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Quotients X of bounded symmetric domains Ω with respect to torsion-free
arithmetic lattices Γ have been well studied. In particular, the Satake-Borel-
Baily compactifications (Satake [Sat60]; Borel-Baily [BB66]) give in general
highly singular compactifications X ⊂ Xmin which are minimal in the sense
that, given any normal compactification X ↪→ X, the identity map on X
extends to a holomorphic map X → Xmin. The minimal compactifications
are constructed using modular forms arising from Poincaré series, and for
their construction arithmeticity is used in an essential way.

When X = Ω/Γ is irreducible, by Margulis [Mar77] Γ is always arithmetic
except in the case where Ω is of rank 1, i.e., in the case where Ω is isomorphic
to the complex unit ball Bn, n ≥ 1. When n = 1 the problem of compactifying
Riemann surfaces of finite volume with respect to the Poincaré metric is clas-
sical and long understood, while in the case of higher-dimensional complex-
hyperbolic space forms, i.e., quotients Bn/Γ where n ≥ 2 and Γ ⊂ Aut (Bn)
are torsion-free lattices, minimal compactifications have not been described
sufficiently explicitly in the literature. It follows from the work of Siu-Yau
[SY82] that X can be compactified by adding a finite number of normal iso-
lated singularities. The proof in [SY82] is primarily differential-geometric in
nature with a proof that applies to any complete Kähler manifold of finite
volume with sectional curvature bounded between two negative constants. By
the method of L2-estimates of ∂ it was proved in particular that X = Bn/Γ
is biholomorphic to a quasi-projective manifold, it leaves open the problem
whether the minimal compactification thus defined is projective-algebraic as
in the case of arithmetic quotients.

In this article we give first of all a description of the structure near infinity
of complex-hyperbolic space forms of dimension ≥ 2 which are not neces-
sarily arithmetic quotients. We show that the picture of Mumford compacti-
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fications (smooth toroidal compactifications) obtained by adding an Abelian
variety to each of the finitely many infinite ends remains valid (Ash-Mumford-
Rappoport-Tai [AMRT75]). Each of these Abelian varieties has negative nor-
mal bundle and can be blown down to an isolated normal singularity, giving
therefore a realization of the minimal compactification as proven in [SY82].
More importantly, we show that the minimal compactification is projective-
algebraic. In place of using Poincaré series we use the analytic method of
solving ∂ with L2-estimates. The latter method originated from works of
Andreotti-Vesentini [AV65] and Hörmander [Hör65], and the application of
such estimates to the context of constructing holomorphic sections of Her-
mitian holomorphic line bundles on complete Kähler manifolds was initiated
by Siu-Yau [SY77] (cf. also Mok [Mk90, §3, 4] for a survey involving such
methods). In our situation from the knowledge of the asymptotic behavior
with respect to a smooth toroidal compactification of the volume form of the
canonical Kähler-Einstein metric, using L2-estimates of ∂ we construct loga-
rithmic pluricanonical sections which are nowhere vanishing on given Abelian
varieties at infinity when the logarithmic canonical line bundle is considered
as a holomorphic line bundle over the Mumford compactification. Using such
sections and solving again the ∂-equation with L2-estimates with respect to
appropriate singular weight functions (cf. Siu-Yau [SY77]), we construct a
canonical map associated to certain positive powers of the logarithmic canon-
ical bundle, showing that they are base-point free. Thus, as opposed to the
general case treated in [SY77], where the holomorphic map is only defined on
the complete Kähler manifold X of finite volume, in the case of a ball quotient
our construction yields a holomorphic map defined on the Mumford compacti-
fication. It gives a holomorphic embedding of X onto a quasi-projective variety
which admits a projective-algebraic compactification obtained by collapsing
each Abelian variety at infinity to an isolated singularity.

The extension of the standard description of Mumford compactifications
to the case of non-arithmetic higher-dimensional complex-hyperbolic space
forms X of finite volume was known to the author but never published, and
such a description was used in the proof of rigidity theorems for local biholo-
morphisms between such space forms in the context of Hermitian metric rigid-
ity (Mok [Mk89]). A description of the asymptotic behavior of the canonical
Kähler-Einstein metric with respect to Mumford compactifications also enters
into play in the generalization of the Immersion Problem on compact complex
hyperbolic space forms (Cao-Mok [CM90]) to the case of finite volume (To
[To93]). More recently, interest in the nature of minimal compactifications for
non-arithmetic lattices in the rank-1 case was rekindled in connection with
rigidity problems on holomorphic submersions between complex-hyperbolic
space forms of finite volume (Koziarz-Mok [KM08]). There it was proved
that any holomorphic submersion between compact complex-hyperbolic space
forms must be a covering map, and a generalization was obtained also for the
finite-volume case. Since the method of proof in [KM08] is cohomological, the
most natural proof for a generalization to the finite-volume case can be ob-
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tained by compactifying such space forms by adding isolated singularities and
by slicing such minimal compactifications by hyperplane sections, provided
that it is known that the minimal compactifications are projective-algebraic.
The proof of projective-algebraicity by methods of partial differential equa-
tions and hence its validity also for the non-arithmetic case is the raison d’être
of the current article.

In line with the purpose of bringing together analysis, geometry and topol-
ogy and establishing relationships between the fields, the substance of the
current article makes use of a variety of results and techniques in these fields.
To make the article accessible to a bigger audience, in the exposition we have
provided more details than is absolutely necessary. Especially, in regard to the
technique of proving projective-algebraicity by means of L2-estimates of ∂ we
have included details to make the arguments as self-contained as possible for
a non-specialist.
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1 Mumford Compactifications for Finite-Volume
Complex-Hyperbolic Space forms

1.1 Description of Mumford Compactifications for X = Bn/Γ
Arithmetic

Let Bn be the complex unit ball of complex dimension n ≥ 2 and Γ ⊂
Aut (Bn) be a torsion-free arithmetic subgroup. Let E ⊂ ∂Bn be the set
of boundary points b such that for the normaliser Nb = {ν ∈ Aut (Bn) :
ν(b) = b}, Γ ∩ Nb is an arithmetic subgroup of Nb. (Observe that every
ν ∈ Aut (Bn) extends to a real-analytic map from B

n
to B

n
. We use the

same notation ν to denote this extension.) The points b ∈ E are the rational
boundary components in the sense of Satake [Sat60] and Baily-Borel [BB66].
Modulo the action of Γ , they showed (in the general case of arithmetic quo-
tients of bounded symmetric domains) that there are only a finite number
of equivalence classes of rational boundary components. In the case of arith-
metic quotients of the ball, the Satake-Baily-Borel compactification Xmin of
X is set-theoretically obtained by adjoining a finite number of points, each
corresponding to an equivalence class of rational boundary components. We
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fix a rational boundary component b ∈ E and consider the Siegel domain
presentation Sn of Bn with b ∈ ∂Bn corresponding to infinity (Pyatetskii-
Shapiro [Pya69]). In other words, we consider an inverse Cayley transform
Φ : Bn → Sn :=

{
(z1, . . . , zn) ∈ Cn : Im zn > |z1|2 + · · · + |zn−1|2

}
such

that Φ extends real-analytically to Bn − {b} and Φ|∂Bn−{b} → ∂Sn is a
real-analytic diffeomorphism. To simplify notations we will write S for Sn.
From now on we will identify Bn with S via Φ and write X = S/Γ . Write
z′ = (z1, . . . , zn−1); z = (z′; zn). Let Wb be the unipotent radial of Nb. In
terms of the Siegel domain presentation

Wb =
{

ν ∈ Nb : ν(z′; zn) = (z′ + a′; zn + 2i a′ · z′ + i‖a′‖2 + t) ;

a′ = (a1, . . . , an−1) ∈ Cn−1, t ∈ R
}

,
(1)

where a′ · z′ =
∑n−1

i=1 aizi. Wb is a nilpotent group such that Ub := [Wb,Wb]
is real 1-dimensional, corresponding to the real 1-parameter group of trans-
lations λt, t ∈ R, given by λt(z′, z) = (z′, z + t). Since b ∈ ∂Bn is a ra-
tional boundary component, Γ ∩ Wb ⊂ Wb is a lattice, and in particu-
lar Γ ∩ Wb is Zariski dense in the real-algebraic group Wb. It follows that
[Γ ∩Wb, Γ ∩Wb] ⊂ Γ ∩ Ub ⊂ Ub

∼= R must be nontrivial, otherwise Γ ∩Wb

and hence its Zariski closure Wb would be commutative, a plain contradiction.
As a consequence, Γ ∩ Ub ⊂ Ub

