$ and $\Omega^{\prime} \Subset \mathbb{C}^{N}$ be bounded symmetric domains in their Harish-Chandra realizations. Let λ be any positive real number and $f:\left(\Omega, \lambda d s_{\Omega}^{2}\right) \longrightarrow\left(\Omega^{\prime}, d s_{\Omega^{\prime}}^{2}\right)$ be a germ of holomorphic isometry at $0 \in \Omega$ with $f(0)=0$. Then, the germ of the graph of f extends to an affine algebraic variety $S^{\#} \subset \mathbb{C}^{n} \times \mathbb{C}^{N}$ such that $S=S^{\#} \cap\left(\Omega \times \Omega^{\prime}\right)$ is the graph of a holomorphic isometric embedding $F: \Omega \longrightarrow \Omega^{\prime}$ extending the germ of the holomorphic map f.

From the existence of algebraic extensions, we can prove
Proposition 2.2. Let $\left(\Delta, \lambda d s_{\Delta}^{2}\right) \longrightarrow\left(\Delta^{p}, d s_{\Delta^{p}}^{2}\right)$ be an isometric embedding. Then λ is a positive integer.
Proof. By Theorem 2.1, we know that the embedding can be extended across a general point on the unit circle. Let z_{0} be a point on the unit circle at which the embedding can be extended across in a neighborhood. If we consider Eq. (2.1) and substitute $w=z_{0}$, then because each factor on the L.H.S. can only vanish with an integral order at $z=z_{0}$ and therefore λ on the R.H.S. must be a positive integer.

Remark: The integrality also follows from a slight variation of the simpler arguments of Mok [3] on algebraic extension.

We will henceforth denote the isometric constant of an embedding of the unit disk into a polydisk by k as in Eq.(1.1), suggesting its integrality. It follows easily from Schwarz's lemma that if the target is Δ^{p}, then $k \leq p$ and the embedding is the diagonal embedding when $k=p$. Thus, for isometric embeddings of Δ into Δ^{p}, the non-trivial cases are those with $k \in\{1, \ldots, p-1\}$.

3 Examples

For each positive integer $p \geq 2$, Mok [4] constructed a non-totally geodesic isometric embedding of Δ into Δ^{p} with $k=1$. The examples are best expressed when we transform the unit disk into the upper-half plane \mathcal{H}. For $\tau \in \mathcal{H}$, write $\tau=r e^{i \theta}$ with $r>0$ and $0<\theta<\pi$. We denote the Poincaré metrics of \mathcal{H} and \mathcal{H}^{p} by $d s_{\mathcal{H}}^{2}$ and $d s_{\mathcal{H}^{p}}^{2}$.

Proposition 3.1 (Mok). Let $p \geq 2$ be a positive integer and $\gamma=e^{i \pi / p}$. Then the map $F:\left(\mathcal{H}, d s_{\mathcal{H}}^{2}\right) \longrightarrow$ $\left(\mathcal{H}^{p}, d s_{\mathcal{H}^{p}}^{2}\right)$ defined by $F(\tau)=\left(\tau^{\frac{1}{p}}, \gamma \tau^{\frac{1}{p}}, \ldots, \gamma^{p-1} \tau^{\frac{1}{p}}\right)$ is an isometric embedding, where $\tau^{\frac{1}{p}}=r^{\frac{1}{p}} e^{\frac{i \theta}{p}}$.

This embedding will be called the p-th root embedding.
Given an isometric embedding $F: \Delta \longrightarrow \Delta^{p}$, we can construct a family of isometric embeddings parametrized by $\alpha \in \Delta$ defined by

$$
F^{\alpha}(w)=T\left(F\left(\frac{w+\alpha}{1+\bar{\alpha} w}\right)\right)
$$

where $T \in \operatorname{Aut}\left(\Delta^{p}\right)$ with $T(F(\alpha))=\mathbf{0} \in \Delta^{p}$ such that we have $F^{\alpha}(0)=\mathbf{0}$. F^{α} will be called a reparametrization of F.

Besides reparametrizations, we can also form "compositions" among isometric embeddings. More explicitly, for any two isometric embeddings, $F: \Delta \longrightarrow \Delta^{p}$ and $G: \Delta \longrightarrow \Delta^{q}$, they induce an isometric embedding $H: \Delta \longrightarrow \Delta^{p} \longrightarrow \Delta^{p+q-1}$ given by $H=G^{\#} \circ F$, where $G^{\#}: \Delta^{p} \longrightarrow \Delta^{p+q-1}$ and $G^{\#}\left(z_{1}, \ldots, z_{p}\right)=\left(z_{1}, \ldots, z_{p-1}, G\left(z_{p}\right)\right)$. Thus, we have already acquired a great bunch of isometric embeddings by the above constructions from the p-th root embeddings. We will prove that these constructions exhaust all isometric embeddings of Δ into Δ^{2} and Δ^{3}.

4 Algebraic extension

Although the algebraic extension has already been established in Theorem 2.1, we here give a more elementary proof under the assumption that the isometric constant is an integer. Let $F: U \longrightarrow \Delta^{p}$ be a germ of an isometric embedding with the isometric constant k, where $U \subset \Delta$ is an open neighborhood containing the origin and $F(0)=\mathbf{0}$. We will assume that every component function is non-constant. We regard Δ as a domain in \mathbb{P}^{1}. We identify \mathbb{P}^{1} as $\mathbb{C} \cup\{\infty\}$ and use the inhomogeneous coordinate.

Lemma 4.1. Let $f, g: \Omega \subset \mathbb{C}^{m} \longrightarrow \mathbb{C}^{n}$, $f=\left(f_{1}, \ldots, f_{n}\right), g=\left(g_{1}, \ldots, g_{n}\right)$ be holomorphic maps such that $\|f\|^{2}=\|g\|^{2}$, then there exists a unitary transformation U in \mathbb{C}^{n} such that $U \circ f=g$.

Proof. Let $f_{j}(Z)=\sum_{|I|=0}^{\infty} f_{j I} Z^{I}$ and $g_{j}(Z)=\sum_{|I|=0}^{\infty} g_{j I} Z^{I}$, where I is a multi-index. Suppose

$$
\left|f_{1}\right|^{2}+\cdots+\left|f_{n}\right|^{2}=\left|g_{1}\right|^{2}+\cdots+\left|g_{n}\right|^{2}
$$

Polarizing the power series expansion of the equation, we get

$$
f_{1 I} \overline{f_{1 J}}+\cdots+f_{n I} \overline{f_{n J}}=g_{1 I} \overline{g_{1 J}}+\cdots+g_{n I} \overline{g_{n J}}
$$

for every $I, J \in \mathbb{N}^{m}$.
Let $\mathbf{f}_{I}=\left(f_{1 I}, \ldots, f_{n I}\right)$ and $\mathbf{g}_{I}=\left(g_{1 I}, \ldots, g_{n I}\right)$, then for the two families $\left\{\mathbf{f}_{I}\right\}_{I \in \mathbb{N}^{m}}$ and $\left\{\mathbf{g}_{I}\right\}_{I \in \mathbb{N}^{m}}$ of vectors in \mathbb{C}^{n}, we know that there is an $n \times n$ unitary matrix U such that $U \mathbf{f}_{I}=\mathbf{g}_{I}, \forall I \in \mathbb{N}^{m}$. Hence,

$$
U \sum_{|I|=0}^{\infty} \mathbf{f}_{I} z^{I}=\sum_{|I|=0}^{\infty} \mathbf{g}_{I} z^{I} \Longleftrightarrow U \circ f=g
$$

Proposition 4.2. There exists an irreducible one-dimensional projective algebraic subvariety V in $\mathbb{P}^{1} \times\left(\mathbb{P}^{1}\right)^{p}$ extending the graph of F. In addition, by considering the projection map from V onto the first factor, V is a finite branched cover over \mathbb{P}^{1}.

