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In their study on commutants of Hecke correspondences, Clozel-Ullmo [CU, 2003]
considered germs of holomorphic maps arising from an algebraic correspondence Y

which commutes with a given Hecke correspondence defined on the quotient X :=
Ω/Γ of an irreducible bounded symmetric domain by a torsion-free discrete group of
automorphisms Γ ⊂ Aut(Ω). Under certain conditions on the Hecke correspondence
they asked the question whether the algebraic subvariety Y ⊂ X ×X is modular in the
sense that Y ⊂ X ×X is a totally geodesic complex submanifold which descends from
the graph of an automorphism of Ω. They reduced the problem first to a differential-
geometric problem on the characterization of germs of measure-preserving holomorphic
maps f : (Ω; 0) → (Ω; 0) × · · · × (Ω; 0). Specifically, given an algebraic correspondence
Y ⊂ X × X such that the general fiber of the canonical projection pri : Y → Xi

of Y to the i-th factor Xi = X consists of precisely di points; i = 1, 2; then at a
general point x ∈ X, pr−1

2 (x) = {y1, · · · , yd2}, taking inverse images of pr2 we obtain
a germ of holomorphic map f0 : (X; x) → (X; y1) × · · · × (X; yd2). Lifting X locally
to its universal cover Ω and lifting each base point to 0 ∈ Ω we have equivalently
f : (Ω; 0) → (Ω; 0)× · · · × (Ω; 0). For 1 ≤ α ≤ d2 we write Ωα for the α-th direct factor
of Ωd2 , and πα : Ωd2 → Ωα for the canonical projection onto Ωα = Ω. Let dµΩ stand
for the volume form of the Bergman metric on Ω. Then, an algebraic correspondence
Y ⊂ X ×X is measure-preserving if and only if for a general point x ∈ X and for the
germ of holomorphic map f : (Ω; 0) → (Ω; 0)× · · · × (Ω; 0) defined as in the above, we
have f∗(π∗1dµΩ + · · ·+ π∗d2

dµΩ) = d1 dµΩ, Ωα being identified with Ω.

When Ω is the unit disk ∆ ⊂ C, a germ of measure-preserving holomorphic
map f : (∆; 0) → (∆; 0) × · · · × (∆; 0) is equivalently a holomorphic isometry f :
(∆, d1 ds2

∆; 0) → (∆, ds2
∆; 0)d2 , where ds2

∆ denotes the Bergman metric on ∆, i.e., the
Poincaré metric on ∆ of constant Gaussian curvature −1. In this case Clozel-Ullmo [CU]
showed that Graph(f) ⊂ C×Cd2 extends to an affine-algebraic subvariety in C×Cd2 , and
deduced as a consequence that f is totally geodesic whenever it arises from an algebraic
correspondence Y ⊂ X ×X on some finite-volume quotient X = ∆/Γ. For the general
problem of characterizing commutants of (a certain type of) Hecke correspondences on
finite-volume quotients X = Ω/Γ of irreducible bounded symmetric domains Ω, Clozel-
Ullmo [CU] did not solve the problem on germs of measure-preserving holomorphic
maps. In its place they further reduced the characterization problem for commutants
to another differential-geometric problem of characterizing germs of holomorphic isome-
tries f : (Ω, λ ds2

Ω; 0) → (Ω, ds2
Ω; 0)×· · ·×(Ω, ds2

Ω; 0), where ds2
Ω stands for the Bergman

metric on Ω, and where in the case of dim(Ω) > 1 the normalizing constant λ is a priori
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only known to be a positive real number. They observed that in the case where Ω is of
rank ≥ 2, any germ of holomorphic isometry f as in the above is necessarily totally geo-
desic as a consequence of the arguments on Hermitian metric rigidity in Mok (cf. [Mk1,
1987] and [Mk2, 1989]), and the total geodesy of f holds true without assuming that it
arises from an algebraic correspondence on some finite-volume quotient X = Ω/Γ. In
the remaining case of the complex unit ball Ω = Bn, n ≥ 2, Mok [Mk4] proved that f is
necessarily totally geodesic under the assumption that λ is a positive integer. A slight
modification of the arguments in [Mk4] yields the result also for an arbitrary normal-
izing constant λ > 0, and this generalization has been incorporated in Mok [Mk5, §3].
We note that even in the case of Ω = Bn, n ≥ 2, the germ of map f is totally geodesic
whenever it is a germ of holomorphic isometry, without further assuming that it arises
from algebraic correspondences. Here as in [CU] the proof proceeds first with proving
algebraic extension of Graph(f), but for the proof of total geodesy of the map we made
use of the functional identity on potential functions and the result of Alexander [Al]
characterizing automorphisms of Bn of complex dimension ≥ 2.

In this article we solve the problem of Clozel-Ullmo on the characterization of
germs of measure-preserving holomorphic maps f = (f1, · · · , fd2) : (Ω, d1 dµΩ; 0) →
(Ωd2 , π∗1dµΩ+· · ·+π∗d2

dµΩ; 0) for irreducible bounded symmetric domains Ω, where each
component map fα : Ω → Ωα, 1 ≤ α ≤ d2, is of maximal rank at some point. When Ω =
∆, by Clozel-Ullmo [CU], f is totally geodesic provided that it arises from an algebraic
correspondence Y ⊂ X × X on some finite-volume quotient X = ∆/Γ. Moreover,
without the latter assumption, in general f need not be totally geodesic as shown by the
nonstandard examples of Mok [Mk4] given by p-th root maps and their composites. In
the current article, we prove on the other hand that for irreducible bounded symmetric
domains Ω of dimension ≥ 2, the germ of measure-preserving holomorphic map f :
(Ω; 0) → (Ωd2 ; 0) is totally geodesic without further assumptions.

For the proof of our main results we make use of extension theorems in Several
Complex Variables. With respect to the Harish-Chandra realization Ω b Cn as a
bounded symmetric domain, it is known that the Bergman kernel K(z, w) on Ω is a
rational function in (z, w). It follows that by passing to unit sphere bundles the germ
of measure-preserving holomorphic map f : (Ω; 0) → (Ωd2 ; 0) induces a germ of CR-
mapping f̃ between certain algebraic hypersurfaces. By curvature considerations the
target algebraic hypersurface is pseudoconvex and strongly pseudoconvex at a general
point. We check that, modifying the base point of the germ of map f if necessary, f̃ maps
its base point to a strongly pseudoconvex point of the target algebraic hypersurface.
As a consequence, we can apply the result of Huang [Hu] to obtain an extension of
Graph(f) ⊂ Ω×Ωd2 to an affine-algebraic variety V ⊂ C×Cd2 , which may be regarded
as the ‘graph’ of a multivalent holomorphic map F from Cn into (Cn)d2 . When Ω is
the complex unit ball Bn of dimension n ≥ 2, after the step of algebraic extension we
conclude our argument again by using Alexander’s Theorem [Al], according to which
a nonconstant holomorphic map h : Ub → Cn, n ≥ 2, defined on a neighborhood
Ub of a boundary point b ∈ ∂Bn must necessarily agree with an automorphism of
Bn whenever h(Ub ∩ ∂Bn) ⊂ ∂Bn. The latter condition is checked for component
maps Fα, 1 ≤ α ≤ d2 of any local branch at a general boundary point b ∈ ∂Bn
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of the extended multivalent map F by means of the functional identity arising from
the measure-preserving property, and we conclude from Alexander’s result [Al] that F

restricts to a totally geodesic holomorphic embedding F
∣∣
Bn : Bn → (Bn)d2 . When Ω is

of rank ≥ 2 we make use of an analogous result due to Henkin-Tumanov [TK1], in which
automorphisms of an irreducible bounded symmetric domain Ω of rank ≥ 2 are given
a local characterization in terms of boundary points lying on the Shilov boundary. In
order to apply the result of Henkin-Tumanov [TK1], we show first of all that the lifting
of the bad set of the multivalent holomorphic map F on Cn lies on an affine-algebraic
variety which necessarily avoids general points on the Shilov boundary. Furthermore,
by means of the fine structure of ∂Ω (Wolf [Wo]), which decomposes ∂Ω into a disjoint
union of finitely many Aut0(Ω)-orbits, we show that a general point b ∈ Sh(Ω) of the
Shilov boundary Sh(Ω) is mapped into Sh(Ω) by each component map of a local branch
of the multivalent extension F , thereby allowing us to apply [TK1] and to conclude the
total geodesy of f : (Ω; 0) → (Ωd2 ; 0).

In the last section we give a new Alexander-type characterization theorem for au-
tomorphisms on irreducible bounded symmetric domains Ω of rank ≥ 2, where in place
of the Shilov boundary as considered by Henkin-Tumanov we consider a boundary-
preserving biholomorphism defined on a neighborhood of a point on the smooth locus
Reg(∂Ω) of the boundary. We deem it natural to present the latter Alexander-type
theorem as it gives an alternative argument to complete the proof of our Main Theorem
in a way parallel to the rank-1 case, and the new statement and its proof could provide
a useful tool in the future for the study of rigidity phenomena on irreducible bounded
symmetric domains of rank ≥ 2 related to the theme of the current article.
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the authors would like to thank Prof. Yum-Tong Siu for his comments that exten-
sion problems on holomorphic isometries between Kähler manifolds can be studied in
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doconvex, and the structure of the set of weakly pseudoconvex points is particularly
simple. The second of the authors would like to thank Prof. Xiaojun Huang for his
invitation to Rutgers University and for discussions in relation to his works on algebraic
extension on CR maps which are used in the current paper.

§1 Background materials and statement of results
(1.1) Motivation and statement of results. Let Ω be an irreducible bounded symmetric
domain, of complex dimension n, and Γ be a torsion-free discrete subgroup of Aut(Ω).
Write X := Ω/Γ. In the case where X is compact, by an algebraic correspondence on
X we will simply mean an irreducible subvariety Y ⊂ X ×X such that the restriction
to Y of the canonical projection to each of the two Cartesian factors is a surjective
finite map. When X is of finite volume with respect to the canonical measure but
non-compact, we consider a non-singular projective-algebraic model X of the minimal
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compactification Xmin, and regard X ⊂ X naturally as a quasi-projective manifold.
By an algebraic correspondence we will mean an irreducible quasi-projective subvariety
Y ⊂ X×X such that the restriction to Y of the canonical projection to each of the two
Cartesian factors is a surjective finite proper map. The assumption that Y ⊂ X×X is a
quasi-projective subvariety means equivalently that the topological closure Y ⊂ X ×X

(called the closure of Y in the sequel) is an irreducible projective-algebraic subvariety
(of complex dimension n). We are going to recall the notion of measure-preserving
algebraic correspondences on X = Ω/Γ taken from Clozel-Ullmo [CU]. For the basic
definitions we refer the reader to [CU, §1] and the references given there.

Denote by pri : Y → Xi the restriction to Y of the canonical projection of X×X →
Xi to the i-th factor Xi = X; i = 1, 2; and by pri : Y → Xi the analogue on Y . Write di

for the degree of pri; i = 1, 2. At a general point x ∈ X, pr−1
2 (x) = {y1, · · · , yd2}, taking

inverse images of pr2 we obtain a germ of holomorphic map f0 : (X; x) → (X; y1)×· · ·×
(X; yd2). By locally lifting X to its universal cover Ω with the base points identified
with 0 ∈ Ω we obtain a germ of holomorphic map f : (Ω; 0) → (Ω; 0)× · · · × (Ω; 0). For
1 ≤ α ≤ d2, we write Ωα for the α-th direct factor of Ωd2 , and πα : Ωd2 → Ωα for the
canonical projection onto Ωα = Ω.