∼= R must be a nontrivial discrete subgroup.
Write λτ ∈ Γ ∩Ub for a generator of Γ ∩Ub

∼= Z. For any nonnegative integer
N define

S(N) =
{
(z′; zn) ∈ Cn : Im zn > ‖z′‖2 + N

} ⊂ S . (2)

Consider the holomorphic map Ψ : Cn−1 × C→ Cn−1 × C∗ given by

Ψ(z′; zn) = (z′, e
2πizn

τ ) := (w′; wn) ; w′ = (w1, · · · , wn−1) ; (3)

which realizes Cn−1 × C as the universal covering space of Cn−1 × C∗. Write
G = Ψ(S) and, for any nonnegative integer N write G(N) = Ψ(S(N)). G
and each G(N) is the total space of a family of punctured disks over Cn−1.
Define Ĝ ⊂ Cn−1 × C by adding the ‘zero section’ to G (i.e., by including
the points (w′, 0) where w′ ∈ Cn−1. Likewise for each nonnegative integer N

define Ĝ(N) ⊂ Cn−1 × C by adding the ‘zero section’ to G(N). We have

Ĝ =
{
(w′; wn) ∈ C : |wn|2 < e

−4π
τ ‖w′‖2} ;

Ĝ(N) =
{
(w′; wn) ∈ C : |wn|2 < e

−4πN
τ · e−4π

τ ‖w′‖2} .
(4)

Γ ∩ Wb acts as a discrete group of automorphisms on S. With respect to
this action, any γ ∈ Γ ∩Wb commutes with any element of Γ ∩ Ub, which is
generated by the translation λτ . Thus, Γ ∩Ub ⊂ Γ ∩Wb is a normal subgroup,
and the action of Γ ∩Wb descends from S to S/(Γ ∩ Ub) ∼= Ψ(S) = G. Thus,
there is a group homomorphism π : Γ∩Wb → Aut(G) such that Ψ◦ν = π(ν)◦Ψ
for any ν ∩ Γ ∩Wb. More precisely, given ν ∈ Γ ∩Wb of the form
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ν(z′; zn) =
(
z′+a′; zn+2ia′·z′+i‖a′‖2+kτ

)
for some a′ ∈ Cn−1, k ∈ Z , (5)

we have
π(ν)(w′, wn) =

(
w′ + a′, e−

4π
τ a′·w′− 2π

τ ‖a′‖2 · wn

)
. (6)

S/(Γ ∩Wb) can be identified with G/π(Γ ∩Wb). Since the action of Wb on
S preserves ∂S, it follows readily from the definition of ν(z′; zn) that Wb

preserves the domains S(N), so that G(N) ∼= S(N)/(Γ ∩Ub) is invariant under
π(Γ ∩ Wb). The action of π(Γ ∩ Wb) extends to Ĝ. In fact, the action of
π(Γ ∩Wb) on the ‘zero section’ Cn−1 × {0} is free so that π(Γ ∩Wb) acts as
a torsion-free discrete group of automorphisms of Ĝ. Moreover, the action of
π(Γ ∩Wb) on Cn−1×{0} is given by a lattice of translations Λb. Denoting the
compact complex torus (Cn−1×{0})/Λb by Tb, the Mumford compactification
XM of X is set-theoretically given by

XM = X q (qTb) , (7)

where the disjoint union qTb is taken over the set of Γ -equivalence classes of
rational boundary components b ∈ E. Define

Ω
(N)
b = Ĝ(N)/π(Γ ∩Wb) ⊃ G(N)/π(Γ ∩Wb) ∼= S(N)/(Γ ∩Wb) . (8)

Then the natural map G(N)/π(Γ ∩ Wb) = Ω
(N)
b − Tb ↪→ S/Γ = X is an

open embedding for N sufficiently large, say N ≥ N0. Choose N0 so that the
latter statement is valid for every rational boundary component b ∈ E. As a
complex manifold XM can be defined by

XM = X q (qΩ
(N)
b )/ ∼, for any N ≥ N0 , (9)

where ∼ is the equivalence relation which identifies points of X and Ω
(N)
b when

they correspond to the same point of X (via the open embeddings Ω
(N)
b −Tb ↪→

X). For N sufficiently large we may further assume that the images of Ω
(N)
b −

Tb in X do not overlap. Thus, XM is a complex manifold, and identifying
Ω

(N)
b , N ≥ N0, as open subsets of XM , {Ω(N)

b }N≥N0 furnishes a fundamental
system of neighborhoods of Tb in XM . It is possible to see from the preceding
description of XM that each compactifying divisor Tb can be blown down to
a point. To see this it suffices by the criterion of Grauert [Gra62] to show
that the normal bundle of Tb in Ω

(N)
b (N ≥ N0) is negative. Actually we are

going to identify each Ω
(N)
b with a tubular neighborhood of the zero section

of some negative holomorphic line bundle L over Tb. Recall that Ω
(N)
n =

Ĝ(N)/π(Γ ∩Wb) where by (6) π(ν)(w′;wn) =
(
w′+a′; e−

4π
τ a′·w′− 2π

τ ‖a′‖2 ·wn

)
.

Here a′ = a′(ν) belongs to a lattice Λb ⊂ Cn−1. Clearly the nowhere zero
holomorphic functions Φa′(w′) := {e− 4π

τ a′·w′− 2π
τ ‖a′‖2 : a′ ∈ Λb} on Cn−1

constitute a system of factors of automorphy, i.e., they satisfy the composition
rule Φa′2+a′1(w

′) = Φa′2(w
′ + a′1) · Φa′1(w

′). Extending the action of π(Γ ∩Wb)
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to Cn−1 × C ⊃ Ĝ, (Cn−1 × C)/π(Γ ∩Wb) is the total space of a holomorphic
line bundle L over Tb = (Cn−1 × {0})/Λb. We introduce a Hermitian metric
µ on the trivial line bundle Cn−1 × C over Cn−1. Namely for w = (w′;wn) ∈
Cn−1 × C, we define

µ(w; w) = e
4π
τ ‖w′‖2 · |wn|2 . (10)

The curvature form of µ is given by

−√−1∂∂ log µ = −4π

τ

√−1∂∂‖w′‖2 , (11)

which is a negative definite (1, 1) form on Cn−1. For each N the set Ĝ(N) =
{(w′; wn) ∈ C : |wn|2 < e

−4π
τ · e−4πN

τ ‖w′‖2} is nothing but the set of vectors of
length not exceeding e

−2πN
τ with respect to µ. Since Ĝ(N) is invariant under

the action of π(Γ ∩Wb), the latter must act as holomorphic isometries of the
Hermitian line bundle (Cn−1×C; µ). It follows that Ω

(N)
b = Ĝ(N)/π(Γ ∩Wb)

is the set of vectors on L of length < e
−2πN

τ on the Hermitian holomorphic
line bundle (L;µ) over Tb, where µ is the induced Hermitian metric on L. As
a consequence, the normal bundle of Tb in Ω

(N)
b (being isomorphic to L) is

negative, so that by the criterion of Grauert [Gra62] there exists a normal
complex space Y and a holomorphic map σ : XM → Y such that σ|X is a
biholomorphism onto σ(X) and σ(Tb) is a single point for each b ∈ E. In this
way one recovers the Satake-Baily-Borel compactification Y = Xmin from the
toroidal compactification of Mumford.