Proof. f_{1}, \cdots, f_{p} satisfy the functional equation

$$
\prod_{i=1}^{p}\left(1-\left|f_{i}\right|^{2}\right)=\left(1-|z|^{2}\right)^{k}
$$

Expand the brackets and rearrange the above equation to a form

$$
\sum_{j=0}^{d}\left|A_{j}\right|^{2}=\sum_{j=0}^{e}\left|B_{j}\right|^{2}
$$

where A_{j}, B_{j} are analytic functions and $A_{i}=f_{i}$ for $1 \leq i \leq p$. Here $e+1=d=2^{p-1}+\frac{k}{2}$ if k is even and $d=e=2^{p-1}+\frac{k-1}{2}$ if k is odd. If k is even, we add a term $B_{d}:=0$ to the R.H.S. making both sides having the same number of terms. Then for each k, Lemma 4.1 says that there exists a $d \times d$ unitary matrix \mathbf{U} such that

$$
\left(\begin{array}{c}
A_{1} \\
A_{2} \\
\vdots \\
A_{d}
\end{array}\right)=\mathbf{U}\left(\begin{array}{c}
B_{1} \\
B_{2} \\
\vdots \\
B_{d}
\end{array}\right)
$$

Among the above e equations, the first p of them are of the form

$$
f_{i}=Q_{i}\left(z, f_{1}, \ldots, f_{p}\right), \quad i=1, \ldots, p
$$

where Q_{i} are polynomials in which every term is either an odd power of z or a product of an even number of the factors f_{i}. Applying the Implicit Function Theorem at the point $\mathbf{0} \in \mathbb{P} \times\left(\mathbb{P}^{1}\right)^{p}$, we see that the projective algebraic subvariety defined by these p equation is smooth at $\mathbf{0}$. If we let V be the irreducible component of this subvariety containing $\mathbf{0}$, then V is one dimensional. It is clear that the germ of the graph of F is contained in V. Denote by π the projection map from $\mathbb{P}^{1} \times(\mathbb{P})^{p}$ to the first factor. By the Proper Mapping theorem, $\pi(V)=\mathbb{P}^{1}$ and since V is connected, there exists an integer n such that for a generic point $z \in \mathbb{P}^{1}$, $\#\left(\pi^{-1}(z)\right)=n$.

Let the sheeting number of V relative to π be n. Consider the projection maps $P_{i}: V \longrightarrow \mathbb{P}^{1} \times \mathbb{P}^{1}$ defined by $P_{i}\left(z, \xi_{1}, \ldots, \xi_{p}\right)=\left(z, \xi_{i}\right)$. Then $V_{i}=P_{i}(V) \subset \mathbb{P}^{1} \times \mathbb{P}^{1}$ is a one-dimensional projective algebraic subvariety containing the germ of the graph of the component function $f_{i}: U \longrightarrow \Delta$. If we also define $\pi_{i}: V_{i} \longrightarrow \mathbb{P}^{1}$ be the projection map to the first factor, then π can be factorized as $\pi=\pi_{i} \circ P_{i}$ and therefore we see that V_{i} is a finite branched cover over \mathbb{P}^{1} with the sheeting number being a factor of n.

We are going to show that the defining equation of every V_{i} takes a very specific form. At first, note that there exists a discrete subset $A \subset \mathbb{P}$ such that when restricting to $V \backslash \pi^{-1}(A), \pi$ is a holomorphic covering map. This is obvious if V is smooth and in the general case we can pass to its normalization.

Lemma 4.3. Let $\left(z, a_{1}, \ldots, a_{p}\right),\left(w, b_{1}, \ldots, b_{p}\right)$ be any two points on V, then

$$
\begin{equation*}
\prod_{i=1}^{p}\left(1-a_{i} \overline{b_{i}}\right)=(1-z \bar{w})^{k} \tag{4.1}
\end{equation*}
$$

Proof. We first consider the polarized functional equation

$$
\prod_{i=1}^{p}\left(1-f_{i}(z) \overline{f_{i}(w)}\right)=(1-z \bar{w})^{k}
$$

in a small neighborhood $U \subset \Delta$ of the origin, where $z, w \in U$. We can fix z and do analytic continuation on the variable w and vice versa. Therefore Eq.(4.1) is true for all the points on $V \backslash \pi^{-1}(A)$. But $V \backslash \pi^{-1}(A)$ is an open dense subset of V and therefore Eq.(4.1) is true for any two points on V.

Lemma 4.4. Let $\left(z, a_{1}, \ldots, a_{p}\right)$ be a point on V. Then a_{i} is finite for all i if z is finite, i.e. $z \in \mathbb{C} \subset \mathbb{P}^{1} \Longrightarrow$ $\left(a_{1}, \ldots, a_{p}\right) \in \mathbb{C}^{p} \subset\left(\mathbb{P}^{1}\right)^{p}$.

Proof. Suppose $\left(z, a_{1}, \ldots, a_{p}\right)$ is a point on V with $z \in \mathbb{C}$ and $a_{1}=\infty$. Let $U \subset \mathbb{C} \backslash A$ be an open set such that, $\pi^{-1}(U)=\bigcup_{l=1}^{n} W_{l}$ and W_{l} are disjoint. Take any of the W_{l}, say W_{1}, for all $\left(w, f_{1}, \ldots, f_{p}\right) \in W_{1}$, we have from Eq.(4.1),

$$
\prod_{i=1}^{p}\left(1-a_{i} \overline{f_{i}}\right)=(1-z \bar{w})^{k}
$$

Now the R.H.S is always finite and because $a_{1}=\infty$, we either have $f_{1}(w) \equiv 0$ or $\left(1-a_{j} \overline{f_{j}}\right) \equiv 0$ for some j. Both will imply that one component function is constant and hence a contradiction.

