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A fundamental object of study in projective geometry is the Gauss map.
Ein [Ei, 1982] proved that the Gauss map of a linearly non-degenerate projective
submanifold W ⊂ Pn is generically finite. Zak [Za, 1993] further proved that
it is in fact a birational morphism. An analogous study is pursued in [Za] on
submanifolds of Abelian varieties.

In differential-geometric terms, generic finiteness of the Gauss map on a lin-
early non-degenerate projective submanifold W ⊂ Pn is the same as the vanishing
of the kernel of the projective second fundamental form at a general point. The
projective second fundamental form is on the one hand by definition determined
by the canonical projective connection on the projective space, on the other hand
it is the same as the second fundamental form with respect to the Fubini-Study
metric on the projective space. It is therefore natural to extend the study of Gauss
maps on subvarieties to the context of subvarieties of complex hyperbolic space
forms, i.e., subvarieties of quotients of the complex unit ball Bn, either in terms
of the canonical projective connection on Bn ⊂ Pn embedded by means of the
Borel embedding, or in terms of the canonical Kähler-Einstein metric, noting that
the Riemannian connection of the canonical Kähler-Einstein metric is an affine
connection compatible with the canonical projective connection on Bn.

In the current article the first motivation is to examine the dual analogue of
Ein’s Theorem on the generic finiteness of the Gauss map mentioned above in the
dual situation of subvarieties W ⊂ X of compact complex hyperbolic space forms
X, which are quotients Bn/Γ of the complex unit ball by torsion-free cocompact
discrete groups Γ ⊂ Aut(Bn). Here the Gauss map is defined on regular points of
π−1(W ), where π : Bn → X is the universal covering map, and as such the
Gauss map on W is defined only up to the action of Γ, and the question of
birationality is not very meaningful. An analogue to Ein’s Theorem in the case of
complex hyperbolic space forms is the statement that, given a projective manifold
W ⊂ X = Bn/Γ which is not totally geodesic, and taking W̃ ⊂ π−1(W ) to be any
irreducible component, the Gauss map on the smooth locus of W̃ is of maximal
rank at a general point, or, equivalently, the kernel of the second fundamental

∗Partially supported by CERG 7034/04P of the Research Grants Council, Hong Kong

1



form vanishes at a general point. We observe in the current article that this
analogue does indeed hold true, and that furthermore, in contrast to the case of
projective subvarieties, it holds true more generally for any irreducible complex-
analytic subvariety W ⊂ X, without assuming that W is nonsingular, with a proof
that generalizes to the case of quasi-projective subvarieties of complex hyperbolic
space forms of finite volume.

In the case of cocompact lattices Γ ⊂ Aut(Bn) the result already follows from
the study of homomorphic foliations in Cao-Mok [CM, 1990] arising from kernels
of the second fundamental form, but we give here a proof that applies to arbitrary
holomorphic foliations by complex geodesic submanifolds. Using the latter proof,
we are able to study the Zariski closure of a single totally geodesic complex sub-
manifold. For any subset E ⊂ W we denote by ZarW (E) the Zariski closure of E in
W . We show that, if the projective variety W ⊂ X = Bn/Γ admits a germ of com-
plex geodesic submanifold S ⊂ W , then some Zariski open subset U of ZarW (S)
must admit a holomorphic foliation F by complex geodesics such that F restricts
to a holomorphic foliation on S∩U . Our stronger result on holomorphic foliations
by complex geodesic submanifolds implies that ZarW (S) must itself be a totally
geodesic subset. For the proof of the implication we study varieties of tangents
to complex geodesics on a subvariety W ⊂ X = Bn/Γ analogous to the notion of
varieties of minimal rational tangents on projective subvarieties uniruled by lines,
a notion extensively studied in recent years by Hwang and Mok (cf. Hwang [Hw]
and Mok [Mk4]). In a certain sense, total geodesy of the Zariski closure of a germ
of complex geodesic submanifold on W results from the algebraicity of varieties
of tangents to complex geodesics on W and the asymptotic vanishing of second
fundamental forms on locally closed complex submanifolds on Bn swept out by
complex geodesics (equivalently minimal disks). This link between the study of
subvarieties W of compact complex hyperbolic space forms and those of projective
subvarieties is in itself of independent interest, and it points to an approach in the
study of Zariski closures of totally geodesic complex submanifolds on projective
manifolds uniformized by bounded symmetric domains.

For the proof of our results in the case of non-uniform lattices Γ ⊂ Aut(Bn)
we make use of the Satake-Borel-Baily compactification ([Sa, 1960], [BB, 1966])
in the case of arithmetic lattices, and the compactification by Siu-Yau [SY, 1982]
obtained by differential-geometric means, together with the description of the com-
pactification as given in Mok [Mk3, 2009], in the case of non-arithmetic lattices.

Our result on the Zariski closure of a germ of complex geodesic submanifold
in the case of complex hyperbolic space forms is a special case of a circle of prob-
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lems. In general, we are interested in the characterization of the Zariski closure of
a totally geodesic complex submanifold S on a quasi-projective subvariety W of
a compact or finite-volume quotient X of a bounded symmetric domain Ω. The
inclusion S ⊂ X is modeled on a pair (D, Ω), where D ⊂ Ω is a totally geodesic
complex submanifold (which is itself a bounded symmetric domain). The nature
and difficulty of the problem may depend on the pair (D, Ω). A characterization
of the Zariski closure relates the question of existence of germs of totally geodesic
complex submanifolds S ⊂ W ⊂ X to that of the global existence of certain types
of complex submanifolds ZarW (S) ⊂ W . For instance, taking Ω to be biholo-
morphically the Siegel upper half-plane Hg of genus g ≥ 2, X = Hg/Γ to be the
moduli space of principally polarized Abelian varieties (where Γ has some torsion),
and taking W to be the closure of the Schottky locus, S to be a totally geodesic
holomorphic curve, a characterization of ZarW (S) probably relates the question
of local existence of totally geodesic holomorphic curves to the global existence of
totally geodesic holomorphic curves and rank-1 holomorphic geodesic subspaces,
and hence to a conjecture of Oort’s (cf. Hain [Ha]). In such situations, granted the
characterization problem can be settled, a global non-existence result may imply
a non-existence result which is local with respect to the complex topology, hence
completely transcendental in nature.

Acknowledgement The author wishes to thank Jun-Muk Hwang for having
raised questions on the analogue of the Gauss map for subvarieties of complex
hyperbolic space forms, which was one of the original motivation for the author
to formulate general questions on the study of totally geodesic complex subman-
ifolds on such subvarieties. The author’s interest in such and related questions
was rekindled after a recent joint work with Vincent Koziarz related to mappings
between complex hyperbolic space forms, and he wishes to thank the latter for his
interest in the circle of problems related to the current article as expressed during
mutual visits at the University of Hong Kong and Université de Nancy. The author
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§1 Statement of the main result and background materials

(1.1) The Main Theorem on Zariski closures of germs of complex geodesic sub-
manifolds of complex hyperbolic space forms of finite volume Let n ≥ 3 and
Γ ⊂ Aut(Bn) be a torsion-free lattice, so that X := Bn/Γ is of finite volume with
respect to the canonical Kähler-Einstein metric. Let W ⊂ X be a complex-analytic
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subvariety. A simply connected open subset U of the smooth locus Reg(W ) can
be lifted to a locally closed complex submanifold Ũ on Bn, and on Ũ we have the
Gauss map which associates each point y ∈ Ũ to [Ty(Ũ)] as a point in the Grass-
mann of m-planes in Cn. This way one defines a Gauss map on Reg(W ) which is
well-defined only modulo the action of the image Φ of π1(W ) in π1(X) = Γ. When
the Gauss map fails to be of maximal rank we have an associated holomorphic fo-
liation defined at general points of W whose leaves are totally geodesic complex
submanifolds. Partly motivated by the study of the Gauss map on subvarieties
of complex hyperbolic space forms we are led to consider the Zariski closure of a
single germ of totally geodesic complex submanifold on W . We have

Main Theorem. Let n ≥ 2 and denote by Bn ⊂ Cn the complex unit ball equipped
with the canonical Kähler-Einstein metric ds2

Bn . Let Γ ⊂ Aut(Bn) be a torsion-
free lattice. Denote by X := Bn/Γ the quotient manifold, of finite volume with
respect to the canonical Kähler-Einstein metric ds2

X induced from ds2
Bn . Denote

by Xmin the minimal compactification of X so that Xmin is a projective-algebraic
variety and X inherits the structure of a quasi-projective variety from Xmin. Let
W ⊂ X be an irreducible quasi-projective subvariety, and S ⊂ W be a locally closed
complex submanifold which is totally geodesic in X with respect to ds2

X . Then, the
Zariski closure Z ⊂ W of S in W is a totally geodesic subset.