1.2 Description of the Canonical Kähler-Einstein Metric Near the
Compactifying Divisors

Fix a rational boundary component b ∈ E and consider the tubular neighbor-
hood Ωb = Ω

(N)
b of the compact complex torus Tb for some sufficiently large

N . (Tb is in fact an Abelian variety because of the existence of the negative
line bundle L.) Regard Ωb as an open subset of the total space of the negative
line bundle (L;µ) over Tb. One can now give on Ωb an explicit description
of the canonical Kähler-Einstein metric of X. For any v ∈ L write ‖v‖2 for
µ(v; v) as defined towards the end of (1.1). Recall that on the Siegel domain
S ∼= Bn the canonical Kähler-Einstein metric is defined by the Kähler form

ω =
√−1∂∂

(− log(Im zn − ‖z′‖2)
)
. (1)

On the domain Ĝ = {(w′; wn) ∈ Cn−1 × C∗ : |wn| < e−
2π
τ ‖w′‖2} we have

|wn| = e−
2π
τ Im zn ; i.e., Im zn = − τ

2π
log |wn| , (2)

so that the Kähler form of the canonical Kähler-Einstein metric on G ∼=
S/(Γ ∩ Ub) is given by
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ω =
√−1∂∂

(
− log

(
− τ

2π
log |wn| − ‖w′‖2

))
. (3)

From (1.1) eq. (10), for a vector w = (w′; wn) ∈ Cn−1 × C we have

‖w‖ =
(
µ(w, w)

) 1
2 = e

2π
τ ‖w′‖2 · |wn| . (4)

It follows that

− τ

2π
log |wn| − ‖w′‖2 = − τ

2π

(
2π

τ
‖w′‖2 + log |wn|

)
= − τ

2π
(log ‖w‖) , (5)

hence

ω =
√−1∂∂

(
− log

(
− τ

2π
log ‖w‖

))
=
√−1∂∂ (− log (− log ‖w‖)) . (6)

Identifying Ωb with an open tubular neighborhood of Tb in L the same formula
is then valid on Ωb with w replaced by a vector v ∈ Ωb ⊂ L. Then on Ωb

ω =
√−1∂∂ log ‖v‖
− log ‖v‖ +

√−1∂(− log ‖v‖) ∧ ∂(− log ‖v‖)
(− log ‖v‖)2 . (7)

Write θ for minus the curvature form of the line bundle (L, µ). θ is positive
definite on Tb. Denote by π the natural projection of L onto Tb. Then

ω =
π∗θ

−2 log ‖v‖ +
√−1∂‖v‖ ∧ ∂‖v‖
‖v‖2(− log ‖v‖)2 . (8)

In particular, we have

Proposition 1. Denote by δ(x) the distance from x ∈ Ωb to Tb in terms of
any fixed Riemannian metric on XM . Let dV be a smooth volume form on
XM . Then, in terms of δ and dV and assuming that δ ≤ 1

2 on Ωb, the volume
form dVg of the canonical Kähler-Einstein metric g, given by dVg = ωn

n! in
terms of the Kähler form ω of (X, g), satisfies on Ωb the estimate

C1

δ2(− log δ)n+1
· dV ≤ dVg ≤ C2

δ2(− log δ)n+1
· dV.

for some real constants C1, C2 > 0.

Proof. The estimate follows immediately by computing

ωn =
n

‖v‖2(− log ‖v‖)n+1
·
(

π∗θ
2

)n−1

∧√−1∂‖v‖ ∧ ∂‖v‖ . ¤
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1.3 Extending the Construction of Smooth Toroidal
Compactifications to Non-Arithmetic Γ

Let Γ ⊂ Aut (Bn) be a torsion-free discrete subgroup such that X = Bn/Γ is
of finite volume with respect to the canonical Kähler-Einstein. According to
the differential-geometric results of Siu-Yau [SY82] X can be compactified to
a compact normal complex space by adding a finite number of points. We will
now describe the structure of ends in differential-geometric terms according
to Siu-Yau [SY82], which applies to any complete Kähler manifold Y of fi-
nite volume and of strictly negative Riemannian sectional curvature bounded
between two negative constants, in which one considers the universal cover-
ing space ρ : M → Y and the Martin compactification M , and adapt the
differential-geometric description to the special case where Y is a complex hy-
perbolic space form X of finite volume, i.e., X = Bn/Γ for some torsion-free
lattice Γ of automorphisms (hence necessarily isometries with respect to the
canonical Kähler-Einstein metric). In the latter case, the Martin compactifi-
cation of Bn is homeomorphic to the closure Bn with respect to the Euclidean
topology, and we have knowledge of the stabilizers at a point b ∈ ∂Bn.

Let M be a simply-connected complete Riemannian manifold of sectional
curvature bounded between two negative constants. M can be compactified
topologically by adding equivalence classes M(∞) of geodesic rays. Here two
geodesic rays γ1(t), γ2(t); t > 0; are equivalent if and only if the geodesic
distance d(γ1(t), γ2(t)) is bounded independent of t. A topology (the cone
topology) can be given so that the Martin compactification M = M ∪M(∞)
is homeomorphic to the closed Euclidean unit ball and every isometry of M
extends to a homeomorphism of M . There is a trichotomy of non-trivial isome-
tries ϕ of M into the classes of elliptic, hyperbolic and parabolic isometries.
ϕ is elliptic whenever it has interior fixed points. ϕ is hyperbolic if it fixes
exactly two points on the Martin boundary M(∞). ϕ is parabolic if it fixes
exactly one point on the boundary.

We briefly recall the scheme of arguments of [SY82] for the structure of
ends, stated in terms of the special case of X = Bn/Γ under consideration.
Let b ∈ ∂Bn and Γ ′b ⊂ Γ be the set of parabolic elements fixing b. A hyperbolic
element of Γ and a parabolic element of Γ cannot share a common fixed point
(cf. Eberlein-O’Neill [EO73]). Since Γ is torsion-free it follows that Γ ′b is either
empty or Γb = {id} ∪ Γ ′b is equal to the subgroup of Γ fixing b. By a result
of Gromov [Gro78] there exists a positive constant ε (depending on Γ ) such
that the inequality d(x, γx) < ε for some x ∈ Bn implies that either γ is the
identity or it is a parabolic element. For each bi ∈ ∂Bn (which corresponds to
xi in the notations of [SY82, following Lemma 2, p.368]) such that Γbi 6= {id}
define

Ai = {x ∈ Bn : minγ∈Γbi
d(x, γx) < ε} ; (1)

E = {x ∈ Bn : minγ∈Γ d(x, γx) ≥ ε}. (2)

By the result of Gromov [Gro78] cited Bn = E∪(∪Ai). In the present situation
the holomorphic parabolic isometries of Bn fixing bi, together with the iden-
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tity element, constitute precisely the unipotent radical Wbi of the stabiliser
Nbi

of bi; as described here in (1.1), eq. (1). Thus automatically Γbi
⊂ Wbi

is
nilpotent. It follows that the arguments of Siu-Yau [SY82, Lemma 3, p.369]
apply. Thus, denoting by p : Bn → X the canonical projection and shrink-
ing ε if necessary we have either p(Ai) = p(Aj) or p(Ai) ∩ p(Aj) = ∅. By
using the finiteness of the volume it was proved that there are only a finite
number of distinct ends p(Ai), 1 ≤ i ≤ m ([SY82, Lemma 4, p.369]), and
that p(E) is compact ([SY82, preceding Lemma 3, p.368]). Thus, we have the
decomposition

X = p(E) ∪
( ⋃

1≤i≤m

p(Ai)
)

. (3)

Moreover, by [SY82, preceding Lemma 5, p.370] the open sets Ai are con-
nected.

Fix any i, 1 ≤ i ≤ m, and write b for bi. In order to show that the con-
struction of the Mumford compactification extends to the present situation it
suffices to show

(I) Γ ∩ Ub is non-trivial, generated by (z′; zn) → (z′; zn + τ) for some τ > 0.

(II)There exists a lattice Ab ⊂ Cn−1 such that Γb = Γ ∩Wb can be written as

Γb =
{
ν ∈ Wb : ν(z′; zn) = (z′+a′; zn+2ia′·z′+i‖a‖2+kτ); a′ ∈ Λb, k ∈ Z

}
.

(III)One can take Ai to contain S(N) for N sufficiently large. Here

S(N) =
{
(z′, zn) ∈ Cn : Im zn > ‖z′‖2 + N

} ⊂ S

in terms of the Siegel domain presentation S of Bn sending b to infinity
(cf. (1.1), eq. (2)).

We show first of all that (I) implies (II) and (III). First of all, (III) follows
from (I) and the explicit form of the canonical Kähler-Einstein metric. In fact
the Kähler form is given by

ω =
√−1∂∂

(− log(Im zn − ‖z′‖2)
)
. (4)

The restriction of ω to each upper half-plane Hz′◦ = {(z′◦; zn) : Im zn ≥ |z′◦|2}
is just the Poincaré metric on Hz′◦ with Kähler form

ω
∣∣
Hz′◦

=
√−1dzn ∧ dzn

(Im zn − ‖z′‖2)2 . (5)

It follows immediately that for N sufficiently large and for χ the transforma-
tion χ(z′; zn) = (z′; zn + τ) we have

d(z;χz) < ε for all z = (z′; zn) with Im zn > ‖z′‖2 + N . (6)
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Here d is the geodesic distance on S. Thus S(N) ⊂ Ai for N sufficiently large,
proving that (I) implies (III).