We fix an $i \in\{1, \ldots, p\}$ and write $h=f_{i}$. We also denote V_{i} by V_{h} and π_{i} by π_{z}.
Proposition 4.5. Let the sheeting number of V_{h} relative to π_{z} be q, then $V_{h} \subset \mathbb{P}^{1} \times \mathbb{P}^{1}$ is defined by the equation

$$
\begin{equation*}
h^{q}+P_{q-1}(z) h^{q-1}+P_{q-2}(z) h^{q-2}+\cdots+P_{1}(z) h+P_{0}(z)=0 \tag{4.2}
\end{equation*}
$$

where $\forall j, P_{j}(z)=a_{j} z+b_{j}, a_{j}, b_{j} \in \mathbb{C}$ and $b_{0}=0$.
Proof. There exists a discrete subset $A \subset \mathbb{P}^{1}$ such that π_{z} is a covering map when restricting to $\pi_{z}^{-1}\left(\mathbb{P}^{1} \backslash A\right)$. We consider the elementary symmetric functions of h relative to the covering map π_{z} and they will be meromorphic functions on $\mathbb{P}^{1} \backslash A$. Since h is just a coordinate in $\mathbb{P}^{1} \times \mathbb{P}^{1}$, we see that these elementary symmetric functions can be extended to the whole \mathbb{P}^{1} and hence they are rational functions. Therefore the defining equation of V_{h} is of the form

$$
\begin{equation*}
h^{q}+P_{q-1}(z) h^{q-1}+\cdots+P_{1}(z) h+P_{0}(z)=0 \tag{4.3}
\end{equation*}
$$

where P_{1}, \ldots, P_{q-1} are rational functions. We are now going to show that every P_{i} must in fact be a linear polynomial in z. First of all, by the Implicit Function Theorem, for a generic choice of $\left(z_{0}, h_{0}\right) \in V_{h}$ with $\left|h_{0}\right|=1$, there exists a neighborhood $U_{0} \subset \mathbb{C}$ containing h_{0} such that z can be expressed as an analytic function of h. From the functional equation, we see that for $h \in U_{0}$ and $|h|=1$, we have $|z|=1$. Therefore the Schwarz's reflection principle implies that

$$
z\left(\frac{1}{\bar{h}}\right)=\frac{1}{\overline{z(h)}}
$$

for $h, 1 / \bar{h} \in U_{0}$. This means (z, h) satisfies Eq.(4.3) if and only if $(1 / \bar{z}, 1 / \bar{h})$ does. Let r be the maximum of the degrees of all P_{i}. Suppose $r>1$, then for a generic choice of $h^{\#} \in U_{0}$ we can solve Eq.(4.3)(when $\left.h=h^{\#}\right)$ with r distinct solutions of z_{1}, \ldots, z_{r} such that $\left(z_{1}, h^{\#}\right), \ldots,\left(z_{r}, h^{\#}\right)$ do not lie in the singular part of V_{h}. Due to the reflection principle, when $h=1 / \overline{h^{\#}}$, the solutions of Eq.(4.3) are $1 / \bar{z}_{1}, \ldots, 1 / \bar{z}_{r}$ and $\left(1 / \bar{z}_{1}, 1 / \overline{h^{\#}}\right), \ldots,\left(1 / \bar{z}_{r}, 1 / \overline{h^{\#}}\right)$ are regular points of V_{h}. Now we can make a reparametrization of the isometric embedding such that $\left(z_{1}, h^{\#}\right) \mapsto(0,0)$. Then $1 / \overline{h^{\#}} \mapsto \infty$ and that means h takes ∞ on r distinct points on \mathbb{P}^{1} which contradicts Lemma 4.4. Hence r must be equal to 1 . Furthermore, due to Lemma 4.4 again, $P_{j}(z)$ cannot have poles in \mathbb{C} and therefore they are linear polynomials in z. Finally, $b_{0}=0$ follows from $h(0)=0$ and the proof is complete.

Corollary 4.6. For every i, there exists a rational function R_{i} such that $z=R_{i}\left(f_{i}(z)\right)$. Furthermore, $R_{i}: \mathbb{P}^{1} \longrightarrow \mathbb{P}^{1}$ maps the unit circle into the unit circle.
Corollary 4.7. Eq.(4.2) is invariant under the transformation $(z, h) \mapsto 1 / \bar{z}, 1 / \bar{h})$. In particular, for $|z|=1$, if $h_{j}, 1 \leq j \leq q$, are the q roots of Eq.(4.2), then $1 / \overline{h_{j}}, 1 \leq j \leq q$, is a permutation of the roots.
Definition 4.8. The sheeting number of a component function f_{i} is defined to be the degree of R_{i} in Corollary 4.6.

From the results of Clozel-Ullmo [2] or Mok [4], every germ of an isometric embedding of the unit disk into a polydisk can be extended over the whole unit disk. But $\mathbb{P}^{1} \backslash \bar{\Delta}$ is biholomorphic to the unit disk, so we conclude that the branch points of h must lie on the unit circle. Let z_{1}, \ldots, z_{m} be the branch points of h and b_{i} the branching order at z_{i}. Then from Riemann-Hurwitz formula, we have

$$
\begin{equation*}
\sum_{i=1}^{m} b_{i}=2(q-1) \tag{4.4}
\end{equation*}
$$

The branching orders b_{i} will be important for classifying isometric embeddings. For example, we will use the following lemma later.

Lemma 4.9. Let h be a component function of an isometric embedding of Δ into Δ^{p} and its sheeting number be q. If h has exactly two branch points, then up to reparametrizations, h is a component function of the q-th root embedding.

Proof. Since the sheeting number of h is q, the branching order at each branch point is $q-1$. Also, we know that the branch points of h lie on the unit circle. Now, by Cayley transformations, we can consider h as a map from the upper half plane into the upper half plane. By Corollary 4.6 , there is a rational function R of degree q such that $\tau=R(h(\tau))$. We can assume that the branch points of h are 0 and ∞ by doing some reparametrization. Then we have $R(h)=\alpha h^{q}$, where $\alpha \in \mathbb{C}$. By Corollary 4.6 again, R maps the real axis into the real axis, therefore $\alpha \in \mathbb{R}$. We can further make the coordinate transformation $h \mapsto|\alpha|^{1 / q} h$ and now we have $\tau=h^{q}$ or $\tau=-h^{q}$. These two equations define $2 q$ branches of analytic function from the upper-half plane into the complex plane. Among them there are q of them mapping the the upper-half plane into the upper-half plane and they are exactly the q component functions of the q-th root embedding.

5 Sheeting numbers

We now return to the isometric embedding itself. For all i, let s_{i} be the sheeting number of f_{i}. Let us introduce the notations $\Delta^{+}=\Delta$ and $\Delta^{-}=\mathbb{P}^{1} \backslash \bar{\Delta}$. By Corollary 4.6, for each i, there exists a rational function R_{i} of degree s_{i} such that $z=R_{i}\left(f_{i}(z)\right)$ and R_{i} maps the unit circle into the unit circle. As just mentioned, the branch points of the algebraic extension of the map must lie on the unit circle. Therefore we have $\pi_{i}^{-1}\left(\Delta^{+}\right)=\bigcup_{j=1}^{s_{i}} U_{j ; i} \subset \mathbb{P}^{1} \times \mathbb{P}^{1}, U_{j ; i}$ are disjoint and each lies entirely in either $\Delta^{+} \times \Delta^{+}$or $\Delta^{+} \times \Delta^{-}$.