Here totally geodesic complex submanifolds of X are defined in terms of the
canonical Kähler-Einstein. Equivalently, they are defined in terms of the canonical
holomorphic projective connection on X which descends from Bn ⊂ Pn (cf. (1.3)).
With the latter interpretation it is clear that the second fundamental form on a
locally closed complex submanifold Z ⊂ X is holomorphic. Total geodesy of Z

means precisely the vanishing of the (holomorphic) second fundamental form.

Consider X = Bn/Γ, where Γ ⊂ Aut(Bn) is a non-uniform torsion-free lat-
tice. If Γ is arithmetic, we have the Satake-Borel-Baily compactification (Satake
[Sa], Borel-Baily [BB]). For the rank-1 bounded symmetric domain Bn the set of
rational boundary components consists of a Γ-invariant subset Π of ∂Bn, and Γ
acts on Bn ∪ Π to give Xmin := (Bn ∪ Π)/Γ, which consists of the union of X

and a finite number of points, to be called cusps, such that Xmin can be endowed
naturally the structure of a normal complex space.

(1.2) Description of Satake-Baily-Borel and Mumford compactifications and for
X = Bn/Γ. We recall briefly the Satake-Baily-Borel and Mumford compacti-
fication for X = Bn/Γ in the case of a torsion-free non-uniform arithmetic sub-
group Γ ⊂ Aut (Bn) (For details cf. Mok [Mk4]). Let E ⊂ ∂Bn be the set of
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boundary points b such that for the normaliser Nb = {ν ∈ Aut (Bn) : ν(b) = b},
Γ ∩ Nb is an arithmetic subgroup. The points b ∈ E are the rational boundary
components in the sense of Satake [Sa] and Baily-Borel [BB]. Modulo the ac-
tion of Γ, the set A = E/Γ of equivalence classes is finite. Set-theoretically the
Satake-Baily-Borel compactification Xmin of X is obtained by adjoining a finite
number of points, one for each α ∈ A. Fixing b ∈ E we consider the Siegel do-
main presentation Sn of Bn obtained via a Cayley transform which maps b to
∞, Sn =

{
(z′; zn) ∈ Cn : Imzn > ‖z′‖2}. Identifying Bn with Sn via the Cayley

transform, we write X = Sn/Γ. Writing z′ = (z1, . . . , zn−1); z = (z′; zn), the
unipotent radical of Wb ⊂ Nb is given by

Wb =
{

ν ∈ Nb : ν(z′; zn) = (z′+a′; zn +2i a′ ·z′+ i‖a′‖2 + t) : a′ ∈ Cn−1, t ∈ R
}

,

(1)
where a′ · z′ =

∑n−1
i=1 aizi. Wb is nilpotent and Ub := [Wb,Wb] is the real 1-

parameter group of translations λt, t ∈ R, where λt(z′, z) = (z′, z + t). For a
rational boundary component b, Γ∩Wb ⊂ Wb is a lattice, and [Γ∩Wb,Γ∩Wb] ⊂ Ub

must be nontrivial. Thus, Γ∩Ub ⊂ Ub
∼= R must be a nontrivial discrete subgroup,

generated by some λτ ∈ Γ ∩ Ub. For any nonnegative integer N define

S(N)
n =

{
(z′; zn) ∈ Cn : Imzn > ‖z′‖2 + N

} ⊂ Sn . (2)

Consider the holomorphic map Ψ : Cn−1 × C→ Cn−1 × C? given by

Ψ(z′; zn) = (z′, e
2πizn

τ ) := (w′;wn) ; w′ = (w1, · · · , wn−1) ; (3)

which realizes Cn−1 × C as the universal covering space of Cn−1 × C∗. Write
G = Ψ(Sn) and, for any nonnegative integer N write G(N) = Ψ(S(N)

n ). We have

Ĝ(N) =
{
(w′; wn) ∈ C : |wn|2 < e

−4πN
τ · e−4π

τ ‖w′‖2} , Ĝ = Ĝ(0) . (4)

Γ ∩ Wb acts as a discrete group of automorphisms on Sn. With respect to this
action, any γ ∈ Γ ∩Wb commutes with any element of Γ ∩ Ub, which is generated
by the translation λτ . Thus, Γ ∩ Ub ⊂ Γ ∩ Wb is a normal subgroup, and the
action of Γ ∩Wb descends from Sn to Sn/(Γ ∩ Ub) ∼= Ψ(Sn) = G. Thus, there is
a group homomorphism π : Γ ∩Wb → Aut(G) such that Ψ ◦ ν = π(ν) ◦Ψ for any
ν ∈ Γ ∩Wb. More precisely, for ν ∈ Γ ∩Wb of the form (1) where t = kτ . k ∈ Z
we have

π(ν)(w′, wn) =
(
w′ + a′, e−

4π
τ a′·w′− 2π

τ ‖a′‖2 · wn

)
. (5)

Sn/(Γ ∩Wb) can be identified with G/π(Γ ∩Wb). Since the action of Wb on Sn

preserves ∂Sn, it follows readily from the definition of ν(z′; zn) that Wb preserves
5



the domains S
(N)
n , so that G(N) ∼= S

(N)
n /(Γ ∩ Ub) is invariant under π(Γ ∩ Wb).

Write Ĝ(N) = G(N) ∪ (Cn−1 × {0}) ⊂ Cn, Ĝ(0) = Ĝ. Ĝ(N) is the interior of the
closure of G(N) in Cn. The action of π(Γ ∩ Wb) extends to Ĝ. Here π(Γ ∩ Wb)
acts as a torsion-free discrete group of automorphisms of Ĝ. Moreover, the action
of π(Γ ∩Wb) on Cn−1 × {0} is given by a lattice of translations Λb.

Denote the compact complex torus (Cn−1 × {0})/Λb by Tb. The Mumford
compactification XM of X is set-theoretically given by XM = X q (qTb), the
disjoint union of compact complex tori being taken over A = E/Γ. Define Ω(N)

b =
Ĝ(N)/π(Γ ∩ Wb) ⊃ G(N)/π(Γ ∩ Wb) ∼= S

(N)
n /(Γ ∩ Wb). Then the natural map

G(N)/π(Γ∩Wb) = Ω(N)
b −Tb ↪→ Sn/Γ = X is an open embedding for N sufficiently

large, say N ≥ N0. The structure of XM as a complex manifold is defined by
taking Ω(N)

b , N ≥ N0, as a fundamental system of neighborhood of Tb. From
the preceding description of XM one can equip the normal bundle Nb of each
compactifying divisor Tb in Ω(N)

b (N ≥ N0) with a Hermitian metric of strictly
negative curvature, thus showing that Tb can be blown down to a normal isolated
singularity by Grauert’s blowing-down criterion, which gives the Satake-Baily-
Borel (alias minimal) compactification Xmin. Tb is an Abelian variety since the
conormal bundle N ?

b is ample on Tb.

