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ISOMORPHISMS AND AUTOMORPHISMS OF

QUANTUM GROUPS

LI-BIN LI AND JIE-TAI YU

Abstract. We consider isomorphisms and automorphisms of quan-
tum groups. Let k be a field and suppose p, q ∈ k∗ are not roots of
unity. We prove a new result that the two quantum groups Uq(sl2)
and Up(sl2) over a field k are isomorphic as k-algebras if and only
if p = q±1. We also rediscover the description of the group of
all k-automorphisms of Uq(sl2) of Alev and Chamarie, and that
Autk(Uq(sl2)) is isomorphic to Autk(Up(sl2)).

1. Introduction and the main results

The Drinfeld-Jimbo quantum group Uq(g) over a field k (see [D1, D2,
J, Ja]), associated with a simple finite dimensional Lie algebra g, plays
a crucial role in the study of the quantum Yang-Baxter equations, two
dimensional solvable lattice models, the invariants of 3-manifolds, the
fusion rules of conformal field theory, and the modular representations
(see, for instance, [K, L, LZ, RT]). It is natural to raise

Problem 1.1. When are the two quantum groups Uq(g) and Up(g) over

a field k isomorphic as k-algebras?

It is closely related to

Problem 1.2. Describe the structure of Autk(Uq(g)) for the quantum

group Uq(g) over a field k.

See, for instance, Alev and Chamarie [AC] for a description of Autk(Uq(sl2)).
See also Launois [La1, La2], and Launois and Lopes [LL] and references
therein for related description of Autk(U

+
q (g)).

In particular, we may formulate
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Problem 1.3. When are the two quantum groups Uq(sln) and Up(sln)
over a field k isomorphic as k-algebras?

To the authors, the above problems are also motivated by the simi-
lar questions regarding the isomorphisms and automorphisms of affine
Hecke algebras Hq and Hp over a field k recently considered by Nanhua
Xi and Jie-Tai Yu [XY]. See also Rong Yan [Y].
In this paper, we fully classify the quantum groups Uq(sl2) by q pro-
vided q is not a root of unity.

Theorem 1.4. Suppose q ∈ k∗ is not a root of unity in a field k, then

Uq(sl2) and Up(sl2) are isomorphic as k-algebras if and only if p = q±1.

Moreover, any such k-isomorphism must take the generator cq of the

center Z(Uq(sl2)) of Uq(sl2) to cp or −cp, where cp is the generator of

the center Z(Up(sl2)) of Up(sl2).

In case q is not a root of unity, we also rediscover the description of
Autk(Uq(sl2)) of Alev and Chamarie [AC] by a different method.

Proposition 1.5. Suppose q ∈ k∗ is not a root of unity in a field k,

then α ∈ Autk(Uq(sl2)) if and only if

(1) α(K) = K, α(E) = λEKr, α(F ) = λ−1K−rF ;

or

(2) α(K) = −K, α(E) = λEKr, α(F ) = −λ−1K−rF ;

or

(3) α(K) = K−1, α(E) = λKrF, α(F ) = λ−1EK−r;

or

(4) α(K) = −K−1, α(E) = λKrF, α(F ) = −λ−1EK−r

for some r ∈ Z and some λ ∈ K∗.

The techniques used here depend on the description of the center of
the quantum group Uq(sl2) as a polynomial algebra in one indetermi-
nate over k and its k-automorphisms, the classification of finite dimen-
sional simple Uq(sl2)-modules, and in particular, the ‘symmetry’ of the
Casimir element action on finite-dimensional simple Uq(sl2)-module.
We also use the well-known PBW type basis, the degree function, and
the graded algebra structure of Uq(sl2).

As a consequence of Proposition 1.5, we obtain that the two groups of
k-automorphisms of Uq(sl2) and Up(sl2) are isomorphic provided both
q and p are not roots of unity.
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Proposition 1.6. Suppose both q, p ∈ k∗ are not roots of unity in a field

k, then the two groups Autk(Uq(sl2)) and Autk(Up(sl2)) are isomorphic.

Based on the main results of this paper and some more involved method-
ology, we will treat the general cases of Problems 1.1, 1.2 and 1.3 in
a forthcoming paper [LY]. In particular, in [LY] we completely solve
Problem 1.3 and get the condition p = q±1 as Theorem 1.4 in this
paper.

2. Preliminaries

In this section, we first recall some fundamental facts about the quan-
tum group Uq(sl2) over a field k, where q ∈ K∗ is not a root of unity
in k (see, for instance, Jantzen [Ja], or Kassel [K]). We also prove a
technical lemma, which classifies the unit elements in Uq(sl2). Finally,
we recall an elementary lemma about automorphisms of polynomial
algebras. All of these will be used in the proof of the main results in
the next section.
Recall that for given q ∈ k∗ and q2 6= 1, the quantum group Uq(sl2),
introduced by Kulish and Reshetikhin[KR], Reshetikhin and Turaev
[RT] (see Takeuchi [T] for notations used in this paper), is the associa-
tive algebra over k generated by K, K−1, E, F subject to the following
defining relations:

KK−1 = K−1K = 1, KEK−1 = q2E,

KFK−1 = q−2F, EF − FE = K−K−1

q−q−1 .