Similarly we also have $\pi^{-1}\left(\Delta^{+}\right)=\bigcup_{j=1}^{n} U_{j} \subset \mathbb{P}^{1} \times\left(\mathbb{P}^{1}\right)^{p}$, where U_{j} are disjoint and n is the sheeting number of V. We can associate a "parity" to each U_{j}, defined as $\left(\chi_{j ; 1}, \ldots, \chi_{j ; p}\right)$, $\chi_{j ; i} \in\{+,-\}$ when $P_{i}\left(U_{j}\right) \subset \Delta^{+} \times \Delta^{\chi_{j ; i}}$.

Lemma 5.1. If U_{i} and U_{j} have the same parity, then $U_{i}=U_{j}$.
Proof. Let the parity of U_{i} and U_{j} be $(+, \ldots,+)$. We can consider U_{i} and U_{j} as the graphs of two isometric embeddings of Δ into the Δ^{p}, denoted by F_{i} and F_{j}. From the functional equation, we see that $F_{i}(0)=$ $F_{j}(0)=\mathbf{0} \in\left(\Delta^{+}\right)^{p}$. Thus, F_{i} and F_{j} agree at the origin. However, every point in the unit disk can become the origin by reparametrization. More explicitly, for every $\alpha \in \Delta^{+}$, we consider the reparametrization of F_{i} given by $F_{i}^{\alpha}(w)=T\left(F_{i}\left(\frac{w+\alpha}{1+\bar{\alpha} w}\right)\right)$, where T is an automorphism of $\left(\Delta^{+}\right)^{p}$ such that $T\left(F_{i}(\alpha)\right)=\mathbf{0}$. We can find a path $\gamma:[0,1] \longrightarrow \mathbb{P}^{1}$ with $\gamma(0)=\gamma(1)=0$ such that when we perform the analytical continuation F_{i} along γ, we will come up with F_{j} at the end. We can correspondingly perform the analytical continuation of F_{i}^{α} along γ^{α}, where γ^{α} is the image of γ under the transformation $z=\frac{w+\alpha}{1+\bar{\alpha} w}$. Denote by $\widetilde{F_{i}^{\alpha}}$ the resulting extension, then we have $\widetilde{F_{i}^{\alpha}}(w)=T\left(F_{j}\left(\frac{w+\alpha}{1+\bar{\alpha} w}\right)\right)$. Observe that $\widetilde{F_{i}^{\alpha}}(0)=\mathbf{0}$ because $\widetilde{F_{i}^{\alpha}}\left(\Delta^{+}\right) \subset\left(\Delta^{+}\right)^{p}$ and $\widetilde{F_{i}^{\alpha}}$ satisfies the functional equation. Hence $T\left(F_{j}(\alpha)\right)=\mathbf{0} \Longrightarrow F_{i}(\alpha)=F_{j}(\alpha)$. Since α is arbitrary, this implies $U_{i}=U_{j}$. By doing coordinate transformations $(z \mapsto 1 / w)$, the same is true for other parities.

Among the 2^{p} different parities, we see that there are only 2^{p-1} of them consistent with the functional equation, hence we have

Proposition 5.2. The sheeting number of V relative to π is at most 2^{p-1}, i.e. $n \leq 2^{p-1}$.

Remark: The maximum 2^{p-1} is attainable by composing the square root embedding. More precisely, consider the isometric embedding of Δ into Δ^{p} given by $F=F_{p-1} \circ F_{p-2} \circ \cdots \circ F_{1}$, where $F_{1}: \Delta \longrightarrow$ $\Delta^{2}, F(z)=(\alpha(z), \beta(z))$ is the square root embedding and $F_{i}: \Delta^{i} \longrightarrow \Delta^{i+1}$, defined by $F\left(z_{1}, \ldots, z_{i}\right)=$ $\left(z_{1}, \ldots, z_{i-1}, \alpha\left(z_{i}\right), \beta\left(z_{i}\right)\right)$. Then the sheeting number of the graph of F is 2^{p-1}.

It follows from Proposition 4.5 that for each f_{i} takes ∞ on one and only one branch among its s_{i} branches. This observation leads to the following.

Proposition 5.3. The sheeting numbers s_{i} satisfy

$$
\begin{equation*}
\sum_{i=1}^{p} \frac{1}{s_{i}}=k, \quad s_{i} \mid n, \forall i . \tag{5.1}
\end{equation*}
$$

Proof. As noted after Proposition 4.2, s_{i} is a factor of n. Within the n branches of F, each coordinate function f_{i} has s_{i} distinct branches and each distinct branch repeats itself n / s_{i} times. Among the s_{i} distinct branches, there is only one branch such that $f_{i}(\infty)=\infty$ and hence f_{i} takes infinite value n / s_{i} times at infinity within the n branches of F. It is easy to deduce from the polarized functional equation that there are exactly k component functions taking infinite value at infinity on each branch of F. Therefore the sum of n / s_{i} over i is equal to $k n$.

From Proposition 5.3, we obtain a lower bound for n.
Corollary 5.4. The sheeting number of V relative to π is greater or equal to p / k, i.e. $n \geq p / k$.

Proof. Write Eq. (5.1) as

$$
\sum_{i=1}^{p} \frac{n}{s_{i}}=n k, \quad s_{i} \mid n, \forall i
$$

Since $n / s_{i} \geq 1$, we have $n k \geq p$.

6 Two theorems

In this section, we will prove two theorems about the classification of isometric embeddings of the unit disk into polydisks with the isometric constant $k=1$. We will continue to use V to denote the irreducible projective algebraic subvariety in $\mathbb{P}^{1} \times\left(\mathbb{P}^{1}\right)^{p}$ extending the germ of an isometric embedding of Δ into Δ^{p}. Denote also by π the projection map onto the first factor and n the sheeting number of V relative to π. By Proposition 5.2 and Corollary 5.4, we have $p \leq n \leq 2^{p-1}$. The two theorems are on the extremal cases.

6.1 On the minimal case

Let p be an odd number. Let $F: \Delta \longrightarrow \Delta^{p}, F(z)=\left(f_{1}(z), \ldots, f_{p}(z)\right)$ be an isometric embedding with the isometric constant $k=1$ and $n=p$. From Proposition 5.3, we deduce that the sheeting number of every f_{i} is p. In what follows, a complex number of modulus 1 will be called unimodular.

If $z_{0} \in \partial \Delta$ is not a branch point of any f_{i}, then there exists a small neighborhood U of z_{0} containing no branch points and such that $\pi^{-1}(U)=\bigcup_{j=1}^{p} U_{j}$, where U_{j} are disjoint and each U_{j} can be regarded as the graph of a branch of the embedding over U. Let us denote the p branches of the embedding by $F^{j}(z)=\left(f_{1}^{j}, \ldots, f_{p}^{j}\right), 1 \leq j \leq p$.
Lemma 6.1. Let $z_{0} \in \partial \Delta$ such that it is not a branch point of any component function. For each j, among the set $\left\{f_{i}^{j}\left(z_{0}\right): 1 \leq i \leq p\right\}$, there is exactly one unimodular value.

