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1 Introduction

Let Ω be an irreducible bounded symmetric domain equipped with its Bergman metric ds2
Ω. In relation to

a problem in number theory, Clozel and Ullmo [1] studied the holomorphic isometric embeddings of Ω into
its Cartesian products Ωp up to normalizing constants, in which Ωp is equipped with the product metric.
By using the arguments in Hermitian metric rigidity (see Mok [2, 3]), they argued in their article that when
rank(Ω) ≥ 2, any such embedding must be totally geodesic. When rank(Ω) = 1, i.e. when Ω = Bn, the
complex unit balls, Mok [4] showed that for n ≥ 2, the embeddings must also be totally geodesic. While for
dimension 1, he has constructed a non-totally geodesic holomorphic isometric embedding of the unit disk ∆
into ∆p for every p ≥ 2. (see [5])

Let m,n ≥ 2 be two integers. In this article, we consider holomorphic isometric embeddings of Bn

into Bm × Bm up to normalization constants with respect to their Bergman metrics ds2
Bn and ds2

Bm×Bm .
More precisely, for a positive real number λ, F : Bn −→ Bm × Bm is said to be a holomorphic isometric
embedding with the isometric constant λ if F : (Bn, λds2

Bn) −→ (Bm × Bm, ds2
Bm×Bm) is a holomorphic

isometric embedding. If m ≥ n and In;m : Cn −→ Cm is the canonical embedding, then F1(z) = (0, In;m(z))
and F2(z) = (In;m(z), In;m(z)) are two holomorphic isometric embeddings with the isometric constant equal
to (m + 1)/(n + 1) and 2(m + 1)/(n + 1) respectively. The main purpose of this paper is to prove that for
m < 2n, they are the only holomorphic isometric embeddings up to unitary transformations.

Main theorem Let m,n be positive integers with m,n ≥ 2 and m < 2n. Let F : Bn −→ Bm×Bm be a holo-
morphic isometric embedding with the isometric constant λ. Then m ≥ n and up to unitary transformations,
either F (z) = (0, In;m(z)) with λ = (m + 1)/(n + 1), or F (z) = (In;m(z), In;m(z)) with λ = 2(m + 1)/(n + 1),
where In;m : Cn −→ Cm is the canonical embedding.

Acknowledgement: This article is part of the author’s thesis in the University of Hong Kong and he
would like to express the gratitude to his supervisor Professor Ngaiming Mok for his inspiring guidance and
encouragement.

2 Functional equation

Let m,n ≥ 2 be two integers and F : Bn −→ Bm × Bm, F (z) = (A(z), B(z)) be a holomorphic isometric
embedding with the isometric constant λ. Without loss of generality, we may assume that F (0) = (0,0). The

Bergman metric on Bn is given by ds2
Bn = 2Re

∑
gij̄dzi⊗ dz̄j , where gij̄ = −(n + 1)

∂2

∂zi∂z̄j
log(1−‖z‖2). We

write (z1, z2) for a point in Bm×Bm. We can take as Kähler potentials for ds2
Bn and ds2

Bm×Bm the real analytic
functions −(n+1) log(1−‖z‖2) and −(m+1) log(1−‖z1‖2)(1−‖z2‖2) respectively. By the assumption that
F ∗ds2

Bm×Bm = λds2
Bn it follows that

−(m + 1)
√−1∂∂ log(1− ‖A‖2)(1− ‖B‖2) = −λ(n + 1)

√−1∂∂ log(1− ‖z‖2),
hence,

(m + 1) log(1− ‖A‖2)(1− ‖B‖2) = λ(n + 1) log(1− ‖z‖2) + Re h

for some holomorphic function h on Bn. Since F (0) = (0,0), by comparing Taylor expansions we conclude
that h ≡ 0. Therefore we obtain

(m + 1) log(1− ‖A‖2)(1− ‖B‖2) = λ(n + 1) log(1− ‖z‖2). (2.1)
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i.e.
(1− ‖A‖2)(1− ‖B‖2) = (1− ‖z‖2)λ(n+1)/(m+1). (2.2)

Eq.(2.2) is a real-analytic equation and we can consider an associated polarized functional equation. In
general, given two power series

