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Abstract

LetH = (V, E) be a hypergraph and let A be the E−V incidence matrix. We callH box-Mengerian

if the linear system Ax ≥ 1, x ≥ 0 is box-totally dual integral (box-TDI). As it is NP -hard in

general to recognize box-Mengerian hypergraphs, a basic theme in combinatorial optimization is to
identify such objects associated with various problems. In this paper we show that the so-called ESP

(equitable subpartion) property, first introduced by Ding and Zang in their characterization of all

graphs with the min-max relation on packing and covering cycles, turns out to be even sufficient for
box-Mengerian hypergraphs. We also establish several new classes of box-Mengerian hypergraphs
based on ESP property. This approach is of transparent combinatorial nature and hence is fairly easy
to work with.
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1 Introduction

Many important combinatorial optimization problems can be naturally formulated as integer linear pro-
grams. One approach to getting around these problems is to consider corresponding linear programming
(LP) relaxations and explore integrality properties satisfied by their constraints. Let Ax ≥ b, x ≥ 0 be a
linear system and let P denote the polyhedron {x : Ax ≥ b, x ≥ 0}. We call P integral if each face of P

contains integral vectors. It is well known that P is integral if and only if the minimum in the LP-duality
equation

min{wT x : Ax ≥ b, x ≥ 0} = max{yT b : yT A ≤ wT, y ≥ 0} (1.1)

has an integral optimal solution, for every integral vector w for which the optimum is finite. If, instead,
the maximum in the equation enjoys this property, then the system Ax ≥ b, x ≥ 0 is called totally
dual integral (TDI). Furthermore, the system is called box-totally dual integral (box-TDI) if Ax ≥ b, x ≥
0, u ≥ x ≥ l is TDI for all rational vectors u and l, where coordinates of u are allowed to be +∞.
The model of TDI systems plays a crucial role in combinatorial optimization, and serves as a general
framework for establishing various min-max theorems because, as shown by Edmonds and Giles [11], total
dual integrality implies primal integrality: if Ax ≥ b, x ≥ 0 is TDI and b is integral, then P is integral.
Under what conditions do such integrality properties hold? This question is of both great theoretical
interest and practical value; it is also the major concern of polyhedral combinatorics.

The present paper is devoted to box-total dual integrality (box-TDI) property associated with hy-
pergraphs. A hypergraph is a pair H = (V, E), where V is a finite set and E is a family of subsets of V .
Elements of V and E are called the vertices and edges of H, respectively. Let A be the E − V incidence
matrix. We call H ideal if the system Ax ≥ 1, x ≥ 0 defines an integral polyhedron, where 1 is the
all-one vector. Let w be a nonnegative integral weight function defined on V . A family F of edges (with
repetition allowed) of H is called a w-packing of H if each v ∈ V belongs to at most w(v) members
of F . Let ν(H,w) denote the maximum size of a w-packing of H, and let τ(H, w) denote the mini-
mum total weight of a vertex cover, which is a vertex subset that intersects all edges of H. Obviously,
ν(H, w) ≤ τ(H,w); this inequality, however, need not hold equality in general. We call H Mengerian
if the min-max relation ν(H,w) = τ(H, w) is satisfied by any nonnegative integral function w defined
on V . From the aforementioned Edmonds-Giles theorem [11], it follows that H is Mengerian if and only
if Ax ≥ 1, x ≥ 0 is a TDI system. We further call H box-Mengerian if Ax ≥ 1, x ≥ 0 is a box-TDI
system. Observe that H is box-Mengerian if and only if, for any rational vectors l and u, the maximum
of the following LP-duality equation

min{wT x : Ax ≥ 1, x ≥ 0, u ≥ x ≥ l} = max{αT 1 + βT l− γT u : αT A + βT − γT ≤ wT, α, β, γ ≥ 0}
has an integral optimal solution, for any integral vector w for which the optimum is finite, and so does
the minimum provided both l and u are integral.

By Cook’s characterization of box-TDI systems [7], a hypergraph H = (V, E) is box-Mengerian if and
only if Ax ≥ 1, x ≥ 0 is a TDI system and for any rational vector c = (c1, c2, . . . , cn)T , where n = |V |,
there exists an integral vector c̃ = (c̃1, c̃2, . . . , c̃n)T such that bcic ≤ c̃i ≤ dcie, for all 1 ≤ i ≤ n, and such
that every optimal solution of min {cT x : Ax ≥ 1, x ≥ 0} is also an optimal solution of min {c̃T x : Ax ≥
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1, x ≥ 0}. Nevertheless, this necessary and sufficient condition is not so “user friendly” and can hardly
be verified in practice. In fact, due to NP -hardness of recognizing box-Mengerian hypergraphs [8], a basic
theme in combinatorial optimization is to identify such objects associated with various problems. In [17],
Schrijver analyzed proof techniques of a number of classical min-max theorems, such as the max-flow min-
cut theorem, the Lucchesi-Younger theorem, and Fulkerson’s optimal arborescence theorem, and observed
that these proofs essentially proceed by showing that, first, the active constraints in the optimum of the
LP relaxation of the problem in consideration can be chosen to be “nice”, say “cross-free” or “laminar”;
second, these nice constraint sets are totally unimodular. Based on this observation, Schrijver proved the
following general theorem (see Theorem 5.35 in [19]), which implies that the above-mentioned min-max
theorems can all be further strengthened with box-TDI properties.

Theorem 1.1 [19] Let Ax ≥ b, x ≥ 0 be a linear system. Suppose that for any rational vector c, the
program min{cT x : Ax ≥ b, x ≥ 0} has (if finite) an optimal dual solution y such that the rows of A

corresponding to positive components of y form a totally unimodular submatrix of A. Then Ax ≥ b, x ≥ 0

is box-TDI.

When A is restricted to the edge-vertex incidence matrix of a hypergraph and b is set to 1, Theorem
1.1 yields a sufficient condition for box-Mengerian hypergraphs. For various classes of box-Mengerian
hypergraphs resulted from this theorem, see [17, 19]. Owing to the demanding total unimodularity re-
quirement, it is desirable to have other powerful approaches for establishing box-Mengerian hypergraphs.
The purpose of this paper is to derive an analogue of Schrijver’s theorem to fulfill such a need, and to
give several interesting applications of this approach.

Let us introduce some notations and terminology before proceeding. As usual, we use Q and Z to
denote the sets of rationals and integers, respectively, and use Q+ and Z+ to denote the sets of nonnegative
numbers in the corresponding sets. For any two sets Ω and K, where Ω is always a set of numbers and
K is always finite, we use ΩK to denote the set of vectors x = (x(k) : k ∈ K) whose coordinates are
members of Ω. Suppose J ⊆ K. The |J |-dimensional vector x|J = (x(j) : j ∈ J) stands for the projection
of x to ΩJ . In addition, x(J) denotes the value

P
j∈J x(j). A vector x is called 1

d -integral, where d is a

positive integer, if all coordinates of dx are integral. A 1
2 -integral vector is also called half-integral.

In this paper, a collection is a synonym of a multiset in which elements may occur more than once.
So if X = {x1, x2, . . . , xm} is a collection, then possibly xi = xj for some distinct i, j. In contrast, in a
set and in a subset (of a collection), all its elements are distinct. The size |X| of X is defined to be m. If
Y = {y1, y2, . . . , yn} is also a collection, then X ∪Y is the collection {x1, x2, . . . , xm, y1, y2, . . . , yn}. Note
that the size of the union of two collections is always the sum of the sizes of the two collections, which is
different from what happens to the union of two sets. Similarly, we can define X ∩Y and X −Y of these
two collections. Let H = (V, E) be a hypergraph and let Λ be a collection of its edges. We use dΛ(v) to
denote the number of edges in Λ that contain v. An equitable subpartition of Λ consists of two collections
Λ1 and Λ2 of edges in E (which are not necessarily in Λ) such that

(i) |Λ1|+ |Λ2| ≥ |Λ|;
(ii) dΛ1∪Λ2(v) ≤ dΛ(v) for all v ∈ V ; and
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(iii) max{dΛ1(v), dΛ2(v)} ≤ ddΛ(v)/2e for all v ∈ V .

We call H equitably subpartitionable, abbreviated ESP, if every collection of its edges admits an equitable
subpartition. We refer to the above (i), (ii), and (iii) as ESP property, which was first introduced by Ding
and Zang [9] in their characterization of all graphs with the min-max relation on packing and covering
cycles, where they proved that every ESP hypergraph is Mengerian. One objective of this paper is to
show that the ESP property turns out to be even sufficient for box-Mengerian hypergraphs.

Let Ax ≥ 1,u ≥ x ≥ l, x ≥ 0 be a linear system. With a slight abuse of notation, we write
Max(A, l, u, w) for both the linear program max{αT 1 + βT l − γT u : αT A + βT − γT ≤ wT , α, β, γ ≥
0} and its optimal value. When integrality is imposed on its solutions, we write Max(A, l, u, w;Z)
for the corresponding integer program and optimal value. When half-integrality is imposed, we write
Max(A, l, u, w;Z/2) for the corresponding program and optimal value, where Z/2 = {k/2 : k ∈ Z}.
Suppose A is the E − V incidence matrix of a hypergraph H = (V, E) and suppose (α∗, β∗,γ∗) is an
optimal solution to Max(A, l,u,w;Z). Let Λ be the edge collection of H such that each U ∈ E appears
exactly α∗(U) times in Λ. We call Λ the edge collection corresponding to α∗.

The following theorem constitutes our main tool for studying box-Mengerian hypergraphs.

Theorem 1.2 Let H = (V, E) be a hypergraph and let A be the E − V incidence matrix. Suppose that
for any l, u ∈ QV and w ∈ ZV with finite Max (A, l, u, w), there exists an optimal solution (α∗, β∗,γ∗)
to Max (A, l,u, 2w;Z) such that the edge collection corresponding to α∗ admits an equitable subpartition.
Then H is box-Mengerian.

Corollary 1.3 Every ESP hypergraph is box-Mengerian.