Proof. Consider the polarized functional equation

$$
\prod_{i=1}^{p}\left(1-f_{i}^{j}(z) \overline{f_{i}^{j}(w)}\right)=1-z \bar{w}
$$

where $z, w \in U$. Substitute $w=z_{0}$, we get

$$
\prod_{i=1}^{p}\left(1-f_{i}^{j}(z) \overline{f_{i}^{j}\left(z_{0}\right)}\right)=1-z \overline{z_{0}}
$$

Since the order of zero at $z=z_{0}$ is 1 on the right hand side and hence on the left hand side, we therefore obtain the desired result.

Lemma 6.2. Let $z_{0} \in \partial \Delta$ such that it is not a branch point of any component function. For each i, among the set $\left\{f_{i}^{j}\left(z_{0}\right): 1 \leq j \leq p\right\}$, there is exactly one unimodular value. In particular, the rational function $R_{i}: \mathbb{P}^{1} \longrightarrow \mathbb{P}^{1}$ in Corollary 4.6 satisfying $z=R_{i}\left(f_{i}(z)\right)$ maps the unit circle bijectively onto the unit circle.

Proof. By Corollary 4.7, $r \in\left\{f_{i}^{j}\left(z_{0}\right): 1 \leq j \leq p\right\}$ if and only if $1 / \bar{r} \in\left\{f_{i}^{j}\left(z_{0}\right): 1 \leq j \leq p\right\}$. Since p is odd, at least one element of $\left\{f_{i}^{j}\left(z_{0}\right): 1 \leq j \leq p\right\}$ is unimodular. Combining with Lemma 6.1, we see that exactly one of them is unimodular.

Now we take an arbitrary point $z^{\prime} \in \partial \Delta$. If it happens that z^{\prime} is a branch point of some f_{i}, then we cannot define branches of the embedding as above. On the other hand, since each component function f_{i} satisfies an equation of the form as Eq.(4.2), so we can still talk about the p "values" of $f_{i}\left(z^{\prime}\right)$ by taking them as the p roots of Eq.(4.2) when $z=z^{\prime}$. For each i, let $\beta_{l ; i}, 1 \leq l \leq r_{i}$, be the distinct values of $f_{i}\left(z^{\prime}\right)$ and $n_{l ; i}, 1 \leq l \leq r_{i}$, be the corresponding multiplicities.

Lemma 6.3. The number r_{i} and the set $\left\{n_{l ; i}: 1 \leq l \leq r_{i}\right\}$ are independent of i.

Proof. We fix a f_{i} and take a sufficiently small neighborhood U^{\prime} of z^{\prime} such that U^{\prime} does not contain any branch point of any component function other than z^{\prime}. Recall the notation that $\pi_{i}: V_{i} \longrightarrow \mathbb{P}^{1}$ is the projection map onto the first factor for the graph of f_{i}. Since f_{i} is the inverse of a rational function, by taking U^{\prime} sufficiently small we have $\pi_{i}^{-1}\left(U^{\prime}\right)=\bigcup_{l=1}^{r_{i}} W_{i}^{l}$, where W_{i}^{l} are the connected components of $\pi_{i}^{-1}\left(U^{\prime}\right)$ and each W_{i}^{l} is biholomorphic to some open neighborhood of the graph of $\zeta=\xi^{n_{l, i}}$ at the origin in \mathbb{C}^{2}, where (ζ, ξ) are the coordinates in \mathbb{C}^{2}. Now take two component functions f_{i} and f_{j}. Since V, V_{i} and V_{j} are all p-sheeted cover over \mathbb{P}^{1}, the projection maps $P_{i}: V \longrightarrow V_{i}$ and $P_{j}: V \longrightarrow V_{j}$ are both generically one to one and fibre preserving. Hence, there is also a generically one to one and fibre preserving map between V_{i} and V_{j}, in particular, between $\pi_{i}^{-1}\left(U^{\prime}\right)$ and $\pi_{j}^{-1}\left(U^{\prime}\right)$. We therefore conclude that $r_{i}=r_{j}$ and after rearranging the index l if necessary, $n_{l ; i}=n_{l ; j}$ for every l.

In other words, the branching loci of all the component functions are the same and we do not need to refer to a specific component function when we speak of branch points. Furthermore, if for each i, we let R_{i} be the rational function such that $z=R_{i}\left(f_{i}(z)\right)$, then for any point $\left(z, a_{1}, \ldots, a_{p}\right)$ on V, the ramification orders of R_{i} at $a_{i}, 1 \leq i \leq p$, are the same. Thus, we can define the ramification order of π at a point $\left(z, a_{1}, \ldots, a_{p}\right) \in V$ to be the ramification order of any R_{i} at a_{i}.

Lemma 6.4. Let $z^{\prime} \in \partial \Delta$ be a branch point. At each point of $\pi^{-1}\left(z^{\prime}\right)$, the ramification order of π is at least 3.

Proof. We first prove that there is no point in $\pi^{-1}\left(z^{\prime}\right)$ having the ramification order 1. Suppose there are r such points, denoted by v_{1}, \ldots, v_{r}. We have $r<p$ because z^{\prime} is a branch point. At each v_{j}, there is a small open neighborhood U_{j} in V such that U_{j} is the graph of some branch of the holomorphic map $z \mapsto\left(f_{1}(z), \ldots, f_{p}(z)\right)$. At each v_{j}, there is one and only one component function taking a unimodular value (c.f Lemma 6.1). Therefore at most r component functions can take unimodular values at the points v_{1}, \ldots, v_{r}. On the other hand, for each fixed i, f_{i} has r simple roots for its defining equation Eq.(4.2) when $z=z^{\prime}$. If r is odd, Corollary 4.7 implies that at least one of these roots is unimodular and that means every f_{i} takes a unimodular value at some v_{j} and this is a contradiction. If r is even, Corollary 4.7 then implies that an even number of these roots are unimodular. But from Lemma 6.2 , over any z^{\prime}, each f_{i} can only take one unimodular value, therefore all the simple roots are non-unimodular and that means at each v_{j} no component function takes unimodular value. This is again a contradiction. Thus, we conclude that there is no point in $\pi^{-1}\left(z^{\prime}\right)$ having the ramification order 1.

Next, we argue that there is no point in $\pi^{-1}\left(z^{\prime}\right)$ having the ramification order 2. Suppose $v \in \pi^{-1}\left(z^{\prime}\right)$, $v=\left(z^{\prime}, a_{1}, \ldots, a_{p}\right)$ is a point with a ramification order 2. By definition, the ramification of R_{i} at a_{i} is 2 for every i. We claim that this implies that a_{i} is non-unimodular for every i. For if R_{i} has a ramification order 2 at a point on the unit circle, then the unit circle will not be mapped injectively by R_{i} and it contradicts Lemma 6.2. Thus, all f_{i} are non-unimodular at v and hence non-unimodular in a neighborhood W of v. We can always find a point $w \in W$ such that $\pi(w)$ is not a branch point and the fact that no f_{i} takes unimodular value at w contradicts Lemma 6.1.