It is well-known that the algebra Uq(sl2) is an iterated Ore extension
and a Noetherian domain and has a PBW type basis {EiF jKs| i, j ∈
N, s ∈ Z} as a k-vector space. If q is not a root of unity, then the
center Z(Uq(sl2)) of Uq(sl2) is the subalgebra generated by the Casimir
element

cq = EF + q−1K+qK−1

(q−q−1)2
= FE + qK+q−1K−1

(q−q−1)2
,

hence Z(U) = k[cq] is a polynomial algebra in one indeterminate over
k. For ε ∈ {−1, 1} and each n ∈ N, define an (n + 1)-dimensional
U -module V ε

q (n) with a basis {vε
0, v

ε
1, · · · , vε

n}, and the actions of the
generators of U on the basis vectors are given by the following rules:

Kvε
i = εqn−2ivε

i

Evε
i = ε[n − i + 1]vε

i−1

Fvε
i = [i + 1]vε

i+1,
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where i = 0, 1, · · · , n, vε
−1 = vε

n+1 = 0, [n] = qn−q−n

q−q−1 ,

[n]! = [n][n − 1] · · · [2][1].

It is well-known that {V ε
p (n)| ε ∈ {−1, 1}, n ∈ N} forms a complete-

non-redundant list of finite dimensional simple Uq(sl(2))-module. Note
that the Casimir element cq acts on V ε

q (n) via the following scalar

ε
qn+1 + q−(n+1)

(q − q−1)2
.

The following lemma describe the unit elements in Uq(sl2).

Lemma 2.1. An element u ∈ Uq(sl2) is multiplicative invertible if and

only if there exist λ ∈ k∗, m ∈ Z such that u = λKm.

Proof. The ‘if’ part is clear. Suppose u ∈ Uq(sl2) is invertible, then
based on the PBW type basis, u can be written uniquely as a sum of the
terms ErhrsF

s with non-negative integers r, s and hrs ∈ k[K, K−1] −
{0}. Let EmhmnF n be the leading term of u determined by the lexi-
cographic order of {r, s} by {r, s} > {r1, s1} if r > r1, or r = r1 and
s > s1. Let v be the inverse of u with the leading term Em1hm1n1

F n1.
Then by Lemma 1.1.7 and Proposition 1.1.8 in [Ja], 1 = uv has the lead-
ing term of the form Em+m1hF n+n1 = 1 with some h ∈ k[K, K−1]−{0}.
It forces that m = n = 0 = n1 = n1. Hence u ∈ k[K, K−1]. Now if u is
not a monomial, then based on expansion of u−1 ∈ k(K, K−1) as power
series, u−1 must contain infinite many terms, hence not in k[K, K−1].
Therefore u must be a monomial. �

We also need

Lemma 2.2. Let k[x] be the polynomial algebra in one indeterminate

x over a field k. The the only k-automorphisms α of k[x] are fully

determined by α(x) = ax + b, where a ∈ k∗, b ∈ k.

Proof. This is well-known. The proof is elementary and direct. �

3. Proof of the main results

Proof of Theorem 1.4.

The ‘if’ part is trivial. Suppose there exists an isomorphism Φ sending
Uq(sl2) onto Up(sl2). Then Φ induces an isomorphism sending the cen-
ter k[cq] of Uq(sl2) onto the center k[cp] of Up(sl2). Hence the center
of Up(sl2) is also a polynomial algebra in one indeterminate over k.
By [Ja], it forces q is also not a root of unity in k and the center of
Up(sl2) is k[cp]. The isomorphism Φ induces an automorphism of k[cp]
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taking Φ(cq) to cp and its inverse takes cp to Φ(cq). By Lemma 2.2,
Φ(cq) = acp+b, for some a ∈ k∗ and b ∈ k. Therefore, under the isomor-
phism Φ, the (n+1)-dimensional simple Up(sl2)-module V 1

p (n) becomes
an (n + 1)-dimensional simple Uq-module V ε

q (n) for some ε ∈ {−1, 1}.

That is, V ε
q (n)= V 1

p (n) as a vector space, and the action on V 1
p (n) of

x ∈ Uq(sl2) is given by x · v := Φ(x)v. Note that the Casimir elements
cq, cp act on V ε

q (n) and V 1
p (n) via the scalars

ε
qn+1 + q−(n+1)

(q − q−1)2

and
pn+1 + p−(n+1)

(p − p−1)2
,

respectively. Hence

(5) ε
qn+1 + q−(n+1)

(q − q−1)2
= a

pn+1 + p−(n+1)

(p − p−1)2
+ b.

Set e = q + q−1, f = p + p−1 and n = 0, 1, 2, 3, 4, by (3.1), we get

(6)
εe

e2 − 4
=

fa

f 2 − 4
+ b,

(7)
ε(e2 − 2)

e2 − 4
=

a(f 2 − 2)

f 2 − 4
+ b,

(8)
ε(e3 − 3e)

e2 − 4
=

a(f 3 − 3f)

f 2 − 4
+ b,

(9)
ε(e4 − 4e2 + 2)

e2 − 4
=

a(f 4 − 4f 2 + 2)

f 2 − 4
+ b,

(10)
ε(e5 − 5e3 + 5e)

e2 − 4
=

a(f 5 − 5f 3 + 5f)

f 2 − 4
+ b.