By the canonical measure dµΩ on an irreducible bounded symmetric domain Ω
we will mean the volume form of the Bergman metric ds2

Ω on Ω. For a surjective
finite proper holomorphic map ϕ : M → Z from an irreducible complex-analytic space
M onto a complex manifold Z, there is the notion of the order (multiplicity) of ϕ at
a ∈ M , written µϕ(a), such that µϕ(a) = 1 whenever ϕ is unramified at a, and such
that

∑
a∈ϕ−1(z) µϕ(a) = s(ϕ), the sheeting number of ϕ : M → Z. Coming back

to the algebraic correspondence Y ⊂ X × X, for each x ∈ X we have the 0-cycle
TY .x := pr2∗pr∗1x, and for a function α on X we define T ∗Y α(x) :=

∑
z∈TY .x α(z). By

[CU, Lemma 1.1], T ∗Y transforms continuous functions α on X to continuous functions.
Denoting by dµX the volume form on X induced from dµΩ, the algebraic correspondence
Y ⊂ X×X is said to be measure-preserving ([CU, immediately after the proof of Lemma
1.1]) if and only if 1

d1

∫
X

T ∗Y α dµX =
∫

X
α dµX , noting that the normalizing factor 1

d1

is imposed by the special case of the constant function α ≡ 1. By Clozel-Ullmo [CU]
(cf. (2.1)) the algebraic correspondence Y ⊂ X ×X is measure-preserving if and only
if the germ of holomorphic map f = (Ω; 0) → (Ω; 0)d2 defined as in the above by taking
inverse images under pr2 on a neighborhood of a general point x ∈ X2 satisfies the
identity f∗(π∗1dµΩ + · · ·+ π∗d2

dµΩ) = d1dµΩ. In other words, f = (f1, · · · , fd2) satisfies

(\)
1
d1

d2∑
α=1

f∗αdµΩ = dµΩ.

In relation to a problem of characterizing modular correspondences of X among
algebraic correspondences, Clozel and Ullmo [CU] raised the following question: If an
algebraic correspondence preserves the canonical measure, is the correspondence nec-
essarily modular? To give an affirmative answer to the question, it suffices to prove
the total geodesy of a measure-preserving algebraic correspondence Y ⊂ X × X. Let
the Kähler form of (Ω, ds2

Ω) be ω =
√−1

∑
(gij̄dzi ∧ dz̄j) and g = det(gij̄). Then
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dµΩ =
(√−1

)n2

gdz1 ∧ · · · ∧ dzn ∧ dz̄1 ∧ · · · ∧ dz̄n. Now (\) can be rewritten as

(†)
d2∑

α=1

(g ◦ fα)
∣∣ det(Jfα)

∣∣2 = d1g,

where Jfα is the Jacobian matrix of fα. Clozel-Ullmo [CU] considered the special case
where Ω is the unit disk, and they proved

Theorem 1.1.1. (Clozel-Ullmo[CU]) Let Γ ⊂ Aut(∆) be a torsion-free lattice, and
X = ∆/Γ be the quotient Riemann surface, X be its uniquely determined compactifica-
tion to an algebraic curve. Let Y ⊂ X×X be an algebraic correspondence on X such that
the canonical projection pri : Y → Xi; i = 1, 2; is of degree di, where Xi denotes the i-th
direct factor of X ×X = X1 ×X2. Suppose the algebraic correspondence Y ⊂ X ×X

is measure-preserving. Let f = (f1, · · · , fd2) : (∆, d1 ds2
∆; 0) → (∆, ds2

∆; 0) × · · · ×
(∆, ds2

∆; 0) be a germ of measure-preserving holomorphic map arising from taking in-
verse images under pr2 at a general point x ∈ X. Then, Graph(f) ⊂ ∆×∆d2 ⊂ C×Cd2

extends to an affine-algebraic variety V ⊂ C × Cd2 which is the graph of a totally geo-
desic holomorphic embedding F : (∆, ds2

∆) → (∆, ds2
∆) × · · · × (∆, ds2

∆). In particular,
Y ⊂ X ×X is a modular correspondence.

Our main result in the current article is

Main Theorem. Let Ω b Cn be an irreducible bounded symmetric domain of complex
dimension ≥ 2, and dµΩ be the volume form of the Bergman metric on Ω. Suppose d1

and d2 are positive integers and f = (f1, · · · , fd2) : (Ω, d1 dµΩ; 0) → (Ωd2 , π∗1dµΩ + · · ·+
π∗d2

dµΩ; 0) is a measure-preserving holomorphic map such that each fα, 1 ≤ α ≤ d2,
is of maximal rank at some point. Then, d1 = d2 and f extends to a totally geodesic
holomorphic embedding f : Ω → Ωd2 .

Here in the statement of the the Main Theorem we do not assume that f arises
from an algebraic correspondence, but, following the question posed in Clozel-Ullmo, we
assume that the implicit normalizing constant λ, given by d1, is a positive integer, and
that each of the component map fα is of maximal rank at some point, so that det(Jfα)
does not vanish identically. A holomorphic isometry between bounded symmetric do-
mains up to normalizing constants with respect to the Bergman metric will be called
nonstandard if and only if it is not totally geodesic. In Mok [Mk5] one of the authors
has constructed nonstandard examples of holomorphic isometric (proper) embeddings
of the unit disk into polydisks. For this case, holomorphic isometries are the same
as measure-preserving holomorphic maps. Our Main Theorem says that, unlike the
case of the unit disk ∆, there is no nonstandard measure-preserving holomorphic map
F : Ω → Ωd2 whenever the irreducible bounded symmetric domain Ω is the complex
unit ball Bn of dimension n ≥ 2 or it is of rank ≥ 2. For holomorphic isometries arising
from algebraic correspondences in the case of the unit disk, the result of Clozel-Ullmo
(Theorem 1.1.1) says that the algebraic extension is forced to be totally geodesic be-
cause the algebraic extension V ⊂ ∆×∆d2 is equivariant with respect to Γ. Combining
Theorem 1.1.1 and our Main Theorem we have resolved the problem of Clozel-Ullmo
[CU] on measure-preserving algebraic correspondences, as follows.
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Theorem 1.1.2. Let Ω b Cn be an irreducible bounded symmetric domain, and Γ ⊂
Aut(Ω) be a torsion-free lattice. Write X := Ω/Γ and let Y ⊂ X × X be a measure-
preserving algebraic correspondence with respect to the canonical measure dµΩ on Ω.
Then, Y is necessarily a modular correspondence.

From Clozel-Ullmo [CU, Sections 2, 3], and in the terminology used there, Theorem
1.1.2 implies a characterization of algebraic correspondences commuting with certain
modular correspondences. In the notation of Theorem 1.1.2, an irreducible modular
correspondence on X is defined by an element g ⊂ Aut(Ω) such that g and g−1Γg are
commensurable. Defining ig : Ω → Ω × Ω by ig(z) = (z, g(z)), the modular corre-
spondence associated to g is given by Sg = π(ig(Ω)), where π : Ω × Ω → X × X is
the canonical projection. Following [CU], Sg will be called an interior modular corre-
spondence (correspondance intérieure) if the subgroup generated by Γ and g in Aut(Ω)
is discrete, and called an exterior modular correspondence (correspondance extérieure)
otherwise. From Theorem 1.1.2 here and the proofs of [CU, Theorems 2.10 and 3.8] (for
the case of the unit disk resp. the case of rank ≥ 2) it follows that the latter results
hold also in the case where Ω is of rank 1 and of dimension ≥ 2. In other words, we
have

Corollary 1.1.1. Let Ω b Cn be an irreducible bounded symmetric domain and identify
Aut(Ω) as a linear algebraic group G defined over Q. Let Γ ⊂ Aut(Ω) be a torsion-free
lattice which is a congruence subgroup of G and write X := Ω/Γ. Let Sg ⊂ X × X

be an exterior modular correspondence defined by g, where g is a rational point in G.
Suppose Y ⊂ X ×X is an algebraic correspondence which commutes with Sg. Then, Y

is necessarily a modular correspondence.

(1.2) Algebraic extension of germs of measure-preserving holomorphic maps. Denote
by di; i = 1, 2; the degree of the canonical projection of Y onto the i-th factor. To prove
the Main Theorem, we first establish the algebraic extension of the holomorphic map
f : U → Ωd2 induced by Y , where U is some open neighborhood of 0 ∈ Ω. Equivalently,
we consider f as a germ of holomorphic map at 0, written as f : (Ω; 0) → (Ω; 0)d2 . In
the sequel we will make no distinction between a germ of map and a representative of
the germ of map, thus in the latter interpretation for f it is understood that f refers
to a map on some open neighborhood U of 0, and Graph(f) both refers to the germ of
the graph and its representative, viz., the graph of f over U .

Consider the anti-canonical line bundle L of Ω equipped with the Hermitian metric
g = det

(
gij

)
, then (L, g) is a negative line bundle because −√−1∂∂̄ log g = Ric(Ω, ω)

which is negative definite. Let πα : Ωd2 −→ Ω be the canonical projection onto the α-th
factor and write (Lα, gα) = (π∗αL, g ◦ πα) for the pull-back of (L, g) by πα to Ωd2 . Let
(L,g) = (⊕d2

α=1Lα,⊕d2
α=1gα) be the direct sum of Lα equipped with the product metric.

It then follows that (L,g) is a seminegative Hermitian holomorphic vector bundle in
the sense of Griffiths.

Write the canonical coordinates in L and L as (z1, . . . , zn, u) and
(z1

1 , . . . , z1
n, . . . , zd2

1 , . . . , zd2
n , u1 . . . , ud2) respectively. Then the unit sphere bundles SL
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and SL of (L, d1g) and (L,g) are respectively defined by the equations

d1g(z1, . . . , zn)|u|2 = 1 (1)

and
d2∑

α=1

g(zα
1 , . . . , zα

n )|uα|2 = 1. (2)

Now by considering the derivative of f on the tangent bundle of Ω, we obtain an induced
locally defined map f̃ : V ⊂ (L, d1g) −→ (L,g) given by

(]) f̃ = (f1, . . . , fd2 ,det(Jf1)u, . . . ,det(Jfd2)u).

By (†), f̃ maps some non-empty connected open subset of SL into SL. We will make
use of the following theorem of Huang.

Theorem 1.2.1. (Huang [Hu]). Let M1 ⊂ Cm and M2 ⊂ Cm+k be real algebraic
hypersurfaces with m > 1 and k ≥ 0. Let p ∈ M1 be a strongly pseudoconvex point.
Suppose that h is a holomorphic mapping from a neighborhood Up of p to Cm+k so that
h(Up ∩M1) ⊂ M2 and h(p) is also a strongly pseudoconvex point, then h is algebraic.

In Huang [Hu], h is said to be algebraic if each of its component function satis-
fies a non-trivial algebraic equation. For our purpose, we will take another equivalent
definition, viz., h is algebraic if and only if Graph(h) is contained in an irreducible
affine-algebraic variety of the same dimension, i.e., of dimension m. Theorem 1.2.1 is
the Main Theorem of Huang [Hu]. In the original version of the theorem, M1 and M2

are assumed to be strongly pseudoconvex real-algebraic hypersurfaces and f is defined
on a neighborhood of M1 such that h(M1) ⊂ M2. However, we note that the proof
is local in nature, and the assumptions can be slightly relaxed as stated here in the
theorem.

To prove the algebraicity of f : U → Ωd2 in our situation, we first need two lemmas.
In what follows on Cn we write dV = (

√−1
)n2

dz1 ∧ · · · ∧ dzn ∧ dz̄1 ∧ · · · ∧ dz̄n, which
is 2n times the Euclidean volume form.

Lemma 1.2.1. Let Ω b Cn be a bounded symmetric domain in its Harish-Chandra re-
alization. Write KΩ(z, w) for the Bergman kernel of Ω. Then, there exists a polynomial
QΩ(z, w) which is holomorphic in z and anti-holomorphic in w such that KΩ(z, w) =

1
QΩ(z,w) . As a consequence, denoting by dµΩ the volume form of the Bergman metric on
Ω and writing dµΩ = gdV , g(z) is the restriction of a rational function in (z, z) to Ω.

