ON INTERSECTIONS OF CONJUGACY CLASSES AND BRUHAT CELLS

KEI YUEN CHAN, JIANG-HUA LU, AND SIMON KAI MING TO

Abstract

For a connected complex semi-simple Lie group G and a fixed pair $\left(B, B^{-}\right.$) of opposite Borel subgroups of G, we determine when the intersection of a conjugacy class C in G and a double coset $B w B^{-}$is non-empty, where w is in the Weyl group W of G. The question comes from Poisson geometry, and our answer is in terms of the Bruhat order on W and an involution $m_{C} \in W$ associated to C. We study properties of the elements m_{C}. For $G=S L(n+1, \mathbb{C})$, we describe m_{C} explicitly for every conjugacy class C, and for the case when $w \in W$ is an involution, we also give an explicit answer to when $C \cap(B w B)$ is non-empty.

1. Introduction

1.1. The set up and the results. Let G be a connected complex semi-simple Lie group, and let B and B^{-}be a pair of opposite Borel subgroups of G. Then $H=B \cap B^{-}$is a Cartan subgroup of G. Let $W=N_{G}(H) / H$ be the Weyl group, where $N_{G}(H)$ is the normalizer of H in G. One then has the well-known Bruhat decompositions

$$
G=\bigsqcup_{w \in W} B w B=\bigsqcup_{w \in W} B w B^{-} \quad \text { (disjoint unions). }
$$

Subsets of G of the form $B w B$ or $B w^{\prime} B^{-}$, where $w, w^{\prime} \in W$, will be called Bruhat cells in G. The Bruhat order on W is the partial order on W defined by

$$
w_{1} \leq w_{2} \quad \Longleftrightarrow \quad B w_{1} B \subset \overline{B w_{2} B}, \quad w_{1}, w_{2} \in W
$$

Given a conjugacy class C of G, let

$$
\begin{align*}
W_{C} & =\{w \in W: C \cap(B w B) \neq \emptyset\} \tag{1.1}\\
W_{C}^{-} & =\left\{w \in W: C \cap\left(B w B^{-}\right) \neq \emptyset\right\} . \tag{1.2}
\end{align*}
$$

The sets W_{C} have been studied by several authors (see, for example, [8, 9] by Ellers and Gordeev and [4] by G. Carnovale) and are not easy to determine even for the case of $G=S L(n, \mathbb{C})$ (see [9]). On the other hand, let m_{C} be the unique element in W such that $C \cap\left(B m_{C} B\right)$ is dense in C. It is easy to show (see Lemma 2.4) that m_{C} is a unique maximal element in W_{C} with respect to the Bruhat order on W.

Our first result, Theorem 2.5, states that, for every conjugacy class C in G,

$$
W_{C}^{-}=\left\{w \in W: w \leq m_{C}\right\}
$$

Thus the set W_{C}^{-}is completely determined by the element m_{C} and the Bruhat order on W.

Theorem 2.5 is motivated by Poisson geometry. It is shown in [10] that the connected complex semi-simple Lie group G carries a holomorphic Poisson structure π_{0}, invariant under conjugation by elements in H, such that the non-empty intersections $C \cap\left(B w B^{-}\right)$are exactly the H-orbits of symplectic leaves of π_{0}, where C is a conjugacy class in G and $w \in W$. To describe precisely the symplectic leaves of π_{0}, one thus first needs to know when an intersection $C \cap\left(B w B^{-}\right)$is non-empty. By [18, Theorem 1.4], the non-empty intersections $C \cap\left(B w B^{-}\right)$are always smooth and irreducible. The geometry of such intersections and applications to Poisson geometry will be carried out elsewhere.