A linear system Ax ≥ b, x ≥ 0 is called totally dual half-integral (TDI/2) if the maximum in the
LP-duality equation (1.1) has a half-integral optimal solution, for every integral vector w for which
the optimum is finite. Furthermore, the system is called box-totally dual half-integral (box-TDI/2) if
Ax ≥ b, x ≥ 0, u ≥ x ≥ l is TDI/2 for all rational vectors u and l, where coordinates of u are allowed
to be +∞. Similar to the above Edmonds-Giles theorem [11], we can prove that if Ax ≥ b, x ≥ 0 is
TDI/2 and b is integral, then the minimum in equation (1.1) also has a half-integral optimal solution,
for every integral vector w for which the optimum is finite. Let H = (V, E) be a hypergraph and let A

be the E − V incidence matrix. We call H half-Mengerian (resp. box-half-Mengerian) if Ax ≥ 1, x ≥ 0

is a TDI/2 (resp. box-TDI/2) system. Let Λ be an edge collection of H. A pseudo-equitable subpartition
of Λ consists of two collections Λ1 and Λ2 of edges in E (which are not necessarily in Λ) such that

(i) |Λ1|+ |Λ2| ≥ |Λ|;
(ii) dΛ1∪Λ2(v) ≤ dΛ(v) for all v ∈ V ;

(iii’) max{dΛ1(v), dΛ2(v)} ≤ 2ddΛ(v)/4e for all v ∈ V ; and

(iv) |dΛ1(v)− dΛ2(v)| ≤ 2 for all v ∈ V .

We call H pseudo-equitably subpartitionable, abbreviated PESP, if every collection of its edges admits a
pseudo-equitable subpartition. We refer to the above (i), (ii), (iii’), and (iv) as PESP property. Observe
that (iii) specified in the ESP property implies (iii’). The following theorem is the counterpart of Theorem
1.2 for box-half-Mengerian hypergraphs.
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Theorem 1.4 Let H = (V, E) be a hypergraph and let A be the E −V incidence matrix. Suppose that for
any l, u ∈ QV and w ∈ ZV with finite Max (A, l,u,w), there exists an optimal solution (α∗, β∗,γ∗) to
Max (A, l,u, 4w;Z) such that the edge collection corresponding to α∗ admits a pseudo-equitable subparti-
tion. Then H is box-half-Mengerian.

Corollary 1.5 Every PESP hypergraph is box-half-Mengerian.

To facilitate better understanding of the PESP property, we remark that if for every edge collection
Λ of H, there exist two collections Λ1 and Λ2 of edges in E (which are not necessarily in Λ) satisfying (i),
(ii), and (iii’), then H is half-Mengerian (see [10] for a proof), but it is not necessarily box-half-Mengerian.

Let H and A be as given in Theorem 1.4, and let Λ be an edge collection of H. A quasi-equitable
subpartition of Λ consists of two collections Λ1 and Λ2 of edges in E (which are not necessarily in Λ) such
that the above (i), (ii), (iii’), and the following

(iv’) |dΛ1(v)− dΛ2(v)| ≤ 2 for all v ∈ V with dΛ1∪Λ2(v) = dΛ(v)

hold simultaneously. We call H quasi-equitably subpartitionable, abbreviated QESP, if every collection
of its edges admits a quasi-equitable subpartition. We refer to the above (i), (ii), (iii’), and (iv’) as
QESP property. Observe that (iii) specified in the ESP property implies both (iii’) and (iv’). The
following theorem is a generalization of Corollary 1.5 and is, we believe, much more useful in combinatorial
applications.

Theorem 1.6 Every QESP hypergraph is box-half-Mengerian.

The proofs of the above three theorems will be given in Section 2. As applications of these theorems,
several new classes of box-Mengerian and box-half-Mengerian hypergraphs will be established in Section
3. It is worthwhile pointing out that none of them can be derived from Theorem 1.1 directly. Our
approach is of transparent combinatorial nature and hence is fairly easy to work with.

2 Proofs

As shown by Schrijver and Seymour, a linear system Ax ≥ 1,u ≥ x ≥ l, x ≥ 0 is TDI if and only if
Max (A, l, u, w;Z/2) = Max (A, l,u,w;Z) for any integral vector w for which Max (A, l, u, w) is finite
(see Theorem 22.13 in [18]). A corollary of this theorem is the following necessary and sufficient condition
for total dual integrality, where TDI/1 is exactly the same as TDI.

Lemma 2.1 [18] For k = 1, 2, the system Ax ≥ 1, u ≥ x ≥ l, x ≥ 0 is TDI/k if and only if

Max (A, l,u, 2kw;Z) ≤ 2Max (A, l, u, kw;Z)

for any integer vector w for which Max (A, l, u, w) is finite.

Let us now present the proofs of the first two theorems.
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Proof of Theorem 1.2. In view of Lemma 2.1, to prove the theorem it suffices to show that for any
l,u ∈ QV and w ∈ ZV with finite Max (A, l,u,w), we have Max (A, l, u, 2w;Z) ≤ 2Max (A, l,u,w;Z).
By hypothesis, there exists an optimal solution (α∗, β∗, γ∗) to Max (A, l,u, 2w;Z) such that the edge
collection Λ corresponding to α∗ admits an equitable subpartition (Λ1, Λ2). Our objective is to find
a feasible solution (α,β, γ) to Max (A, l, u, w;Z) such that αT 1 + βT l − γT u ≥ [(α∗)T 1 + (β∗)T l −
(γ∗)T u]/2.

For ease of description, let us first impose some additional constraints on β∗ and γ∗. We may assume
that

(1) β∗(v)γ∗(v) = 0 for all v ∈ V .
Otherwise, neither β∗(v) nor γ∗(v) is zero for some vertex v. Set δ = min{β∗(v), γ∗(v)}. Then

δ > 0. Let β′ be the vector obtained from β∗ by replacing β∗(v) with β∗(v) − δ, and let γ′ be the
vector obtained from γ∗ by replacing γ∗(v) with γ∗(v) − δ. Clearly, (α∗, β′, γ′) is a feasible solution to
Max (A, l, u, 2w;Z). Note that (α∗)T 1+(β′)T l− (γ′)T u = (α∗)T 1+(β∗)T l− (γ∗)T u+ [u(v)− l(v)]δ ≥
(α∗)T 1 + (β∗)T l− (γ∗)T u. So (α∗,β′,γ′) is also an optimal solution to Max (A, l,u, 2w;Z). Hence (1)
holds for otherwise we can replace (α∗,β∗, γ∗) with (α∗,β′,γ′) and repeat the process.

(2) β∗(v) = 0 for all v ∈ V with l(v) < 0.
Suppose the contrary: β∗(v) > 0 for some v ∈ V with l(v) < 0. Let β′ be the vector obtained from β∗

by replacing β∗(v) with 0. Then (α∗, β′, γ∗) is a feasible solution to Max (A, l,u, 2w;Z), with objective
value greater than that of (α∗, β∗, γ∗), this contradiction justifies (2).

Observe that dΛ(v)+β∗(v)−γ∗(v) ≤ 2w(v), the inequality constraint in (α∗)T A+(β∗)T−(γ∗)T ≤ 2wT

corresponding to a vertex v, can be strengthened as follows.
(3) dΛ(v) + β∗(v)− γ∗(v) = 2w(v) for all v ∈ V with β∗(v) + γ∗(v) > 0.
Suppose not, dΛ(v) + β∗(v) − γ∗(v) < 2w(v) for some v ∈ V with β∗(v) + γ∗(v) > 0. Set δ =

2w(v)− [dΛ(v) + β∗(v)− γ∗(v)]. Then δ > 0. If β∗(v) > 0 then, by (1) and (2), we have γ∗(v) = 0 and
l(v) ≥ 0. In this case let β′ be the vector obtained from β∗ by replacing β∗(v) with β∗(v) + δ and set
γ′ = γ∗. If γ∗(v) > 0 then, by (1), we have β∗(v) = 0. In this case let γ′ be the vector obtained from
γ∗ by replacing γ∗(v) with max{0, γ∗(v) − δ} and set β′ = β∗. It is easy to see that (α∗, β′, γ′) is also
an optimal solution to Max (A, l, u, 2w;Z). Let us replace (α∗, β∗, γ∗) with (α∗,β′,γ′) and repeat the
process until we get stuck. Clearly, the resulting solution satisfies (1), (2), and (3) simultaneously.

For i = 1, 2, define a vector αi ∈ ZE+, such that αi(U) is precisely the multiplicity of the edge U in Λi

for all U ∈ E . By (i) of the ESP property, we have |Λ1|+ |Λ2| ≥ |Λ|. So
(4) αT

1 1 + αT
2 1 ≥ (α∗)T 1.

Consider an arbitrary vertex v ∈ V . Suppose dΛs(v) ≤ dΛt(v), where {s, t} = {1, 2}. Then (ii) and
(iii) of the ESP property yield

(5) dΛs(v) ≤ bdΛ(v)/2c and dΛt(v) ≤ ddΛ(v)/2e.
Set

• βs(v) = dβ∗(v)/2e and γs(v) = bγ∗(v)/2c;
• βt(v) = bβ∗(v)/2c and γt(v) = dγ∗(v)/2e.
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Then
(6) βs(v) + βt(v) = β∗(v) and γs(v) + γt(v) = γ∗(v).

We propose to show that
(7) dΛi

(v) + βi(v)− γi(v) ≤ w(v) for i = 1, 2.
We distinguish between two cases according to the parity of dΛ(v). If dΛ(v) is even then, by (1) and (3),

both β∗(v) and γ∗(v) are even. It follows from (5) that dΛi
(v)+βi(v)−γi(v) ≤ 1

2 (dΛ(v)+β∗(v)−γ∗(v)) ≤
w(v) for i = 1, 2, as deisred. It remains to consider the case when dΛ(v) is odd. If both β∗(v) and γ∗(v) are
zero then, by (5), for i = 1, 2, we have dΛi

(v)+βi(v)−γi(v) = dΛi
(v) ≤ [dΛ(v)+1]/2, which is an integer

bounded above by [2w(v)+1]/2 = w(v)+1/2 and hence by w(v). It follows that dΛi(v)+βi(v)−γi(v) ≤
w(v). So we assume that β∗(v) + γ∗(v) > 0. Consequently, dΛ(v) + β∗(v)− γ∗(v) = 2w(v) by (3). Since
dΛ(v) is odd, so is β∗(v) − γ∗(v). In addition, β∗(v)γ∗(v) = 0 by (1). From the definition we see that
βs(v) − γs(v) = [β∗(v) − γ∗(v) + 1]/2 and βt(v) − γt(v) = [β∗(v) − γ∗(v) − 1]/2. Combining them with
(5), we establish (7).