Proof. The formula for the Bergman kernel KΩ(z, w) = 1
QΩ(z,w) on the bounded sym-

metric domain Ω can be found in Faraut-Korányi [FK, pp.76-77, especially Eqns.(3.4)
and (3.9)]. Since the automorphism group Aut(Ω) acts transitively on Ω, and both
KΩ(z, z)dV and dµΩ = gdV are invariant under Aut(Ω), we must have g(z) = cΩKΩ(z, z)
for some positive constant cΩ, and the lemma follows. ¤

Next, in order to apply the result of Huang (Theorem 1.2.1) on extension of CR-
maps between real-algebraic hypersurfaces, we have to check the condition of strong
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pseudoconvexity. For a Hermitian holomorphic vector bundle (E, h) on a domain D, we
denote by Θ = ΘE,h the associated End(E)-valued curvature (1,1) form. At each point
z ∈ D, the tensor Θz = Θ(z) can equivalently be considered as a Hermitian bilinear
pairing Qz on Ez ⊗T 0,1

z . Then, (E, h) is of strictly negative curvature in the dual sense
of Nakano if and only if Qz < 0 at each point z ∈ D. For the purpose of checking the
condition of strong pseudoconvexity we have

Lemma 1.2.2. Let (E, h) be a Hermitian vector bundle holomorphic of rank r on a
domain D ⊂ Cn with the Hermitian metric h. Let SE be the unit sphere bundle of
E. If (E, h) is seminegative in the sense of Griffiths, then SE is a pseudoconvex real
hypersurface in Cr+n. Furthermore, if (z, v) ∈ SE is a weakly pseudoconvex point, then
there exists some non-zero vector ξ ∈ T 1,0

z D such that Qz(v⊗ξ, v⊗ξ) = 0. In particular,
if (E, h) is strictly negative in the sense of Griffiths, then SE is strongly pseudoconvex.

Proof. Write π : E → D for the canonical projection. At z ∈ D, let U be a sufficiently
small open neighborhood of z such that π

∣∣
π−1(U)

: π−1(U) → U is holomorphically
trivial. Let (wi, vα), 1 ≤ i ≤ n, 1 ≤ α ≤ r, be local holomorphic coordinates over
E|U := π−1(U), where wi are holomorphic coordinates on U , wi(z) = 0 for 1 ≤ i ≤ n,
and vα are holomorphic fiber coordinates for the vector bundle E

∣∣
U

. We choose the
fiber coordinates adapted to the point z, i.e. hαβ̄(0) = δαβ and dhαβ̄(0) = 0, where δαβ

is the Kronecker delta. SE is defined by ϕ(wi; vα) =
∑

α,β hαβ̄(w1, . . . , wn)uαūβ = 1.
The complex Hessian of ϕ at (0, vα) is

[ ∑
µ,ν

∂2hµν̄

∂wi∂wj
(0)vµv̄ν 0

0 δαβ

]
. (1)

On the other hand, the curvature tensor at z is given by

Θµν̄ij̄(0) = − ∂2hµν̄

∂wi∂wj
(0) . (2)

Thus, given a (1, 0) tangent vector η =
n∑

α=1
ξi ∂

∂wi
+

r∑
α=1

λα ∂

∂uα
at (0, v) we have

√−1∂∂ϕ
( 1√−1

η ∧ η
)

= −
n∑

i,j=1

r∑
µ,ν=1

Θµν̄ij̄(0)vµvνξiξj +
r∑

α=1

∣∣λα
∣∣2 . (3)

By definition, (E, h) is seminegative in the sense of Griffiths at 0 if and only if
∑

µ,ν,i,j

Θµν̄ij̄(0)vµvνξiξj ≤ 0 , (4)

and it follows from (3) that the Levi form
√−1∂∂ϕ is semipositive on SE if and only

if Qz(v ⊗ ξ, v ⊗ ξ) ≤ 0 for any v ∈ Ez, ξ ∈ T 1,0
z . Moreover, it is strictly positive at
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(z, v), v 6= 0, unless there exists some nonzero ξ ∈ T 1,0
z such that Qz(v ⊗ ξ, v ⊗ ξ) =∑

Θµν̄ij̄(0)vµvνξiξj = 0, as desired. ¤

Since (L, d1g) is a (strictly) negative line bundle, SL is a strongly pseudoconvex
real-algebraic hypersurface in Cn+1 as g is rational for the Bergman metric. On the
other hand, (L,g) is seminegative in the sense of Griffiths, so we only know that SL
is a pseudoconvex real-algebraic hypersurface in Cd2(n+1). In order to apply Theorem
1.2.1, we need to show that f̃ maps some point in SL to a strongly pseudoconvex point
in SL.

From the definition of (L,g), we see that the weakly pseudoconvex points on SL
are those where at least one of the components uα vanishes, where (u1, . . . , ud2) are the
canonical fiber coordinates on L. Since none of the component maps of f is degenerate,
the set {det(Jf1) = 0} ∪ · · · ∪ {det(Jfd2) = 0} is a proper subvariety in U ⊂ Ω. By the
definition of f̃ as in (]) in the first paragraphs of (1.2), it follows that that f̃ maps some
point in SL to a strongly pseudoconvex point in SL. Therefore, by Theorem 1.2.1.,
Graph(f̃) ⊂ (Ω × C) × (Ωd2 × Cd2) extends to an irreducible affine-algebraic variety
W ⊂ (Cn ×C)× (

(Cn)d2 ×Cd2
)

of complex dimension n + 1. Restricting f̃ to Ω× {0}
we recover f , and as a consequence Graph(f) ⊂ Ω× Ωd2 extends to an affine-algebraic
variety V ⊂ Cn × (Cn)d2 of complex dimension n. To summarize, we have established
the following intermediate result toward the proofs of Main Theorem and Theorem
1.1.2, noting that the preceding arguments apply to any irreducible bounded symmetric
domain including the unit disk ∆.

Proposition 1.2.1. Let Ω b Cn be an irreducible bounded symmetric domain, and dµΩ

be the volume form of the Bergman metric on Ω. Suppose d1 and d2 are positive integers
and f = (f1, · · · , fd2) : (Ω, d1 dµΩ; 0) → (Ωd2 , π∗1dµΩ + · · · + π∗d2

dµΩ; 0) is a measure-
preserving holomorphic map. Then, Graph(f) ⊂ Ω× Ωd2 ⊂ Cn × (Cn)d2 extends to an
affine-algebraic variety V ⊂ Cn × (Cn)d2 .

From Proposition 1.2.1 we deduce readily

Proposition 1.2.2. Let Ω b Cn be an irreducible bounded symmetric domain in its
Harish-Chandra realization. Denote by dµΩ the canonical measure on Ω given by the
volume form of its Bergman metric. Let f = (f1, · · · , fd2) : (Ω; 0) → (Ωd2 , π∗1dµΩ +
· · ·+ π∗d2

dµΩ; 0) be a germ of measure-preserving holomorphic map. Then, there exists
an affine-algebraic subvariety R ⊂ Cn such that for any point b ∈ ∂Ω−R, the germ of
holomorphic map f at 0 ∈ Ω can be analytically continued along some continuous path
γ : [0, 1] → Ω−R satisfying γ([0, 1)) ⊂ Ω−R, γ(0) = 0 and γ(1) = b to a holomorphic
map into (Cn)d2 defined on a neighborhood Ub of b in Cn.

Proof. By Proposition 1.2.1, Graph(f) ⊂ Ω × Ωd2 ⊂ Cn × (Cn)d2 can be extended to
an affine-algebraic variety V ⊂ Cn × (Cn)d2 . Denote by M the compact dual of Ω,
so that Ω ⊂ Cn ⊂ M gives at the same time the Harish-Chandra embedding Ω ⊂ Cn

and the Borel embedding Ω ⊂ M . The compactification Cn ⊂ M is birational to
the standard compactification Cn ⊂ Pn. As a consequence, the topological closure
V ⊂ M×Md2 is a projective subvariety of complex dimension n. Denote by π0 : V → M

the canonical projection onto the factor M of M ×Md2 . Let S ⊂ V be the union of
9



the singular locus of V , the subset of Reg(V ) consisting of points where π0 fails to be
a local biholomorphism, and the set of points w ∈ V such that πα(w) ∈ M − Cn for
one of the canonical projections πα : V → M, 1 ≤ α ≤ d2, onto the α-th direct factor of
Md2 . Then S ⊂ V is a projective subvariety such that each irreducible component is of
complex dimension at most n− 1. By the Proper Mapping Theorem, E := π0(S) $M

is a subvariety of M . R := E ∩ Cn $ Cn is an affine-algebraic subvariety. Then
π0

∣∣
V−π−1

0 (R)
: V − π−1

0 (R) → Cn − R is a topological covering map. The rest of
Proposition 1.2.2 on analytic continuation follows readily. ¤

§2 Proof of the Main Theorem and Theorem 1.1.2
(2.1) Proof of the Main Theorem in the rank-1 case. From Proposition 1.2.1 we
have established the algebraic extension of the graph of the germ of measure-preserving
holomorphic map f : (Ω; 0) → (Ω; 0)d2 . To proceed we will make use of the real-
analytic functional identity satisfied by f and study boundary behavior of component
maps fα, 1 ≤ α ≤ d2, of the holomorphic map, still denoted by f , obtained by analytic
continuation along continuous paths on Ω−R. By means of algebraic extension and the
functional identity, we will obtain holomorphic maps defined on open neighborhoods of
a general boundary point which preserve the boundary, and we will need to make use
of the extension results due to Alexander [Al] in the rank 1 case, and due to Henkin-
Tumanov [TK1] in the case where Ω is of rank ≥ 2. We start with the rank-1 case.

Theorem 2.1.1. (Alexander [Al]) Let Bn b Cn be the complex unit ball of dimension
n ≥ 2. Let b ∈ ∂Bn, Ub be a connected open neighborhood of b in Cn, and f : Ub → Cn

be a nonconstant holomorphic map such that f(Ub ∩ ∂Bn) ⊂ ∂Bn. Then, there exists
an automorphism F : Bn → Bn such that F |Ub∩Bn ≡ f |Ub∩Bn .

Using the result on the algebraic extension of the germ of graph of a measure-
preserving map as given in Proposition 1.2.1 and Theorem 2.1.1 (Alexander’s Theorem)
we are now ready to prove the Main Theorem in the rank-1 case, i.e., for the complex
unit ball Bn, n ≥ 2.

Proof of the Main Theorem in the case of Bn, n ≥ 2. Recall that for an irreducible
bounded symmetric domain Ω b Cn in its Harish-Chandra realization, KΩ(z, w) stands
for the Bergman kernel on Ω and ds2

Ω stands for the Bergman metric on Ω. Denote by
dV the Euclidean volume form on Cn. Both the (n, n)-form KΩ(z, z)dV and the volume
form dµΩ of (Ω, ds2

Ω) are invariant under the action of the group Aut(Ω) of holomorphic
automorphisms. Since Aut(Ω) acts transitively on Ω, dµΩ = cΩKΩ(z, z)dV for some
constant cΩ > 0. From the functional identity (†) in (1.1) we deduce that

d2∑
α=1

KΩ(fα(z), fα(z))|det(Jfα(z))|2 = d1KΩ(z, z) . (1)

For Ω = Bn, the Bergman kernel on Bn is given by KBn(z, w) =
cn

(1− < z, w̄ >)n+1
for

some constant cn > 0. Hence, by (1)

d2∑
α=1

| det(Jfα(z))|2
(1− |fα(z)|2)n+1

=
d1

(1− |z|2)n+1
. (2)

10



Let b ∈ ∂Bn − R where R $ Cn is the affine-algebraic subvariety as in the statement
of Proposition 1.2.2. Then f : U → Ωd2 can be analytically continued along some
continuous path on Ω−R reaching b to give a holomorphic mapping on a neighborhood
Ub of b, still to be denoted f = (f1, · · · , fd2). Noting that det(Jfα(z)) is bounded
on U ′

b ∩ Bn for any neighborhood U ′
b of b in Cn relatively compact in Ub, applying the

functional equation (2) to f |Ub∩Bn and comparing the two sides near points on Ub∩∂Bn,
we conclude that for some fα, say f1, we must have |f1(b′)| = 1 for any b′ ∈ Ub ∩ ∂Bn,
i.e., f1(Ub ∩ ∂Bn) ⊂ ∂Bn. When n ≥ 2, by Alexander’s Theorem [Al] as stated here in
Theorem 2.1.1, f1|Ub∩Bn extends to an automorphism of Bn. Since an automorphism
preserves the volume form of the Bergman metric, we have

| det(Jf1(z))|2
(1− |f1(z)|2)n+1

=
1

(1− |z|2)n+1
. (3)

and it follows from Eqn.(2) that

d2∑
α=2

| det(Jfα(z))|2
(1− |fα(z)|2)n+1

=
d1 − 1

(1− |z|2)n+1
. (4)

If d1 − 1 > 0 the same argument can be repeated, and we conclude by induction that
there are exactly d1 of the components fα such that fα(Ub ∩Bn) ⊂ ∂Bn, say those fα

for which 1 ≤ α ≤ d1. What remains gives

d2∑

α=d1+1

1
(1− |fα(z)|2)n+1

|det(Jfα(z))|2 = 0 . (5)

The possibility d1 < d2 plainly cannot occur because each of the component maps fα

is assumed to be of maximal rank at some point, and the same property must be prop-
agated by analytic continuation to Ub, showing that each of the Jacobian determinants
det(Jfα(z)), 1 ≤ α ≤ d2, is not identically 0 on Ub. We have thus established in the
rank-1 case, where Ω = Bn, n ≥ 2, that in fact d1 = d2 and that f : (Bn; 0) → (Bn; 0)d2

extends to a totally geodesic holomorphic embedding F : Bn → (Bn)d2 , where each
component Fi : Bn → Bn is a biholomorphism. As a consequence, we have completed
the proof of the Main Theorem in the special case where Ω = Bn, n ≥ 2. ¤

(2.2) Boundary behavior of the algebraic extension along the Shilov boundary. For the
proof of the Main Theorem in the case of rank ≥ 2, to start with we need the following
special case of a result of Henkin-Tumanov [TK1, Theorem 1] analogous to Alexander’s
Theorem.