In Mok [Mk4] we showed that for non-arithmetic torsion-free non-uniform
lattices Γ ⊂ Aut(Bn), the complex hyperbolic space form X = Ω/Γ admits a
Mumford compactification XM = X q (qTb), with finitely many Abelian varieties
Tb = Cn/Λb, such that, by collapsing each of the finitely many Abelian varieties Tb,
XM blows down to a projective-algebraic variety Xmin with finitely many isolated
normal singularities. (As in the statement of the Main Theorem, identifying X ⊂
Xmin as a Zariski open subset of the projective-algebraic variety Xmin we will
regard X as a quasi-projective manifold and speak of the latter structure as the
canonical quasi-projective structure.) The picture of a fundamental system of
neighborhoods Ω(N)

b of Tb, N ≥ N0, in XM is exactly the same as in the arithmetic
case. For the topological structure of X, by the results of Siu-Yau [SY] using
Busemann functions, to start with we have a decomposition of X into the union
of a compact subset K ⊂ X and finitely many disjoint open sets, called ends,
which in the final analysis can be taken to be of the form Ω(N)

b for some N ≥ N0.
Geometrically, each end is a priori associated to an equivalence class of geodesic
rays, where two geodesic rays are said to be equivalent if and only if they are at
a finite distance apart from each other. From the explicit description of Ω(N)

b as
given in the above, the space of geodesic rays in each end can be easily determined,
and we have
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Lemma 1. Fix n ≥ 1 and let Γ ⊂ Aut(Bn) be a torsion-free non-uniform lattice,
X := Ω/Γ. Let XM be the Mumford compactification and Ω(N)

b = Ĝ(N)/π(Γ∩Wb)
be a neighborhood of a divisor Tb = Cn/Λb at infinity. Denote by p : G(N) →
G(N)/π(Γ ∩Wb) the canonical projection. Then, any geodesic ray λ : [0,∞) → X

parametrized by arc-length on the end Ω(N)
b −Tb = G/π(Γ∩Wb) ∼= S

(N)
n /(Γ∩Wb)

must be of the form λ(s) = p (Ψ(ζ, a + Aiecs)) for some ζ ∈ Cn−1, a ∈ R, some
constant c > 0 determined by the choice of the canonical Kähler-Einstein metric
on Bn and for some sufficiently large constant A > 0 (so that λ(0) ∈ S

(N)
n ), where

Ψ(ζ; α) = (ζ, e
2πiα

τ ), in which τ > 0 and the translation (z′; z) → (z′, z + τ) is the
generator of the infinite subgroup Γ ∩ Ub ⊂ Ub

∼= R.

Proof. A geodesic ray on an end Ω(N)
b −Tb must lift to a geodesic ray on the Siegel

domain Sn which converges to the infinity point ∞ of Sn. On the upper half-plane
H = {w > 0 : Im(w) > 0} a geodesic ray λ : [0,∞) → H parametrized by arc-
length joining a point w0 ∈ H to infinity must be of the form µ(s) = u0 + iv0e

cs

for some constant c > 0 determined by the Gaussian curvature of the Poincaré
metric ds2

H chosen. In what follows a totally geodesic holomorphic curve on Sn

will also be referred to as a complex geodesic (cf. (1.3)). For the Siegel domain
Sn =

{
(z′; zn) ∈ Cn : Imzn > ‖z′‖2}, considered as a fibration over Cn−1, the

fiber Fz′ over each z′ ∈ Cn−1 is the translate of the upper half-plane by i‖z‖2.
Fz′ ⊂ Sn is a complex geodesic. It is then clear that any ν : [0,∞) → Sn of the
form ν(s) = (ζ, a+Aiecs) for ζ ∈ Cn−1 and for appropriate real constants a, c and
A is a geodesic ray on Sn converging to ∞ (which corresponds to b ∈ ∂Bn). Any
complex geodesic S ⊂ Sn is the intersection of an affine line L := Cη + ξ with Sn,
and S is a disk on L unless the vector η is proportional to en = (0, · · · , 0; 1). Any
geodesic ray λ on Sn lies on a uniquely determined complex geodesic S. Thus,
λ(s) tends to the infinity point ∞ of Sn only if S is parallel in the Euclidean sense
to Cen, so that λ([0,∞) ⊂ Fz′ for some z′ ∈ Cn−1. But any geodesic ray on Fz′

which converges to ∞ must be of the given form ν(s) = (ζ, a + Aiecs), and the
proof of Lemma 1 is complete. ¤

(1.3) Holomorphic projective connections For the discussion on holomorphic pro-
jective connections, we follow Gunning [Gu] and Mok [Mk2]. A holomorphic pro-
jective connection Π on an n-dimensional complex manifold X, n > 1, consists
of a covering U = {Uα} of coordinate open sets, with holomorphic coordinates
(z(α)

1 , · · · , z
(α)
n ), together with holomorphic functions

(
αΦk

ij

)
1≤i,j,k≤n

on Uα sym-
metric in i, j satisfying the trace condition

∑
k

αΦk
ik = 0 for all i and satisfying
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furthermore on Uαβ := Uα ∩ Uβ the transformation rule (†)

βΦ`
pq =

∑

i,j,k

αΦk
ij

∂z
(α)
i

∂z
(β)
p

∂z
(α)
j

∂z
(β)
q

∂z
(β)
`

∂z
(α)
k

+
[ ∑

`

∂z
(β)
`

∂z
(α)
k

∂2z
(α)
k

∂z
(β)
p ∂z

(β)
q

− δk
pσ(αβ)

q − δk
q σ(αβ)

p

]
,

where the expression inside square brackets defines the Schwarzian derivative
S(fαβ) of the holomorphic transformation given by z(α) = fαβ(z(β)), in which

σ(αβ)
p =

1
n + 1

∂

∂z
(β)
p

logJ(fαβ) ,

J(fαβ) = det
(

∂z
(α)
i

∂z
(β)
p

)
being the Jacobian determinant of the holomorphic change

of variables fαβ . Two holomorphic projective connections Π and Π′ on X are said
to be equivalent if and only if there exists a common refinement W = {Wγ} of the
respective open coverings such that for each Wγ the local expressions of Π and Π′

agree with each other.

We proceed to relate holomorphic projective connections
(
αΦk

ij

)
on a complex

manifold to affine connections. Letting
(
αΓ

k

ij

)
be any affine connection on X, we

can define a torsion-free affine connection ∇ with Riemann-Christoffel symbols

αΓk
ij = αΦk

ij +
1

n + 1

∑

`

δk
i

αΓ
`

`j +
1

n + 1

∑

`

δk
j

αΓ
`

i` . (])

We say that ∇ is an affine connection associated to Π. Two affine connections ∇
and∇′ on a complex manifold X are said to be projectively equivalent (cf. Molzon-
Mortensen [MM,§4]) if and only if there exists a smooth (1,0)-form ω such that
∇ξζ −∇′ξζ = ω(ξ)ζ + ω(ζ)ξ for any smooth (1,0)-vector fields ξ and ζ on an open
set of X. For any complex submanifold S of X, the second fundamental form of S

in X is the same for two projectively equivalent affine connections. In particular,
the class of complex geodesic submanifolds S are the same. We will say that a
complex submanifold S ⊂ X is geodesic with respect to the holomorphic projective
connection Π to mean that it is geodesic with respect to any (torsion-free) affine
connection ∇ associated to Π. A geodesic 1-dimensional complex submanifold
will simply be called a complex geodesic. Associated to a holomorphic projective
connection there is a holomorphic foliation F on PTX , called the tautological
foliation, defined by the lifting of complex geodesics. We have

Lemma 2. Let X be a complex manifold and π : PTX → X be its projectivized
holomorphic tangent bundle. Then, there is a canonical one-to-one correspon-
dence between the set of equivalence classes of holomorphic projective connections
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on X and the set of holomorphic foliations F on PTX by tautological liftings of
holomorphic curves.

From now on we will not distinguish between a holomorphic projective con-
nection and an equivalence class of holomorphic projective connections. Let M be
a complex manifold equipped with a holomorphic projective connection Π, ∇ be
any affine connection associated to Π by means of (]), and X ⊂ M be a complex
submanifold. Then, the second fundamental form σ of X in M is independent of
the choice of ∇. We call σ the projective second fundamental form of X ⊂ M

with respect to Π. Since locally we can always choose the flat background affine
connection it follows that the projective second fundamental form is holomorphic.