∑
aij̄z

iz̄j and
∑

bij̄z
iz̄j , they are equal if and only if aij̄ = bij̄ , ∀i, j. Therefore

their equality will also imply the polarized equation
∑

aij̄z
iw̄j =

∑
bij̄z

iw̄j . Since we can polarize each
variable separately, the polarized equation of Eq.(2.1) is

(m + 1) log(1− 〈A(z), A(w)〉)(1− 〈B(z), B(w)〉) = λ(n + 1) log(1− 〈z,w〉)
for ‖z‖, ‖w‖ < 1. Here log denotes the principal branch of the logarithm and 〈 , 〉 is the complex Euclidean
inner product. We can rewrite it as

(1− 〈A(z), A(w)〉)(1− 〈B(z), B(w)〉) = (1− 〈z,w〉)λ(n+1)/(m+1), (2.3)

where
(1− 〈z,w〉)λ(n+1)/(m+1) ≡ e[λ(n+1)/(m+1)] log(1−〈z,w〉).

3 Algebraic extension

In [5], Mok has established the following extension result.

Theorem 3.1 (Mok). Let Ω b Cn and Ω′ b CN be bounded symmetric domains in their Harish-Chandra
realizations. Let λ be any positive real number and f : (Ω, λds2

Ω) −→ (Ω′, ds2
Ω′) be a germ of holomorphic

isometry at 0 ∈ Ω with f(0) = 0. Then, the germ of the graph of f extends to an affine algebraic variety
S# ⊂ Cn ×CN such that S = S# ∩ (Ω×Ω′) is the graph of a holomorphic isometric embedding F : Ω −→ Ω′

extending the germ of the holomorphic map f .

From the existence of algebraic extension, we can prove

Proposition 3.2. Let (Bn, λds2
∆) −→ (Bm × Bm, ds2

Bm×Bm) be a holomorphic isometric embedding. Then
λ(n + 1)
(m + 1)

is a positive integer.

Proof. By Theorem 3.1, we know that the embedding can be extended across a general point on the unit
sphere ∂Bn. Let z0 be a point on ∂Bn at which the embedding can be extended across in a neighborhood.
By unitary transformations, we may assume that z0 = (z0, 0, . . . , 0). Consider the restriction of F on the disk
∆ = {(z, 0, . . . , 0), |z| < 1} ⊂ Bn, denote by f(z) = (a(z), b(z)), where a(z), b(z) ∈ Bm. Then by Eq.(2.3),
f(z) satisfies

(1− 〈a(z), a(w)〉) (1− 〈b(z), b(w)〉) = (1− zw)λ(n+1)/(m+1). (3.1)

If we consider Eq.(3.1) and substitute w = z0, then because each factor on the L.H.S. can only vanish with

an integral order at z = z0 and therefore
λ(n + 1)
(m + 1)

on the R.H.S. must be a positive integer.

Write k =
λ(n + 1)
(m + 1)

. By Eq.(2.2) and Schwarz’s lemma on holomorphic maps, we have k ≤ 2 and hence

k = 1, 2. When k = 2, by Schwarz’s lemma again, we must have ‖z‖ = ‖A‖ = ‖B‖ and therefore m ≥ n and
up to unitary transformations, A(z) = B(z) = In;m(z), where In;m : Cn −→ Cm is the canonical embedding.
Thus, it remains to consider the case when k = 1, i.e. λ = (m + 1)/(n + 1).

We first state a well known lemma of holomorphic maps.

Lemma 3.3. Let f : U ⊂ Cn −→ Cm, f = (f1, . . . , fn) be a holomorphic map defined on some open set U
and write ‖f‖2 =

∑n
i=1 |fi|2. If g : U −→ Cm is another holomorphic map with ‖f‖2 = ‖g‖2, then there

exists a unitary transformation U in Cm such that U ◦ f = g.

Let F : Bn −→ Bm × Bm, F (z) = (A(z), B(z)) be an isometric embedding with the isometric constant
λ = (m + 1)/(n + 1). Then the functional equation Eq.(2.2) satisfied by F reduces to

(1− ‖A(z)‖2)(1− ‖B(z)‖2) = 1− ‖z‖2. (3.2)
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Proposition 3.4. Let V be the irreducible n-dimensional algebraic subvariety in Cn × (Cm)2 extending the
graph of F and π be the projection map from V to the first factor. There exists a proper algebraic subvariety
W ⊂ Cn such that the restriction π : V \ π−1(W ) −→ Cn \W is a finite unbranched covering map.