Theorem 2.2.1. (Henkin-Tumanov [TK1]) Let Ω b Cn be an irreducible bounded sym-
metric domain of rank ≥ 2 in its Harish-Chandra realization, and denote by Sh(Ω) ⊂ ∂Ω
its Shilov boundary. Suppose b ∈ Sh(Ω). Let Ub ⊂ Cn be a connected open neigh-
borhood of b in Cn, and f : Ub → Cn be an open holomorphic embedding such that
f(Ub ∩ Ω) = f(Ub) ∩ Ω and f(Ub ∩ Sh(Ω)) = f(Ub) ∩ Sh(Ω). Then, there exists an
automorphism F : Ω → Ω such that F |Ub∩Ω ≡ f |Ub∩Ω.
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Remarks The result of Henkin-Tumanov [TK1] is stated in the general form for
Cartesian products of irreducible bounded symmetric domains of complex dimension
≥ 2, and a complete proof is given there for irreducible classical domains of Type-I.
A simplification of the proof in the latter case is given in Henkin-Tumanov [TK2, §4]
basing on the use of geometric structures defined by irreducible Hermitian symmetric
spaces of the compact type of rank ≥ 2. (The work of Goncharov [Go] was cited in
[TK2], but the result needed was first due to Ochiai [Oc]). The scheme of proof in
[TK1] together with the simplification as given in [TK2] applies to yield Theorem 2.2.1.

Imitating the proof of the Main Theorem in the rank-1 case, we need to show
that there exists some point b on Sh(Ω) such that the germ of holomorphic mapping
f = (f1, · · · , fd2) : (Ω; 0) → (Ω; 0) × · · · × (Ω; 0) can be analytically continued along a
continuous path in Ω to a neighborhood of b ∈ Cn, and such that, with respect to any
choice of analytic continuation of f to Ub, one of the components of the mapping, say
f1 : Ub → Cn, satisfies f1(Ub ∩ Sh(Ω)) ⊂ Sh(Ω). To start with, we have

Lemma 2.2.1. With reference to Proposition 1.2.2 and in the notation there, the sub-
variety R $ Cn does not contain the Shilov boundary Sh(Ω).

Proof. In the notation of the proof of Proposition 1.2.2, the affine-algebraic variety
R ( Cn is exactly the common zero set of a finite number of polynomials {h1, · · · , h`}.
By the property of the Shilov boundary, given any continuous function s : Ω → C
such that s|Ω is holomorphic, the maximum of the moduli {|s(x)| : x ∈ Ω} is precisely
attained on the Shilov boundary. If Sh(Ω) were contained in R, then the maximum
modulus of each of the defining functions hi, 1 ≤ i ≤ `, would have to be 0, and hence
hi ≡ 0 on Cn, a plain contradiction. Thus, Sh(Ω)−R 6= ∅, as desired. ¤

For the proof of the Main Theorem we need some structure theory about bounded
symmetric domains regarding maximal polydisks and Harish-Chandra realizations. Let
Ω be an irreducible bounded symmetric domain. Write G for the identity component of
the group Aut(Ω) of biholomorphic automorphisms of Ω, and K ⊂ G for the isotropy
subgroup at the origin 0 ∈ Ω. Denote by g the Lie algebra of G, and by k the Lie
algebra of K. With respect to the the involution at 0 = eK of Ω we have the Cartan
decomposition g = k⊕m, where m is canonically identified with the real tangent space
TR0 (Ω) at 0 = eK. Equipping Ω with the Bergman metric, Ω can be identified with G/K

as a Riemannian symmetric manifold. Let GC be the complexification of G, KC ⊂ G

be the complexification of K in GC, and P ⊂ GC be the maximal parabolic subgroup
containing KC (as a Levi factor). Then M := G/P is the rational homogeneous manifold
which is the underlying complex manifold of the Hermitian symmetric manifold of the
compact type dual to Ω. As a complex manifold Ω can be identified with an open
subset of M by means of the Borel Embedding Theorem, given by the natural map
G/K ↪→ GC/P := M . Write gC for the (complex) Lie algebra of GC. The real Lie
algebra g is a real form of the complex Lie algebra gC, i.e., gC = g ⊗R C. We have
the Harish-Chandra decomposition g = m+ ⊕ kC ⊕ m− in standard notations (cf. Wolf
[Wo] and Mok [Mk2]), where m+ ⊕ m− = mC := m ⊗R C, m+ is canonically identified
with T0(Ω) = T 1,0

0 (Ω), m− is canonically identified with T0(Ω) = T 0,1
0 (Ω), kC (being the

complex Lie algebra KC) is the complexification of k, and p = kC⊕m− is the Lie algebra
12



of P ⊂ GC. If we fix a Cartan subalgebra h ⊂ k, and denote by ∆ the set of roots with
respect to h, then we have a decomposition of gC into the direct sum of hC = h⊗RC and
the (1-dimensional) eigenspaces gϕ, and T0(Ω) = m+ can be identified with the direct
sum of the eigenspaces gϕ as ϕ ranges over the set ∆+

0 of positive noncompact roots.

For each ϕ ∈ ∆ we write gϕ = Ceϕ. We choose eϕ as in Wolf [Wo, §3], as follows.
Denote by (·, ·) the restriction of the Killing form B of gC to the complexified Cartan
subalgebra hC, and by the same symbol the induced bilinear form on the dual space
(h?)C. For ϕ ∈ ∆ we define hϕ ∈ ih by the relation 2ϕ(h) = (ϕ,ϕ)(hϕ, h) for every
h ∈ h. We choose now root vectors eϕ ∈ gϕ subject to the normalization e−ϕ = eϕ,
[eϕ, e−ϕ] = hϕ, where conjugation in gC is taken with respect to the real structure given
by g ⊂ gC.

Regarding G/K as an open subset of M by the Borel embedding, the mapping
ξ : m+ → M = GC/P given by ξ(z) = exp(m)P is a biholomorphism onto a Zariski
open subset of M containing G/K. The inverse map η = ξ−1 : G/K

∼=−→ Ω b m+ ∼=
Cn is the Harish-Chandra embedding. Enumerating the positive noncompact roots as
∆+

0 = {ϕ1, · · · , ϕn}, and identifying a point z = z1eϕ1 + · · · zneϕn with (z1, · · · , zn), we
have obtained the Harish-Chandra realization Ω b Cn, and we will refer to (z1, · · · , zn)
as the Harish-Chandra coordinates.

Maximal polydisks Π ⊂ Ω can be constructed as follows. Two roots ϕ1, ϕ2 ∈ ∆
are said to be strongly orthogonal if and only if neither ϕ1 + ϕ2 nor ϕ1 − ϕ2 is a root.
When ϕ1 and ϕ2 are positive roots, ϕ1 + ϕ2 is never a root. Let Ψ ⊂ ∆+

0 be a maximal
set of mutually strongly orthogonal positive noncompact roots. Ψ consists of precisely
r elements, Ψ = {ψ1, · · · , ψr}, where r denotes the rank of Ω as a Hermitian symmetric
manifold. For each ψ ∈ Ψ, the real 3-dimensional vector space qψ := gψ+g−ψ+[gψ, g−ψ]
gives a Lie algebra isomorphic to su(1, 1), and Qψ := exp(qψ) ⊂ G gives a Lie group
isomorphic to SU(1, 1)/{±I} such that the orbit of 0 ∈ Ω under Qψ is a minimal disk
on Ω. T0(P ) ⊂ T0(Ω) ∼= m+ ⊂ g is spanned by root vectors belonging to a maximal
set of strongly orthogonal noncompact positive roots. Furthermore, from the strong
orthogonality condition QΨ := Qψ1 × · · · × Qψr acts as a group of automorphisms on
Ω and the orbit of 0 ∈ Ω under QΨ is a maximal polydisk Π ⊂ Ω passing through the
origin 0 ∈ Ω. We have

Theorem 2.2.2. (Polydisk Theorem, cf. Wolf [Wo, p.280]) Let Ω be a bounded sym-
metric domain of rank r, equipped with an Aut(Ω)-invariant Kähler metric g. Then,
there exists an r-dimensional totally geodesic complex submanifold Π biholomorphic to
the polydisk ∆r. Moreover, the identity component G of the group of automorphisms
Aut(Ω) acts transitively on the space of all such polydisks.

A maximal strongly orthogonal set Ψ ⊂ ∆+
0 can be constructed inductively, as

follows. Choose a lexicographic ordering on the set ∆ of roots with respect to h and
let ψ1 := µ ∈ ∆+

0 be the dominant root thus defined. If a set {ψ1, · · · , ψk} of mutually
strongly orthogonal positive noncompact roots has been defined, 1 ≤ k < r, we pick
ψk+1 ∈ ∆+

0 to be the highest root with respect to the chosen lexicographic ordering
among all positive noncompact roots ϕ strongly orthogonal to each ψi, 1 ≤ i ≤ k. This
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way we end up with a maximal strongly orthogonal set Ψ ⊂ ∆+
0 of cardinality equal to

r = rank(Ω) and a corresponding maximal polydisk Π ⊂ Ω. In our choice of Harish-
Chandra coordinates we will take ϕi = ψi for 1 ≤ i ≤ r, where ψ1 = µ is the dominant
root. By Wolf [Wo, §3, Eqn.(3.22)] in terms of Harish-Chandra coordinates, the maximal
polydisk Π as constructed in the above is precisely the unit polydisk ∆r × {0}.

Denote by B(·, ·) the Killing form on gC. With respect to the Cartan decomposition
g = k⊕m, the restriction B|k on the compact semisimple Lie algebra k is negative definite,
while the restriction B|m is positive. Write gc := k + im ⊂ gC for the compact real form
of gC. Let λ > 0 be any positive constant and define 〈·, ·〉 by 〈α, β〉 = −λB(α, τc(β)).
Since B|gc

is negative definite, 〈·, ·〉 is a Hermitian inner product with respect to the
real structure defined by gc ⊂ gC, i.e., with respect to conjugation given by τc, which
is invariant under K. The Harish-Chandra decomposition gC = m+ ⊕ kC ⊕ m− is an
orthogonal decomposition with respect to 〈·, ·〉. In terms of the conjugation τ0(g) = g on
gC with respect to g ⊂ gC, we have 〈m1,m2〉 = λB(m1,m2) for m1,m2 ∈ mC = m+⊕m−,
while 〈k1, k2〉 = −λB(k1, k2) for k1, k2 ∈ kC.

To study the boundary of the irreducible bounded symmetric domain Ω b Cn in
its Harish-Chandra realization we will make use of the Hermann Convexity Theorem,
as follows.