Consider now the situation where M is a complex hyperbolic space form, a
complex Euclidean space form, or the complex projective space. M is equipped
with a canonical Kähler metric g of constant negative resp. zero resp. positive
holomorphic sectional curvature. The universal covering space of M is the complex
unit ball Bn resp. the complex Euclidean space Cn resp. the complex projective
space Pn (itself), equipped with the canonical Kähler-Einstein metric resp. the
Euclidean metric resp. the Fubini-Study metric. For Cn the family of affine lines
leads to a tautological foliation F0 on the projective tangent bundle, and g is
associated to the flat holomorphic projective connection. In the case of Pn the
projective lines, which are closures of the affine lines in Cn ⊂ Pn, are totally
geodesic with respect to the Fubini-Study metric g. In the case of Bn ⊂ Cn,
the intersections of affine lines with Bn give precisely the minimal disks which
are totally geodesic with respect to the canonical Kähler-Einstein metric g. As
a consequence, the tautological foliation F on PTPn defined by the tautological
liftings of projective lines, which is invariant under the projective linear group
Aut(Pn) ∼= PGL(n + 1), restricts to tautological foliations on Cn resp. Bn, and
they descend to quotients Z of Cn resp. Bn by torsion-free discrete groups of
holomorphic isometries of Cn resp. Bn, which are in particular projective linear
transformations. The holomorphic projective connection on Pn corresponding to F
will be called the canonical holomorphic projective connection. The same term will
apply to holomorphic projective connections induced by the restriction of F to Cn

and to Bn and to the tautological foliations induced on their quotient manifolds
X as in the above. Relating the canonical holomorphic projective connections
to the canonical Kähler metric g, we have the following result (cf. Mok [Mk2,
(2.3), Lemma 2]) which in particular proves that the second fundamental form σ

is holomorphic.

Lemma 3. Let (M, g) be a complex hyperbolic space form, a complex Euclidean
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space form, or the complex projective space equipped with the Fubini-Study metric.
Then, the affine connection of the Kähler metric g is associated to the canonical
holomorphic projective connection on M . As a consequence, given any complex
submanifold X ⊂ M , the second fundamental form on X as a Kähler submanifold
of (M, g) agrees with the projective second fundamental form of X in M with
respect to the canonical holomorphic projective connection.

We will make use of Lemma 3 to study locally closed submanifolds of complex
hyperbolic space forms admitting a holomorphic foliation by complex geodesic
submanifolds. The first examples of such submanifolds are given by level sets of
the Gauss map. By Lemma 3, it is sufficient to consider the second fundamental
form with respect to the flat connection in a Euclidean space, and we have the
following well-known lemma. (For a proof cf. Mok [Mk1, (2.1), Lemma 2.1.3].)

Lemma 4. Let Ω ⊂ Cn be a domain and Z ⊂ Ω be a closed complex submanifold.
At z ∈ Z denote by σz : Tz(Z) × Tz(Z) → NZ|Ω,z the second fundamental form
with respect to the Euclidean flat connection ∇ on Ω. Denote by Ker(σz) ⊂ Tz(Z)
the complex vector subspace of all η such that σz(τ, η) = 0 for any τ ∈ Tz(Z).
Suppose Ker(σz) is of the same positive rank d on Z. Then, the distribution
z → Re(Ker(σz)) is integrable and the integral submanifolds are open subsets of
d-dimensional affine-linear subspaces.

With regard to the Gauss map, in the case of projective submanifolds we
have the following result of Ein [Ei, 1982] according to which the Gauss map is
generically finite on a non-linear projective submanifold. Expressed in terms of
the second fundamental form, we have

Theorem (Ein [Ei]). Let W ⊂ PN be a k-dimensional projective submanifold
other than a projective linear subspace. For w ∈ W denote by σw : Tw(W ) ×
Tw(W ) → NW |Pn,w the second fundamental form in the sense of projective geom-
etry. Then, Ker(σw) = 0 for a general point w ∈ W .

In §2 we will prove a result which includes the dual analogue of Ein’s result
for complex submanifolds of compact complex hyperbolic space forms. As will be
seen, smoothness is not essential for the validity of a dual version of the result of
Ein [Ei].

For the purpose of studying asymptotic behavior of the second fundamental
form on certain submanifolds of the complex unit ball Bn we will need the following
standard fact about the canonical Kähler-Einstein metric ds2

Bn . We will normalize
the latter metric so that the minimal disks on Bn are of constant holomorphic

10



sectional curvature −2. With this normalization, writing z = (z1, · · · , zn) for the
Euclidean coordinates on Cn, and denoting by ‖·‖ the Euclidean norm, the Kähler
form ωn of ds2

Bn is given by ωn = i∂∂(− log(1− ‖z‖2). We have

Lemma 5. Let n ≥ 1 and (Bn, dsBn) be the complex unit n-ball equipped with
the canonical Kähler-Einstein metric of constant holomorphic sectional curvature
−2. Write

(
gαβ

)
1≤α,β≤n

be the expression of ds2
Bn as Hermitian matrices in terms

of the Euclidean coordinates z = (z1, · · · , zn). Let t be a real number such that
0 ≤ t ≤ 1. Then, at (t, 0, · · · , 0) ∈ Bn we have

g11(t, 0, · · · , 0) =
1

1− t2
; gαα(t, 0, · · · , 0) =

1√
1− t2

for 2 ≤ α ≤ n ;

gβγ(t, 0, · · · , 0) = 0 for β 6= γ, 1 ≤ β, γ ≤ n . (1)

Proof. The automorphism group Aut(Bn) acts transitively on Bn. Especially,
given 0 ≤ t ≤ 1 we have the automorphism Ψt = (ψ1

t , · · · , ψn
t ) on Bn defined by

Ψt(z1, z2, · · · , zn) =

(
z + t

1 + tz
,

√
1− t2 z2

1 + tz
, · · · ,

√
1− t2 zn

1 + tz

)
,

which maps 0 to (t, 0, · · · , 0). We have

∂ψ1
t

∂z1
(0) = 1− t2 ;

∂ψα
t

∂zα
(0) =

√
1− t2 for 2 ≤ α ≤ n ;

∂ψβ
t

∂zγ
(0) = 0 for β 6= γ, 1 ≤ β, γ ≤ n . (2)

Since the Kähler form ωn of ds2
Bn is defined by ωn = i∂∂(− log(1−‖z‖2) we have

by direct computation gαβ(0) = δαβ , the Kronecker delta. Lemma 5 then follows
from the invariance of the canonical Kähler-Einstein metric under automorphisms,
as desired. ¤

Any point z ∈ Bn is equivalent modulo a unitary transformation to a point
(t, 0, · · · , 0) where 0 ≤ t ≤ 1. If we write δ(z) = 1− ‖z‖ on Bn for the Euclidean
distance to the boundary ∂Bn, then Lemma 5 says that, for a point z ∈ Bn the
canonical Kähler-Einstein metric grows in the order δ(z) in the normal direction
and in the order

√
δ(z) in the complex tangential directions.

§2 Proof of the results
(2.1) Total geodesy of quasi-projective complex hyperbolic space forms holomor-
phic foliated by complex geodesic submanifolds As one of our first motivations

11



we were aiming at proving a dual analogue of Ein’s result on the Gauss map of
projective submanifolds as stated in [(1.3), Theorem (Ein [Ei])]. By [(1.3), Lemma
4], when the Gauss map on a locally closed complex submanifold of Bn fails to be
generically finite, on some neighborhood of a general point of the submanifold we
obtain a holomorphic foliation whose leaves are complex geodesic submanifolds,
equivalently totally geodesic complex submanifolds with respect to the canonical
Kähler-Einstein metric. We consider this more general situation and prove first of
all the following result which in particular implies a dual version of the result of
Ein [Ei] for which the assumption of smoothness of the submanifold is no longer
needed.

Proposition 1. Let n ≥ 3, and Γ ⊂ Aut(Bn) be a torsion-free lattice, X := Bn/Γ
be the quotient manifold equipped with the canonical structure as a quasi-projective
manifold. Let s, d be positive integers such that s+d := m < n. Write π : Bn → X

for the universal covering map, and let W ⊂ X be an irreducible m-dimensional
quasi-projective subvariety. Denote by W̃ an irreducible component of π−1(W ).
Let x ∈ W̃ be a smooth point, U be a neighborhood of x on the smooth locus of W̃ ,
Z ⊂ U be an s-dimensional complex submanifold, and D ⊂ TU be an integrable
d-dimensional holomorphic foliation such that TZ and D are transversal to each
other on Z, i.e., Tz(U) = Tz(Z)⊕Dz for every z ∈ Z, and such that the leaves on
U of the holomorphic foliation F defined by D are totally geodesic on Bn. Then,
W̃ ⊂ Bn is itself totally geodesic in Bn.