Theorem 6.5. Let p be an odd number. If $F: \Delta \longrightarrow \Delta^{p}$ is an isometric embedding with the isometric constant $k=1$ and with the sheeting number n equal to p, then up to reparametrizations, F is the p-th root embedding.

Proof. Fix a component function, say f_{1}. Let $\left\{z_{1}, \ldots, z_{m}\right\}$ be the branch points and $\left\{b_{1}, \ldots, b_{m}\right\}$ be their branching orders respectively. Then

$$
\sum_{j=1}^{m} b_{j}=2(p-1)
$$

But $b_{j}=p-r_{j}$, where r_{j} is the number of distinct values of $f_{1}\left(z_{j}\right)$. Since the multiplicity of each of these distinct values is at least 3 , we must have $r_{j} \leq p / 3$. Then

$$
\begin{gathered}
2(p-1)=\sum_{j=1}^{m} b_{j}=\sum_{j=1}^{m}\left(p-r_{j}\right) \geq \sum_{j=1}^{m} \frac{2 p}{3}=\frac{2 m p}{3} \\
\Longrightarrow \frac{3(p-1)}{p} \geq m
\end{gathered}
$$

So $m=1,2$. But m is at least 2 so by Lemma 4.9, up to some reparametrization, f_{1} is a component function of the p-th root embedding. This is true for every f_{i} and since all f_{i} have the same branch points it is clear from the proof of Lemma 4.9 that there exists a single reparametrization such that every f_{i} will become one of the component functions of the p th-root embedding. Note that if $i \neq j$, then $f_{i} \neq f_{j}$ because on each branch of F, only one component function can take the value ∞ at infinity. So the component functions of F are precisely the p component functions of the p-th root embedding.

6.2 On the maximal case

Let $p \in \mathbb{N}^{+}$and $F: \Delta \longrightarrow \Delta^{p}, F(z)=\left(f_{1}(z), \ldots, f_{p}(z)\right)$ be an isometric embedding with the isometric constant $k=1$.

Lemma 6.6. Let r, s be two positive integers and $r \leq s$. Then the following equation

$$
\sum_{l=1}^{r} 2^{t_{l}}=\sum_{l=1}^{s} 2^{l-1}, \quad 0 \leq t_{1} \leq t_{2} \leq \cdots \leq t_{r}
$$

has an integral solution if and only if $r=s$ and the solution is unique, i.e. $t_{l}=l-1$.

Proof. By induction on s.
Lemma 6.7. Let $g: \Delta \longrightarrow \Delta$ be a component function of an isometric embedding of Δ into Δ^{p}. If the sheeting number of g is 2 , then there exists an analytic function $h: \Delta \longrightarrow \Delta$ such that $F=(g, h)$ is an isometric embedding of Δ into Δ^{2} with the isometric constant $k=1$.

Proof. If the sheeting number of g is 2, then Riemann-Hurwitz formula implies that g has exactly two branch points and therefore after some reparametrization $g \rightarrow g^{\alpha}, g^{\alpha}$ is one of two component functions of the square-root embedding and the lemma follows.

Theorem 6.8. Let $F: \Delta \longrightarrow \Delta^{p}, F(z)=\left(f_{1}(z), \ldots, f_{p}(z)\right)$ be an isometric embedding with the isometric constant $k=1$. For all i, let s_{i} be the sheeting number of f_{i}. Assume that $s_{1} \leq s_{2} \leq \cdots \leq s_{p}$. If $s_{p}=2^{p-1}$, then the embedding can be factorized as $F=F_{p-1} \circ F_{p-2} \circ \cdots \circ F_{1}$, where each intermediate map $F_{i}: \Delta^{i} \longrightarrow \Delta^{i+1}$ is given by $F_{i}\left(z_{1}, \ldots, z_{i}\right)=\left(z_{1}, \cdots, z_{i-1}, \alpha_{i}\left(z_{i}\right), \beta_{i}\left(z_{i}\right)\right)$ and $z \mapsto\left(\alpha_{i}(z), \beta_{i}(z)\right)$ is some isometric embedding of Δ into Δ^{2} with the isometric constant equal to 1. In other words, we can write

$$
\begin{aligned}
f_{1} & =\alpha_{1} ; \\
f_{2} & =\alpha_{2} \circ \beta_{1} ; \\
f_{3} & =\alpha_{3} \circ \beta_{2} \circ \beta_{1} ; \\
& \vdots \\
f_{p-1} & =\alpha_{p-1} \circ \beta_{p-2} \circ \cdots \circ \beta_{1} ; \\
f_{p} & =\beta_{p-1} \circ \beta_{p-2} \circ \cdots \circ \beta_{1},
\end{aligned}
$$

where for all $i, z \mapsto\left(\alpha_{i}(z), \beta_{i}(z)\right)$ is an isometric embedding of Δ into Δ^{2}.

Proof. First note that since every s_{i} is a factor of n and $n \leq 2^{p-1}$, we must have $n=2^{p-1}$ and every s_{i} is a power of 2 with a power less than or equal to $p-1$. Let $r_{i}=n / s_{i}=2^{u_{i}}$. By assumption, $r_{p}=1$ and from Proposition 5.3 we have $\sum_{i=1}^{p} n / s_{i}=n$, thus,

$$
\sum_{i=1}^{p-1} 2^{u_{i}}=2^{p-1}-1=\sum_{i=1}^{p-1} 2^{i-1}, \quad 0 \leq u_{p-1} \leq u_{p-2} \leq \cdots \leq u_{1}
$$

Therefore by Lemma 6.6,

$$
s_{j}=2^{i}, i=1, \ldots, p-1
$$

We prove the theorem by induction on p. It is trivial for $p=2$. Suppose the theorem has been proven for Δ^{p-1}. Let $\alpha_{1}=f_{1}$, since the sheeting number of α_{1} is 2 , by Lemma 6.7 , we can find an analytic function β_{1} such that $z \mapsto\left(\alpha_{1}(z), \beta_{1}(z)\right)$ is an isometric embedding of Δ into Δ^{2}, satisfying $\left(1-\left|\alpha_{1}\right|^{2}\right)\left(1-\left|\beta_{1}\right|^{2}\right)=1-|z|^{2}$. Hence from the functional equation, we have

$$
\prod_{i=2}^{p}\left(1-\left|f_{i}\right|^{2}\right)=1-\left|\beta_{1}\right|^{2}
$$