For i = 1, 2, set βi = (βi(v) : v ∈ V ) and γi = (γi(v) : v ∈ V ). By (7), we have αT
i A+βT

i −γT
i ≤ wT ,

so (αi, βi, γi) is a feasible solution to Max (A, l,u,w;Z). From (6) it follows that β1 + β2 = β and

γ1 + γ2 = γ. Hence
P2

i=1(β
T
i l − γT

i u) = (β∗)T l − (γ∗)T u. Using (1), we conclude that the inequality

αT
i 1 + βT

i l− γT
i u ≥ [(α∗)T 1 + (β∗)T l− (γ∗)T u]/2 holds for i = 1 or 2; the corresponding (αi, βi, γi) is

clearly a solution to Max (A, l, u, w;Z) as desired, completing the proof.

Proof of Theorem 1.4. In view of Lemma 2.1, to prove the theorem it suffices to show that for any
l,u ∈ QV and w ∈ ZV with finite Max (A, l, u, w), we have Max (A, l, u, 4w;Z) ≤ 2Max (A, l,u, 2w;Z).
By hypothesis, there exists an optimal solution (α∗, β∗, γ∗) to Max (A, l,u, 4w;Z) such that the edge
collection Λ corresponding to α∗ admits a pseudo-equitable subpartition (Λ1, Λ2). Our objective is to
find a feasible solution (α, β,γ) to Max (A, l, u, 2w;Z) such that αT 1+βT l−γT u ≥ [(α∗)T 1+(β∗)T l−
(γ∗)T u]/2.

Using the same arguments as employed in the proof of the preceding theorem, we may assume that

(1) β∗(v)γ∗(v) = 0 for all v ∈ V .

(2) β∗(v) = 0 for all v ∈ V with l(v) < 0.

(3) dΛ(v) + β∗(v)− γ∗(v) = 4w(v) for all v ∈ V with β∗(v) + γ∗(v) > 0.

For i = 1, 2, define a vector αi ∈ ZE+, such that αi(U) is precisely the multiplicity of the edge U in Λi

for all U ∈ E . By (i) of the PESP property, we have |Λ1|+ |Λ2| ≥ |Λ|. So
(4) αT

1 1 + αT
2 1 ≥ (α∗)T 1.

We propose to show that for each v ∈ V , there exist nonnegative integers β1(v), β2(v), γ1(v), and
γ2(v) such that

(5) β1(v) + β2(v) = β∗(v) and γ1(v) + γ2(v) = γ∗(v)
and that

(6) dΛi(v) + βi(v)− γi(v) ≤ 2w(v) for i = 1, 2.
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To this end, suppose dΛs(v) ≤ dΛt(v), where {s, t} = {1, 2}. We may assume that
(7) dΛt

(v) > ddΛ(v)/2e.
Otherwise, dΛt(v) ≤ ddΛ(v)/2e. Set
• βs(v) = dβ∗(v)/2e and γs(v) = bγ∗(v)/2c;
• βt(v) = bβ∗(v)/2c and γt(v) = dγ∗(v)/2e.

Clearly (5) holds. Since dΛ(v) + β∗(v) − γ∗(v) ≤ 4w(v), imitating (7) in the proof of the preceding
theorem, we see that (6) is also satisfied. Thus (7) is established.

(8) β∗(v) + γ∗(v) > 0.
Otherwise, β∗(v) = γ∗(v) = 0. Set β1(v), β2(v), γ1(v), and γ2(v) all equal to zero. By (iii’) of the

PESP property, max{dΛ1(v), dΛ2(v)} ≤ 2ddΛ(v)/4e ≤ 2w(v). So we have (6), and hence (8) holds.
Using (7) and (iii’) of the PESP property, we obtain ddΛ(v)/2e + 1 ≤ dΛt(v) ≤ 2ddΛ(v)/4e. By

considering possible congruence of dΛ(v) modulo four and comparing the lower and upper bounds of the
preceding inequality, we find

(9) ddΛ(v)/2e+ 1 = dΛt
(v) = 2ddΛ(v)/4e and dΛ(v) ≡ 1 or 2 (mod 4).

Observe further that
(10) If γ∗(v) > 0, then γ∗(v) ≥ 2.
Otherwise, γ∗(v) = 1. By (1) and (3), we get dΛ(v) ≡ 1 (mod 4). It follows from (9) that dΛt(v) =

[dΛ(v)+3]/2. In view of (ii) of the PESP property, we obtain dΛs(v) ≤ dΛ(v)−[dΛ(v)+3]/2 = [dΛ(v)−3]/2.
So dΛt(v)− dΛs(v) ≥ 3, contradicting (iv) of the PESP property. Thus (10) is established.

By (9), dΛ(v) ≡ k (mod4), where k = 1 or 2, and dΛt(v) = [dΛ(v) + 4 − k]/2. Set βt(v) = 0 if
β∗(v) = 0 and [β∗(v)− 4+ k]/2 otherwise, and set γt(v) = 0 if γ∗(v) = 0 and [γ∗(v)+ 4− k]/2 otherwise.
From (1), (8), (3), and (10), we deduce that

(11) 0 ≤ βt(v) ≤ β∗(v), 0 ≤ γt(v) ≤ γ∗(v), and dΛt(v) + βt(v)− γt(v) = 2w(v).
Set βs(v) = β∗(v)− βt(v) and γs(v) = γ∗(v)− γt(v). Then 0 ≤ βs(v) ≤ β∗(v) and 0 ≤ γs(v) ≤ γ∗(v). If

(6) were violated by i = s, then dΛ(v) + β∗(v)− γ∗(v) ≥P2
i=1[dΛi(v) + βi(v)− γi(v)] > 4w(v) by (11),

contradicting (3). So (6) holds for i = 1 and 2.

For i = 1, 2, set βi = (βi(v) : v ∈ V ) and γi = (γi(v) : v ∈ V ). Similarly, we can prove that either
(α1,β1, γ1) or (α2, β2,γ2) is a solution to Max (A, l,u, 2w;Z) as desired.

Let us define two terms and prove a simple lemma before presenting the proof of Theorem 1.6. Let
H = (V, E) be a hypergraph, and let Λ and Ω be two edge collections of H. We say that Λ dominates
Ω if |Λ| ≥ |Ω| while dΛ(v) ≤ dΩ(v) for all v ∈ V . The domination relation is obviously reflexive and
transitive. An edge collection Ω of H is called atomic if for every edge collection Π that dominates Ω, we
have both |Π| = |Ω| and dΠ(v) = dΩ(v) for all v ∈ V .

Lemma 2.2 Every edge collection of a hypergraph H = (V, E) is dominated by an atomic edge collection.

Proof. Let Ω be an arbitrary edge collection of H and let Λ be an edge collection that dominates Ω
such that

(1) |Λ| is maximized;
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(2) subject to (1),
P

v∈V dΛ(v) is minimized.
It is a routine matter to check that Λ is atomic.

Proof of Theorem 1.6. In view of Lemma 2.1, to prove the theorem it suffices to show that for any
l,u ∈ QV and w ∈ ZV with finite Max (A, l, u, w), we have Max (A, l, u, 4w;Z) ≤ 2Max (A, l,u, 2w;Z).
We shall actually prove that for every optimal solution (α∗,β∗, γ∗) to Max (A, l,u, 4w;Z), there exists
a feasible solution (α,β, γ) to Max (A, l, u, 2w;Z) such that αT 1 + βT l− γT u ≥ [αT

∗ 1 + βT
∗ l− γT

∗ u]/2.
Let Ω be the edge collection of H corresponding to α∗. Then Lemma 2.2 guarantees the existence of

an atomic edge collection Λ that dominates Ω. By definitions, we have
(a) |Λ| ≥ |Ω| and dΛ(v) ≤ dΩ(v) for all v ∈ V ;
(b) for every edge collection Π that dominates Λ, |Π| = |Λ| and dΠ(v) = dΛ(v) for all v ∈ V .

Define a vector α∗ ∈ ZE+, such that α∗(U) is precisely the multiplicity of the edge U in Λ for all U ∈ E .
From (a) we deduce that (α∗)T 1 ≥ αT

∗ 1 and (α∗)T A ≤ αT
∗A and hence (α∗, β∗, γ∗), with β∗ = β∗ and

γ∗ = γ∗, is also an optimal solution to Max (A, l, u, 4w;Z). In particular, (α∗)T 1 + (β∗)T l − (γ∗)T u =
αT
∗ 1 + βT

∗ l− γT
∗ u.

Since H is QESP, Λ admits a quasi-equitable subpartition (Λ1, Λ2). From (i) and (ii) of the QESP
property, it can be seen that Λ1 ∪ Λ2 dominates Λ. As Λ is atomic, by (b) we get

(c) |Λ1|+ |Λ2| = |Λ| and dΛ1(v) + dΛ2(v) = dΛ(v) for all v ∈ V .
The remainder of the proof is exactly the same as that of Theorem 1.4, except that to establish (10), we
have to apply both (c) and (iv’) of the QESP property.

Let us digress to exhibit some properties enjoyed by equitable subpartions, which will be used repeat-
edly in the applications of the above theorems. The following is clear from the definitions.

Lemma 2.3 Let Λ and Ω be two edge collections of a hypergraph H = (V, E). If Λ dominates Ω, then
every equitable subpartition of Λ is an equitable subpartition of Ω.

For each edge collection Λ of H, let ∂(Λ) denote the subset of E , consisting of edges that appear an
odd number of times in Λ. The following assertion was implicitly established by Ding and Zang in their
proof of Theorem 2.1 in [9].

Lemma 2.4 Let Λ be an edge collection of a hypergraph H = (V, E). If ∂(Λ) admits an equitable subpar-
tition, then so does Λ.