Proof. Assume first of all that W ⊂ X is compact. Write z = (z1, · · · , zn) for
the Euclidean coordinates on Cn. We choose now special holomorphic coordinates
ζ = (ζ1, · · · , ζm) on U at x ∈ Z ⊂ U , as follows. Let (ζ1, · · · , ζs) be holomorphic
coordinates on a neighborhood of x in Z. We may choose (ζ1, · · · , ζs) to be 0 at
the point x ∈ Z, and, shrinking Z if necessary, assume that the holomorphic coor-
dinates (ζ1, · · · , ζs) are everywhere defined on Z, giving a holomorphic embedding
f : ∆s

∼=−→ Z ⊂ U . Again shrinking Z if necessary we may assume that there exist
holomorphic D-valued vector fields η1, · · · , ηd on Z which are linearly independent
everywhere on D (hence spanning the distribution D along Z). Write ζ = (ζ ′, ζ ′′),
where ζ ′ := (ζ1, · · · , ζs) and ζ ′′ := (ζs+1, · · · , ζm). Define now F : ∆s × Cd → Cn

by

F (ζ ′, ζ ′′) = f(ζ ′) + ζs+1η1(ζ ′) + · · ·+ ζmηd(ζ ′) . (1)

By assumption the leaves of the holomorphic foliation F defined by D are totally
geodesic on the unit ball Bn. Now the totally geodesic complex submanifolds
are precisely intersections of Bn with complex affine-linear subspaces of Cn, so

12



that F (ζ) lies on the smooth locus of W̃ for ζ belonging to some neighborhood
of ∆s × {0}. Now F is a holomorphic immersion at 0 and hence everywhere on
∆s ×Cd excepting for ζ belonging to some subvariety E ( ∆s ×Cd. Choose now
ξ = (ξ′, ξ′′) ∈ ∆s × Cd such that F is an immersion at ξ and such that F (ξ) :=
p ∈ ∂Bn, p = F (ξ). Let U be a neighborhood of ξ in ∆s × Cd and V = Bn(p; r)
such that F |U : U → Cn is a holomorphic embedding onto a complex submanifold
S0 ⊂ V . Let σ denote the second fundamental form of the complex submanifold
S := S0 ∩Bn ⊂ Bn with respect to the canonical Kähler-Einstein metric ds2

Bn on
Bn. To prove Proposition 1 it is sufficient to show that σ vanishes identically on
S := S0∩Bn. By Lemma 3 the second fundamental form σ : S2TS → NS|Bn agrees
with the second fundamental form defined by the canonical projective connection
on S, and that in turn agrees with the second fundamental form defined by the
flat Euclidean connection on Cn. The latter is however defined not just on S but
also on S0 ⊂ V . Thus, we have actually a holomorphic tensor σ0 : S2TS0 → NS0|V
such that σ = σ0|S . Denote by ‖ · ‖ the norm on S2T ?

S ⊗ NS|V ∩Bn induced by
ds2

Bn . We claim that, for any point q ∈ V ∩∂Bn, ‖σ(z)‖ tends to 0 as z ∈ S tends
to q. By means of the holomorphic embedding F |U : U → S ⊂ V identify σ0 with
a holomorphic section of S2T ?

U ⊗F ∗T ?
V /dF (TU ). For 1 ≤ k ≤ n write εk := F ∗ ∂

∂zk

and νk := ε mod dF (TU ). Then, writing

σ0(ζ) =
n∑

α,β=1

σk
αβ(ζ) dζα ⊗ dζβ ⊗ νk(ζ) , (2)

for ζ ∈ U ∩ F−1(Bn) we have

‖σ(ζ)‖ ≤
n∑

α,β=1

∣∣σk
αβ(ζ)

∣∣ ‖dζα‖ ‖dζβ‖ ‖νk(ζ)‖ , (3)

where the norms ‖ · ‖ are those obtained by pulling back the norms on T ?
V and

on NS|V ∩Bn . In what follows we will replace V by Bn(p; r0) where 0 < r0 < r

and shrink U accordingly. Since the holomorphic functions σk
αβ(ζ) are defined on

a neighborhood of U , they are bounded on U and hence on U ∩ F−1(Bn). From
Lemma 5 we have

‖dzk‖ ≤ C1

√
δ(F (ζ)) (4)

on Bn ⊂ Cn. Given q ∈ V ∩∂Bn, by means of the embedding F |U : U → V ⊂ Cn,
the holomorphic coordinates (ζ1, · · · , ζm) on V can be completed to holomorphic
coordinates (ζ1, · · · , ζm; ζm+1, · · · , ζn) on a neighborhood of q in Bn. Since F is a
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holomorphic embedding on a neighborhood of U , expressing each dζα, 1 ≤ α ≤ m,
in terms of dzk, 1 ≤ k ≤ n, it follows that

‖dζα‖ ≤ C2

√
δ(F (ζ)) (5)

for some positive constant C2 independent of ζ ∈ U , where δ(z) = 1− ‖z‖ on Bn.
(Although the expression of dζα, 1 ≤ α ≤ m, in terms of dzk, 1 ≤ k ≤ m, depends
on the choice of complementary coordinates (ζm+1, · · · , ζn), one can make use of
any choice of the latter locally for the estimates.) On the other hand, again by
Lemma 5 we have

‖ε(ζ)‖ ≤ C3δ(F (ζ)) (6)

for some positive constant C3. By definition ‖νk(ζ)‖ ≤ ‖εk(ζ)‖, and the estimates
(5) and (6) then yield

‖σ(ζ)‖ ≤ C4 , (7)

for some positive constant C4 for ζ ∈ U∩F−1(Bn). For the claim we need however
to show that ‖σ(ζ)‖ converges to 0 as z = F (ζ) converges to q ∈ V ∩ ∂Bn. For
this purpose we will use a better estimate for νk(ζ). Write q = F (µ), µ = (µ′, µ′′).
Assume that F (0) = 0, that for 1 ≤ i ≤ d we have ηi(µ′) = (0, · · · 0, 1, 0, · · · 0)
with 1 in the i-th position, and that F (µ) = (1, 0, · · · , 0). We consider now
ζt = (µ′; t, 0 · · · , 0), 0 < t < 1, as t approaches to 1. Writing qt = F (ζt), we have

‖νk(ζt)‖ = ‖εk mod dF (TU )‖ =
∥∥∥∥

∂

∂zk
mod Tqt(V )

∥∥∥∥

≤
∥∥∥∥

∂

∂zk
mod C

∂

∂z1

∥∥∥∥ ≤ C
√

δ(qt) . (8)

To prove the claim we have to consider the general situation of a point q ∈ V ∩∂Bn,
q = F (µ), and consider ζ ∈ (∆s × Cd) ∩ F−1(Bn) approaching q. Given such a
point ζ = (ζ ′; ζ ′′) there exists an automorphism ϕ of Bn such that ϕ(F (ζ ′; 0)) = 0,
ϕ(F (ζ)) = (t, 0 · · · , 0) for some t ∈ (0, 1). Moreover, replacing η1(ζ ′), · · · ηd(ζ ′) by
a basis of the d-dimensional complex vector space spanned by these d linearly
independent vector fields, we may assume that ηi(ζ ′) = (0, · · · , 0, 1, 0 · · · , 0) with
1 in the i-th position. The estimates in (8) then holds true for σ(ζ) at the expense
of introducing some constant which can be taken independent of ζ ∈ V ∩ Bn

(noting that U and hence V have been shrunk). As ζ converges to q, t converges
to 1 too, and, replacing the estimate (6) for εk (and hence for νk) by the sharper
estimate (8) we have shown that ‖σ(ζ)‖ → 0 as ζ → q on V ∩ Bn, proving the
claim. (We have actually the uniform estimate ‖σ(ζ)‖ ≤ C

√
(δ(F (z)) for some

positive constant C on V ∩Bn, but this estimate will not be needed in the sequel.)
14