We are now going to show that (I) implies (II). Write Vb for the group
of translations of Cn−1, and denote by ρ : Wb → Wb/Ub

∼= Vb the canonical
projection. We assert first of all that ρ(Γb) is discrete in Vb. Suppose otherwise.
Then, there exists a sequence of γj ∈ Γb = Γ ∩Wb such that ρ(γj) are distinct
and have an accumulation point in Vb. Say, ρ(γj)(z′) = z′ + a′j with a′j → a′.
Then,

γj(0; i) = (a′j ; i + i|a′j |2 + kjτ) , kj ∈ Z. (7)

Thus,
χ
−kj

j ◦ γj(0; i) = (a′j ; i + i|a′j |2) → (a′; i + i‖a′‖2) . (8)

Given (I), this contradicts the fact that Γb is discrete in Wb. Hence, (I) implies
that ρ(Γb) is discrete in Vb.

Next, we have to show that ρ(Γb) is in fact a lattice, given (I). In order to
do this, we need additional information about geodesic rays on Ai. By [SY82,
Lemma 5, p.371] for each x ∈ Ai there is exactly one geodesic ray σ(t), t ≥ 0
issuing from x and lying on Ai. Namely, it is the ray joining x to b = bi.
Moreover, the geodesic σ(t),−∞ < t < ∞, must intersect E. Let Σ be the
family of geodesic rays lying on Ai issuing from ∂Ai ⊂ ∂E. Σ is compact
modulo the action of Γb in the sense that for every sequence (σj) of such
geodesic rays there exists γj ∈ Γb such that the family (γj ◦ σj) converges to a
geodesic ray σ lying on Ai and issuing from ∂Ai. In fact, the set of equivalence
classes Σ mod Γb is in one-to-one correspondence with p(∂Ai) ⊂ p(∂E) ⊂
p(E). Since p(E) is compact, for each sequence (σj) of geodesic rays issuing
from ∂Ai there exists γj ∈ Γb such that γj ◦σj is convergent, given again by a
geodesic ray σ. Since ∂Ai is closed we must have σ(0) = lim

j→∞
γj(σj(0)) ∈ ∂Ai,

proving the claim. In order to show that ρ(Γb) is a lattice, given (I), it suffices
to show that Vb/ρ(Γb) is compact. In the Siegel domain presentation S the
geodesic ray from z = (z′; zn) ∈ S(N) to b (located at ‘infinity’) is given by
the line segment {(z′, zn + it) : t ≥ 0}. (Here t does not denote the geodesic
length.) It follows that the family of geodesic rays in Ai issuing from ∂Ai

is parametrized by Vb × R = Cn−1 × R, with the factor R corresponding to
Re zn. Γb acts on Vb×R in an obvious way. Modulo Γb such geodesic rays are
parametrized by (Vb × R)/Γb which is diffeomorphically a circle bundle over
Vb/ρ(Γb) (with fiber isomorphic to R/Zτ). By the compactness of the family
of geodesic rays Σ mod Γb it follows that Vb/ρ(Γb) must be compact, showing
that (I) implies (II).

Finally, we have to justify (I), i.e. Γ∩Ub is non-trivial. Since [Wb,Wb] = Ub,
in order for Γ ∩ Ub to be non-trivial it suffices to find two non-commuting
elements of Γ ∩Wb. Take γ1, γ2 ∈ Γ ∩Wb given by

γj(z′; zn) = (z′ + a′j ; zn + 2ia′j · z′ + i‖a′j‖2 + tj) ; j = 1, 2. (9)

Then,
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γk ◦ γj(z′; zn) = (z′ + a′k + a′j ; zn + 2ia′k(2 + a′j) + 2ia′j · z′
+ i(‖a′k‖2 + ‖a′j‖2) + (tk + tj)) ,

(10)

so that
γ2 ◦ γ1(z′; zn) = γ1 ◦ γ2(z′; zn) + 2i(a′2 · a′1 − a′1 · a′2) , (11)

i.e., γ−1
1 ◦ γ−1

2 ◦ γ1 ◦ γ2 = (z′; zn + 2i(a′2 · a′1 − a′1 · a′2)). (12)

Therefore, two elements γ1, γ2 ∈ Γ∩Wb commute with each other if and only if
a′1 ·a′2 is real, in other words a′2 = ca′1+e′2 for some real number c and for some
e′2 orthogonal to a′1. Suppose now Γ ∩ Ub is trivial. Then, necessarily Γ ∩Wb

is Abelian. It follows readily that one can make a unitary transformation in
the (n − 1) complex variables z′ = (zn, . . . , zn−1) so that any γ ∈ Γ ∩Wb is
of the form

γ(z′; zn) = (z′ + a′; zn + 2i a′ · z′ + i‖a′‖2 + t), a′ ∈ Rn−1, t ∈ R . (13)

We argue that this would contradict the fact that Σ mod Γb is compact for
the family of geodesic rays Σ issuing from ∂Ai. Consider the projection map
θ(z′; zn) = (z′,Re zn). We assert first of all that θ : Ai → Cn−1×R = Vb×R is
surjective. In fact by [SY82, Appendix, p.377ff.], for any z ∈ D,σ(t), t ≥ 0, a
geodesic ray in D joining z to the infinity point b, and γ a parabolic isometry of
D fixing b, d(σ(t), γ ◦σ(t)) decreases monotonically to 0 as t → +∞. It follows
from the definition of Ai that for any z = (z′; zn) ∈ S, (z′; zn + iy) ∈ Ai for
y sufficiently large. Since θ is surjective, as in the last paragraph the set Σ
mod Γb of geodesic rays issuing from ∂Ai is now parametrized by (Vb×R)/Γb.
There is a natural map (Vb×R)/Γb → Vb/ρ(Γb). If Γ ∩Wb were commutative,
ρ(Γb) ⊂ Vb

∼= Cn−1 is a discrete group of rank at most n − 1 and hence
Vb/ρ(Γb) is non-compact, in contradiction with the compactness of Σ mod
Γb

∼= (Vb × R)/Γb. Thus, we have proved by contradiction that Γ ∩ Wb is
non-commutative, so that Γ ∩ Ub ⊃ [Γ ∩Wb, Γ ∩Wb] is non-trivial, proving
(I).

The extension of the construction of Mumford compactifications to non-
arithmetic quotients X = Bn/Γ of finite volume is completed. To summarize,
we have proved the following result.

Theorem 1. Let X be a complex hyperbolic space form of the finite volume,
X = Bn/Γ , where Γ ⊂ Aut (X) is a torsion-free lattice which is not necessar-
ily arithmetic. Then, X admits a smooth compactificatioin X ⊂ XM obtained
by adding a finite number of Abelian varieties Di, such that each Di ⊂ XM

is an exceptional divisor, so that X admits a normal compactification Xmin,
to be called the minimal compactification, by blowing down each exceptional
divisor Di ⊂ XM to a normal isolated singularity. Moreover, the description
of the volume form of the canonical Kähler-Einstein metric on X as given in
[(1.2), Proposition 1] remains valid also in the non-arithmetic case.
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2 Projective-Algebraicity of Minimal Compactification
of Finite-Volume Complex-Hyperbolic Space Forms

2.1 L2-Estimates of ∂ on Complete Kähler Manifolds

We are going to prove the projective-algebraicity of minimal compactifications
of complex-hyperbolic space forms of finite volume by means of the method
of L2-estimates of ∂ over complete Kähler manifolds. To start with we have
the following standard existence theorem due to Andreotti-Vesentini [AV65]
in combination with Hörmander [Hör65])

Theorem 2. (Andreotti-Vesentini [AV65], Hörmander [Hör65]) Let
(X, ω) be a complete Kähler manifold, where ω stands for the Kähler form of
the underlying complete Kähler metric. Let (Λ, h) be a Hermitian holomorphic
line bundle with curvature form Θ(Λ, h) and denote by Ric(ω) the Ricci form
of (X, ω). Let ϕ be a smooth function on X. Suppose c is a continuous positive
function on X such that Θ(Λ, h) + Ric(ω) +

√−1∂∂ϕ ≥ cω everywhere on
X. Let f be a ∂-closed square-integrable Λ-valued (0, 1)-form on X such that∫

X
‖f‖2

c < ∞, where here and hereafter ‖ · ‖ denotes norms measured against
natural metrics induced from h and ω. Then, there exists a square-integrable
Λ-valued section u solving ∂u = f and satisfying the estimate

∫

X

‖u‖2e−ϕ ≤
∫

X

‖f‖2
c

e−ϕ < ∞ .

Furthermore, u can be taken to be smooth whenever f is smooth.