Proof. From Eq.(3.2),
‖A‖2 + ‖B‖2 = ‖A‖2‖B‖2 + ‖z‖2.

⇐⇒
m∑

i=1

|ai|2 +
m∑

i=1

|bi|2 =
m∑

i=1

m∑

j=1

|aibj |2 +
n∑

i=1

|zi|2.

By Lemma 3.3, (because m2 + n > 2m) there exists an (m2 + n)× (m2 + n) unitary matrix U such that




a1

...
am

b1

...
bm

0
...
0




= U




a1b1

...
a1bm

...
amb1

...
ambm

z1

...
zn




. (3.3)

Consider the first 2m equations above, they are

a1 = La
1(a1b1, . . . , ambm, z1, . . . , zn);

...
...

am = La
m(a1b1, . . . , ambm, z1, . . . , zn);

b1 = Lb
1(a1b1, . . . , ambm, z1, . . . , zn);

...
...

bm = Lb
m(a1b1, . . . , ambm, z1, . . . , zn),

where La
i , Lb

j are some linear functions.

By applying the Implicit Function Theorem, we see that the algebraic subvariety defined by these 2m
equations is smooth at the origin. Therefore V is the irreducible component of this algebraic subvariety
containing the origin. Let V be the closure of V in Pn× (Pm)2. V is obtained by replacing the inhomogeneous
coordinates of the algebraic equations defining V by homogeneous coordinates and V is a proper analytic
subvariety of Pn × (Pm)2.

The singular part of V is a proper analytic subvariety S of V . By Proper Mapping Theorem, π(S) is a
proper analytic subvariety of Pn. Thus, when restricting on V

′
= V \ π−1(π(S)), π is a proper holomorphic

map between complex manifolds and let us denote by R the ramification locus of π. Let R be the closure of
R in V . We are going to show that R is a proper analytic subvariety of V . Take a point v ∈ R and let U be
a small coordinate open ball in Pn × (Pm)2 containing v such that V is defined by h1 = · · · = h2m = 0 for
some holomorphic functions hj , 1 ≤ j ≤ 2m, in U . Let (u1, . . . , un+2m) be a coordinate system of U . Write
π = (p1, . . . , pn), where pi are holomorphic in U . Then R is defined by the equation dp1 ∧ · · · ∧ dpn|V ′ = 0.

Take y be a point in V
′ \ R. By doing a linear change of coordinates, we may assume that

∂

∂uj
, 1 ≤ j ≤ n

are tangent to V at the point y, and hence
(

∂pi

∂uj

)

1≤i,j≤n

is non-singular at y.

Claim: There exist holomorphic functions f1, . . . , f2m in U such that for 1 ≤ k ≤ 2m, fk|V = 0 and
dfk(y) = dun+k(y).

Let us assume the claim for the moment. Denote by R the analytic subvariety of U defined by dp1 ∧
· · · ∧ dpn ∧ df1 ∧ · · · ∧ df2m = 0. R is a proper subvariety because it does not contain y by our construction.
Let R̃ = R∩ V . R̃ is then a subvariety in V ∩U of codimension 1 and R∩U ⊂ R̃ by our construction. R̃ has
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only a finite number of irreducible components and let R̃l, 1 ≤ l ≤ q be those having non-empty intersections
with R ∩ U . Since both R ∩ U and R̃ are divisors in U and (R ∩ U) ⊂ R̃, we must have R ∩ U =

⋃q
l=1 R̃l.

Thus, R is an analytic subvariety of V .

Now Proper Mapping Theorem says that π(R) is an analytic subvariety of Pn. If we let W = π(S)∪π(R),
then π : V \ π−1(W ) −→ Pn \W is a proper holomorphic covering map. It is finite because π is proper and
discrete on V \ π−1(W ). We can obtain the conclusion of the proposition by just restricting π to the finite
part of Pn × (Pm)2.