Theorem 2.2.3 (cf. Wolf [Wo, p.286]). Let Ω b Cn be an irreducible bounded sym-
metric domain in its Harish-Chandra realization. Let B(·, ·) be the Killing form on
gC, λ > 0 be any positive number, 〈·, ·〉 be the Hermitian inner product on gC defined
by 〈g, h〉 = −λB(g, τc(h)), and |g| = 〈g, g〉 1

2 . Then, the Harish-Chandra realization
Ω b m+ ∼= Cn is given by Ω = {ξ ∈ m+ : ‖ad(Re ξ)‖ < 1} , where ‖ · ‖ is the Banach
norm on ad(g) defined by ‖ad(u)‖ := sup

{‖ad(u)(g)‖ : g ∈ gC, |g| = 1
}

. In particular,
Ω b Cn is a bounded convex domain.

In the definition ‖ad(u)‖ is in fact the operator norm of ad(u) : gC → gC, and is
thus independent of the choice of λ > 0 in the definition of 〈·, ·〉. We will not make
use of the convexity but rather the more precise description of Ω as the unit ball with
respect to a Banach norm. We have

Lemma 2.2.2. Let Ω b Cn be an irreducible bounded symmetric domain in its Harish-
Chandra realization. Let Π ⊂ Ω be a maximal polydisk passing through 0 and suppose the
Harish-Chandra coordinates (z1, · · · , zn) have been chosen so that the basis vectors are
root vectors with respect to the Cartan subalgebra h ⊂ k, and (z1, · · · , zr) are Euclidean
coordinates on the maximal polydisk Π ⊂ Ω. Then, for 1 ≤ k ≤ r, the function π : Ω →
C defined by π(z) = zk maps Ω onto the unit disk ∆.

Proof. In the notation of Theorem 2.2.3, the restriction of 〈·, ·〉 to m+ defines a Her-
mitian inner product on m+. In terms of the Harish-Chandra coordinates (z1, · · · , zn)
as described we have Π = ∆r × {0} ⊂ Ω for the maximal polydisk Π. Suppose now
z ∈ Ω and z = aeµ +

∑
ϕ∈∆+

0 ,ϕ6=µ bϕeϕ. To prove the lemma it suffices to show that
|a| < 1, We normalize 〈·, ·〉 by choosing the constant λ > 0 such that |[eµ, eµ]| = 1.
With this normalization from standard calculations on sl(2,C), we have |eµ| = 1√

2
and
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|Re (eµ)| = 1
2 . We have

[z + z, eµ + eµ] = 2Re
(
a[eµ, eµ] +

∑
ϕ∈∆+

0
,ϕ 6=µ

bϕ[eϕ, eµ]
)

. (1)

Note that [eµ, eµ] ∈ ih is purely imaginary. Replacing z by eiθz, we may assume that a

is purely imaginary. For ϕ ∈ ∆+
0 distinct from 0, either [eϕ, eµ] is 0 or ϕ − µ ∈ ∆, in

which case [eϕ, eµ] is a generator of the root space gϕ−µ. The root spaces are mutually
orthogonal to each other and they are orthogonal to the complexified Cartan subalgebra
hC. Taking real parts it remains the case that the non-zero summands of the right-hand
side of (1) are mutually orthogonal. It follows that

2|a| ≤ |[2Re z, 2Re (eµ)]| = 4 |[Re z, Re (eµ)]| = 4 |ad(Re z)(Re (eµ))| < 4|Re (eµ)| = 2 ,

(2)
hence |a| < 1, as desired. ¤

Remarks

(a) From (2), the statement that z = aeµ lies on Ω if and only if |a| < 1 is equivalent
to the fact that ‖ad(Re(eµ)‖ = 1, which results from the Restricted Root Theorem
and is used in the proof of Hermann Convexity Theorem (cf Wolf [Wo, §3]).

(b) In terms of the Harish-Chandra embedding η : G/K
∼=−→ Ω b Cn, dη(eϕk

modP ) =
∂

∂zk
. The normalization on 〈·, ·〉 chosen in the proof is precisely the one with respect

to which
∣∣ ∂
∂zk

∣∣ = 1√
2

, i.e., the one for which, writing zk = xk + iyk, xn+k := yk, the

set
{

∂
∂x1

, · · · , ∂
∂x2n

}
constitutes an orthonormal basis of the underlying real vector

space of Cn. In other words, 〈·, ·〉 induces the standard Euclidean metric on Cn.
The latter interpretation is however irrelevant to the proof.

In order to apply the result of Henkin-Tumanov [TK1] (Theorem 2.2.1 here) to our
situation of measure-preserving holomorphic maps in the higher rank case, we prove the
following general result on biholomorphisms defined on a neighborhood of a point on
the Shilov boundary.

Lemma 2.2.3. Let Ω b Cn be an irreducible bounded symmetric domain in its Harish-
Chandra realization, and denote by Sh(Ω) its Shilov boundary. Let U ⊂ Cn be a con-
nected open set such that U ∩ Sh(Ω) 6= ∅. Let h : U → Cn be a biholomorphism onto
an open subset of Cn (regarded as a Euclidean space containing a copy of Ω in its
Harish-Chandra realization) such that h(U ∩ Ω) ⊂ Ω and such that h(U ∩ ∂Ω) ⊂ ∂Ω.
Then, h(U ∩ Sh(Ω)) ⊂ Sh(Ω). As a consequence, there exists H ∈ Aut(Ω) such that
H

∣∣
Ub∩Ω

≡ h.

Proof. Each γ ∈ G0 extends to an automorphism of the compact dual M , and as such
it restricts to a homeomorphism of Ω mapping ∂Ω homeomorphically onto ∂Ω. By
the structure of boundary components of bounded symmetric domains (cf. Wolf [Wo]),
∂Ω decomposes into the union of exactly r orbits under the action of G0. This can
be deduced from the Polydisk Theorem, as follows. Denote by Π ⊂ Ω, Π ∼= ∆r, a
maximal polydisk passing through 0 defined by a maximal strongly orthogonal subset
Ψ ⊂ ∆+

0 of noncompact positive roots, Ψ = {ψ1, · · · , ψr}. Denote by (z1, · · · , zr) the
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Euclidean coordinates on Π, so that ∂
∂zi

∈ gψi and Π = ∆r in terms of these coordi-
nates. Extend the Euclidean coordinates (z1, · · · , zr) to Harish-Chandra coordinates
(z1, · · · , zr; zr+1, · · · zn) on Ω so that each ∂

∂zk
, 1 ≤ k ≤ n, is a root vector belonging to

a positive noncompact root. By the Polydisk Theorem each point x ∈ Ω is equivalent
under the action of K to a point y ∈ P . We have a decomposition ∂P = A1∪A2∪· · ·Ar,
where Ak consists of boundary points b = (b1, · · · , br) in which exactly k of the coordi-
nates bi are of norm 1, and exactly r − k of the coordinates bi are of norm strictly less
than 1. Denote by εk the point (1, · · · , 1; 0, · · · , 0) on ∂P with the first k coordinates
equal to 1 and the other r − k coordinates equal to 0. Thus, if we write ei for the i-th
unit vector, 1 ≤ i ≤ n, then εk = e1 + · · · + ek. Now a point b ∈ ∂P lies on Ak if and
only if it is of the form γ(εk) for some γ ∈ Aut(P ), noting that Aut(P ) is a semi-direct
product of Aut0(P ) = (Aut(∆))r with the permuting group Sr on a set of r elements,
where σ ∈ Sr acts by σ(z1, · · · , zr) = (zσ(1), · · · , zσ(r)). Now the full group Aut(P )
of automorphisms extends to automorphisms of Ω (cf. Wolf [Wo]). Hence, given any
b ∈ ∂Ω, there exists γ ∈ G such that γ(b) = εk for some k, 1 ≤ k ≤ r. Furthermore,
for 1 ≤ k < ` ≤ r, εk and ε` are inequivalent under the action of G. As a consequence,
we have a decomposition ∂Ω = E1 ∪ E2 ∪ · · · ∪ Er into the disjoint union of orbits
Ek := Gεk. We claim

([) Let 1 ≤ ` ≤ r and write K` := E` ∪E`+1 ∪ · · · ∪Er. Then, b ∈ K` is a smooth point
of K` if and only if b ∈ E`.

We observe first of all that for 1 ≤ k ≤ r−1, Ek+1 is always in the topological closure of
Ek, as can be seen from the action of Aut0(P ) on ∂P . To prove ([) we may assume that
` < r and it suffices to show that any point b ∈ E`+1 cannot be a smooth point of K`.
Since G acts transitively on each Ek, it suffices to show that ε`+1 /∈ Reg(K`). Suppose
ε`+1 were a smooth point of K`. Then, the real tangent space TRε`+1

(K`) must contain
limits of real vectors vj tangent to pj , where (pj) is any sequence of points lying on
E` ⊂ Reg(K`) and converging to ε`+1. In particular, writing zk = xk +

√−1yk as usual
for 1 ≤ k ≤ n, the point p = ε` + z`e`+1 lies on E` whenever |z`| < 1, and the vector
v = ∂

∂x`+1
lies on TRp (E`), and thus v ∈ TRε`+1

(K`). Since z`+1(ε`+1) = 1, it follows that
there exists some point b ∈ K` such that |z`+1(b)| > 1, contradicting Lemma 2.2.2.

We proceed to prove h(U ∩ Sh(Ω)) ⊂ Sh(Ω) by induction. It suffices to consider
the case where rank(Ω) := r ≥ 2. By ([), Reg(∂Ω) = E1. Since h : U → Cn is
an open embedding such that h(U ∩ ∂Ω) ⊂ ∂Ω, a singular point of U ∩ ∂Ω must be
mapped by h to a singular point of ∂Ω. In other words h(U ∩ K2) ⊂ K2. If Ω is of
rank 2 then K2 = E2 = Sh(Ω) and we are done. If r ≥ 3, let ` be any integer such
that 2 ≤ ` < r. Suppose by induction hypothesis we have h(U ∩ K`) ⊂ K`. By ([),
Reg(K`) = E`, i.e., Sing(K`) = K`+1, and exactly the same argument as in the above
shows that h(U ∩ K`+1) ⊂ K`+1. Thus, by induction we reach ` = r, showing that
h(U ∩Kr) ⊂ Kr. But Kr is nothing other than the Shilov boundary Sh(Ω) and we have
shown that h(U ∩ Sh(Ω)) ⊂ Sh(Ω). By the Theorem of Henkin-Tumanov (Theorem
2.2.1 here), there exists H ∈ Aut(Ω) such that h|U∩Ω = H|U∩Ω, as desired. ¤

(2.3) Proof of the Main Theorem and its consequences in the case of rank ≥ 2. We
are ready to complete the proof of the Main Theorem and Theorem 1.1.2. To start with
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we need the following standard fact about the Bergman kernel on bounded symmetric
domains.

Lemma 2.3.1. On an irreducible bounded symmetric domain Ω b Cn in its Harish-
Chandra realization, denote by KΩ(z, w) the Bergman kernel. Write ϕΩ(z) := KΩ(z, z).
Then, ϕΩ(z) is an unbounded exhaustion function on Ω.

Proof. Write n := dimC(Ω) and r := rank(Ω). In the statement of Lemma 1.2.1, we
have KΩ(z, w) = 1

Q(z.w) , where Q is a polynomial in (z1, · · · , zn; w1, · · · , wn) such that
Q(z, z) 6= 0 whenever z ∈ Ω. More precisely, Q(z, w) = h(z, w)p, where h(z, w) is some
polynomial in (z1, · · · , zn; w1, · · · , wn) and p is a positive integer, with the following
property (cf. Faraut-Korányi [FK, pp.76-77]). Let Π ∼= ∆r be a maximal polydisk
on Ω passing through 0. We may choose Harish-Chandra coordinates such that Π is
exactly the unit polydisk ∆r ×{0}. For z ∈ Ω, there exists γ ∈ K = Aut0(Ω) such that
γ(z) = (a1, · · · , ar) ∈ P and we have

h(z, z) = (1− |a1|2)× · · · × (1− |ar|2) .