Siu-Yau proved in [SY82, §3] that on a complete Kähler manifold of fi-
nite volume of sectional curvature bounded between two negative constants is
biholomorphic to a quasi-projective manifold. Assuming without loss of gener-
ality that the complete Kähler manifold X under consideration is of complex
dimension at least 2, they proved that there exists a projective manifold Z
such that X is biholomorphic to a Zariski-open subset X ′ of Z, such that, iden-
tifying X with X ′, Z−X is an exceptional set of Z that can be blown down to
a finite number of points. Their proof proceeds in fact by showing, using meth-
ods of Complex Differential Geometry, that X is pseudoconcave and can be
compactified by adding a finite number of points. Then, using Theorem 1 and
introducing appropriate singular weight functions as in [SY77], they showed
that any pair of distinct points on X can be separated by pluricanonical sec-
tions, i.e., holomorphic sections of powers of the canonical line bundle KX ,
and that furthermore, at every point x ∈ X there exist some positive integer
`0 > 0 and n + 1 holomorphic sections s0, s1, · · · , sn K`0

X , n = dimC(X), such
that s0(x) 6= 0 and such that [s0, s1, · · · , sn] defines a holomorphic immersion
into Pn on a neighborhood of x. Given this, and using the pseudoconcavity
of X, together with a result of Andreotti-Tomassini [AT70, p.97, Th.2], there
exist some integer ` > 0 and finitely many holomorphic sections of K`

X which
embed X as a quasi-projective manifold.
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2.2 Projective-Algebraicity via L2-Estimates of ∂

Let n ≥ 1 be a positive integer and Γ ⊂ Aut (Bn) be a torsion-free discrete
subgroup. Γ ⊂ Aut (Bn) is not necessarily arithmetic. Write X = Bn/Γ . As
in Section 1 we write XM for the Mumford compactification of X obtained by
adding a finite number of Abelian varieties Di and let Xmin be the minimal
compactification of X obtained by blowing down each Abelian variety Di at
infinity to a normal isolated singularity. We are going to prove that Xmin is
projective-algebraic. Here and in what follows for a complex manifold Q we
denote by KQ its (holomorphic) canonical line bundle. We have
Main Theorem. For a complex-hyperbolic space form X = Bn/Γ of finite
volume with Mumford compactification XM write XM−X = D for the divisor
D at infinity. Write D = D1 ∪ · · · ∪ Dm for the decomposition of D into
connected components Di, 1 ≤ i ≤ m, each of which being biholomorphic to an
Abelian variety. Write E = KXM

⊗ [D] on XM . Then, for a sufficiently large
positive integer ` > 0 and for each i ∈ {1, · · · ,m}, there exists a holomorphic
section σi ∈ Γ (XM , E`) such that σi|Di

is a nowhere vanishing holomorphic
section of E`|Di

∼= ODi and σi|Dk
= 0 for 1 ≤ k ≤ m, k 6= i. Moreover, the

complex vector space Γ (XM , E`) is finite-dimensional, and, choosing a basis
s0, · · · , sN`

, we have the canonical map Φ` : XM → PN` , uniquely defined up
to a projective-linear transformation on the target projective space, such that
s0, · · · , sN`

have no common zeros on XM and such that the holomorphic map
Φ` maps XM onto a projective variety Z ⊂ PN` with m isolated singularities
ζ1, · · · , ζm and restricts to a biholomorphism of X onto the complement Z0 :=
Z − {ζ1, · · · , ζm}. In particular, the isomorphism Φ`|X : X

∼=−→ Z0 extends
holomorphically to ν : Xmin → Z which is a normalization of the projective
variety Z, and Xmin is projective-algebraic.

Proof. We start with some generalities. For a holomorphic line bundle τ :
L → S over complex manifold S, to avoid notational confusion we write L
(in place of L) for its total space. We have KL

∼= τ∗(L−1 ⊗KS). Moreover,
the zero section O(L) of τ : L → S defines a divisor line bundle [O(L)] on L
isomorphic to τ∗L.

Returning to the situation of the Main Theorem, we claim that the holo-
morphic line bundle E = KXM

⊗[D] is holomorphically trivial over a neighbor-
hood of D = D1∪· · ·∪Dm. For 1 ≤ i ≤ m we denote by πi : Ni → Di the holo-
morphic normal bundle of Di in the Mumford compactification XM . Then, by
construction, for each i ∈ {1, · · · , m} there is some open neighborhood Ωi of
Di in XM on which there exists a biholomorphism νi : Ωi

∼=−→ Wi ⊂ Ni of Ωi

onto some open neighborhood Wi of the zero section O(Ni) of πi : Ni → Di

such that νi restricts to a biholomorphism νi|Di : Di

∼=−→ O(Ni) of Di onto
the zero-section O(Ni). Moreover, Ω1, · · · , Ωm are mutually disjoint. Now on
the total space Ni of πi : Ni → Di as an (n + 1)-dimensional complex man-
ifold the canonical line bundle KNi is given by KNi

∼= π∗i (N−1
i ⊗ KO(Ni)).
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Since O(Ni) ∼= Di is an Abelian variety, its canonical line bundle KO(Ni) is
holomorphically trivial, so that KNi

∼= π∗i N−1
i . Denote by ρi : Ωi → Di the

holomorphic projection map corresponding to the canonical projection map
πi : Ni → Di. Restricting to Wi and transporting to Ωi ⊂ XM by means of
ν−1

i : Wi
∼= Ωi, we have KΩi

∼= ρ∗i N
−1

Di|XM
. Here NDi|XM

denotes the holomor-

phic normal bundle of Di in XM , and, over Ωi ⊂ XM , the holomorphic line
bundle ρ∗i N

−1

Di|XM
is biholomorphically isomorphic to the divisor line bundle

[Di]−1. Thus, KΩi
⊗ [Di] is holomorphically trivial over Ωi, i.e. KXM

⊗ [D] is
holomorphically trivial over an open neighborhood of D which is the disjoint
union Ω1 ∪ · · · ∪Ωm, proving the claim.

Base-point Freeness on Diviors at Infinity. Fix i, 1 ≤ i ≤ m. In the notations
of Section 1, Ωi

∼= Ĝi/Γi and the isomorphism is realized by the uniformization
map ρ : S → S/Γ ⊃ Ĝi/Γi. At a point x ∈ Di we can use the Euclidean coor-
dinates w = (w′; wn) as local holomorphic coordinates, w′ = (w1, · · · , wn−1),
on some open neighborhood Ωx b Ωi, where without loss of generality we
assume that |wn| < 1

2 on Ωx. Denote by dVe the Euclidean volume form on
Ωx with respect to the standard Euclidean metric in the w-coordinates. By
Proposition 1, the volume form dVg of the canonical Kähler-Einstein metric
satisfies on Ωx the estimate

C1

|wn|2(− log |wn|)n+1
· dVe ≤ dVg ≤ C2

|wn|2(− log |wn|)n+1
· dVe , (1)

for some constants C1, C2 > 0, in which the constants may be different from
those in Proposition 1 denoted by the same symbols. From the preceding
paragraphs the holomorphic line bundle E = KXM

⊗ [D]−1 is holomorphically
trivial on Ωi, and from the proof it follows readily that a holomorphic basis of
E over Ωi can be chosen such that it corresponds to a meromorphic n-form ν0

which is holomorphic and everywhere non-zero on Ωi−Di, has precisely simple
poles along Di, and lifts to ν := dw1∧···∧dwn

wn
on Ĝi. Let q > 0 be an arbitrary

positive integer. We have νq ∈ Γ (Ωi, E
q), and its restriction νq|Ωi−Di is a

holomorphic section in Γ (Ωi − Di,K
q
X). Denote by h the Hermitian metric

on KX induced by the volume form dVg. We assert that νq is not square-
integrable when Kq

X is equipped with the Hermitian metric hq. For r > 0
denote by ∆n(r) the polydisk in Cn with coordinates w = (w′;wn) of poly-
radii (r, · · · , r) centred at the origin 0. Then, for some δ > 0 we have

∫

Ωx

‖νq‖2dVg

≥ C1

∫

∆n(δ)

1
|wn|2q

|wn|2q(log |wn|)q(n+1) 1
|wn|2(log |wn|)n+1

· dVe

= C1

∫

∆n(δ)

(log |wn|)(q−1)(n+1)

|wn|2 · dVe = ∞ .