Proof of the claim: It is an extension problem with a prescribed first order derivative at y. We will use
Cartan’s Theorem B. Assume that the coordinates of y are u1 = · · · = un+2m = 0. Let O = OU be the sheaf
of holomorphic functions on U and I the ideal sheaf in O generated by hjui, 1 ≤ j ≤ 2m, 1 ≤ i ≤ (n + 2m).
I defines a coherent sheaf on the Stein manifold U and H1(U, I) = 0 by Cartan’s Theorem B. Thus, for the
short exact sequence 0 → I → O → O/I → 0, we have surjectivity for H0(U,O) −→ H0(U,O/I) in the
induced long exact sequence. Since hjui vanishes to the second order at the point y, an element on the stalk
O/I at y corresponds to an equivalence class of germs of holomorphic functions in U , where g1, g2 ∈ OU ;y are
equivalent if and only if g1|V = g2|V and dg1(y) = dg2(y). In any sufficiently small open neighborhood Wy

of y we can always construct for 1 ≤ k ≤ 2m, a holomorphic function fWy;k in Wy vanishing on V ∩Wy and
dfWy ;k(y) = dun+k(y). fWy ;k induces a section of O/I over Wy which is 0 except at y, thus defining a global
section sk ∈ H0(U,O/I), where sk is taken to be 0 outside Wy. Hence, the surjectivity above provides us the
function fk on U satisfying the desired properties in the claim.

4 Total geodesy

Recall the notation in Proposition 3.4. Let V be the irreducible algebraic subvariety extending the graph of
F and W ⊂ Cn be a proper algebraic subvariety such that if we let Z = Cn \W and X = V \ π−1(W ), then
π : X −→ Z is a finite unbranched covering map. We start with a lemma.

Lemma 4.1. If a component function is degenerate everywhere in Bn, i.e. the tangent map is not injective
anywhere, then it is constant.

Proof. Let A be the component function degenerate everywhere. Consider A as a multi-valued map on Z and
let Y be the set of points z ∈ Z such that ‖A(z)‖ = 1 on some branch. Since the functional equation Eq.(3.2)
is satisfied on the whole algebraic subvariety V , we see that Y ⊂ Z ∩ ∂Bn.

Define Z ′ = Z \ Y . We first argue that by the degeneracy of A, Z ′ is connected. Suppose on the contrary
Z ′ is not connected. Because Y ⊂ Z ∩ ∂Bn and Y is closed in Z, Z ′ is not connected only if Y = Z ∩ ∂Bn.
Hence for every point z0 ∈ Z ∩ ∂Bn, there is some branch of A on which we have A(z0) = a0 with ‖a0‖ = 1.
Because A is degenerate everywhere, for a generic choice of z0, the set defined by A(z) = a0 contains a
non-constant complex analytic curve Γ : ∆ −→ Cn with Γ(0) = z0. Note that for all open set U ⊂ ∆, Γ(U)
cannot be completely contained in ∂Bn and from the functional equation we see that Γ(U) \ ∂Bn must be
contained in W . This is true for arbitrary U and this implies that z0 = Γ(0) ∈ W . So W contains almost
every point of ∂Bn and hence the whole ∂Bn which is not possible.

We now show that the connectedness of Z ′ implies that A is constant. It is clear that π−1(Z ′) ⊂ X can
only have a finite number of connected components, therefore each connected component is open in X and
when π is restricted to any one connected component it is still a covering map over Z ′. Since Z ′ is connected,
on each connected component we have either ‖A‖ < 1 or ‖A‖ > 1 on the whole component. We choose one
with ‖A‖ < 1, of which the existence is guaranteed because we started with an isometric embedding germ F
of Bn into a product of unit balls. We can then form elementary symmetric functions of A with respect to
this covering map and they are bounded holomorphic functions on Z ′. Since W is a proper subvariety, we
can extend them separately throughout the two domains Bn and Cn \Bn. As n ≥ 2, the symmetric functions
in Cn \ Bn can be extended to the whole Cn by Hartog’s extension and the extension must agree with the
symmetric functions originally defined on Bn as Z ′ is connected. Hence, the symmetric functions are bounded
holomorphic functions on Cn and therefore constant. This implies that A is constant.

We can now prove the main theorem of this article.
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Proof. (of the Main Theorem)

As explained after Proposition 3.2, it remains to prove the total geodesy of a holomorphic isometric
embedding F : Bn −→ Bm × Bm, F (z) = (A(z), B(z)) with the isometric constant λ = (m + 1)/(n + 1).

If m < n, we certainly have degeneracy for both component functions and by Lemma 4.1 they are constant
which is impossible. Therefore m ≥ n.