Proof. For completeness, we give a sketch of Ding and Zang’s proof [9] here. For each U ∈ E ,
let m(U) stand for its multiplicity in Λ. Let Λ0 be the edge collection such that each U ∈ E appears
bm(U)/2c times. Clearly, Λ = Λ0 ∪ Λ0 ∪ ∂(Λ). By hypothesis, ∂(Λ) admits an equitable subpartition
(Ω1, Ω2). For i = 1, 2, set Λi = Λ0 ∪ Ωi. It is easy to verify that (Λ1, Λ2) is an equitable subpartition of
Λ.

Lemma 2.5 A hypergraph H = (V, E) is ESP if and only if every atomic subset of E admits an equitable
subpartition.
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Proof. The “only if” part follows instantly from the definition of ESP hypergraphs. To prove
the “if” part, we assume the contrary: some edge collection Ω of H admits no equitable subpartition.
By Lemma 2.2, Ω is dominated by an atomic edge collection Λ. Observe that ∂(Λ) is also atomic,
for otherwise there would exist an edge collection Π that dominates ∂(Λ), with either |Π| > |∂(Λ)| orP

v∈V dΠ(v) <
P

v∈V d∂(Λ)(v). Set Λ′ = (Λ − ∂(Λ)) ∪ Π. It is easy to see that Λ′ dominates Λ, with
either |Λ′| > |Λ| or

P
v∈V dΛ′(v) <

P
v∈V dΛ(v), contradicting the atomic assumption on Λ. It follows

that ∂(Λ) admits an equitable subpartition; so does Λ by Lemma 2.4 and hence Ω by Lemma 2.3, this
contradiction completes the proof.

Given two hypergraphs Hi = (Vi, Ei) for i = 1, 2 with V1 ∩V2 = ∅, the hypergraph (V1 ∪V2, E1 ∪E2) is
called the 0-sum of H1 and H2. The following lemma asserts that ESP property is preserved under this
summing operation.

Lemma 2.6 [9] The 0-sum of two ESP hypergraphs is also ESP.

We shall appeal to this lemma to establish some inductive arguments on hypergraphs that can be
decomposed into smaller ones under this summing operation.

3 Applications

The purpose of this section is to establish several new classes of box-Mengerian and box-half-Mengerian
hypergraphs by using the preceding theorems.

3.1 Path hypergraphs

In this subsection we study hypergraphs arising from paths in undirected trees. Let T be a tree with
edge set V , and let E be edge sets of some paths in T , such that each edge of T is contained in at least
one of these paths. We call H = (V, E) the edge path tree (EPT) hypergraph supported by T , and call T

a supporting tree of H (note that a supporting tree may not be unique). For characterizations of EPT
hypergraphs, see Fournier [12]. The problem of recognizing EPT hypergraphs is closely related to the
well-known graph realization problem [3, 4, 13] (see also Chapter 20 in Schrijver [18]).

A subset of edges {P1, P2, . . . , Pk} in H is called a pie if T contains a vertex u and k edges e1, e2, . . . , ek

all incident with u, such that Pi ∩ {e1, e2, . . . , ek} = {ei, ei+1} for i = 1, 2, . . . , k, where ek+1 = e1; the
pie is called odd if k is odd. For any two disjoint subsets X and Y of V (possibly X or Y is empty),
let V ′ = V − (X ∪ Y ) and let E ′ be the set of all minimal members in {P − Y : P ∩ X = ∅, P ∈ E},
where the adjective minimal is meant with respect to set-inclusion rather than size. Then H′ = (V ′, E ′)
is called the minor of H obtained by deleting X and contracting Y . Clearly, H′ is supported by T ′, the
tree obtained from T by contracting edges in X ∪ Y . The hypergraph H is said to be odd-pie-free if it
contains no odd pies, and is said to be odd-M-pie-free if none of its minors is an odd pie. As observed by
Apollonio [1], an odd-M-pie-free hypergraph may contain an odd pie. A clutter is a hypergraph in which
no edge is contained in another one.

Theorem 3.1 Let H = (V, E) be an EPT clutter. Then the following statements are equivalent:
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(i) H is odd-M-pie-free;

(ii) H is ideal;

(iii) H is Mengerian;

(iv) H is box-Mengerian; and

(v) H is ESP.

The equivalence of the first three statements was established recently by Apollonio [1]. We aim to
show that for the same combinatorial structures, the stronger statements (iv) and (v) hold. Our proof
relies heavily on the following two lemmas due to Apollonio.

Lemma 3.2 [1] Let H = (V, E) be an odd-pie-free EPT hypergraph and let A be the E − V incidence
matrix. Then A is totally unimodular.

Lemma 3.3 [1] Let H = (V, E) be an odd-M-pie-free EPT clutter. If H contains an odd pie P, then
there exist four edges P1, P2, P3, P4 in H, with {P3, P4} ⊆ P, such that

P1 ∩ P2 = ∅, P3 ∩ P4 6= ∅, and P1 ∪ P2 ⊆ (P3 − P4) ∪ (P4 − P3). (3.1)

Proof of Theorem 3.1. In view of Corollary 1.3, we have (v)⇒(iv)⇒(iii)⇒(ii)⇒(i). It remains to
establish the implication (i)⇒(v).

By Lemma 2.5, we only need to show that every atomic subset F of E admits an equitable subpartition.
To this end, let T be a supporting tree of H and let W be the set of all edges of T contained in members
of F . Then G = (W,F) is also an EPT clutter. Observe that

(1) H contains no four edges P1, P2, P3, P4, with {P3, P4} ⊆ F , as described in (3.1).
Otherwise, let F ′ be the edge collection obtained from F by replacing {P3, P4} with {P1, P2}. Then

F ′ dominates F and
P

v∈W dF ′(v) <
P

v∈W dF (v), contradicting the atomic assumption on F .
(2) G contains no odd pie.
Suppose on the contrary that P is an odd pie in G. Since P is fully contained in H, Lemma 3.3

guarantees the existence of four edges P1, P2, P3, P4 of H, with {P3, P4} ⊆ P, as described in (3.1),
contradicting (1) for P ⊆ F .

Let B be the F − W incidence matrix. By Lemma 3.2 (with respect to G), matrix B is totally
unimodular. From the Ghouila-Houri theorem (see Theorem 19.3 of [18]), it follows that the rows of B

can be split into two parts so that the sum of rows in one part minus the sum of the rows in the other
part is a vector with entries only 0, +1, and −1. Clearly, these two parts correspond to an equitable
subpartition of F , completing the proof.

3.2 Cycle hypergraphs

Throughout this subsection, by a cycle in a digraph we always mean a directed one. Let G = (V, E) be a
graph (undirected or directed) and let w ∈ ZV

+. A feedback vertex set (FVS) of G is a vertex subset that
intersects each cycle in G, and a w-cycle packing of G is a collection C of cycles (with repetition allowed)
such that each vertex v is contained in at most w(v) members of C. The feedback vertex set problem is
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to find an FVS with minimum total weight (denoted by τ(G, w)), while the cycle packing problem is to
find a w-cycle packing with maximum size (denoted by ν(G, w)). It is well known that both of them are
NP -hard, so neither can be solved in polynomial time unless NP = P . We call G cycle Mengerian (CM)
if τ(G, w) = ν(G, w) for any w ∈ ZV

+. Since a structural characterization of all CM graphs yields not
only a beautiful min-max theorem but also polynomial-time algorithms for both the feedback vertex set
and the cycle packing problems, this graph class has been a subject of extensive research. In [9], Ding
and Zang obtained a characterization of all CM undirected graphs. Due to the long list of forbidden
structures, to find a good characterization of all CM digraphs seems to be extremely difficult. While this
characterization problem remains open in general, it was resolved completely on tournaments by Cai,
Deng, and Zang [5]. (As usual, a tournament is an orientation of an undirected complete graph.) The
purpose of this subsection is to give a strengthening of each of these two results.

Let us define three more terms before presenting our theorems. An odd ring is a graph obtained from
an odd cycle by replacing each edge e = xy with either a triangle containing e or two triangles xab, ycd

together with two additional edges ac and bd (see Figure 1). A wheel is obtained from a cycle by adding
a new vertex and making it adjacent to all vertices of the cycle. Let G = (V, E) be a graph (undirected
or directed) and let E consist of the vertex sets of all cycles in G. Then H = (V, E) is called the cycle
hypergraph of G. For convenience, we use L to denote the class of all simple undirected graphs containing
no induced subgraph isomorphic to a subdivision of an odd ring, or K2,3, or a wheel.

Figure 1: An odd ring obtained from a cycle of length 7.

Theorem 3.4 Let G = (V, E) be a simple undirected graph and let H = (V, E) be its cycle hypergraph.
Then the following statements are equivalent:

(i) G ∈ L;

(ii) H is ideal;

(iii) H is Mengerian;

(iv) H is box-Mengerian; and

(v) H is ESP.

The equivalence of (i), (ii), (iii), and (v) was established by Ding and Zang [9]; our contribution here
is to strengthen the original total dual integrality as box-total dual integrality, see (iv), whose validity
follows instantly from Corollary 1.3.
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Theorem 3.5 Let G = (V, E) be a tournament and let H = (V, E) be its cycle hypergraph. Then the
following statements are equivalent:

(i) G contains neither F1 nor F2 as a subgraph (see Figure 2);

(ii) H is ideal;

(iii) H is Mengerian;

(iv) H is box-Mengerian; and

(v) H is ESP.

Figure 2: Forbidden subgraphs F1 and F2.

The equivalence of (i) and (iii) was derived by Cai, Deng, and Zang [5]. Our main objective here is
to exhibit box-TDI and ESP properties associated with the same combinatorial structures.

A triangle is a directed cycle of length three. Note that a vertex subset of a tournament is an FVS if
and only if it intersects all triangles, and that the cycle packing problem on tournaments actually reduces
to the triangle packing problem. Our proof of the above theorem is based on the following structural
description, which is a combination of Lemma 2.1, Corollary 2.1, and Corollary 2.2 in [5].