(2)
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For any k ∈ {1, · · · ,m}, let Ω0
k be an open neighborhood of Dk such that

Ω0
k b Ωk. For any i, 1 ≤ i ≤ m, fixed as in the above, there exists a smooth

function χi on XM such that χi|Ω0
i

= 1 and such that χi is identically 0
on some open neighborhood of XM − Ωi. Then, on Ωi the smooth section
χiν ∈ C∞(Ωi, E) is of compact support, and it extends by zeros to a smooth
section ηi ∈ C∞(XM , E). We have Supp(∂ηi) ⊂ Ωi − Ω0

i b X. In particular,
we have ∫

X

‖∂ηi‖2 < ∞ . (3)

Thus, ηi is not square-integrable, while ∂ηi is square-integrable. Regarding
∂ηi as a ∂-closed Kq

X -valued smooth (0,1)-form, and noting that for q ≥ 2 we
have

Θ(Kq
X , hq) + Ric(ωg) = (q − 1)ωg ≥ ωg , (4)

by Theorem 1 there exists a smooth solution ui of the inhomogeneous Cauchy-
Riemann equation ∂ui = ∂ηi satisfying the estimate

∫

X

‖ui‖2dVg ≤
∫

X

‖∂ηi‖2
q − 1

dVg < ∞ . (5)

For each k ∈ {1, · · · ,m}, we have ∂ηi ≡ 0 on Ω0
k −Dk, so that ui is holomor-

phic on each Ω0
k − Dk. In what follows k is arbitrary and fixed. In terms of

the Euclidean coordinates (w1, · · · , wn) as is used in (1), on Ω0
k−Dk we have

ui = fdw1∧· · · dwn, where f is a holomorphic function. Using the estimate of
the volume form dVg as given in Proposition 1, from the integral estimate (5)
and the mean-value inequality for holomorphic functions one deduces read-
ily a pointwise estimate for f which implies that |we

nf | is uniformly bounded
on Ω0

k −Dk for some positive integer e. It follows that f is meromorphic on
Ωk, hence ui|Ω0

k−Dk
extends meromorphically to Ωk. (Since k is arbitrary ui

extends to a meromorphic section of KXM
.) As such either ui has removable

singularities along Dk, or it has a pole of order pk at a general point xk ∈ Dk

for some positive integer pk. In the former case we will define pk to be −rk

where rk is the vanishing order of the extended holomorphic section ui at a
general point of Dk. If pk ≥ q, then from the computation of integrals in (2) it
follows readily that ui cannot be square-integrable, which is a contradiction.
So, either ui has removable singularities along the divisor Dk, or it has poles
of order pk < q at a general point of the divisor Dk. On the other hand, if
we regard ui rather as a holomorphic section of Eq = Kq

XM
⊗ [D]q over each

Ω0
k −Dk, then ui extends to Ω0

k as a holomorphic section with zeros of order
q − pk > 0. Define now σi = ηi − ui. Then, ∂σi = ∂ηi − ∂ui = 0 on XM and
σi ∈ Γ (XM , Eq). Now ηi|Di is nowhere vanishing as a holomorphic section of
the trivial holomorphic line bundle Eq|Di over Di while ui|Di vanishes as a
section in Γ (Di, E

q), so that σi|Di = ηi|Di and σi is nowhere vanishing on Di

as a section of the trivial holomorphic line bundle Eq|Di . For k 6= i we have
ηi|Dk

= 0 by construction and ui|Dk
= 0, where for the latter one follows the
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same arguments as in the case k = i in the above. Thus σi|Dk
= 0 for k 6= i.

This proves the first statement of the Main Theorem. We proceed to prove the
rest of the Main Theorem on the canonical maps Φ` in separate steps leading
to the projective-algebraicity of the minimal compactification Xmin.

Base-Point Freeness on Mumford Compactifications. Fix any integer q ≥ 2.
From the preceding discussion, we have a finite number of holomorphic sec-
tions σi ∈ Γ (XM , Eq), 1 ≤ i ≤ m, whose common zero set A = Z(σ1, · · · , σm)
is disjoint from D = D1 ∪ · · · ∪ Dm. Thus, A ⊂ X is a compact com-
plex subvariety. We claim that for a positive and sufficiently large integer
` the following holds true: for each x ∈ A there exists a holomorphic section
s ∈ Γ (XM , E`) such that s(x) 6= 0. To prove the claim let (z1, · · · , zn) be
local holomorphic coordinates on a neighborhood U of x such that the base
point x corresponds to the origin with respect to (zj). Let χ be a smooth
function of compact support on U such that χ ≡ 1 on a neighborhood of x.
Then ϕε := nχ

(
log

(∑ |zj |2 + ε
))

on U extends by zeros to a function on
X, to be denoted by the same symbol. Since ϕε is plurisubharmonic on some
neighborhood of x and it vanishes outside a compact set (and hence

√−1∂∂ϕε

vanishes outside a compact set), there exists a positive real number Cε such
that √−1∂∂ϕε + Cεω ≥ ω . (6)

As ε decreases to 0, the functions ϕε converges monotonically to the function
ϕ given by nχ

(
log

(∑ |zj |2
))

on U and given by 0 on X − U . There exists
a compact subset Q b U − {x} such that ϕε is plurisubharmonic on U − Q
for each ε > 0. Noting that log

(∑ |zi|2
)

is smooth on Q, (6) holds true with
Cε replaced by some C > 0 independent of ε, provided that we require that
ε ≤ 1, say. Letting ε converge to 0 we have also in the sense of currents the
inequality √−1∂∂ϕ + Cω ≥ ω . (7)

In what follows we are going to justify the solution of ∂ with L2-estimates for
the singular weight function ϕ. Let ` be an integer such that ` ≥ C +1. Then,
we have √−1∂∂ϕε + Θ(K`

X , h`) + Ric(X, ω) ≥ ω . (8)

Let e be a holomorphic basis of the canonical line bundle KU and consider
the ∂-exact K`

U -valued (0, 1)-form ∂(χe`), which will be regarded as a ∂-exact
(hence ∂-closed) K`

X -valued (0,1)-form on X. Then, Theorem 1 applies to give
a solution to ∂uε = ∂(χe`) satisfying the estimates

∫

X

‖uε‖2e−ϕε ≤
∫

X

‖∂(χe`)‖2 e−ϕε ≤ M < ∞ , (9)

where M is a constant independent of ε, noting that Supp
(
∂(χe`)

)
lies in a

compact subset of X not containing x. From standard arguments involving
Montel’s Theorem, choosing ε = 1

n there exists a subsequence
(
u 1

σ(n)

)
of
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(
u 1

n

)
which converges uniformly on compact subsets to a smooth solution of

∂u = ∂(χe`) satisfying the estimates
∫

X

‖u‖2e−ϕ ≤
∫

X

‖∂(χe`)‖2 e−ϕ < ∞ . (10)

Define now s = χe` − u. Then ∂s = ∂(χe`)− ∂u = 0, so that s ∈ Γ (X,K`
X).

Now
e−ϕ =

1(∑ |zj |2
)n =

1
r2n

(11)

in terms of the polar radius r =
(∑ |zj |2

) 1
2 . Since the Euclidean volume

form dVe = r2n−1dr · dS where dS is the volume form of the unit sphere, it
follows from (11) that e−ϕ = 1

r dr · dS is not integrable at z = 0. Then the
estimate (10), according to which the solution u of ∂u = ∂(χe`) obtained must
be integrable at 0, implies that we must have u(x) = 0. As a consequence,
s(x) = e` 6= 0. From the L2-estimates (9) it follows that s is square-integrable
with respect to the canonical Kähler-Einstein metric g on X and the Hermitian
metrics h` on K`

X induced by g. From the volume estimates (2) it follows that
s extends to a meromorphic section on XM with at worst poles of order
` − 1 along each of the divisors Di, 1 ≤ i ≤ m. Since A is compact there
exists a finite number of coordinate open sets Uα on X whose union cover
A. By making use of these charts its follows readily that there exists some
positive integer `0 such that for ` ≥ `0 the preceding arguments for producing
s ∈ Γ (X, K`

X) apply for any x ∈ A. Let ` = pq be a multiple of q such that
` ≥ `0. Here and in what follows by a multiple of a positive integer q we
will mean a product pq where p is a positive integer. Further conditions will
be imposed on ` later on. For the complex projective space P(V ) associated
to a finite-dimensional complex vector space V and for a positive integer
e, we denote by νe : P(V ) → P(SeV ) the Veronese embedding defined by
νe([η]) = [⊗eη] ∈ P(SeV ). Then, for the map Φq : XM → PNq the base locus
of νp ◦ Φq : XM → P(Sp(CNq+1)) lies on A. If ` := pq is furthermore chosen
such that ` ≥ `0, then for any x ∈ A there exists moreover s ∈ Γ (XM , E`) such
that s(x) 6= 0, so that Γ (XM , E`) has no base locus, hence Φ` : XM → PN`

is holomorphic.