We may normalize a1, · · · , ar; ai = ai(z); so that each ai is nonnegative and we have
a1 ≥ · · · ≥ ar ≥ 0, and refer to (a1(z), · · · , ar(z)) as the normal form of z modulo K.
Then, a sequence of points (zk)∞k=0 is discrete if and only if a1(zk) → 1 as k →∞ so that
h(zk, zk) → 0 as k →∞. It follows that ϕΩ(z) = KΩ(z, z) is an exhaustion function, as
desired. ¤

In order to apply the result of Henkin-Tumanov (Theorem 2.2.1) in the case of rank
≥ 2 in analogy to using Alexander’s Theorem (Theorem 2.1.1) in the rank-1 case, we
need to consider topological properties concerning the structure of ∂Ω of the Harish-
Chandra realization Ω b Cn. More precisely, we will need the following connectedness
statement.

Lemma 2.3.2. Let Ω b Cn be an irreducible bounded symmetric domain in its Harish-
Chandra realization, and denote by Sh(Ω) ⊂ ∂Ω its Shilov boundary. Let p ∈ Sh(Ω) be
any point on the Shilov boundary, Reg(∂Ω) be the smooth locus of ∂Ω, and Q′

p ⊂ ∂Ω
be any connected open neighborhood of p on ∂Ω. Then, there exists a connected open
neighborhood Qp of p in ∂Ω such that Qp ⊂ Q′

p and such that Qp∩Reg(∂Ω) is connected.

Proof. We will make use of a canonical unbounded realization of the bounded symmetric
domain Ω. By Korányi-Wolf [KW] there is a biholomorphism Φ : Ω → D of Ω onto a
Siegel domain D ⊂ Cn of the first or second kind such that Φ(p) = 0, where Φ−1 is a
Cayley transform in the terminology of [KW]. Siegel domains were defined in Pyatetskii-
Shapiro [Py]. A Siegel domain D ⊂ Cn of the first kind is a tube domain over a cone
V ⊂ Rn where V does not contain any affine line. A Siegel domain of the second kind
D ⊂ Cn1 × Cn2 defined by D = {(z1, z2) : Im(z1) − F (z2, z2) ∈ V }, where V ⊂ Rn1 is
an open convex cone not containing any affine line, and where F : Cn2 × Cn2 → Cn1

is a Cn1-valued Hermitian form such that F (z2, z2) ∈ V for any non-zero z2 ∈ Cn2 . In
both cases D ⊂ Cn will be referred to as a Siegel domain in the sequel. When the Siegel
domain D is of the first kind, for any positive real number t the mapping αt(z) = tz is an
automorphism of D. When D is of the second kind, the mapping αt(z1, z2) = (tz1,

√
tz2)
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is an automorphism of D. In either case αt is a complex linear map, and it extends
therefore to a homeomorphism of D = D ∪ ∂D such that αt(D) = D, αt(∂D) = ∂D,
αt(0) = 0. Write Ω b Cn ⊂ M to incorporate both the Harish-Chandra realization and
the Borel embedding Ω ⊂ M . The inverse Cayley transform Φ : Ω → D is the restriction
to Ω of an automorphism of M , still to be denoted by Φ, where we have D ⊂ Cn ⊂ M

canonically. The affine part Sh[(D) ⊂ Cn of the Shilov boundary Sh(D) ⊂ M is given
by Sh[(D) = {(z1, z2) ∈ Cn1 × Cn2 : Im(z1) = F (z2, z2)}. In particular, 0 ∈ ∂D is a
point on the Shilov boundary.

In terms of an unbounded realization Φ : Ω → D as a Siegel domain, Φ(p) = 0 we
have equivalently to prove that, given any connected open neighborhood P ′0 ⊂ ∂D of 0
in ∂D, there exists a connected open neighborhood P0 of 0 in ∂D, such that P0 ⊂ P ′0
and such that P0 ∩ Reg(∂D) is connected. Without loss of generality we may assume
that P ′0 b ∂D. Define P ]

0 :=
⋃

0<t<1 αt(P ′0), P ]
0 b ∂D. Let now s be a sufficiently

small positive number such that αs(P
]
0) ⊂ P ′0 and we define P0 := αs(P

]
0) ⊂ P ′0. By

construction αt(P0) ⊂ P0 for 0 < t ≤ 1.

We proceed to prove that P0∩Reg(∂D) is path-connected, i.e., given any two points
q1, q2 ∈ P0 ∩ Reg(∂D), there exists some continuous path µ on P0 ∩ Reg(∂D) joining
q1 to q2. Write Φ−1(qi) := bi ∈ ∂Ω; i = 1, 2. From ([) in Lemma 2.2.3 the smooth
locus Reg(∂Ω) ⊂ ∂Ω is an orbit under the identity component G0 of Aut(Ω) and it is
hence connected. Thus there exists a continuous path γ on ∂Ω joining b1 to b2. The
hypersurface H := M −Cn corresponds to a hypersurface L := Φ−1(H) ⊂ M such that
Φ−1(Reg(∂D)) = Reg(∂Ω) − L. (Here ∂D stands for the boundary of D in Cn, not in
M .) For the proof of Lemma 2.2.2 in what follows without loss of generality we will
assume that the irreducible bounded symmetric domain Ω is of rank ≥ 2. Now H ⊂ M

is of complex codimension 1, and hence L∩Reg(∂Ω) is at least of real codimension 1 in
Reg(∂Ω). If the codimension is 1, then Reg(∂Ω) must contain some open subset of L,
which is impossible since any locally closed complex submanifold lying on Reg(∂Ω) must
be contained in a boundary component of maximal dimension on ∂D, and the latter are
necessarily of real codimension ≥ 3 whenever Ω is an irreducible bounded symmetric
domain of rank ≥ 2. Thus, L∩Reg(∂Ω) is at least of real codimension 2, and it follows
that we can choose a continuous path on Reg(∂Ω) − L joining b1 to b2. Equivalently,
we can find a continuous path ν : [0, 1] → Reg(∂D) joining q1 to q2. Choose now
ε > 0 sufficiently small so that αε(ν([0, 1])) ⊂ P0. Since Reg(∂D) is invariant under the
automorphism αt, t > 0, we have αε(ν([0, 1])) ⊂ P0 ∩ Reg(∂D). Thus αε(q1) is joined
to αε(q2) by αε ◦ ν on P0 ∩ Reg(∂D). On the other hand, αt(qi) ∈ P0 ∩ Reg(∂D) for
0 < t ≤ 1; i = 1, 2. Thus, for i = 1, 2 the point qi is joined to αε(qi) ∈ P0 ∩ Reg(∂D)
through αt(qi) as t decreases from 1 to ε. It follows that for an arbitrary pair of points
q1, q2 ∈ P0 ∩ Reg(∂D), q1 is joined to q2 by a continuous path on P0 ∩ Reg(∂D), and
the latter is path-connected, hence connected, as desired. ¤
Remarks ∂Ω ⊂ Cn is a semi-analytic subset, and as such it is locally connected [ÃLo].
Hence, given any open neighborhood Up ⊂ Cn of p in Cn, there exists some connected
open neighborhood Q′

p ⊂ ∂Ω ∩ Up of p in ∂Ω. Lemma 2.3.2 is a topological statement,
and it can also be derived from the structure of ∂Ω as a semi-analytic set and the fact
that the singular locus Sing(∂Ω) := ∂Ω−Reg(∂Ω) ⊂ ∂Ω is of real codimension ≥ 2. In
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fact, Q′p ∩ Reg(∂Ω) is already connected.

We are now ready to give a proof of the Main Theorem when rank ≥ 2.

Proof of the Main Theorem for rank ≥ 2. In the statement of the Main Theorem recall
that Ω b Cn is an irreducible bounded symmetric domain of complex dimension at
least 2 in its Harish-Chandra realization, and f = (f1, · · · , fd2) : (Ω, d1 dµΩ; 0) →
(Ωd2 , π∗1dµΩ + · · ·+ π∗d2

dµΩ; 0) is a measure-preserving holomorphic map. Furthermore,
in the notation of the statement of Proposition 1.2.2, for some affine-algebraic variety
R $ Cn, and for every b ∈ ∂Ω−R the germ of holomorphic map f can be analytically
continued along some continuous path in Ω − R to a holomorphic map into (Cn)d2

defined on a neighborhood Ub of b in Cn. We still denote by f = (f1, · · · , fd2) such
an analytic continuation on Ub. By the structural equation (†) in (1.1) for measure-
preserving holomorphic maps we have

d2∑
α=1

KΩ(fα(z), fα(z))|det(Jfα(z))|2 = d1KΩ(z, z) , (1)

By Lemma 2.3.1, KΩ(z, z) = 1
h(z,z)p is an exhaustion function. Here h(z, w) is a polyno-

mial in z and w such that h(z, z) > 0 whenever z ∈ Ω and h(z, z) = 0 whenever z ∈ ∂Ω.
Let b ∈ Sh(Ω)−R, which is non-empty by Lemma 2.2.1. Define ϕ(z) := −h(z, z). Then
ϕ(z) < 0 for z ∈ Ω and ϕ(z) = 0 for z ∈ ∂Ω, so that ϕ is an algebraic (in particular
real-analytic) defining function of Ω b Cn. Imitating the proof of the rank-1 case in
(2.1) for Bn, n ≥ 2, we assert that one of the components fα : Ω → Ω, say f1, must sat-
isfy f1(Ub ∩ ∂Ω) ⊂ ∂Ω, which is not altogether obvious when rank(Ω) ≥ 2. By Lemma
2.3.2, without loss of generality we may assume that for Qb := Ub ∩ ∂Ω, Qb ∩ Reg(∂Ω)
is connected. Write ϕ(z) := h(z, z). From the definition of f by analytic continuation
and from the functional equation (1) it follows that f(Ub ∩ Ω) ⊂ Ωd2 . In particular
fi(Ub∩Ω) ⊂ Ω for any i, 1 ≤ i ≤ d2. Again from (1) we can choose a component, say f1

after renumbering the components if necessary, such that f1(Nb) ⊂ ∂Ω for some non-
empty open subset Nb ⊂ Qb. In order to apply the extension result of Henkin-Tumanov
stated here in [(2.2), Theorem 2.2.1], we have to check that f1(Ub ∩ ∂Ω) ⊂ ∂Ω. Now
ψ := ϕ ◦ f1 : Ub → R is a real-analytic function which vanishes on the non-empty open
subset Nb ∩ Reg(∂Ω) ⊂ Qb ∩ Reg(∂Ω), which is connected. From the real-analyticity
of ψ and the Identity Theorem for real-analytic functions it follows that ψ must van-
ish identically on the dense open subset Qb ∩ Reg(∂Ω) ⊂ Qb, hence identically on
Qb = Ub ∩ ∂Ω. Since f1(Ub ∩Ω) ⊂ Ω and ϕ|Ω < 0, it follows from ψ

∣∣
Qb
≡ 0 that in fact

f1(Ub∩∂Ω) ⊂ ∂Ω. By Lemma 2.2.3, we have furthermore f1(Ub∩Sh(Ω)) ⊂ Sh(Ω), and
there exists an automorphism F1 : Ω → Ω such that F1 agrees with f1 on Ub ∩ Ω. The
proof of the Main Theorem for the general case then follows exactly as in the rank-1
case. ¤

Finally, combining the Main Theorem and the result of Clozel-Ullmo (Theorem
1.1.1) we deduce Theorem 1.1.2.