Lemma 3.6 Let G = (V, E) be a strongly connected tournament containing no F1 nor F2 as a subgraph.
Then V can be partitioned into V1, V2, . . . , Vk for some k with 3 ≤ k ≤ |V |, which have the following
properties:

(i) For each i = 1, 2, . . . , k, Vi is acyclic and hence admits a linear order ≺ such that x ≺ y whenever
(x, y) is an arc in Vi;

(ii) For each i = 1, 2, . . . , k − 1, if (u, v) is an arc from Vi+1 to Vi, then

• (x, v) is an arc for any x ∈ Vi+1 with x ≺ u, and

• (u, y) is an arc for any y ∈ Vi with v ≺ y;

(iii) For any i, j with 1 ≤ i ≤ j − 2 ≤ k − 2, each arc between Vi and Vj is directed from Vi to Vj;

(iv) For any triangle xyz in G, there exists a subscript i with 1 ≤ i ≤ k−2 such that x ∈ Vi+2, y ∈ Vi+1,
and z ∈ Vi (renaming x, y and z if necessary).

Proof. Statements (i), (iii) and the second half of (ii) are contained in Lemma 2.1 in [5], the first
half of (ii) is established in Corollary 2.1, and (iv) is exactly the same as Corollary 2.2 in [5].
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Lemma 3.7 Let G = (V,E) be a tournament and let H = (V, E) be its cycle hypergraph. If G contains
F1 or F2 as a subgraph, then H is nonideal.

Proof. By hypothesis, G contains Fi as a subgraph for i = 1 or 2. Let A be the E − V incidence
matrix and let w ∈ ZV

+ such that w(v) = 1 if v is a vertex in Fi and 0 otherwise. Let τ∗(H, w) denote the
optimal value of the linear program min{wT x : Ax ≥ 1, x ≥ 0}. Define x ∈ QV

+ such that x(v) = 1/3
if v is a vertex in Fi and 1 otherwise. Obviously, x is a feasible solution to the problem with objective
value 5/3. So τ∗(H,w) ≤ 5/3.

It is easy to check that the vertices of the above Fi can be labeled as v1, v2, v3, v4, v5 so that {v1, v2, v3},
{v2, v3, v4}, and {v1, v4, v5} are the vertex sets of three triangles T1, T2, T3 in G, respectively. Let B be
the 3× |V | submatrix of A whose rows correspond to T1, T2, T3. Consider the LP-duality relation

min{wT x : Bx ≥ 1, x ≥ 0} = max{yT 1 : yT B ≤ wT, y ≥ 0}. (3.2)

Define x ∈ QV
+ such that x(v) = 1/2 if v ∈ {v1, v2, v4}, 0 if v ∈ {v3, v5}, and 1 otherwise, and define

y ∈ QE+ such that y(U) = 1/2 if U ∈ {T1, T2, T3} and 0 otherwise. Clearly, x and y are feasible solutions
to the above primal-dual pair in (3.2), respectively. Since wT x = yT 1 = 3/2, from the LP-duality
theorem we conclude that x and y are actually optimal solutions and 3/2 is the optimal value. As B is
a submatrix of A, the optimal value of the minimization problem in (3.2) is bounded above by τ∗(H, w).
So τ∗(H, w) ≥ 3/2.

Combining the above two inequalities, we get 3/2 ≤ τ∗(H, w) ≤ 5/3. Hence τ∗(H, w) in not integral
and therefore H is nonideal.

Suppose G = (V,E) is a strongly connected tournament containing no F1 nor F2 as a subgraph. Then
V admits a partition {V1, V2, . . . , Vk} as described in Lemma 3.6. Let D denote the digraph obtained
from G by deleting all arcs in Vi for each i and deleting all arcs from Vi to Vj for any i < j, let P3 denote
a (directed) path with 3 vertices in D, and let P3 be the set of all P3’s in D.

Consider the order ≺ introduced in Lemma 3.6. Recall that this order does not apply to any two
vertices in distinct Vi’s. Let us now fill this gap by extending ≺ to the whole vertex set V . Define u ≺ v

for any u ∈ Vi and v ∈ Vj with i < j. Note that if v1v2v3 is a P3 in D, then v3 ≺ v2 ≺ v1. The order ≺
on V naturally yields a lexicographic order on P3. Let Q1 = u1u2u3 and Q2 = v1v2v3 be two P3’s in D.
Define Q1 ≺ Q2 if uj ≺ vj for the largest subscript j with uj 6= vj .

Two directed paths P = u1u2u3 and P ′ = u′1u
′
2u
′
3 in D are said to be crossing if some V`, 1 ≤ ` ≤ k,

contains two vertices ui, u
′
j , 1 ≤ i, j ≤ 3, such that u′j ≺ ui while P ≺ P ′ or such that ui ≺ u′j while

P ′ ≺ P . Suppose P and P ′ form a crossing pair with P ≺ P ′. In view of Lemma 3.6(iv), P is contained
in ∪s+2

h=s Vh for some s ≤ k − 2, P ′ is contained in ∪t+2
h=t Vh for some t with s ≤ t ≤ s + 2, and each Vh

contains at least one and at most two vertices of P and P ′, where s ≤ h ≤ t + 2. Let vh and v′h denote
the vertices in Vh ∩ (V (P ) ∪ V (P ′)) with vh ¹ v′h (vh = v′h if Vh contains only one vertex of P and P ′).
Define

P ∧ P ′ = vs+2vs+1vs and P ∨ P ′ = v′t+2v
′
t+1v

′
t.

We claim that
{P ∧ P ′, P ∨ P ′} ⊆ P3 and P ∧ P ′ ≺ P ≺ P ′ ≺ P ∨ P ′. (3.3)
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To justify this, note that for h = s + 1 and s + 2, if neither P nor P ′ contains (vh, vh−1), then vh ≺ v′h
and (v′h, vh−1) is an arc of P or P ′. Thus by Lemma 3.6(ii), (vh, vh−1) ∈ E. It follows that P ∧ P ′ ∈ P3.
Similarly, P∨P ′ ∈ P3. By the definition of crossing paths, some V`, 1 ≤ ` ≤ k, contains two vertices ui, u

′
j ,

1 ≤ i, j ≤ 3, such that u′j ≺ ui. Since u′j ∈ P ∧ P ′ and ui ∈ P ∨ P ′, we have P ∧ P ′ ≺ P ≺ P ′ ≺ P ∨ P ′.
So (3.3) is established.

Let C3 stand for the set of all triangles in G. From Lemma 3.6(iv), we see that there is a one-to-one
correspondence between C3 and P3: a triangle in C3 and a P3 in P3 with the same vertex set correspond
to each other. For i = 1, 2, let Ti ∈ C3 and let Qi be the P3 corresponding to Ti. We call T1 and T2

crossing if Q1 and Q2 are crossing, and define T1 ≺ T2 if Q1 ≺ Q2. Similarly, we can define T1 ∧ T2 and
T1 ∨ T2. Let Λ = {T1, T2, . . . , Tm} and Λ′ = {T ′1, T ′2, . . . , T ′m} be two collections of triangles in G, whose
members are arranged in nondecreasing order with respect to ≺. Define Λ ≺ Λ′ if Ti ≺ T ′i for the smallest
subscript i with Ti 6= T ′i .

Proof of Theorem 3.5. By Corollary 1.3 and Lemma 3.7, we have (v)⇒(iv)⇒(iii)⇒(ii)⇒(i). It
remains to establish the implication (i)⇒(v).

Let G = (V, E) be a tournament containing no F1 nor F2 as a subgraph and let H = (V, E) be its
cycle hypergraph. To show that H is ESP, we apply induction on |V |. The statement holds trivially
when |V | = 1, so we proceed to the induction step. We may assume that

(1) G is strongly connected. Thus V admits a partition {V1, V2, . . . , Vk} as described in Lemma 3.6.
Otherwise, let G1 be a strongly connected component of G, let G2 be the graph obtained from G by

deleting all vertices in G1, and let Hi be the cycle hypergraph of Gi for i = 1, 2. Then H is the 0-sum of
H1 and H2. By induction hypothesis, Hi is ESP for i = 1, 2; so is H using Lemma 2.6. Hence (1) holds.

By Lemma 2.5, it suffices to show that every atomic subset Ω of E admits an equitable subpartition.
For this purpose, let Λ be an arbitrary atomic edge collection that dominates Ω (see Lemma 2.2). Observe
that

(2) Each member in Λ is a triangle and |Λ| = |Ω|.
Suppose not, some C in Λ is a cycle of length at least four. Since G is a tournament, we can find

a triangle T whose vertices are all contained in C. Let Λ′ be obtained from Λ by replacing C with T .
Clearly, Λ′ dominates Λ and

P
v∈V dΛ′(v) <

P
v∈V dΛ(v), contradicting the atomic assumption on Λ.

Since Ω is atomic, by definition we have |Λ| = |Ω|. This proves (2).
Recall that we have defined the lexicographic order ≺ for triangle collections of the same size. So (2)

allows us to fix an atomic edge collection Λ that dominates Ω and
(3) Subject to this, Λ has the smallest lexicographic order.

(4) No two triangles in Λ are crossing.
Suppose the contrary: T1 and T2 in Λ form a crossing pair with T1 ≺ T2. From (3.3), we deduce that

T1 ∧ T2 ≺ T1 ≺ T2 ≺ T1 ∨ T2. Let Λ′ be the edge collection obtained from Λ by replacing {T1, T2} with
{T1 ∧T2, T1 ∨T2}. Then Λ′ dominates Λ (and hence Ω). Since Λ is atomic, so is Λ′. Clearly, Λ′ ≺ Λ, this
contradiction to (3) yields (4).

Write Λ = {T1, T2, . . . , Tm}, where m = |Λ| and Ti ¹ Ti+1 for i = 1, 2, . . . , m− 1.
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(5) For any i, j with 1 ≤ i < j ≤ m and any v ∈ V , if both Ti and Tj contains v, then so does Th for
any h between i and j.

Assume on the contrary that v is not contained in Th for some h with i < h < j. Then Ti ≺ Th ≺ Tj .
By (1), v ∈ Vg for some g with 1 ≤ g ≤ k. If Th contains no vertex in Vg, then Th is fully contained in

∪g−1
t=1 Vt or fully contained in ∪k

t=g+1 Vt. It follows that Th ≺ Ti or Tj ≺ Th, contradicting our previous
observation. So Th contains a vertex u in Vg. It is easy to see that Qi and Qh are crossing if u ≺ v and
Qh and Qj are crossing if v ≺ u, contradicting (4). So (5) is justified.

Set Λ1 = {Ti : i is odd and 1 ≤ i ≤ m} and Λ2 = {Ti : i is even and 1 ≤ i ≤ m}. Clearly, we have

|Λ1|+ |Λ2| = |Λ| and dΛ1 ∪Λ2(v) = dΛ(v) for all v ∈ V .