Blowing Down Divisors at Infinity. For ` = pq as chosen we denote by σ`
i ∈

Γ (XM , E`) a holomorphic section in Γ (XM , E`) such that σ`
i is nowhere 0

on the divisor Di, and σ`
i |Dk

= 0 on any other irreducible divisor Dk, k 6= i
at infinity. (The notation σi used in earlier paragraphs is the same as σq

i

and we may take σ`
i = (σq

i )p.) Since σ`
i |Di is nowhere zero, for any section

s ∈ Γ (XM , E`), s
σ`

i

|Di is a holomorphic function on the irreducible divisor

Di, hence s
σ`

i

∣∣
Di

is some constant λ; i.e. s = λσ`
i on Di. It follows that the

holomorphic mapping Φ` must be a constant map on each Di, so that Φ`(Di)
is a point on PN` , to be denoted by ζi. Moreover, for i1 6= i2, 1 ≤ i1, i2 ≤
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m, σ`
i1

∣∣
Di1

is nowhere vanishing while σ`
i1

∣∣
Di2

= 0 and σ`
i2

∣∣
Di2

is nowhere

vanishing while σ`
i2

∣∣
Di1

= 0, implying that ζi1 6= ζi2 . In other words, the
points ζi, 1 ≤ i ≤ m, are distinct.

Removing Ramified Points. It remains to show that for some choice of ` = pq
the holomorphic mapping Φ` : XM → PN` is a holomorphic embedding on
X and that ζi is an isolated singularity of Z := Φ`(XM ). We start with
showing that `[ = p[q can be chosen so that there are no ramified points on
X, i.e., that Φ`[ is a holomorphic immersion on X. Choose `1 = p1q to be a
multiple of q such that the preceding arguments work for ` = `1. Let S ⊂ X
be the subset where Φ`1 fails to be an immersion, to be called the ramification
locus on X of Φ`1 . Clearly S ∪ D ⊂ XM is a (compact) complex-analytic
subvariety, so that R ⊂ XM is also a (compact) complex-analytic subvariety.
Then, we have a decomposition R = R1 ∪ · · · ∪ Rr into a finite number of
irreducible components so that, writing Ri for the topological closure of Ri in
XM , we have the decomposition R = R1 ∪ · · · ∪ Rr of the compact complex
subvariety R ⊂ XM into a finite number of irreducible components. Suppose
dimCR = r. We are going to show that, if we choose `2 = p2q where p2 = t1p1

is a sufficiently large multiple of p1, then the ramification locus on X of Φ`2 is of
dimension ≤ r−1. Given this, by induction and taking ` to be an appropriate
multiple of q, we will be able to prove that Φ`[ |X is a holomorphic immersion
for a some multiple `[ = p[q of q.

To reduce the ramification locus on X, for each Rj of dimension r, we pick
a point xj ∈ Rj and we are going to show that if `2 = p2q = t1p1q = t1`1,
is sufficiently large, then there exists sj ∈ Γ (XM , E`1) such that sj(xj) 6= 0.
Since `2 is a multiple of `1, the ramification locus R(`2) on X of Φ`2 is con-
tained in the ramification R(`1) = R on X of Φ`1 , and R(`2) does not contain
any of the r-dimensional irreducible components of R(`1), it will follow that
dimCR(`2) ≤ r− 1, as desired. To produce sj ∈ Γ (XM , E`2) we use Theorem
1 with a slight modification, as follows. Recall that z = (z1, · · · , zn) are local
holomorphic coordinates on a neighborhood U of x where x corresponds to the
origin in z. For the same cut-off function χ with Supp (χ) b U as above, and
for 1 ≤ k ≤ n we solve the Cauchy-Riemann equation ∂uk = ∂(χzke`2) with
a more singular plurisubharmonic weight function ψ = (n+1)χ log

(∑ |zk|2
)
.

We choose `2 = t1p1q sufficiently large so that
√−1∂∂ψ + Θ(K`2

X , h`2
2 ) + Ric(X, ω) ≥ ω . (12)

in the sense of currents. In analogy to (10) we obtain smooth solutions uk on
X to the equation ∂uk = ∂(χzke`2) satisfying the L2-estimate

∫

X

‖uk‖2e−ψdVg ≤
∫

X

‖∂(χzke`)‖2 e−ψdVg < ∞ . (13)

Since e−ψdVe = 1
r2n+2 dVe = 1

r3 dr · dS it follows from the integrability of
‖uk‖2e−ψ that we must have uk(x) = 0 and also duk(x) = 0. As explained
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above, by induction we have proven that there exists some multiple `[ = p[q
such that Φ`[ is a holomorphic immersion.

Separation of Points. To separate points we are going to choose `] = t`[ = tpq
which is a multiple of `[. For any positive integer k which is a multiple of q
we denote by B(k) ⊂ X ×X the subset of all pairs of points (x1, x2) ∈ X ×X
such that Φk(x1) = Φk(x2). Clearly B(k) contains the diagonal Diag(X ×X)
as an irreducible component, which we will denote by B0. Note that if k′ is a
multiple of k, then B(k′) ⊂ B(k) by the argument using Veronese embeddings
as in the paragraph on removing ramification points. Since Φk is defined as
a holomorphic map on XM , B(k) has only a finite number of irreducible
components, hence B(k) has only a finite number of irreducible components.
Let now k = `[ and write B(`[) = B0 ∪ B1 ∪ · · · ∪ Be for the decomposition
of B into irreducible components. Let b be the maximum of the complex
dimensions of B1, · · · , Be. We are going to find a multiple `] of `[ for which the
following holds true. For each irreducible component Bc of complex dimension
b we are going to find an ordered pair (x1, x2) ∈ Bc − Diag(X × X) and
holomorphic sections sc, tc ∈ Γ (XM , E`) such that sc(x1) 6= 0, sc(x2) = 0,
while tc(x1) = 0, tc(x2) 6= 0. Given this, by the same reduction argument as
in the above (in the paragraph for removing ramified points on X), by choosing
`] to be a multiple of `[ we will have proven that B(`]) consists only of the
diagonal Diag(X × X), proving that Φ`] separates points on X. To find the
positive integral multiple ` of `[ and a section s = sc in Γ (XM , E`) such that
s(x1) 6= s(x2) we choose holomorphic coordinate neighborhoods U1 of x1 resp.
U2 of x2 such that U1 ∩ U2 = ∅. For i = 1, 2, denote by z(i) =

(
z
(i)
1 , · · · , z

(i)
n )

holomorphic coordinates on a neighborhood of xi with respect to which the
origin stands for the point xi. Let χi; i = 1, 2; be a smooth cut-off function
such that χi is constant on a neighborhood of xi; i = 1, 2; and such that
Supp(χi) b Ui, so that in particular Supp(χ1) ∩ Supp(χ2) = ∅. Now we
consider the weight function ρ = nχ1 log

(∑ ∣∣z(1)
i

∣∣2
)

+ nχ2 log
(∑∣∣z(2)

i

∣∣2
)
.

Let k be a positive integer. The smooth section χ1e
k of Kk

X over U1 with
compact support extends by zeros to a smooth section, to be denoted again
as χ1e

k, of Kk
X over X so that χ1e

k|U0
1

= ek on some neighborhood U0
1 b U1

and Supp(η) b U1. Since U1∩U2 = ∅ we have in particular η|U2 = 0. Our aim
is to solve ∂u = ∂(χ1e

k) using Theorem 1. In analogy to (8) and using the
same smoothing process as in preceding paragraphs, we have to find k such
that √−1∂∂ρ + Θ(Kk

X , hk) + Ric(X, ω) ≥ ω . (14)

in the sense of currents. By exactly the same argument as in (8)-(10), the
inequality (14) is satisfied for k sufficiently large. Applying Theorem 1, we
have a smooth solution of ∂u = ∂(χ1e

k) where u satisfies the L2-estimates
∫

X

‖u‖2e−ρ ≤
∫

X

‖∂(χ1e
k)‖2 e−ρ < ∞ . (15)
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so that u(x1) = u(x2) = 0 because of the choice of singularities of ρ at
both x1 and x2. As a consequence, the smooth section s := u − χ1e

k of
Kk

X over X satisfies s(x1) = ek, s(x2) = 0, and s is a holomorphic section
since ∂s = ∂u−∂(χ1e

k) = 0 on X. Interchanging x1 and x2 we obtain another
holomorphic section t ∈ Γ (X,Kk

X) such that t(x1) = 0 while t(x2) = ek. Given
this, taking k = `] to be a sufficiently large multiple of `[, the canonical map
Φ`] : XM → PN

`] is base-point free (hence holomorphic) and a holomorphic
immersion on X and it furthermore separates points on X.