Since 0 is not a branch point, there exists a local inverse $\beta_{1}^{-1}: U \subset \Delta \longrightarrow \Delta$ of β_{1}. Then

$$
\prod_{i=2}^{p}\left(1-\left|f_{i} \circ \beta_{1}^{-1}(z)\right|^{2}\right)=1-|z|^{2}
$$

for $z \in U$. So we see that $\left(f_{2} \circ \beta_{1}^{-1}, \ldots, f_{p} \circ \beta_{1}^{-1}\right)$ constitute an isometric embedding of U into Δ^{p-1}. We already have known that such an embedding can always be extended to the whole unit disk and let $G(z)=\left(g_{2}, \ldots, g_{p}\right)$ be the extension. For $2 \leq i \leq p$, we have $f_{i} \circ \beta_{1}^{-1}=g_{i}$ and hence $f_{i}=g_{i} \circ \beta_{1}$ on some open set. Thus, we have for the local inverses $f_{i}^{-1}=\beta_{1}^{-1} \circ g_{i}^{-1}$. Recall that each of these local inverses is just the restriction of some rational function on an open set. Since the sheeting numbers of $f_{i}^{-1}, \beta_{1}^{-1}$ are $2^{i}, 2$ respectively, we deduce that the sheeting number of g_{i}^{-1} is 2^{i-1}. Therefore by the induction assumption, we can write

$$
\begin{aligned}
g_{2} & =\alpha_{2} \\
g_{3} & =\alpha_{3} \circ \beta_{2}, \\
& \vdots \\
g_{p-1} & =\alpha_{p-1} \circ \beta_{p-2} \circ \cdots \circ \beta_{2}, \\
g_{p} & =\beta_{p-1} \circ \beta_{p-2} \circ \cdots \circ \beta_{2},
\end{aligned}
$$

where $z \mapsto\left(\alpha_{i}(z), \beta_{i}(z)\right), 2 \leq i \leq p$, are isometric embeddings of Δ into Δ^{2} with the isometric constant equal to 1 . Since $f_{1}=\alpha_{1}$ and $f_{i}=g_{i} \circ \beta_{1}$ for $2 \leq i \leq p$, the proof is complete.

7 Classification for Δ^{2}

For isometric embeddings of Δ into Δ^{2}, we have already known that there are only the diagonal embedding and its reparametrizations when the isometric constant $k=2$. So the only interesting case is where $k=1$.

Theorem 7.1. Let $F: \Delta \longrightarrow \Delta^{2}$ be an isometric embedding with the isometric constant $k=1$, then up to reparametrizations, F is the square root embedding.

Proof. Let $F(z)=\left(f_{1}(z), f_{2}(z)\right)$. By Proposition 5.2 and Corollary 5.4, the sheeting number must be 2 . It then follows from Proposition 5.3 that the sheeting numbers of f_{1} and f_{2} are both 2 . So from RiemannHurwitz formula (c.f. Eq.(4.4)), both f_{1} and f_{2} have two branch points. Then Lemma 4.9 says that after some reparametrization we can take f_{1} to be one of the two component functions of the square root embedding. But once f_{1} is known, f_{2} is also uniquely determined (up to a constant factor of modulus 1) and therefore up to reparametrizations F is the square root embedding.

8 Classification for Δ^{3}

The classification of isometric embeddings of Δ into Δ^{3} can be obtained from Theorem 6.5 and Theorem 6.8. By Proposition 5.2 and Corollary 5.4, if the isometric constant is k, then $\frac{3}{k} \leq n \leq 4$, where n is the sheeting number of V relative to π. For $k=3$, there are only the diagonal embedding and its reparametrizations. We first consider the case where $k=1$.

Theorem 8.1. Let $F: \Delta \longrightarrow \Delta^{3}$ be an isometric embedding with the isometric constant $k=1$. Then up to reparametrizations, F is either the cube root embedding or F can be factorized as $F=F_{2} \circ F_{1}$, where $F_{1}: \Delta \longrightarrow \Delta^{2}, F_{1}(z)=\left(\alpha_{1}(z), \beta_{1}(z)\right)$ is an isometric embedding with the isometric constant equal to 1 and $F_{2}: \Delta^{2} \longrightarrow \Delta^{3}, F_{2}\left(z_{1}, z_{2}\right)=\left(z_{1}, \alpha_{2}\left(z_{2}\right), \beta_{2}\left(z_{2}\right)\right)$, in which $z \mapsto\left(\alpha_{2}(z), \beta_{2}(z)\right)$ is an isometric embedding of Δ into Δ^{2} with the isometric constant equal to 1 .

Proof. As $k=1$, we have $3 \leq n \leq 4$. For $n=3$, the result follows from Theorem 6.5. For $n=4$, by Proposition 5.3 there exists one \bar{f}_{i} with a sheeting number equal to 4 because the only solution (up to permutations) to Eq.(5.1) is $\frac{1}{2}+\frac{1}{4}+\frac{1}{4}=1$. The result then follows from Theorem 6.8.

Next, when $k=2$, we have
Theorem 8.2. Let $F: \Delta \longrightarrow \Delta^{3}$ be an isometric embedding with the the isometric constant $k=2$. Then up to reparametrizations, $F(z)=(z, \alpha(z), \beta(z))$, where $z \mapsto(\alpha(z), \beta(z))$ is an isometric embedding of Δ into Δ^{2} with the isometric constant equal to 1 .

Proof. As $k=2$, we have $2 \leq n \leq 4$. For $n=2$, the only solution (up to permutations) to Eq.(5.1) is $\frac{1}{1}+\frac{1}{2}+\frac{1}{2}=2$. So the sheeting numbers of f_{1}, f_{2}, f_{3} are $1,2,2$ respectively. It is then clear that $f_{1}(z)=\gamma z$ for some $|\gamma| \in \mathbb{C}$ with $|\gamma|=1$ and we may take $\gamma=1$. Thus, the functional equation reduces to

$$
\left(1-\left|f_{2}\right|^{2}\right)\left(1-\left|f_{3}\right|^{2}\right)=1-|z|^{2}
$$

and therefore $f_{2}(z), f_{3}(z)$ constitute an isometric embedding from Δ into Δ^{2} with the isometric constant equal to 1. For $n=3$, there is no solution for Eq.(5.1). For $n=4$, the only solution (up to permutation) is $\frac{1}{1}+\frac{1}{2}+\frac{1}{2}=2$ and the sheeting numbers of f_{1}, f_{2}, f_{3} are $1,2,2$ respectively and it is the same as the case when $n=2$ and hence is not possible.

9 Isometric embeddings between polydisks

In this section, we will consider isometric embeddings of Δ^{q} into Δ^{p}, where $q \leq p$. The polydisks will be equipped with product Poincaré metrics. We will show that all these embeddings "split", in the sense that they are induced from isometric embeddings of the unit disk into polydisks.