By reducing the dimension of the target, we can always assume that the image of one of the component
functions, say B, does not lie in any proper linear subspace of Bm. If the other component A is degenerate
everywhere, then A is constant by Lemma 4.1 and hence A(z) ≡ 0. Therefore, up to unitary transformations,
we have F (z) = (0, In;m(z)), where In;m : Cn −→ Cm is the canonical embedding.

Now suppose F is a holomorphic isometric embedding of Bn into Bm × Bm with 2n > m ≥ n, such that
A is non-degenerate at a generic point and the image of B does not lie in any proper linear subspace of Cm.
We are going to show that it will lead to a contradiction.

Since the image B do not lie in any proper linear subspace, in particular, it is non-constant and is non-
degenerate at a generic point by Lemma 4.1. Therefore we may assume that both A and B are non-degenerate
at the origin.

Denote the elements of the unitary matrix U in Eq.(3.3) by urs, 1 ≤ r, s ≤ (m2 + n). Since ai(0) =
bj(0) = 0, ∀i, j by assumption, if we consider the power series expansions of the last (m2 + n− 2m) equations
in Eq.(3.3), we see that urs = 0 for (2m + 1) ≤ r ≤ (m2 + n) and (m2 + 1) ≤ s ≤ (m2 + n). Hence, if we let

X = (a1b1, . . . , a1bm, . . . , amb1, . . . , ambm) = (a1B, . . . , amB) (4.1)

be a Cm2
-valued vector function, then the last (m2 + n − 2m) equations in Eq.(3.3) amounts to saying that

there exist (m2 + n− 2m) constant orthonormal vectors {Uj ∈ Cm2
: 1 ≤ j ≤ (m2 + n− 2m)} such that

X ⊥ Span{Uj}.

If we let X = Span{Uj}⊥, then Dim(X) = m2 − (m2 + n− 2m) = (2m− n) and ∀z ∈ Bn, X (z) ∈ X.

Let u be a directional vector at the origin of Cn, the second (directional) derivative of X along u is

∂2X
∂u2

(0) =
(

2
∂a1

∂u
∂B

∂u
, . . . , 2

∂am

∂u
∂B

∂u

)∣∣∣∣
z=0

.

By doing unitary transformations in the target, we can assume that the tangent space of the image of A
at the origin of Cm is the linear subspace defined by zn+1 = zn+2 = · · · = zm = 0. Therefore we can find n
direction vectors u1, . . . ,un such that

(
∂a1

∂ui
, . . . ,

∂am

∂ui

)∣∣∣∣
z=0

= Ei, 1 ≤ i ≤ n,

where Ei are the standard unit vectors in Cm. Then

∂2X
∂u1

2
(0) = ( 2

∂B

∂u1
(0), 0, 0, · · · 0, 0, · · · 0, )

∂2X
∂u2

2
(0) = ( 0, 2

∂B

∂u2
(0), 0, · · · 0, 0, · · · 0, )

...
...

∂2X
∂un

2
(0) = ( 0, 0, 0, · · · 2

∂B

∂un
(0), 0, · · · 0, )

(4.2)

Note that for all i,
∂2X
∂u2

i

(0) ∈ X. They are linearly independent because ∀i ∂B

∂ui
6= 0 for B is non-degenerate

at the origin. Since Dim(X) = (2m − n), we can complete {∂2X
∂u2

i

(0) : 1 ≤ i ≤ n} to a basis of X by adding

certain (2m−2n) vectors in Cm2
, denoted by {Pj : 1 ≤ j ≤ (2m−2n)}. For each j, write Pj = (P 1

j , . . . , Pm
j ),

where P i
j ∈ Cm. Since X (z) ∈ X = Span{∂2X

∂u2
i

(0),Pj}, by Eq.(4.1) and Eq.(4.2), we see from considering the
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last m coordinates that for m = n, B(z) ∈ Span{ ∂B

∂un
(0)} and for m > n, B(z) ∈ Span{Pm

1 , . . . , Pm
2m−2n}.

In the first case (m = n), the image of B lies in a subspace of dimension 1 while in the second case (m > n)
in a subspace of dimension 2m − 2n which is less than m because m < 2n and therefore in both cases the
image of B lies in a proper linear subspace of Cm and this contradicts our initial assumption and the proof
is complete.
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