Blowing Down to Isolated Singularities. The map Φ`] : XM → PN
`] sends

each divisor Di at infinity to a point ζ]
i ∈ PN

`] such that ζ]
i , 1 ≤ i ≤ m are

mutually distinct. We have however not ruled out the possibility that Φ`](x) =
Φ`](ζ]

i ) for some point x ∈ X and some i, 1 ≤ i ≤ m. Since Φ`] separate points
on X only a finite number of such pairs (xi, ζ

]
i ) can actually occur. We claim

that for a large enough multiple ` of `] we have Φ`(xi) 6= ζi = Φ`(Di). For this
purpose it suffices to produce a holomorphic section t ∈ Γ (X, K`

XM
) such that

t|Di
is nowhere vanishing whereas t(xi) = 0. For this it suffices to solve the

equation ∂ui = ∂ηi as in (3)-(5), choosing ηi to be 0 on some neighborhood of
xi, replacing q by ` and requiring at the same time that ui(x) = 0. The latter
requirement can be guaranteed by introducing a weight function ϕ as in (7)
satisfying for ` sufficiently large the inequality

√−1∂∂ϕ + Θ(K`
X , h`) + Ric(ωg) ≥ ω . (16)

Thus the argument in (6)-(11) for the base-point freeness on XM can be
adapted here to yield the required sections ti. Hence, we have proven that for
some sufficiently large positive integer `, the canonical map Φ` : XM → PN` is
holomorphic, blows down each divisor Di at infinity to an isolated singularity
ζi of Z = Φ`(XM ) and restricts to a holomorphic embedding on X = XM−D
onto Z0 = Z − {ζ1, . . . , ζm}.
End of Proof of Main Theorem. By definition the minimal compactification
Xmin of X is a normal complex space obtained by adding a finite number of
isolated singularities µi, 1 ≤ i ≤ m. Since Φ`|X : X

∼=−→ Z0 = Z−{ζ1, . . . , ζm}
is a biholomorphism, for each i ∈ {1, · · · ,m} there exists an open neighbor-
hood Vi of µi in Xmin, and an open neighborhood Wi of ζi in Z such that the
biholomorphism Φ`|X restricts to a biholomorphism Φ`|Wi : Wi

∼=−→ Vi and
such that lim

x→µi

Φ`(x) = ζi. Φ` extends to a continuous map Φ̂` : Xmin → Z by

defining Φ̂`|X = Φ` and Φ̂`(µi) = ζi. Since Xmin is normal, Φ̂` is holomorphic
so that Φ̂` : Xmin → Z is a normalization of Z. Finally, since Z ⊂ PN` is
projective-algebraic, its normalization Xmin is projective-algebraic. The proof
of Theorem 2 is complete. ¤
Remarks.
(1) From the proof of the Main Theorem regarding base-point freeness on
divisors at infinity it follows that Γ (XM , E2) ≥ m, where m is the number of
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connected (equivalently irreducible) components of the divisor D at infinity.
In other words, there are on X at least m linearly independent holomor-
phic 2-canonical sections of logarithmic growth (with respect to the Mumford
compactification X ↪→ XM and hence with respect to any smooth compacti-
fication with normal-crossing divisors at infinity).
(2) For the statement and proof of the Main Theorem it is not essential that
the images Φ`(Di) are isolated singularities. We include this statement since
the proof is more or less the same as in the steps yielding a holomorphic
embedding Φ` on X.

2.3 An Application of Projective-Algebraicity of the Minimal
Compactification to the Submersion Problem

In relation to the Submersion Problem on complex-hyperbolic space forms,
i.e., the study of holomorphic submersions between complex-hyperbolic space
forms, Koziarz-Mok [KM08] proved the following rigidity result.

Theorem 3. (Koziarz-Mok [KM08]) Let Γ ⊂ Aut(Bn) be a lattice of bi-
holomorphic automorphisms. Let Φ : Γ → Aut(Bm) be a homomorphism
and F : Bn → Bm be a holomorphic submersion equivariant with respect to
Φ. Suppose that m ≥ 2 or Γ ⊂ Aut(Bn) is cocompact. Then, m = n and
F ∈ Aut(Bn).

The proof of Theorem 3 can be easily reduced to the case where Γ ⊂
Aut (Bn) is torsion-free, so that X = Bn/Γ is a complex-hyperbolic space
form of finite volume. One of the motivations to present a proof of the
projective-algebraicity of finite-volume complex-hyperbolic space forms aris-
ing from not necessarily arithmetic lattices is to give a deduction of the non-
compact (finite-volume) case of Theorem 3 from the cohomological arguments
in the compact case.

An Alternative Proof of Theorem 3 in the Case of Finite-Volume Quotients.
Without loss of generality assume that Γ ⊂ Aut (Bn) is torsion-free. We
outline the arguments in the case where the complex-hyperbolic space form
X := Bn/Γ is compact. Write ωX for the Kähler form of the canonical Kähler-
Einstein metric on X of constant holomorphic sectional curvature −4π. De-
note by ωBm the closed (1, 1)-form on Bm, by ωm the closed (1, 1)-form on
X induced by the Γ -invariant closed (1, 1)-form F ∗ωBm , and by [· · · ] the
de Rham cohomology class on X of a closed differential form. Denote by F
the holomorphic foliation on X induced by the Γ -equivariant foliation whose
leaves are given by the level sets of the Γ -equivariant map F : Bn → Bm, by
TF the associated holomorphic distribution on X, and by NF := TX/TF the
holomorphic normal bundle of the foliation F . In the case where the complex-
hyperbolic space form X is compact, by an algebraic identity of Feder [Fed65]
(cf. Koziarz-Mok [KM08, Lemma 1]) applied to Chern classes of the short
exact sequence 0 → TF → TX → NF → 0, on X (which we will call the
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tangent sequence induced by F on X), and by the Hirzebruch Proportion-
ality Principle, we have [ωX − ωm]n−m+1 = 0. By the Schwarz Lemma we
have ωX − ωm ≥ 0 as a smooth (1, 1)-form, and the identity on cohomology
classes [ωX − ωm]n−m+1 = 0 forces (ωX − ωm)n−m+1 = 0 everywhere on X,
which implies that there are at least m zero eigenvalues of the nonnegative
(1, 1)-form on ν = ωX −ωm on X. Since ν agrees with ωX on the leaves of F ,
we conclude that there are exactly m zero eigenvalues of ν everywhere on X.
Thus F : Bn → Bm is an isometric submersion in the sense of Riemannian
geometry, and this leads to a contradiction.

In the noncompact case we need the extra condition m ≥ 2. Since
X = Bn/Γ is of finite volume, by the Main Theorem X admits the mini-
mal compactification Xmin obtained by adding a finite number of normal iso-
lated singularities ζi, 1 ≤ i ≤ m, and moreover Xmin is projective-algebraic.
Embedding Xmin ⊂ PN as a projective-algebraic subvariety, a general sec-
tion H ∩Xmin by a hyperplane H ⊂ PN is smooth and it avoids the finitely
many isolated singularities ζi, 1 ≤ i ≤ m. Write XH := H ∩Xmin, XH ⊂ X.
Restricting the short exact sequence 0 → TF → TX → NF → 0 to XH

we conclude that [ωX − ωm]n−m+1 = 0 as cohomology classes. Note that
XH is not a complex hyperbolic space form, and we are not considering
the tangent sequence of a holomorphic foliation induced by F |π−1(XH). (In
fact the restriction F |π−1(XH) need not even have constant rank m − 1.) In
its place we are considering the restriction of the tangent sequence induced
by F on X to the compact complex submanifold XH , and the cohomolog-
ical identity [ωX − ωm]n−m+1 = 0 results simply from the restriction of a
cohomological identity on X as explained in the last paragraph. We have
dimC(XH) = n− 1 and n−m+1 ≤ n− 1 since m ≥ 2. From the cohomologi-
cal identity [ωX −ωm]n−m+1 = 0 on XH and the inequality ν = ωX −ωm ≥ 0
as (1, 1)-forms, we conclude that there are at least m− 1 zero eigenvalues of
ν|XH everywhere on XH . Thus, for every z ∈ Bn and for a general hyperplane
V ⊂ Tz(Bn) we have dimC(V ∩Ker(ν)) = m− 1. Since dimC(Ker (ν)) ≤ m it
follows that we must have dimC(Ker (ν)) = m and F : Bn → Bm is in fact a
holomorphic submersion. This gives rise to a contradiction exactly as in the
compact case.
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