Proof of Theorem 1.1.2. Recall that Ω b Cn is an irreducible bounded symmetric
domain in its Harish-Chandra realization and Γ ⊂ Aut(Ω) is a torsion-free discrete
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group of automorphisms such that X := Ω/Γ is of finite volume with respect to the
canonical measure induced by the Bergman metric ds2

Ω on Ω. Let Y ⊂ X × X be a
measure-preserving algebraic correspondence. In the case where Ω = ∆, by the result
of Clozel-Ullmo (Theorem 1.1.1) the algebraic correspondence Y is necessarily modular.
When Ω b Cn is of complex dimension greater than 1, by the Main Theorem any germ of
measure-preserving holomorphic map f : (Ω, d1dµΩ; 0) → (Ωd2 , π∗1dµΩ + · · ·+π∗d2

dµΩ; 0)
is already totally geodesic, and Theorem 1.1.2 follows. ¤

Proof of Corollary 1.1.1. Corollary 1.1.1 follows immediately from Theorem 1.1.2 and
from the same argument as in Clozel-Ullmo [CU, Theorems 2.10 and 3.8]. ¤

(2.4) From algebraic extension to total geodesy owing to Γ-equivariance: a differential-
geometric proof in the case of the Poincaré disk. To make the article more self-
contained, for the proof of Theorem 1.1.2 in the case of Ω = ∆ we will provide an
alternative argument deducing the total geodesy of f from the algebraicity of Graph(f)
and from Γ-equivariance. We use a differential-geometric argument by studying the
boundary behavior of f . In the case of the Poincaré disk the Bergman metric is given
by ds2

∆ = 2Re
(

2dw⊗dw
(1−|w|2)2

)
, where w is the Euclidean coordinate on ∆.

Proof of Theorem 1.1.2 from the algebraic extension by differential-geometric means.
By the measure-preserving property of f = (f1, · · · , fd2) we deduce

d2∑
α=1

2|f ′α(w)|2(
1− |fα(w)|2)2 =

2d1(
1− |w|2)2 , (1)

on a neighborhood of 0 ∈ ∆. By Proposition 1.2.2., for a general point b ∈ ∂∆, there
exists an open neighborhood Ub of b in C such that f = (f1, · · · , fd2) admits an analytic
continuation along some continuous path in ∆ to a holomorphic map, still denoted as
f = (f1, . . . , fd2), such that fα(Ub ∩ ∆) ⊂ ∆ for any i, 1 ≤ α ≤ d2. The functional
identity (1) then holds true for this branch of the holomorphic map f on Ub. Suppose
fα(Ub ∩ ∂∆) ⊂ ∂∆. Clearly f ′α 6≡ 0 on Ub ∩ ∂∆. Choosing b ∈ ∂∆ sufficiently general
and shrinking Ub if necessary we may assume that f ′α(p) 6= 0 for p ∈ Ub ∩ ∂∆. Then,
there exists a smooth function ϕα on Ub such that 1 − |fα(w)|2 = (1 − |w|2)eϕα(w) on
Ub and we have

|f ′α(w)|2(
1− |fα(w)|2)2 = − ∂2

∂w∂w
log(1− |fα|2)

= − ∂2

∂w∂w
log(1− |w|2)− ∂2ϕα

∂w∂w
=

1
(1− |w|2)2 −

∂2ϕα

∂w∂w
. (2)

If we choose the point b ∈ ∂∆ to be sufficiently general and the open neighborhood
Ub to be sufficiently small, by comparing the boundary behavior of both sides of (2)
as w ∈ Ub approaches b, we conclude readily that exactly d1 of the functions fα; say
i = 1, · · · , d1; map boundary points to boundary points, i.e., fα(Ub ∩ ∂∆) ⊂ ∂∆ for
1 ≤ α ≤ d1, and fβ(Ub) b ∆ for d1 + 1 ≤ β ≤ d2. From (1), (Ub ∩ ∆, f∗ds2

∆d2 ) is of
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constant Gaussian curvature − 1
d1

. We may assume that f is an embedding on Ub. Write
Z = f(Ub ∩∆). For w ∈ Ub ∩∆ denote by η(w) ∈ Tf(w)(Z) a vector of unit length with
respect to ds2

∆d2 . Denote by σ the second fundamental form of Z as a (locally closed)
complex submanifold of ∆d2 . By the Gauss equation we have

R
η(w)η(w)η(w)η(w)

− ‖σ(f(w))‖2 = − 1
d1

. (3)

For w ∈ ∆, write δ(w) = 1− |w| for the Euclidean distance to the boundary ∂∆. From
(2), writing f ′(w) = (f ′1(w), · · · , f ′d2

(w)), it follows that the tangent vector f ′α(w) ∂
∂zi

is

of length
√

2
1−|w|2 + O(δ(w)) for 1 ≤ α ≤ d1, and of length O(1) for d1 + 1 ≤ α ≤ d2. It

follows readily that η(w) is equivalent under the action of Aut(∆d2) to the unit vector
ηw ∈ T0(∆d2) given by

ηw =
1√
2d1

(
1 + O

(
δ(w)2

)
, · · · , 1 + O

(
δ(w)2

)
; O(δ(w)), · · · , O(δ(w))

)
(4)

where precisely the first d1 components are of the form 1 + O
(
δ(w)2

)
. Comparing (3)

and (4) we conclude that

R
η(w)η(w)η(w)η(w)

= − 1
d1

+ O
(
δ(w)2

)
; hence ‖σ(f(w))‖ = O(δ(w)) . (5)

As a consequence, f : Ub ∩ ∆ → Z ⊂ ∆d2 is asymptotically totally geodesic as w

approaches Ub ∩ ∂∆. On the other hand, since Γ ⊂ Aut(∆) is a lattice, for almost
every point b′ ∈ Ub ∩ ∂∆, there exists a sequence of elements γj ∈ Γ such that γj(x)
approaches the boundary point b′ for any x ∈ ∆. If we pick x ∈ Ub∩∆, for j sufficiently
large γj(x) ∈ Ub ∩∆, and we have ‖σ(f(x))‖ = ‖σ(f(γj(x)))‖ in view of the way that
f is defined from Y ⊂ X ×X, X = ∆/Γ. Taking the limit as j tends to ∞ we conclude
from the asymptotic total geodesy of f on Ub ∩ ∆ that in fact σ(f(x)) = 0 for any
x ∈ Ub∩∆. As a consequence, f : Ub∩∆ → ∆d2 is in fact a totally geodesic embedding
such that fα extends to an automorphism Fα ∈ Aut(∆) for 1 ≤ α ≤ d1 and fα is a
constant function for d1 + 1 ≤ α ≤ d2. However from the way that f is defined from an
algebraic correspondence it follows that each component map fk must be of maximal
rank at some point, hence d1 = d2, and f : (∆; 0) → (∆; 0)d2 extends to a totally
geodesic embedding F congruent to the diagonal map Φ(w) = (w, · · · , w) in the sense
that ψ ◦ f ◦ ϕ = Φ for some ϕ ∈ Aut(∆), ψ ∈ Aut(∆d2). In particular, Y ⊂ X ×X is a
modular correspondence, as desired. ¤

§3 An Alexander-type theorem for automorphisms of irreducible bounded
symmetric domains of rank ≥ 2 in terms of smooth boundary points

(3.1) Alternative proof of Main Theorem in the case of rank ≥ 2 by a new Alexander-type
characterization theorem For an alternative way to complete the proof of Main Theo-
rem we give here another Alexander-type characterization theorem for automorphisms
of irreducible bounded symmetric domains Ω of rank ≥ 2 in their Harish-Chandra re-
alization, where in place of the Shilov boundary Sh(Ω) we consider holomorphic maps
defined on a neighborhood of a smooth point b ∈ ∂Ω. We have
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Theorem 3.1.1. Let Ω b Cn be an irreducible bounded symmetric domain of rank ≥ 2
in its Harish-Chandra realization. Suppose b be a smooth point on ∂Ω. Let Ub ⊂ Cn be
an open neighborhood of b in Cn and f : Ub → Cn be an open holomorphic embedding
such that f(Ub ∩ Ω) ⊂ Ω and f(Ub ∩ ∂Ω) ⊂ ∂Ω. Then, there exists an automorphism
F : Ω → Ω such that F |Ub∩Ω ≡ f |Ub∩Ω.

Theorem 3.1.1 allows us to give an alternative proof of our Main Theorem in the
case of rank ≥ 2 without the need to examine the behavior near the Shilov boundary
Sh(Ω) of the multivalent map given by the algebraic extension of Graph(f) of the germ
of measure-preserving holomorphic mapping f : (Ω; 0) → (Ω; 0)d2 .

Alternative proof of Main Theorem in the case of rank ≥ 2. The Main Theorem in the
case of rank ≥ 2 follows immediately from the extension result [(1.2), Proposition 1.2.2].
the functional identity for measure-preserving holomorphic maps as in the structural
equation (†) in (1.1) for such maps and reformulated in [(2.3), Eqn.(1)] in the proof
there of the Main Theorem, and from Theorem 3.1.1, exactly as in the case of the unit
ball Bn, n ≥ 2, given in (2.1). ¤

We have chosen to give in (2.2) a proof of the Main Theorem in the case where
rank(Ω) ≥ 2 by resorting to the result of Henkin-Tumanov [TK1], stated here as The-
orem 2.2.1, since the latter is the well-known form of Alexander-type theorem in the
rank ≥ 2 case. Here we present a proof of Theorem 3.1.1 for two reasons. First of all,
as explained it completes a proof of the Main Theorem in the case of rank ≥ 2 in a
way parallel to the rank-1 case. Secondly, Theorem 3.1.1 is of independent interest in
the function theory of bounded symmetric domains and may serve other purposes for
rigidity phenomena in the case of rank ≥ 2.

Remarks We note furthermore that Theorem 3.1.1 implies Theorem 2.2.1. In fact,
given any point b0 ∈ Sh(Ω) and an open holomorphic embedding f : Ub0 → Cn satisfying
f(Ub0 ∩ Ω) = f(Ub0) ∩ Ω and f(Ub0 ∩ Sh(Ω)) = f(Ub0) ∩ Sh(Ω), for a smooth point
b ∈ Ub0 ∩ ∂Ω and any connected open neighborhood Ub of b such that Ub ⊂ Ub0 , the
open holomorphic embedding f |Ub

: Ub → Cn satisfies the hypothesis of Theorem 3.1.1.

(3.2) G-structures modeled on irreducible Hermitian symmetric manifolds of rank ≥ 2
The proof of Theorem 3.1.1 will be based on Ochiai’s result [Oc] from the theory of
G-structures modeled on irreducible Hermitian symmetric manifolds M of the compact
type and of rank ≥ 2. The reader is referred to Mok [Mk3] for an introduction to such
G-structures. We adopt the notations in (2.2), writing Ω b Cn ⊂ M for the Harish-
Chandra and Borel embeddings of Ω and representing the compact dual M = GC/P

of Ω as a rational homogeneous manifold. At each x ∈ M denote by Px ⊂ GC the
isotropy subgroup of x. There is a natural homomorphism ϕx : Px → GL(Tx(M))
given by ϕx(γ)(η) = dγ(η) for η ∈ Tx(M), and we denote its image by Γx. At 0 ∈ Ω,
ϕ0|K : K → GL(T0(Ω)) is an injective homomorphism on the isotropy subgroup K ⊂ G,
and K will be naturally identified with its image in GL(T0(Ω)) ∼= GL(n;C). With
respect to the trivialization of the holomorphic tangent bundle over Cn ⊂ M given by
the Harish-Chandra coordinates, the image of ϕx is identified with KC ⊂ GL(Tx(M)) ∼=
GL(n,C), where KC is the complexification of K ⊂ GL(n,C). Covering M by charts
admitting Harish-Chandra coordinates we have equipped M with a flat (or integrable)
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KC-structure, i.e., a holomorphic reduction of TM from GL(n,C) to KC by means of
holomorphic coordinates on the base manifold. There is a notion of preservation of
G-structures, which in our case can be equivalently formulated in terms of minimal
rational tangents, as follows (cf. Mok [Mk3]). A rational curve C ⊂ M is said to be a
minimal rational curve if and only if its homology class is a generator of H2(M,Z) ∼= Z.
At x ∈ Cn, the reductive complex Lie group Γx

∼= KC acts on Tx(M), and the highest
weight orbit of the semisimple part of Γx defines a highest weight varietyWx ⊂ PTx(M).
The latter agrees with the variety of minimal rational tangents at x ∈ M , i.e., the variety
of tangents to minimal rational curves passing through x, and, for x ∈ Cn, such a curve
is precisely the topological closure of an affine line ` ⊂ Cn passing through x such that
[Tx(`)] ∈ PWx. We have the following equivalent formulation of the main result of
Ochiai [Oc] (cf. Goncharov [Go]).