We proceed now to prove Proposition 1 under the assumption that Γ ⊂
Aut(Bn) is cocompact. Pick any q ∈ V ∩ ∂Bn. Choose a sequence of points
zk ∈ V ∩ Bn ⊂ W̃ converging to q, and we have ‖σ(zk)‖ → 0 as k → ∞. Since
Γ ⊂ Aut(Bn) is cocompact, X is compact, so is W ⊂ X. W = W̃/Φ for some
discrete subgroup Φ ⊂ Γ which stabilizes W̃ as a set. Thus, there exists a compact
subset K ⊂ W̃ and elements ϕk ∈ Φ such that xk := ϕ−1

k (zk) ∈ K. Passing to
a subsequence if necessary we may assume that ϕ−1

k (zk) converges to some point
x ∈ K. Thus

‖σ(x)‖ = lim
k→∞

‖σ(xk)‖ = lim
k→∞

‖σ(ϕ−1
k (zk)‖ = lim

k→∞
‖σ(zk)‖ = 0 . (9)

Now if y ∈ W̃ is any point, for the distance function d(·, ·) on (Bn, ds2
Bn) we have

d(ϕk(y), zk) = d(ϕk(y), ϕk(x)) = d(y, x). Since zk ∈ V ∩ ∂Bn converges in Cn to
q ∈ V ∩ ∂Bn, from the estimates of the metric ds2

Bn in Lemma 5 it follows readily
that ϕk(y) also converges to q, showing that ‖σ(y)‖ = lim

k→∞
‖σ(ϕk(y))‖ = 0. As

a consequence σ vanishes identically on W̃ , implying that W̃ ⊂ Bn is totally
geodesic, as desired.

It remains to consider the case X = Bn/Γ, where Γ ⊂ Aut(Bn) is a torsion-
free non-uniform lattice, and W ⊂ X ⊂ Xmin is a quasi-projective subvariety. Re-
call that the minimal compactification of X is given by Xmin = Xq{Q1, · · · , QN}
where Qj , 1 ≤ j ≤ N , are cusps at infinity. Renumbering the cusps if necessary,
the topological closure W of W ⊂ Xmin is given by W = W ∪ {Q1, · · · , QM}
for some nonnegative integer M ≤ N . Pick q ∈ V ∩ ∂Bn and let (zk)∞k=1 be a
sequence of points on V ∩Bn such that zk converges to q. Recall that π : Bn → X

is the universal covering map. Either one of the following alternatives occurs. (a)
Passing to a subsequence if necessary π(zk) converges to some point w ∈ W . (b)
There exists a cusp Q`, 1 ≤ ` ≤ M , such that passing to a subsequence π(zk)
converges in W to Q`. In the case of Alternative (a), picking x ∈ Bn such that
π(x) = w, by exactly the same argument as in the case of cocompact lattices Γ
it follows that the second fundamental form σ vanishes on W̃ and thus W̃ ⊂ Bn

is totally geodesic. It remains to treat Alternative (b). Without loss of generality
we may assume that π(zk) already converges to the cusp Q`.

We adopt essentially the notation in (1.2) on Mumford compactifications,
and modifications on the notation will be noted. Let now XM be the Mumford
compactification of X given by XM = X q (T1 q · · · q TN ), where each Tj =
Cn−1/Λj is an Abelian variety such that the canonical map ρ : XM → Xmin

collapses Tj to the cusp Qj . (Here and henceforth we write Tj for Tbj , Λj for Λbj ,
15



etc. Write Ωj for Ω(N)
j for some sufficiently large integer N , so that the canonical

projection µj : Ωj → Tj realizes Ωj as a disk bundle over Tj . Write Ω0
j := Ωj−Tj .

Considering each π(zk), 1 ≤ k < ∞, as a point in X ⊂ XM , replacing (zk) by
a subsequence if necessary we may assume that zk converges to a point P` ∈ T`.
Recall that the fundamental group of the bundle Ω0

` of puncture disks is a semi-
direct product Λ`×Ψ` of the lattice Λ`

∼= Z2(n−1) with an infinite cyclic subgroup
Ψ` := Γ ∩ Ub`

⊂ Ub`
= [Wb`

,Wb`
]. Let D be a simply connected neighborhood

of P` ∈ T`, and define R := µ−1
` (D) − T`

∼= D × ∆? diffeomorphically. Then,
π1(R) is infinite cyclic. Without loss of generality we may assume that π(zk) to be
contained in the same irreducible component E of R∩W . Consider the canonical
homomorphisms π1(E) → π1(R) → π1(Ω0

`) → π1(X) = Γ. By the description
of the Mumford compactification the homomorphisms Z ∼= π1(R) → π1(Ω0

`) and
π1(Ω0

`) → π1(X) = Γ are injective. We claim that the image of π1(E) in π1(R) ∼= Z
must be infinite cyclic. For the justification of the claim we argue by contradiction.
Supposing otherwise the image must be trivial, and E can be lifted in a univalent
way to a subset Ẽ ⊂ W̃ ⊂ Bn by a holomorphic map h : E → Bn. Let E′ be the
normalization of E, and E

′
M be the normalization of EM ⊂ XM . Composing h on

the right with the normalization ν : E′ → Eh we have h′ : E′ → Ẽ. Since Ẽ ⊂ Bn

is bounded, by Riemann Extension Theorem the map h′ extends holomorphically
to h] : E

′
M → Cn. Suppose c ∈ E

′
M − E′ and h](c) = a ∈ Bn. Since π(h(e)) = e

for any e ∈ E it follows that π(h](c)) = c ∈ WM − W , contradicting with the
definition of π : Bn → X ⊂ XM . We have thus proven that h](E

′
M ) ⊂ Bn with

h](E
′
M −E′) ⊂ ∂Bn, a plain contradiction to the Maximum Principle, proving by

contradiction that the image of π1(E) → π1(R)) is infinite cyclic, as claimed. As
a consequence of the claim, the image of π1(E) in π1(X) = Γ is also infinite cyclic.
Factoring through π1(E) → π1(W ) → π1(X), and recalling that Φ is the image of
π1(W ) in π1(X), the image of π1(E) in Φ is also infinite cyclic.

Recall that F : U → V ⊂ Bn is a holomorphic embedding, ζ = (ζ ′, ζ ′′) ∈ U ,
q = F (ζ) ∈ V ∩ ∂Bn, and assume that Alternative (b) occurs for any sequence
of points zk ∈ V ∩ Bn converging to q. To simplify notations assume without
loss of generality that F (ζ ′, 0) = 0, and define λ0(t) = F (ζ ′, tζ ′′) for t ∈ [0, 1].
Then, reparametrizing λ0 we have a geodesic ray λ(s), 0 ≤ s < ∞ with respect
to ds2

Bn parameterized by arc-length such that λ(s) converges to q ∈ ∂Bn in Cn

as s → ∞. For the proof of Proposition 1, it remains to consider the situation
where Alternative (b) occurs for any choice of divergent sequence (zk), zk = λ(sk)
with sk → ∞. When this occurs, without loss of generality we may assume that
π(λ([0,∞))) ⊂ Ω0

` , which is an end of X. Now by [(1.2), Lemma 1] all geodesic
16



rays in Ω0
` can be explicitly described, and, in terms of the unbounded realization

Sn of Bn they lift as a set to
{
(z1

0 , · · · , zn−1
0 , w0) : w = u0 + i Im v, v ≥ v0

}
for

some point (z1
0 , · · · zn−1

0 ;u0 + iv0) ∈ Sn. We may choose E ⊂ π−1(R) in the
last paragraph to contain the geodesic ray π(λ([0,∞)) which converges to the
point P` ∈ T`. Now Ω0

` = G
(N)
` /π(Γ′ ∩ Wb`

) for the domain G
(N)
` ⊂ Sn which

is obtained as a Cayley transform of Bn mapping some b` ∈ ∂Bn to ∞. The
pre-image π−1(π(λ([0,∞))) is necessarily a countable disjoint union of geodesic
rays Ri, which is the image of a parametrized geodesic ray ρi : [0,∞) → Bn such
that lims→∞ ρi(s) := ai ∈ ∂Bn. For any two of such geodesic rays Ri, Rj there
exists γij ∈ Γ such that Ri = γij(Rj), hence γij(aj) = ai. Now both b` and q are
end points of such geodesic rays on Bn and we conclude that b` = γ(q) for some
γ ∈ Γ. In what follows without loss of generality we will assume that q is the same
as b`.