Let $F: \Delta^{q} \longrightarrow \Delta^{p}, F\left(z_{1}, \ldots, z_{q}\right)=\left(f_{1}\left(z_{1}, \ldots, z_{q}\right), \ldots, f_{p}\left(z_{1}, \ldots, z_{q}\right)\right)$ be an isometric embedding with the isometric constant k. Assume that $F(\mathbf{0})=\mathbf{0}$, then it satisfies the functional equation

$$
\begin{equation*}
\prod_{i=1}^{p}\left(1-\left|f_{1}\left(z_{1}, \ldots, z_{q}\right)\right|^{2}\right)=\prod_{j=1}^{q}\left(1-\left|z_{j}\right|^{2}\right)^{k} \tag{9.1}
\end{equation*}
$$

The isometric constant k is necessarily an integer. It can be argued in the same way as in the case of the unit disk. (c.f. Proposition 2.2)

We now fix z_{2}, \ldots, z_{q} and consider Eq.(9.1) as a functional equation in z_{1}. By taking $-\sqrt{-1} \partial \bar{\partial} \log$ on both sides (with respect to z_{1} only), we see that $z_{1} \mapsto F\left(z_{1}, \ldots, z_{q}\right)$ is an isometric embedding of Δ into Δ^{p} for every $\left(z_{2}, \ldots, z_{q}\right) \in \Delta^{q-1}$. Except when $z_{2}=\ldots=z_{q}=0$, the embedding does not preserve the origin.

Lemma 9.1. For each i, if $\frac{\partial f_{i}}{\partial z_{1}}$ is not constantly zero, then

$$
f_{i}\left(0, z_{2}, \ldots, z_{q}\right)=0
$$

for all $\left(z_{2}, \ldots, z_{q}\right) \in \Delta^{q-1}$.

Proof. Fix $\left(z_{2}, \ldots, z_{q}\right) \in \Delta^{q-1}$, by following the same reasoning leading to Lemma 4.4, we see that for each i, $f_{i}\left(z_{1}, z_{2}, \ldots, z_{q}\right)$ (as a multi-valued function of z_{1}) can only take the value infinity ∞ at $z_{1}=\infty$. And it is clear from the functional equation that f_{i} as a function of z_{1} satisfies the Schwarz's reflection principle (c.f. Proposition 4.5), therefore $f_{i}\left(0, z_{2}, \ldots, z_{q}\right)=0$.

Lemma 9.2. Let $W \subset \mathbb{C}$ be an open set and $\left(f_{w ; 1}(z), f_{w ; 2}(z), \ldots, f_{w ; p}(z)\right)$ be a complex analytic family of holomorphic functions on Δ with $w \in W$ being the parameter such that

$$
\prod_{i=1}^{p}\left(1-\left|f_{w ; i}\right|^{2}\right)=\left(1-|z|^{2}\right)^{k}
$$

Then for all $i, \frac{\partial f_{w ; i}}{\partial w} \equiv 0$.
Proof. We can determine the algebraic subvariety extending the embedding for every w in the same way as in Proposition 4.2. But from Lemma 4.1 we see that the unitary matrix required is independent of w and therefore the algebraic subvariety hence obtained is also independent of w. It then follows that the embedding does not depend on w.

Theorem 9.3. Let $F: \Delta^{q} \longrightarrow \Delta^{p}, F=\left(f_{1}, \ldots, f_{p}\right)$ be an isometric embedding with the isometric constant k. Then after rearranging the component indices if necessary, there exist positive integers p_{1}, \ldots, p_{q} with $p_{1}+\ldots+p_{q}=p$ such that

$$
\begin{array}{cc}
f_{1}, \ldots, f_{p_{1}} & \text { depend on } z_{1} \text { only; } \\
f_{p_{1}+1}, \ldots, f_{p_{1}+p_{2}} & \text { depend on } z_{2} \text { only } ; \\
\vdots & \vdots \\
f_{p_{1}+\cdots+p_{q-1}+1}, \ldots, f_{p} & \text { depend on } z_{q} \text { only. }
\end{array}
$$

In particular, the i-th group of the above q groups of functions constitute an isometric embedding of Δ into $\Delta^{p_{i}}$ with the isometric constant equal to k.

Proof. By Lemma 9.1, if $\frac{\partial f_{i}}{\partial z_{1}}$ is not constantly zero, then $f_{i}\left(0, z_{2}, \ldots, z_{q}\right)=0, \forall\left(z_{2}, \ldots, z_{q}\right) \in \Delta^{q-1}$. From the functional equation Eq.(9.1), we see that this cannot happen to all f_{i}. Without loss of generality, we may assume that $\frac{\partial f_{i}}{\partial z_{1}} \equiv 0, p_{1}+1 \leq i \leq p$, for some positive integer p_{1}. Then we can write $f_{i}\left(z_{1}, z_{2}, \ldots, z_{q}\right)=$ $f_{i}\left(z_{2}, \ldots, z_{q}\right)$, for $p_{1}+1 \leq i \leq p$. If we substitute $z_{1}=0$ in Eq.(9.1), we get

$$
\begin{equation*}
\prod_{i=p_{1}+1}^{p}\left(1-\left|f_{i}\left(z_{2}, \ldots, z_{q}\right)\right|^{2}\right)=\prod_{j=2}^{q}\left(1-\left|z_{j}\right|^{2}\right)^{k} \tag{9.2}
\end{equation*}
$$

Divide Eq.(9.1) by Eq.(9.2), we obtain

$$
\prod_{i=1}^{p_{1}}\left(1-\left|f_{i}\left(z_{1}, z_{2}, \ldots, z_{q}\right)\right|^{2}\right)=\left(1-\left|z_{1}\right|^{2}\right)^{k}
$$

So we have a complex analytic family (with parameters z_{2}, \ldots, z_{q}) of functions satisfying the above functional equation in z_{1} and by Lemma 9.2 , for $1 \leq i \leq p_{1}, f_{i}$ is a function of z_{1} only. Now we can argue in the same way for the variable z_{2} in Eq.(9.2). By induction, the proof is complete.

Corollary 9.4. If $F: \Delta^{q} \longrightarrow \Delta^{p}$ is an isometric embedding with the isometric constant equal to k, then

$$
p \geq q k
$$

Proof. As $p_{i} \geq k$, we have

$$
p=\sum_{i=1}^{q} p_{i} \geq q k
$$

References

[1] Calabi E. Isometric embeddings of complex manifolds. Ann. of Math., 58(2):1-23, 1953.
[2] Clozel L. and Ullmo E. Correspondances modulaires et mesures invariantes. J. Reine Angew. Math., 558:47-83, 2003.
[3] Mok N. Local holomorphic isometric embeddings arising from correspondences in the rank-1 case. In Chern S.S., Fu L., and Hain R., editors, Contemporary Trends in Algebraic Geometry and Algebraic Topology, pages 155-166. Nankai Tracts in Mathematics, Vol 5, World Scientific, New Jersey 2002.
[4] Mok N. Extension of germs of holomorphic isometries up to normalization constants with respect to the Bergman metric. Preprint: http://hkumath.hku.hk/~imr/IMRPreprintSeries/2009/IMR2009-9.pdf.
[5] Mok N. http://hkumath.hku.hk/~nmok/Erratum.pdf.

Sui-Chung Ng, The University of Hong Kong, Pokfulam Road, Hong Kong
(Email: suichung@hku.hk)