Consider an arbitrary vertex v of G. In view of (5), we may assume that Tt, Tt+1, . . . , Tt+dΛ(v)−1 are the
dΛ(v) triangles in Λ containing v for some t. It follows from the definitions of Λ1 and Λ2 that

dΛi(v) ≤ ddΛ(v)/2e for i = 1, 2.

So (Λ1, Λ2) is an equitable subpartition of Λ and hence of Ω by Lemma 2.3, completing the proof.

3.3 Matroid ports

As usual, let U2,4 be the uniform matroid on four elements of rank two, let F7 be the Fano matroid, let
F ∗7 be the dual of F7, and let F+

7 be the unique series extension of F7. We refer to Oxley [16] for an
in-depth account of matroid theory and undefined terms.

Let M be a matroid [16] on E∪{`}, where ` 6∈ E is a distinguished element of M . A matroid obtained
from M by deleting and contracting elements in E is called a minor of M using `. The `-port of M is
the hypergraph PM,` = (E, E), where E = {P : P ⊆ E with P ∪ {`} a circuit of M}. In [20], Seymour
characterized all pairs (M, `) for which PM,` is Mengerian; this theorem yields many important min-
max relations in combinatorial optimization and has attracted tremendous research efforts in matroid
optimization.

Let A be the E − E incidence matrix. For any vectors l, u, let Q(A, l, u) denote the polytope {x :
Ax ≥ 1, x ≥ 0}∩{x : l ≤ x ≤ u}. Given a positive integer d, we call PM,` box 1

d -integral if all vertices of
Q(A, l, u) are 1

d -integral for all 1
d -integral vectors l, u. In [14], Gerards and Laurent obtained a structural

characterization of all pairs (M, `) for which PM,` is box 1
d -integral for all positive integers d; this theorem

can be found in several interesting applications [14, 15].
Recently, Chen, Ding, and Zang [6] managed to characterize all pairs (M, `) for which PM,` is box-

Mengerian; this characterization also yields a number of interesting results in combinatorial optimization
(see [6]). The purpose of this subsection is to strengthen this box-TDI property with ESP property and
to present a much shorter proof than the one given in [6]. For convenience, let = be the set of all pairs
(M, `), where M is a matroid on at least two elements, including `, such that M has no U2,4-minor using
`, no F ∗7 -minor using `, and no F+

7 -minor using ` as a series element.

Theorem 3.8 Let M be a matroid on E ∪{`} with ` 6∈ E. Then the following statements are equivalent:

(i) (M, `) ∈ =;
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(ii) PM,` is box 1
d -integral for all positive integers d;

(iii) PM,` is box-Mengerian; and

(iv) PM,` is ESP.

The equivalence of (i) and (ii) was established by Gerards and Laurent [14], and that of (i) and (iii)
was derived by Chen, Ding, and Zang [6]. Since (iv)⇒(iii)⇒(ii)⇒(i), we only need to show that (i)⇒(iv).
We point out that our proof curtails many technical parts of Chen, Ding, and Zang’s original proof and
hence is much easier to follow.

For an edge collection Λ of the `-port PM,` = (E, E), its incidence vector is x ∈ ZE+ such that x(P ) is
the multiplicity of P in Λ for any P ∈ E . For a set K and a vector y ∈ QK , we define ȳ to be the vector
(|y(k)| : k ∈ K) ∈ QK

+ .
To prove the theorem, we first consider the case when M is a regular matroid. The following is a

combination of Lemmas 4.1 and 4.2 in [6].

Lemma 3.9 [6] Let M be a regular matroid on E ∪ {`}, with ` 6∈ E, represented by a totally unimodular
matrix U , and let A be the E − E incidence matrix of PM,`. Then the following statements hold:

(i) For any α ∈ ZE+, there exists x ∈ ZE∪{`} such that Ux = 0, x(`) = αT 1, and x̄|E ≤ AT α.

(ii) For any x ∈ ZE∪{`} with Ux = 0, there exists α ∈ ZE+ such that αT 1 ≥ |x(`)| and AT α ≤ x̄|E.

For regular matroids, the assertion of Theorem 3.8 is established below.

Lemma 3.10 Let M be a regular matroid on E ∪ {`} with ` 6∈ E. Then PM,` is ESP.

Proof. By Lemma 2.5, it suffices to show that every subset Λ of E admits an equitable subpartition.
To this end, let α be the incidence vector of Λ. Then Lemma 3.9(i) guarantees the existence of a vector
x ∈ ZE∪{`} such that

(1) Ux = 0, x(`) = αT 1, and x̄|E ≤ AT α.
Observe that

(2) x̄|E = AT α.
Otherwise, x̄|E � AT α. By Lemma 3.9(ii), there exists β ∈ ZE+ such that βT 1 ≥ |x(`)| and AT β ≤

x̄|E . It follows that AT β � AT α. Next, let Ω be the edge collection of PM,` with incidence vector β.

Then |Ω| = βT 1 ≥ |x(`)|. By (1), we have |Λ| = αT 1 = x(`) ≤ |Ω|. Therefore Λ, dominated by Ω, is not
atomic. This contradiction justifies (2).

Consider the polyhedron Q = {y : Uy = 0, bx/2c ≤ y ≤ dx/2e}. By (1), x/2 ∈ Q, so Q 6= ∅. Since
U is totally unimodular, Q contains an integral vector y1 ∈ ZE∪{`}. Set y2 = x− y1. From (1) and the
definition of Q, we deduce that

(3) {y1, y2} ⊆ Q ∩ ZE∪{`} and ȳ1 + ȳ2 = x̄.

By Lemma 3.9(ii), there exists αi ∈ ZE+ such that αT
i 1 ≥ |yi(`)| and AT αi ≤ ȳi|E for i = 1, 2. It

follows from (3) that
(4) αT

1 1 + αT
2 1 ≥ |y1(`)|+ |y2(`)| = |x(`)| and AT α1 + AT α2 ≤ ȳ1|E + ȳ2|E = x̄|E .
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For i = 1, 2, let Λi be the edge collection of PM,` with incidence vector αi. Using (4) and (2), we
obtain |Λ1|+|Λ2| = αT

1 1+αT
2 1 ≥ |x(`)| = |Λ| and AT α1+AT α2 ≤ x̄|E = AT α, which amounts to saying

that dΛ1∪Λ2(e) ≤ dΛ(e) for all e ∈ E. Recall that AT αi ≤ ȳi|E for i = 1, 2. Hence for each e ∈ E, we have
dΛi

(e) ≤ |yi(e)|. It follows from (3), the definition of Q, and (2) that dΛi
(e) ≤ d|x(e)|/2e = ddΛ(e)/2e.

Therefore (Λ1, Λ2) is an equitable subpartition of Λ.

To prove Theorem 3.8 for the general case, we shall appeal to a structural description of all (M, `) in =.
Let us define a few more terms before proceeding. Let M be a matroid on E. A partition (E1, E2) of E is
called a k-separation, where k is a positive integer, if min{|E1|, |E2|} ≥ k and r(E1)+r(E2) ≤ r(E)+k−1.
We say that the k-separation (E1, E2) is strict if r(E1) + r(E2) = r(E) + k− 1. A matroid is k-connected
if it has no k′-separation, for any k′ < k. As customary, 2-connected matroids are called connected and
others are disconnected.

For i = 1, 2, let Mi be a matroid on Ei with E1 ∩ E2 = ∅. The 1-sum of M1 and M2 is the matroid
M on E1 ∪ E2 such that C is a circuit of M if and only if it is a circuit of either M1 or M2. Next, for
i = 1, 2, let Mi be a matroid on Ei ∪{p}, where E1 ∩E2 = ∅ and p 6∈ E1 ∪E2. The parallel connection of
M1 and M2 is the matroid M on E1 ∪E2 ∪ {p} such that C is a circuit of M if and only if C is a circuit
of M1 or M2, or C = (C1 − {p}) ∪ (C2 − {p}), where, for i = 1, 2, Ci is a circuit of Mi that contains p.
Matroid M\p is called the 2-sum of M1 and M2.

Let =c denote the set of all pairs (M, `) in = with M connected. The following structural theorem on
=c is due to Gerards and Laurent.

Theorem 3.11 [14] If (M, `) ∈ =c, then either M is regular or M/` is not 3-connected.

Let M be a matroid on E ∪ {`} with ` 6∈ E and (M, `) ∈ =. Note that M is a binary matroid. To
keep track of the information about M while working on M/`, we need to consider a representation of
M on M/`. A signed matroid is a pair (N, Σ), where N is a binary matroid on E and Σ is a subset of E.
A subset X ⊆ E is called Σ-odd or Σ-even if |X ∩ Σ| is odd or even, respectively. For convenience, let
ON,Σ denote the hypergraph of all Σ-odd circuits in N , and let < denote the family of all subsets Σ of
E such that Σ ∪ {`} is a cocircuit of M .

In the remaining discussion we always assume that N = M/`. Since M is a binary matroid,

PM,` = ON,Σ for every Σ ∈ <. (3.4)

Thus we shall make no effort in distinguishing between them and use whichever is more convenient.

Proof of Theorem 3.8. To show that (i)⇒(iv), we assume the contrary: PM,` = (E, E) is not ESP
for some (M, `) ∈ = and, subject to this, |E(M)| is minimum. Then, by Lemma 2.5, some atomic subset
Ω of E admits no equitable subpartition. It follows that E 6= ∅ and E 6= {∅}, implying

(1) ` is neither a loop nor a coloop of M .
If M is not connected, then M is the 1-sum of some matroids M1 and M2 with ` ∈ E(M1), and

hence PM,` is the 0-sum of PM1,` and the hypergraph (E(M2), ∅). From the minimality assumption on
PM,`, we deduce that PM1,` is ESP for |E(M1)| < |E(M)|. Trivially, (E(M2), ∅) is also ESP. Hence, by

18



Lemma 2.6, PM,` is ESP; this contradiction implies that M is connected, which, together with (1), yields
(M, l) ∈ =c. So, by Lemma 3.10, M is not a regular matroid. Set N = M/`. It follows from Theorem
3.11 that

(2) N is not 3-connected.
If N has a 1-separation (E1, E2), let H1 (resp. H2) denote the `-port of the matroid M\E2 (resp.