For q = b` ∈ ∂Bn, let χ : Sn → Bn be the inverse Cayley transform which
maps the boundary ∂Sn (in Cn) to ∂Bn − {b`}. Write χ

(
Ĝ

(N)
`

)
:= H`. Denote

by µ a generator of the image of π1(E) in π1(X) = Γ. Recall that, with respect
to the unbounded realization of Bn as the Siegel domain Sn, µ corresponds to an
element µ′ ∈ Ub`

⊂ Wb`
, where Wb`

is the normalizer at b` (corresponding to ∞
in the unbounded realization Sn), and Ub`

is a 1-parameter group of translations.
Conjugating by the Cayley transform, Wb`

corresponds to W [
b`

whose orbits are
horospheres with b` ∈ ∂Bn as its only boundary point. Thus for any z ∈ Bn, µi(z)
converges to b` as i → ∞. Since F is an immersion at ζ, for z ∈ W̃ , as has been
shown the norm ‖σ(z)‖ of the second fundamental form σ vanishes asymptotically
as z approaches q. From the invariance ‖σ(z)‖ = ‖σ(µi(z))‖ and the convergence
of µi(z) to q it follows that ‖σ(z)‖ = 0. The same holds true for any smooth point
z′ on W̃ . In fact µi(z′) converges to b` for any point z′ ∈ Bn as the distance
d(µi(z′), µi(z)) = d(z′, z) with respect to ds2

Bn is fixed (while the latter metric
blows up in all directions as one approaches ∂Bn). As a consequence, in any event
the second fundamental form σ vanishes identically on W̃ , i.e., W̃ ⊂ Bn is totally
geodesic, as desired. The proof of Proposition 1 is complete. ¤

Remarks For the argument at the beginning of the proof showing that V ∩Bn

is asymptotically totally geodesic at a general boundary point q ∈ V ∩ ∂Bn with
respect to the canonical Kähler-Einstein metric there is another well-known argu-
ment which consists of calculating holomorphic sectional curvature asymptotically,
as for instance done in Cheng-Yau [CY]. More precisely, by direct computation
it can be shown that for a strictly pseudo convex domain with smooth bound-
ary, with a strictly plurisubharmonic function defining ϕ, the Kähler metric with
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Kähler form i∂∂(− log(−ϕ)) is asymptotically of constant holomorphic sectional
curvature equal to −2, which in our situation is enough to imply the asymptotic
vanishing of the norm of the second fundamental form. Here we have chosen to give
an argument adapted to the geometry of our special situation where V ∩ ∂Bn is
holomorphically foliated by complex geodesic submanifolds for two reasons. First
of all, it gives an interpretation of the asymptotic behavior of the second fun-
damental form which is not easily seen from the direct computation. Secondly,
the set-up of studying holomorphic foliations by complex geodesic submanifolds
in which one exploits the geometry of the Borel embedding Bn ⊂ Pn may give
a hint to approach the general question of characterizing Zariski closures of to-
tally geodesic complex submanifolds in the case of quotients of bounded symmetric
domains.

(2.2) Proof of the Main Theorem on Zariski closures of germs of complex geodesic
submanifolds In the Main Theorem we consider quasi-projective subvarieties W

of complex hyperbolic space forms of finite volume. For the proof of the Main
Theorem first of all we relate the existence of a germ of complex geodesic subman-
ifold S on W with the existence of a holomorphic foliation by complex geodesics
defined on some neighborhood of S in its Zariski closure, as follows.

Proposition 2. Let n ≥ 3, and Γ ⊂ Aut(Bn) be a torsion-free lattice, X :=
Bn/Γ, which is endowed with the canonical quasi-projective structure. Let W ⊂ X

be an irreducible quasi-projective variety. Let S ⊂ W ⊂ X be a locally closed com-
plex geodesic submanifold of X lying on W . Then, there exists a quasi-projective
submanifold Z ⊂ W such that Z is smooth at a general point of S for which the
following holds true. There is some subset V ⊂ Z which is open with respect to
the complex topology such that V is non-singular, V ∩ S 6= ∅, and there is a holo-
morphic foliation H on V by complex geodesics such that for any y ∈ V ∩ S, the
leaf Ly of H passing through y must lie on S.

Proof. Replacing W by the Zariski closure of S in W , without loss of generality
we may assume that S is Zariski dense in W . In particular, a general point of
S is a smooth point of W , otherwise S ⊂ Sing(W ) ( W , contradicting with the
Zariski density of S in W . With the latter assumption we are going to prove
Proposition 2 with Z = W . Let x ∈ W and α ∈ PTx(W ) be a non-zero tangent
vector. Denote by Sα the germ of complex geodesic at x such that Tx(Sα) = Cα.
Define a subset A ⊂ PTX |W as follows. By definition a point [α] ∈ PTx(W )
belongs to A if and only if the germ Sα lies on W . We claim that the subset
A ⊂ PTX |W is complex-analytic. Let x0 ∈ S ⊂ W be a smooth point and U0
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be a smooth and simply connected coordinate neighborhood of x in W which is
relatively compact in W . Recall that π : Bn → X is the universal covering map.
Let U be a connected component of π−1(U0) lying on W̃ and x ∈ Ũ be such
that π(x) = x0. Define S] = π−1(S) ∩ U ⊂ W̃ , which is a complex geodesic
submanifold of Bn. Identifying U with U0, we use the Euclidean coordinates on
U as holomorphic coordinates on U0. Shrinking U0 and hence U if necessary we
may assume that π−1(W ) ∩ U ⊂ Bn is defined as the common zero set of a finite
number of holomorphic functions f1, · · · , fm on U . Then [α] ∈ A if and only if, in
terms of Euclidean coordinates given by π|U : U

∼=−→ U0, writing α = (α1, · · · , αn)
we have fk(x1+tα1, · · · , xn+tαn) = 0 for all k, 1 ≤ k ≤ m, and for any sufficiently
small complex number t. Consider only the subset G ⊂ TU consisting of non-zero
tangent vectors α of length < 1 with respect to ds2

Bn . Varying t we have a family of
holomorphic functions defined on G whose common zero set descends to a subset
A ∩ PTU in PTU , showing that A ∩ PTU ⊂ PTU is a complex-analytic subvariety.
Since the base point x0 ∈ W is arbitrary, we have shown that A ⊂ PTX |W is a
complex-analytic subvariety.

Assume first of all that X is compact. Recall that S ⊂ W ⊂ X is a locally
closed complex geodesic submanifold. Obviously PTS ⊂ A. Let A1 ⊂ A be an
irreducible component of A which contains PTS . Denote by λ : PTX → X the
canonical projection. Consider the subset W1 := λ(E1) ⊂ W , which contains S.
By the Proper Mapping Theorem W1 ⊂ W is a subvariety. Since S ⊂ W1 ⊂ W

and S is Zariski dense in W we must have W1 = W . Thus W ⊂ X = Bn/Γ is
an irreducible subvariety in X filled with complex geodesics, a situation which is
the dual analogue of the picture of an irreducible projective subvariety Y ⊂ B

uniruled by lines (cf. Hwang [Hw] and Mok [Mk4]). More precisely, let G be the
Grassmannian of projective lines in Pn, G ∼= Gr(2,Cn+1), and K0 ⊂ G be the
subset of projective lines ` ⊂ Pn such that ` ∩ Bn is non-empty, and K ⊂ K0 be
the irreducible component which contains the set S of projective lines ` whose
intersection with S] contains a non-empty open subset of `. Here Bn ⊂ Cn ⊂ Pn

gives at the same time the Harish-Chandra embedding Bn ⊂ Cn and the Borel
embedding Bn ⊂ Pn. Let ρ : U → G be the universal family of projective lines
on Pn, and ρ|K : ρ−1(K) → K be the restriction of the universal family to K. We
will also write U|A := ρ−1(A) for any subset A ⊂ G. By means of the tangent
map we identify the evaluation map µ : U → Pn canonically with the total space
of varieties of minimal rational tangents µ : PTPn → Pn. Thus, µ associates each
[α] ∈ PTx(Pn) to its base point x. Denote by D ⊂ U|K the subset defined by
D := U|K ∩ µ−1(Bn). Then, there exists some non-empty connected open subset
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E ⊂ K containing S such that the image of µ (D ∩ U|E) contains a neighborhood
U ′ ⊂ U of x in W̃ .