Theorem 3.2.1 (Ochiai [Oc]). Let M be an irreducible compact Hermitian symmetric
manifold of the compact type and of rank ≥ 2; U, V ⊂ M be connected open subsets,
and f : U → V be a biholomorphism. Suppose for every x ∈ U the projectivization
[df(x)] of df(x) : Tx(M) → Tf(x)(M) satisfies [df(x)](Wx) = Wf(x). Then, there exists
an automorphism F ∈ Aut(M) such that F

∣∣
U
≡ f .

(3.3) Proof of Theorem 3.1.1 In order to check that the given holomorphic map in
Theorem 3.1.1 preserves the KC-structure modeled on M , we make use of the fine
structure of bounded symmetric domains Ω, especially the foliation of the smooth locus
of ∂Ω by boundary components of maximal dimension. To pass from boundary values
to the mapping on Ub ∩ Ω we resort to the method of Mok-Tsai [MT] for the study of
boundary values of holomorphic functions on irreducible bounded symmetric domains
of rank ≥ 2 by restriction to certain complex submanifolds which are product domains

To streamline the presentation, we recall the notion of invariantly geodesic subman-
ifolds introduced in Tsai [Ts, §4]. Equip Ω with the canonical Kähler-Einstein metric
g, and M with the K-invariant Kähler-Einstein metric gc on M , so that (Ω, g) and
(M, gc) form a dual pair of Hermitian symmetric spaces. In the terminology of [Ts], a
complex submanifold S ⊂ M is called an invariantly geodesic submanifold if and only
if γ(S) ⊂ M is totally geodesic in (M, gc) for any γ ∈ GC. (Such submanifolds are
completely classified in [Ts, Proposition 4.6].) A complex submanifold S0 ⊂ Ω will
be called an invariantly geodesic submanifold if and only if γ(S0) ∩ Ω ⊂ Ω is totally
geodesic in (Ω, g) for any γ ∈ GC such that γ(S0) ∩ Ω 6= ∅. If 0 ∈ S0, then it follows
from the total geodesy of S0 ⊂ Ω and the definition of the Harish-Chandra embedding
that S0 = W ∩ Ω for some complex vector subspace W ⊂ Cn. From [Ts, Lemma 4.3]
it follows readily that S0 ⊂ Ω is invariantly geodesic if and only if γ(W ) = W for any
γ ∈ P , where E denotes the topological closure of E in M for any subset E ⊂ M .
Hence, S0 ⊂ Ω is invariantly geodesic if and only if S0 = S ∩ Ω for some invariantly
geodesic submanifold S ⊂ M . An affine-linear subspace A ⊂ Cn will be called invari-
antly geodesic if and only if A ⊂ M is totally geodesic. From [Ts, Lemma 4.3] any
invariantly geodesic submanifold S ⊂ M such that S ∩ Cn 6= ∅ must be of the form
A for some invariantly geodesic affine-linear subspace A ⊂ Cn. Regarding invariantly
geodesic submanifolds we have the following obvious lemma.
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Lemma 3.3.1. Let Ω ⊂ M be an irreducible bounded symmetric domain Ω realized
as an open subset of its compact dual M by the Borel embedding. Let

{
Sα

}
α∈A

be
any family of invariantly geodesic submanifolds Sα ⊂ M such that N :=

⋂
α∈A Sα is

non-empty. Then, N ⊂ M is an invariantly geodesic submanifold. Consequently, if{
Dα

}
α∈A

is any family of invariantly geodesic submanifolds Dα ⊂ Ω such that Ψ :=⋂
α∈A Dα is non-empty, then Ψ ⊂ Ω is an invariant geodesic submanifold.

We are now ready to give a proof of Theorem 3.1.1.

Proof of Theorem 3.1.1. Write r := rank(Ω) ≥ 2. Without loss of generality we may
assume that Ub is convex and that both Ub∩∂Ω and its image f(Ub∩∂Ω) consist entirely
of smooth points of ∂Ω. By the fine structure of bounded symmetric domains (cf. Wolf
[Wo]) in their Harish-Chandra realization, the smooth locus Reg(∂Ω) of ∂Ω admits a
smooth foliation F by boundary components. For p ∈ Reg(∂Ω), the leaf Φp of F passing
through p is a maximal boundary component of ∂Ω, i.e., a boundary component of
maximal complex dimension (and of rank r − 1), and the group G = Aut0(Ω) acts
transitively on the set of such boundary components Φp. Let Π be a maximal polydisk
on Ω such that b ∈ ∂P . Replacing b by γ(b) for some γ ∈ G, we may assume that Π is a
Euclidean polydisk ∆r ⊂ Cr × {0} ⊂ Cn in terms of Harish-Chandra coordinates, and
that b = (1, 0, · · · , 0) ∈ ∂P ⊂ ∂Ω. We have Π = ∆ ×∆r−1, where ∆r−1 is a maximal
polydisk of an irreducible bounded symmetric domain Ω′ of rank r − 1 lying on some
complex vector subspace V ⊂ Cn such that Ω′ b V is the Harish-Chandra embedding.

∆×Ω′ ⊂ Ω is a totally geodesic complex submanifold. For each point p = (a, q) ∈
∂∆ × Ω′ ⊂ ∂Ω, the boundary component Φp passing through p is given by {a} ×
Ω′ ⊂ ∂Ω. In the terminology of Mok-Tsai [MT, Definition 1.5.2], for any t ∈ ∆, the
complex submanifold Ωt ⊂ {t} × Ω′ ⊂ Ω is a characteristic symmetric subspace. By
[MT, Proposition 1.12] and Tsai [Ts, Lemma 4.4], Ωt ⊂ Ω is an invariantly geodesic
submanifold. Denoting by Ω0 b Cn0 ⊂ M0 the Harish-Chandra and Borel embeddings,
M0 ⊂ M is an invariantly geodesic submanifold. Consider the complex submanifold
∆ × Ω′ ⊂ Ω. Since the point b = (1, 0, · · · , 0) ∈ ∂P lies on Ub, there exists an open
neighborhood W of 1 in C, and a connected open neighborhood D of 0 in Ω′ such that
W × D ⊂ Ub. For any ζ ∈ ∂∆ ∩ W , f

∣∣
{ζ}×D

is a biholomorphism of {ζ} × D onto
its image f({ζ} × D), which is an open subset of the maximal boundary component
Φf(ζ;0), which is a bounded domain on some characteristic affine-linear subspace Aζ . As
in the proof of [MT, Proposition 2.3], by taking higher-order partial derivatives in the
directions of Ω′ along the zero-section {0}×D ⊂ Ub and verifying their linear dependence
on first-order derivatives (owing to holomorphicity and linear dependence on W ∩ ∂∆),
it follows that for each t ∈ Ub, f

∣∣
{t}×D

is a biholomorphism of {t} ×D onto an open
subset of some affine-linear subspace At. We have thus an induced holomorphic map
f ] : W → G, where G is the Grassmannian of affine-linear subspaces of Cn of dimension
n0. Let H be the set of all affine-linear subspaces A ⊂ G such that A = γ(M0) for
some γ ∈ GC. Then H ⊂ G is a complex submanifold. For each maximal boundary
component Φp ⊂ Reg(∂Ω), Φp is an open subset of an n0-dimensional affine-linear
subspace belonging to H. Hence the map f ] : W → G is such that f ](W ∩ ∂∆) ⊂ H,
and it follows that f ](W ) ⊂ H. Fix now a maximal characteristic symmetric subspace
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of the form Θ = {t0} × Ω′ for some t0 ∈ W ∩∆ so that Θ ∩ Ub 6= ∅, and f
∣∣
Θ∩Ub

is a
biholomorphism onto an open subset of a maximal characteristic symmetric subspace
Ξ.

In order to apply Ochiai’s result as in Theorem 3.2.1 we need to check that [df ]
preserves varieties of minimal rational tangents. In the case of rank equal to 2 this follows
readily from the last paragraph since in that case tangents to maximal characteristic
symmetric subspaces are minimal rational tangents. For arbitrary rank r ≥ 2 we need
to have a procedure of recovering minimal rational tangents from maximal characteristic
symmetric subspaces, which are of rank r − 1 ≥ 1.

There is an open neighborhood N of the identity element e in GC with the following
property. For any γ ∈ N , γ(W × D) ∩ (Ub ∩ ∂Ω) 6= ∅. Then γ(Θ) ∩ Ub 6= ∅ and
the same argument as in the above then shows that f

∣∣
γ(Θ)∩Ub

is a biholomorphism of
γ(Θ) ∩ Ub onto an open subset of a maximal characteristic symmetric subspace Ξγ .
Write x0 := (t; 0) ∈ ∆ × Ω′. For µ ∈ N write x := µ(x0). N contains an open
neighborhood of µ in the right coset Kxµ. Then, for γ ∈ Kxµ we have γ(x0) = x,
γ(Θ) is a maximal characteristic symmetric subspace passing through x and there is a
maximal characteristic symmetric Ξγ passing through f(x) such that f(γ(Θ)∩Ub) is an
open subset of Ξγ . Fix a non-zero minimal rational tangent α ∈ Tx(Ω) and denote by
∆α the unit minimal disk passing through x and tangent to α. By [MT, Proposition 1.9],
∆α is the intersection of all maximal characteristic symmetric subspaces Θ containing
it. By the Identity Theorem for holomorphic functions the same remains true if in place
of all such Θ we take a non-empty open subset of such Θ. Then f(∆α ∩ Ub) lies on
Ψ :=

⋂ {
Ξγ : γ(x0) = x, γ ∈ N

}
, and f(∆α ∩ Ub) ⊂ Ψ is an open subset. On the other

hand, Ψ is the intersection of a family of maximal characteristic symmetric subspaces,
and it follows that Ψ is an open subset of an affine line. By Lemma 3.3.1, Ψ ⊂ Ω is an
invariantly geodesic submanifold. Thus, for some ν ∈ G we have ν(Ψ) ⊂ P, a maximal
polydisk passing through 0. As can be easily checked using the action of Aut0(P) ⊂ G,
such a geodesic submanifold can be invariantly geodesic only if it is a minimal disk, and
we conclude that Ψ ⊂ Ω is a minimal disk. As a conclusion, we have shown that for
some non-empty connected open subset O ⊂ Ub ∩ Ω, we have [df(x)](Wx) ⊂ Wf(x) for
x ∈ O, and by Ochiai’s result as given in Theorem 3.2.1 we conclude that there exists
F0 ∈ Aut(M) such that F0

∣∣
Ub
≡ f .

It remains to check that F := F0

∣∣
Ω

is an automorphism of Ω. For that purpose
it suffices to check that the germ of F at some point x0 ∈ Ω is a germ of holomorphic
isometry of (Ω, g). Choose x0 ∈ Ω such that for some minimal rational tangent α0 6= 0
at x0, we have ∆α0 ∩Ub 6= ∅. ∆α0 is an open set of a minimal rational curve Cα0 on M

such that F
∣∣
Cα0

maps Cα0 biholomorphically onto a minimal rational curve C ′ ⊂ M .

The image of ∂∆α0 under F must be a circle on the affine part of C ′ ∼= P1, C ′∩Cn ∼= C.
Since F (∂∆α0 ∩Ub) ⊂ C ′ ∩ ∂Ω, the restriction F

∣∣
∆α0

must map ∆α0 isometrically onto
the minimal disk C ′ ∩ Ω. The analogous statement holds true for x sufficiently close
to x0 and for a minimal rational tangent α at x sufficiently close to α0 in the tangent
bundle TΩ. It follows that for x sufficiently close to x, F is an isometry when restricted
to a non-empty open set of minimal disks passing through x, hence for all minimal
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disks passing through x by the Identity Theorem for real-analytic functions. Writing
s = g−F ∗g on a neighborhood O of x0, for x ∈ O and for any minimal rational tangent
α at x we have sαα = 0. Since the set of (non-zero) minimal rational tangents at x

is complex-analytic, expanding α in Taylor series at some point α1 and polarizing the
identity we conclude that sξη = 0 for any ξ, η ∈ Wx, noting that Wx ⊂ PTx(Ω) is
linearly non-degenerate. Thus the germ of F at x0 is a germ of holomorphic isometry
of (Ω, g) at x0 and we have F ∈ Aut(Ω), as desired. The proof of Theorem 3.1.1 is
complete. ¤
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