M\E1), then PM,` is the 0-sum of H1 and H2. By the minimality assumption on (M, `), both H1 and
H2 are ESP. From Lemma 2.6, we see that so is PM,`, a contradiction. Hence

(3) N is connected.
From (2) and (3), we deduce that N has a strict 2-separation (E1, E2) and thus (see Theorem 8.3.1

in [16])
(4) N is the 2-sum of its minors N1 and N2 such that E(Ni) = Ei ∪ {p} for i = 1, 2, where p 6∈ E.

Let us partition the edge set E of PM,` into E0, E1, E2, such that Ei is the set of all edges contained in
Ei for i = 1, 2 and E0 = E − E1 − E2. For any Σ ∈ <, from (3.4) we see that Ei is the set of all Σ-odd
circuits of N contained in Ei for i = 1, 2, and E0 consists of all Σ-odd circuits of N that meet both E1

and E2. Clearly, we have
(5) For any P ∈ E0 and Σ ∈ <, either P ∩E1 is Σ-odd and P ∩E2 is Σ-even or P ∩E1 is Σ-even and

P ∩ E2 is Σ-odd.

For the edge collection Ω specified at the beginning of our proof, let us choose an edge collection Λ of
PM,` such that

(6) Λ dominates Ω and, subject to this, |Λ ∩ E0| is minimum.
Two members P1, P2 of E0 are called Σ-crossing for some Σ ∈ < if both P1 ∩ E1 and P2 ∩ E2 are

Σ-odd. Observe that
(7) Λ contains no Σ-crossing pair for any Σ ∈ <.
Suppose the contrary: Λ contains an Σ-crossing pair P1, P2 for some Σ ∈ <. For i, j ∈ {1, 2}, recall

that Pij = (Pi ∩ Ej) ∪ {p} is a circuit of the matroid Nj . By definition, both P11 and P22 are Σ-odd
and hence, using (4), both P12 and P21 are Σ-even. It follows that the symmetric differences P11∆P21

and P12∆P22 are both Σ-odd. For j = 1, 2, since Nj is binary, P1j∆P2j is a disjoint union of circuits of
Nj\p. Thus at least one of these circuits, denoted by Cj , is Σ-odd. Clearly, Cj ∈ Ej for j = 1, 2 and
dC1(e) + dC2(e) ≤ dP1(e) + dP2(e) for all e ∈ E. Let Λ′ be obtained from Λ by replacing {P1, P2} with
{C1, C2}. Then Λ′ dominates Λ and hence Ω. Moreover, |Λ′ ∩ E0| < |Λ ∩ E0|, this contradiction to (6)
yields (7).

By (3), N is connected, so E0 6= ∅. Let us choose P ∗ in E0 such that P ∗ ∈ Λ ∩ E0 provided this set
is nonempty. Symmetry and (5) allow us to assume that P ∗ ∩ E1 is Σ-odd for some Σ ∈ <. In [14] (see
page 201), Gerards and Laurent made the following observation:

(8) For any e1 ∈ P ∗ ∩ E2 and e2 ∈ P ∗ ∩ E1, there exists Σ∗ ∈ < with the following properties:
(a) Σ∗ ∪ {`} is the fundamental cocircuit of ` in a base X∗ of M containing (P ∗ − {e2}) ∪ {`};
(b) e1 6∈ Σ∗ and e2 ∈ Σ∗; and
(c) P ∗ ∩ E1 is Σ∗-odd.
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For completeness, we include their proof here: Let X∗ be a base of M containing (P ∗ − {e2}) ∪ {`}
and let Σ∗ ∪ {`} be the fundamental cocircuit of ` in X∗. Then e2 ∈ Σ∗ for P ∗ ∪ {`} is the fundamental
circuit of e2 in X∗, and e1 /∈ Σ∗ for e1 ∈ X∗. Thus both (a) and (b) hold. Since Σ∗ is disjoint from
P ∗ − {e2}, we also have (c). This proves (8).

Define M1 = M/((P ∗ ∩ E2) − {e1})\(E2 − P ∗) and M2 = M/((P ∗ ∩ E1) − {e2})\(E1 − P ∗). Note
that E(M1) = E1 ∪ {e1, `}, E(M2) = E2 ∪ {e2, `}, and (Mi, `) ∈ = for i = 1, 2. Let X∗ and Σ∗ be as
described in (8). Set Xi = X∗ ∩ Ei and Yi = Ei −Xi for i = 1, 2. Then M1

∼= M/(X2 − {e1})\Y2 and
M2

∼= M/X1\(Y1−{e2}). Moreover, (P ∗∩E1)∪{e1, `} is a circuit of M1 and (P ∗∩E2)∪{e2, `} is a circuit
of M2. Rename the element ei in E(Mi) as p for i = 1, 2, and set Σ1 = Σ∗∩E1 and Σ2 = (Σ∗∩E2)∪{p}.
Then

(9) Ni = Mi/`, Σi ⊆ E(Mi)− {`}, and Σi ∪ {`} is a cocircuit of Mi for i = 1, 2.
From (9) and (3.4), it can be seen that
(10) PMi,` = ONi,Σi

for i = 1, 2.
By the minimality assumption on PM,`, we obtain
(11) PMi,` is ESP for i = 1, 2.

For convenience, set Λi = Λ ∩ Ei for i = 0, 1, 2. Then Λ = Λ0 ∪ Λ1 ∪ Λ2. By (c) of statement (8),
P ∗∩E1 is Σ∗-odd. By (5) and (7), P ∩E1 is Σ∗-odd for any P ∈ Λ0. It follows from (4) and the definition
of Σ1 and Σ2 that

(12) For any P ∈ Λ0 and i = 1, 2, (P ∩ Ei) ∪ {p} is an Σi-odd circuit in Ni.

Set Πi = Λi ∪ {(P ∩ Ei) ∪ {p} : P ∈ Λ0} for i = 1, 2, Combining (9) and (12), we see that
(13) The following statements hold:
(a) Πi is an edge collection of PMi,` for i = 1, 2; and
(b) |Πi| = |Λ0|+ |Λi| and dΠi(p) = |Λ0| for i = 1, 2.

It follows from (11) that
(14) For i = 1, 2, the edge collection Πi admits an equitable subpartition (Π1

i , Π
2
i ) in PMi,` such that

(a) |Π1
i |+ |Π2

i | ≥ |Πi|;
(b) dΠ1

i
∪Π2

i
(e) ≤ dΠi(e) for all e ∈ Ei ∪ {p}; and

(c) max{dΠ1
i
(e), dΠ2

i
(e)} ≤ ddΠi(e)/2e for all e ∈ Ei ∪ {p}.

Now let us partition Π1
i ∪Π2

i into two collections Γ1
i and Γ2

i , such that each member of Γ1
i contains p

and no member of Γ2
i contains p for i = 1, 2. Then |Γ1

i | + |Γ2
i | = |Π1

i | + |Π2
i | for i = 1, 2. By (14), (13),

and the definition of M1 and M2, we have
(15) |Γ1

i |+ |Γ2
i | ≥ |Λ0|+ |Λi|, and each member of Γ2

i is an edge of PM,` for i = 1, 2.
Moreover,

(16) |Γ1
i | ≤ |Λ0| and |Γ2

i | ≥ |Λi| for i = 1, 2.
Indeed, from (14) and (13) it can be seen that |Γ1

i | = dΠ1
i
∪Π2

i
(p) ≤ dΠi(p) = |Λ0| and that |Γ2

i | =

|Π1
i |+ |Π2

i | − |Γ1
i | ≥ |Πi| − |Λ0| = |Λi| for i = 1, 2. So (16) is true.

For i = 1, 2, write Γ1
i = {P i

1, P
i
2, . . . , P

i
ti
}, where ti = |Γ1

i |. Since each member of Γ1
i is an edge of
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PMi,`, it is Σi-odd (recall (3.4)). From the definition of Σ1 and Σ2, we see that P 1
j −{p} is (Σ∗∩E1)-odd

for j = 1, 2, . . . , t1 and P 2
j − {p} is (Σ∗ ∩ E2)-even for j = 1, 2, . . . , t2. Put k = min{t1, t2} and set

Γ0 = {(P 1
j − {p}) ∪ (P 2

j − {p}) : j = 1, 2, . . . , k} (note that Γ0 = ∅ if k = 0). From (4) we derive that
(17) Γ0 is a collection of Σ∗-odd circuits of N and hence edges of PM,`.
Set Γ = Γ0 ∪ Γ2

1 ∪ Γ2
2. By (15) and (17), Γ is an edge collection of PM,`. For any e ∈ E, we have

dΓ(e) ≤ dΠ1
1∪Π2

1∪Π1
2∪Π2

2
(e) = dΠ1

1∪Π2
1
(e) + dΠ1

2∪Π2
2
(e). Using (14), we obtain dΓ(e) ≤ dΠ1(e) + dΠ2(e) =

dΛ(e). Moreover, by definition, |Γ| = |Γ0| + |Γ2
1| + |Γ2

2|. By symmetry, we may assume that |Γ1
1| ≤ |Γ1

2|.
Thus |Γ0| = |Γ1

1| and |Γ| = |Γ1
1| + |Γ2

1| + |Γ2
2|. By (15) and (16), we have |Γ| ≥ |Λ0| + |Λ1| + |Γ2

2| ≥
|Λ0| + |Λ1| + |Λ2| = |Λ|. So Γ dominates Λ and hence Ω. By (6), we obtain |Λ0| ≤ |Γ0| = |Γ1

1| ≤ |Γ1
2|.

Thus from (16) we conclude that
(18) |Λ0| = |Γ0| = |Γ1

1| = |Γ1
2| = k.

For i = 1, 2, by (13) and (18), we have dΠi
(p) = k and dΠ1

i
∪Π2

i
(p) = |Γ1

i | = k. Switching labels 1 and

2 if necessary, we may assume that dΠ1
i
(p) ≥ dΠ2

i
(p). It follows from (14) that

(19) dΠ1
1
(p) = dΠ1

2
(p) = dk/2e and dΠ2

1
(p) = dΠ2

2
(p) = bk/2c.