The subgroup Φ ⊂ Γ acts canonically on U|K and the quotient U|K/Φ is
nothing other than A1 ⊂ PTX |W . Recall that A1 ⊃ PTS . Let A2 ⊂ A1 be the
Zariski closure of PTS in A1. Again the image λ(A2) ⊂ W equals W by the
assumption that S is Zariski dense in W . Moreover, a general point [α] ∈ PTS ,
α ∈ Tx(S), is a smooth point of A2 and λ|A2 : A2 → W is a submersion at [α].
Fix such a general point [α0] ∈ PTx(S) and let `0 be a germ of complex geodesic
passing through x such that Tx(`0) = Cα0. Let H ⊂ W be a locally closed
hypersurface passing through x such that α0 /∈ Tx(H). Shrinking the hypersurface
H if necessary there exists a holomorphic vector field α(w) on H transversal at
every point to H such that α(x) = α0 and α(x′) ∈ Tx′(S) for every x′ ∈ H ∩ S.
Then, there is an open neighborhood V of H admitting a holomorphic foliation
H by complex geodesics such that the leaf Lw passing through w ∈ H obeys
Tw(Lw) = Cα(w), and such that, as x′ runs over S ∩H, the family of leaves Lx′

sweeps through V ∩S. In particular, for y ∈ V ∩S the leaf Ly lies on V ∩S. This
proves Proposition 2 in the case where X is compact.

It remains to consider the case where Γ ⊂ Aut(Bn) is non-uniform, in which
case we will make use of the minimal compactification X ⊂ Xmin of Satake [Sa]
and Baily-Borel [BB]. When W ⊂ X = Bn/Γ is compact the preceding arguments
go through without modification. At a cusp Q` ∈ Xmin the notion of a complex
geodesic submanifold is undefined. In order to carry out the preceding arguments
when W ⊂ X is non-compact so that W contains some cusps Q` ∈ Xmin we have
to work on the non-compact manifolds X and PTX . In the arithmetic case by [Sa]
and BB] the holomorphic tangent bundle TX admits an extension to a holomorphic
vector bundle E defined on Xmin, and the same holds true for the non-arithmetic
case by the description of the ends of X as given in (1.2). For the preceding
arguments a priori Zariski closures on X ⊂ Xmin and on PTX ⊂ PE have to be
taken in the topology with respect to which the closed subsets are complex-analytic
subvarieties. We call the latter the analytic Zariski topology. Nonetheless, since
the minimal compactification Xmin of X is obtained by adding a finite number of
cusps, for any complex-analytic subvariety of Y ⊂ X by Remmert-Stein Extension
Theorem the topological closure Y in Xmin a subvariety. On the other hand, since
dim(PE − PTX) > 0, the analogous statement is not a priori true for PTX ⊂ PE.
However, given any complex-analytic subvariety Z ⊂ PTX , by the Proper Mapping
Theorem its image λ(Z) ⊂ X under the canonical projection map λ : PTX → X is
a subvariety. Thus B := λ(Z) ⊂ X ⊂ Xmin is quasi-projective. In the preceding
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arguments in which one takes Zariski closure in the compact case, for the non-
compact case it remains the case that the subsets B ⊂ X on the base manifold
are quasi-projective. In the final steps of the arguments in which one obtains a
subset A2 ⊂ PTX |W , A2 ⊃ PTS , such that a general point [α] ∈ A2 ∩ PTX |U over
a neighborhood U of some x ∈ S in W is non-singular and λ|A2 is a submersion
at [α], A2 was used only to produce a holomorphically foliated family of complex
geodesics of X over some neighborhood V of x ∈ S in W , and for that argument
it is not necessary for A2 to be quasi-projective. Thus, the arguments leading
to the proof of Proposition 2 in the compact case persist in the general case of
W ⊂ X = Bn/Γ for any torsion-free lattice Γ ⊂ Aut(Bn), and the proof of
Proposition 2 is complete. ¤

Theorem 1. Let n ≥ 2, and Γ ⊂ Aut(Bn) be a torsion-free lattice, X := Bn/Γ.
Equipping X ⊂ Xmin with the structure of a quasi-projective manifold inherited
from the minimal compactification Xmin, let W ⊂ X be a quasi-projective subva-
riety. Denote by W0 ⊂ W the smooth locus of W . Let W̃0 ⊂ Bn be an irreducible
component (equivalently, a connected component) of π−1(Reg(W )). Then, the
Gauss map is of maximal rank at a general point of W̃0 ⊂ Bn unless W ⊂ X is a
totally geodesic subset.

Remarks When W ⊂ X is projective, the total geodesy of W̃ ⊂ Bn in The-
orem 1 already follows from the last part of the proof of Cao-Mok [CM, The-
orem 1] (inclusive of Lemma 4.1 and the arguments thereafter). We summa-
rize the argument there, as follows.

(
Bn, ds2

Bn

)
is of constant Ricci curvature

−(n + 1). An m-dimensional locally closed complex submanifold S ⊂ Bn is to-
tally geodesic if and only if it is of constant Ricci curvature −(m + 1). In gen-
eral, denoting by RicBn resp. RicS the Ricci curvature form of

(
Bn, ds2

Bn

)
resp.(

S, ds2
Bn

∣∣
S

)
, and by ζ = (ζ1, · · · , ζm) local holomorphic coordinates at x ∈ S,

we have RicS = m+1
n+1 RicBn − ρ, where ρ(ζ) =

∑n
α,β=1 ραβ(ζ)dζαdζβ . In the case

of Theorem 1, where S = W̃ in the notations of Proposition 1, the holomorphic
distribution D is given by the kernel of the second fundamental form σ, or equiv-
alently by the kernel of the closed (1, 1)−form ρ. Choosing the local holomorphic
coordinates ζ = (ζ1, · · · , ζs; ζs+1, · · · , ζm) as in the proof of Proposition 1, from the
vanishing of ρ|L for the restriction of ρ to a local leaf of the holomorphic foliation
F defined by D, it follows that ραα = 0 whenever α > s. From ρ ≥ 0 it follows
that ραβ = 0 for all α > s and for all β (1 ≤ β ≤ m). Coupling with dρ = 0 one
easily deduces that ραβ(ζ) = ραβ(ζ1, · · · , ζs), so that ρ is completely determined
by its restriction ρ|Z to Z ⊂ U , and the asymptotic vanishing of ρ and hence of
σ near boundary points of Bn follows from standard asymptotic estimates of the
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Kähler-Einstein metric ds2
Bn .

Finally, we are ready to deduce the Main Theorem from Proposition 2, as
follows.

Proof of the Main Theorem. Recall that X = Ω/Γ is a complex hyperbolic space
form of finite volume, W ⊂ X ⊂ Xmin is a quasi-projective subvariety, and S ⊂ X

is a complex geodesic submanifold lying on W . As explained in the proof of
Proposition 2, the closure Z ⊂ X of S in W with respect to the analytic Zariski
topology is quasi-projective, so without loss of generality we may replace W by
its Zariski closure with respect to the usual Zariski topology and proceed under
that convention with proving that W is totally geodesic. By Proposition 2, there
exists some x ∈ S which is a non-singular point on W and some nonsingular open
neighborhood V of x in W which admits a holomorphic foliation F by complex
geodesics (such that the leaves of F passing through any y ∈ V ) lies on S ∩ V .
By Proposition 2, V ⊂ X is totally geodesic. As a consequence, W ⊂ X is totally
geodesic subset, i.e., the non-singular locus Reg(W ) of W is totally geodesic in X,
as desired. ¤

Remarks In the proof of Proposition 2 we remarked that any irreducible complex-
analytic subvariety Z ⊂ X of positive dimension extends by Remmert-Stein Ex-
tension Theorem to a complex-analytic subvariety in Xmin. As a consequence, in
the hypothesis of the Main Theorem, in place of assuming W ⊂ X to be an irre-
ducible quasi-projective subvariety we could have assumed that W ⊂ X is simply
an irreducible complex-analytic subvariety.
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