Performing (4)-(2), we obtain

(11) εe = af.

Performing (5)-(3), we get

(12) ε(e2 − 1) = a(f 2 − 1).

Performing (6)-(4), we obtain

(13) εe(e2 − 2) = af(f 2 − 2).
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By (7) and (9), we get

(14) e2 = f 2.

By (8) and (10), we obtain

(15) ε = a.

By (7) and (11), we get

(16) e = f.

Thus q + q−1 = p + p−1, therefore (q − p)(1 − qp) = 0, it forces that

p = q±1.

It is clear now Φ(cq) = εcp = ±cp as a = ε. �

Proof of Proposition 1.5.

The ‘if’ part is obvious. Let α ∈ Autk(Uq(sl2)). By Lemma 2.1,
α(K) = λKm for some m ∈ Z. Under the automorphism α, the
(n + 1)-dimensional simple Uq(sl2)-module V 1

q (n) becomes an (n + 1)-
dimensional simple Uq(sl2)-module V ε

q (n) for some ε ∈ {−1, 1} via the
action

x · vi = α(x)vi,

where {v0, . . . , vn} is the standard basis of V ε
q (n) as in Section 2. It

follows that

K · vi = λKmvi = λq(n−2i)mvi,

and the action of K on V ε
q (n) is diagonalizable with the eigenvalue set

{λqnm, λq(n−2)m, . . . , λq−nm} = {εqn, εqn−2, . . . , εq−n},

it forces that m = ±1 and λ = ε = ±1. Therefore α(K) = εK =
±Km = ±K±1.

In the sequel we will only give a detailed proof for the case m = 1, as
the proof for the case m = −1 is similar. As m = 1, α(K) = εK,
K · v0 = εqnv0 and K · vi = εqn−2ivi. Note that E · vi is an eigenvector
with corresponding eigenvalue εqn−2i+2. It follows that

a) E · vi = λivi−1 for some λi ∈ k.
Similarly

b) F · vi = θivi+1 for some θi ∈ k.
Since V ε

q (n) is simple,
c) λ0 = θn = 0, λi 6= 0 for 0 < i ≤ n, and θj 6= 0 for 0 ≤ j < n.

As KEK−1 = q2E, we get

Kα(E)K−1 = (εK)α(E)(εK)−1 = α(KEK−1) = q2α(E),



ISOMORPHISMS AND AUTOMORPHISMS OF QUANTUM GROUPS 7

hence α(E) is homogeneous with degree 1 by [Ja]. Thus we may express
uniquely

α(E) =
∑

i≥0

Ei+1hiF
i, hi ∈ k[K, K−1] − {0}.

If there exists an index i > 0 in the above sum, we may choose a
positive integer i0 such that n ≥ i0 > 0 and i ≥ i0 for all index i in the
sum, then by the formulas a), b) and c) above,

0 6= λn−i0+1vn−i0 = E · vn−i0+1 = α(E) · vn−i0+1

=
∑

i≥0

[(Ei+1hi) · (F
i · vn−i0+1)] =

∑

i≥0

[(Ei+1hi) · 0] = 0,

a contradiction, as by repeatly applying the action of F ,

F i · vn−i0+1 = F i−i0 · (F i0 · vn−i0+1) = F i−i0 · 0 = 0.

It follows that α(E) = Eh, where h ∈ k[K, K−1] − {0}. Similarly
α(F ) = gF , where g ∈ k[K, K−1] − {0}.
But by the proof of Theorem 1.4, α(cq) = εcq, that is,

α(EF +
q−1K + qK−1

(q − q−1)2
) = εEF + ε

q−1K + qK−1

(q − q−1)2

= EhgF + ε
q−1K + qK−1

(q − q−1)2
.

The uniqueness of expression, due to the PBW type basis, forces that
α(EF ) = EhgF = εEF = ±EF . It follows that in the case ε = 1,
hg = 1, hence by Lemma 2.1, h = λKr, g = λ−1K−r for some λ ∈ K∗,
m ∈ Z; and in the case ε = −1, hg = −1, hence by Lemma 2.1,
h = λKr, g = −λ−1K−r for some λ ∈ K∗, r ∈ Z. �

Proof of Proposition 1.6. Denote the k-automorphisms of Uq(sl2) in
Theorem 1.5 (1) by αq(1, 1, r), in Theorem 1.5 (2) by αq(−1, 1, r), in
Theorem 1.5 (3) by αq(1,−1, r), in Theorem 1.5 (4) by αq(−1,−1, r).
Define a map

φ : Aut(Uq(sl2)) → Aut(Up(sl2))

by φ(αq(a, b, c)) = αp(a, b, c). One readily checks that φ is a bijective
group homomorphism, hence an isomorphism. �
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