As Γ1
i = {P i

1, P
i
2, . . . , P

i
k}, we may further assume that

• P i
j ∈ Π1

i for j = 1, 2, . . . , dk/2e, and

• P i
j ∈ Π2

i for j = dk/2e+ 1, dk/2e+ 1, . . . , k.
Similar to (17), we can guarantee that
(20) (P 1

j − {p}) ∪ (P 2
j − {p}) is an Σ∗-odd circuit of N and hence an edge of PM,` for j = 1, 2, . . . , k.

Let Ω1 (resp. Ω2) denote the set consisting of (P 1
j − {p}) ∪ (P 2

j − {p}) for all j with 1 ≤ j ≤ dk/2e
(resp. dk/2e+ 1 ≤ j ≤ k). Define

Λi = (Πi
1 ∩ Γ2

1) ∪ (Πi
2 ∩ Γ2

2) ∪ Ωi for i = 1, 2.

By (15) and (20), both Λ1 and Λ2 are collections of edges in PM,`. We propose to show that
(21) (Λ1, Λ2) is an equitable subpartition of Λ in PM,`.
Observe that, first, |Λ1|+ |Λ2| = |(Π1

1 ∪Π2
1)∩ Γ2

1|+ |(Π1
2 ∪Π2

2)∩ Γ2
2|+ |Ω1 ∪Ω2| = |Γ2

1|+ |Γ2
2|+ k. By

(16) and (18), we have |Λ1|+ |Λ2| ≥ |Λ1|+ |Λ2|+ |Λ0| = |Λ|; second, for any e ∈ E, we have dΛ1∪Λ2(e) =
dΠ1

1∪Π1
2∪Π2

1∪Π2
2
(e) = dΠ1

1∪Π2
1
(e) + dΠ1

2∪Π2
2
(e). Using (14), we get dΛ1∪Λ2(e) ≤ dΠ1(e) + dΠ2(e) = dΛ(e);

finally, for i = 1, 2 and any e ∈ E, say e ∈ Ej , by definition we have dΛi(e) = dΠi
j
∩Γ2

j
(e) + dΩi(e) =

dΠi
j
(e). It follows from (14) that max{dΛ1(e), dΛ2(e)} = max{dΠ1

j
(e), dΠ2

j
(e)} ≤ ddΠj (e)/2e = ddΛ(e)/2e.

Combining the above three observations, we conclude that (Λ1, Λ2) satisfies (i), (ii), and (iii) of the ESP
property, so (21) is justified.

Since Λ dominates Ω, by Lemma 2.3, (Λ1,Λ2) is also an equitable subpartition of Ω in PM,`. This
completes the proof of our theorem.

3.4 Vertex covers

Let G = (V,E) be a graph with a nonnegative integral weight function w defined on V . A vertex subset
U of G is called a vertex cover if G− U contains no edges. The vertex cover problem is to find a vertex
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cover with minimum total weight. As is well known, this NP -hard problem can be approximated within
a factor of two. Despite tremendous research effort, no (2−ε)-approximation algorithm has been found to
date, no matter how small the positive constant ε is. Actually it is a widespread belief that 2 is the best
approximation ratio we can achieve. One 2-approximation algorithm for the vertex cover problem is based
on the following Balinski theorem [2] (see Theorem 64.11 in [19]): Let A be the E − V incidence matrix.
Then every vertex of the polytope P = {x : Ax ≥ 1, 1 ≥ x ≥ 0} is half-integral. The algorithm proceeds
by finding a half-integral optimal solution x∗ to the LP problem min{wT x : Ax ≥ 1, 1 ≥ x ≥ 0}. Set
U = {v : x∗(v) ≥ 1/2}. Then U is a vertex cover as desired. In the literature P is called the fractional
vertex cover polytope. The purpose of this subsection is to present a strengthening of Balinski theorem;
that is, the system Ax ≥ 1, x ≥ 0 is box-TDI/2; what we shall actually prove is the following even
stronger statement (recall Corollary 1.5).

Theorem 3.12 Every graph is PESP.

Corollary 3.13 Let A be a 0 − 1 matrix with precisely two 1’s in each row. Then the linear system
Ax ≥ 1, x ≥ 0 is box-TDI/2

Proof of Theorem 3.12. Let G = (V,E) be a graph and let Λ be an edge collection of G. We aim
to show that Λ admits a pseudo-equitable subpartition. For this purpose, let U be the set of all vertices
of G that are incident with some edges in Λ and let H = (U,Λ) (possibly H contains multiple edges).
Without loss of generality, we may assume that H is connected, otherwise we turn to considering the
components of H. Let H∗ = H if H is Eulerian and let H∗ be obtained from H by adding a new vertex
v∗ and then making it adjacent to all vertices of odd degree in H otherwise. Then the degree of each
vertex of H∗ is even, so H∗ admits an Eulerian tour T . Let a be the starting vertex of T . Clearly we
may assume that

(1) a is precisely v∗, if any, and dΛ(a) ≡ 2 (mod 4) if H is Eulerian and has an odd number of edges.
Let E1 consist of all odd-numbered edges in T and let E2 consist of all even-numbered edges in T . It

is easy to see that dE1(v) = dE2(v) for all vertices v of H∗, except possibly vertex a when H∗ has an odd
number of edges; in this case dE1(a)− dE2(a) = 2. Set Λi = Λ ∩ Ei for i = 1, 2. Then

• |Λ1|+ |Λ2| = |Λ|;
• dΛ1∪Λ2(v) = dΛ(v) for all vertices v of H;

• max{dΛ1(v), dΛ2(v)} ≤ ddΛ(v)/2e for all vertices v in H, except possibly a when H is Eulerian and
has an odd number of edges; in this case max{dΛ1(a), dΛ2(a)} = 1 + dΛ(a)/2 = 2ddΛ(a)/4e by (1);
and

• |dΛ1(v)− dΛ2(v)| ≤ 2 for all vertices v of H.

So (i), (ii), (iii’), and (iv) of the PESP property are all satisfied by Λ1 and Λ2, and hence (Λ1, Λ2) is a
pseudo-equitable subpartition of Λ.

3.5 Edge covers

Let G = (V, E) be a graph. An edge subset M of G is called an edge cover if each vertex of G is incident
with at least one edge in M . Clearly, G has an edge cover if and only if G contains no isolated vertex.
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Let B be the V −E incidence matrix and let Q = {x : Bx ≥ 1, x ≥ 0}. In the literature Q is called the
fractional edge cover polyhedron of G. As shown by Balinski [2] (see Theorem 30.10 in [19]), each vertex
of Q is half-integral. A closely related theorem of Schrijver asserts that Bx ≥ 2, x ≥ 0 is TDI/2 (see
Corollary 30.11a in [19]), where 2 is the all-two vector. The purpose of this subsection is to strengthen
these two results as follows: Bx ≥ 1, x ≥ 0 is box-TDI/2; what we shall actually establish is an even
stronger assertion (recall Corollary 1.5). Let us define two terms before presenting the theorem. A star
centered at a vertex v consists of all edges incident with v in G. Let S be the set of all stars in G. We
call H = (E,S) the star hypergraph of G. Observe that the S − E incidence matrix is precisely B.

Theorem 3.14 Every star hypergraph is PESP.

Corollary 3.15 Let B be a 0− 1 matrix with precisely two 1’s in each column. Then the linear system
Bx ≥ 1, x ≥ 0 is box-TDI/2

Proof of Theorem 3.14. Let H = (E,S) be the star hypergraph of a graph G = (V, E) and let
Λ be an edge collection of H. We aim to show that Λ admits a pseudo-equitable subpartition. For
convenience, we view Λ as a star collection of G. Let S(v) denote the star of G centered at v, let mΛ(v)
denote the multiplicity of S(v) in Λ, let X be the set of all vertices v of G with mΛ(v) ≡ 3 (mod 4), and
let Y = V −X. Now let Λ1 be the star collection such that S(v) appears dmΛ(v)/2e times for any v ∈ X

and bmΛ(v)/2c times for any v ∈ Y , and let Λ2 be the star collection such that S(v) appears bmΛ(v)/2c
times for any v ∈ X and dmΛ(v)/2e times for any v ∈ Y . Clearly,

(1) |Λ1|+ |Λ2| = |Λ|;
(2) dΛ1∪Λ2(e) = dΛ(e) for all edges e of G; and
(3) |dΛ1(e)− dΛ2(e)| ≤ 2 for all edges e of G.

Moreover, for any edge e = uv of G and i = 1, 2, we have dΛi(e) = mΛi(u) + mΛi(v); let us now verify
that

(4) dΛi(e) ≤ 2ddΛ(e)/4e.
Assume the contrary: dΛi

(e) ≥ 2ddΛ(e)/4e+1 for some edge e = uv of G and i = 1 or 2. Set j = 3− i.
By (2), we have dΛj (e) ≤ 2ddΛ(e)/4e− 1. Since dΛi(e)− dΛj (e) ≥ 2ddΛ(e)/4e+ 1− (2ddΛ(e)/4e− 1) = 2,
from (3) it follows that dΛi(e) = 2ddΛ(e)/4e + 1 and dΛj (e) = 2ddΛ(e)/4e − 1. Hence both dΛi(e) and
dΛj (e) are odd numbers.

On the other hand, dΛi(e)− dΛj (e) = 2 if and only if mΛi(u)−mΛj (u) = 1 and mΛi(v)−mΛj (v) = 1
if and only if mΛi(u) = dmΛ(u)/2e = bmΛ(u)/2c + 1 = mΛj (u) + 1 and mΛi(v) = dmΛ(v)/2e =
bmΛ(v)/2c + 1 = mΛj (v) + 1. So both mΛ(u) and mΛ(v) are odd. From the definition of Λ1 and Λ2,
we deduce that either {u, v} ⊆ X or {u, v} ⊆ Y . Thus mΛ(u) ≡ mΛ(v) ≡ 3 or 1 (mod 4) and therefore
dΛi(e) = mΛi(u) + mΛi(v) is even. This contradiction justifies (4).

Combining (1)-(4), we conclude that (i), (ii), (iii’), and (iv) of the PESP property are all satisfied by
Λ1 and Λ2, and hence (Λ1, Λ2) is a pseudo-equitable subpartition of Λ.
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