The elements m_{C} play an important role in the study of spherical conjugacy classes, i.e., conjugacy classes in G on which the B-action by conjugation has a dense orbit. In connection with their proof of the de Concini-Kac-Procesi conjecture on representations of the quantized universal enveloping algebra $\mathcal{U}_{\epsilon}(\mathfrak{g})$ at roots of unity over spherical conjugacy classes, N. Cantarini, G. Carnovale, and M. Costantini proved [2, Theorem 25] that a conjugacy class C in G is spherical if and only if $\operatorname{dim} C=l\left(m_{C}\right)+\operatorname{rank}\left(1-m_{C}\right)$, where l is the length function on W, and $\operatorname{rank}(1-$ m_{C}) is the rank of the operator $1-m_{C}$ in the geometric representation of W. It is also shown by M. Costantini [5], again for a spherical conjugacy class C, that the decomposition of the coordinate ring of C as a G-module (for G simply connected) is almost entirely determined by the element m_{C} (see [5, Theorem 3.22] for the precise statement). When G is simple, a complete list of the m_{C} 's, for C spherical, is given by G. Carnovale in [3, Corollary 4.2].

In this paper, we study some properties of m_{C} for every conjugacy class C of G. After examining some properties of W_{C}, we show, in Corollary 2.11, that for each conjugacy class C in $G, m_{C} \in W$ is one and the only one maximal length element in its conjugacy class in W. In particular, m_{C} is an involution. When C is spherical, the fact that m_{C} is an involution is also proved in [2, Remark 4] and [3, Theorem 2.7]. For $m \in W$, denote by \mathcal{O}_{m} the conjugacy class of m in W. Let

$$
\begin{equation*}
\mathcal{M}=\left\{m \in W: m \text { is the unique maximal length element in } \mathcal{O}_{m}\right\} \tag{1.3}
\end{equation*}
$$

Then $m_{C} \in \mathcal{M}$ for every conjugacy class C in G. It is thus desirable to study the set \mathcal{M}.

When G is simple, using arguments from [3], it is not hard to give a complete list of elements in \mathcal{M}. It turns out that when G is simple, the list of elements in
\mathcal{M} coincides with the list in [3, Corollary 4.2]. See $\S 3$ and in particular Theorem 3.10. Consequently, when G is simple, one has

$$
\begin{align*}
\mathcal{M} & =\left\{m_{C} \in W: C \text { is a conjugacy class in } G\right\} \tag{1.4}\\
& =\left\{m_{C} \in W: C \text { is a spherical conjugacy class in } G\right\}
\end{align*}
$$

If $G=G_{1} \times G_{2} \times \cdots \times G_{k}$ is semi-simple with simple factors G_{j} and Weyl groups W_{j} for $1 \leq j \leq k$, then

$$
\mathcal{M}=\mathcal{M}_{1} \times \mathcal{M}_{2} \times \cdots \times \mathcal{M}_{k}
$$

where for $1 \leq j \leq k, \mathcal{M}_{j} \subset W_{j}$ is defined as in (1.3). Hence (1.4) also holds for G semi-simple. We have thus completely described the set \mathcal{M} for any connected semi-simple complex Lie group G.

We consider the case of $G=S L(n+1, \mathbb{C})$ in $\S 4$. For any conjugacy class C in $S L(n+1, \mathbb{C})$ and any involution $w \in W \cong S_{n+1}$, we show in Theorem 4.2 that

$$
C \cap(B w B) \neq \emptyset \quad \text { iff } \quad l_{2}(w) \leq r(C)
$$

where $l_{2}(w)$ is the number of distinct 2-cycles in the cycle decomposition of w, and

$$
r(C)=\min \{\operatorname{rank}(g-c I): c \in \mathbb{C}\}
$$

for any $g \in C$. Theorem 4.2 is proved in $\S 4.3$ using (a special case of) a criterion by Ellers-Gordeev [9]. Since the proof of the Ellers-Gordeev criterion in [9] involves rather complicated combinatorics, we also give a direct proof of Theorem 4.2 in §4.4. Our direct proof also shows how to explicitly find an element in $C \cap B w B$ when $l_{2}(w) \leq l(C)$.

Combining Theorem 4.2 and a result of G. Carnovale [3, Theorem 2.7], one has, for a spherical conjugacy class C in $S L(n+1, \mathbb{C})$,

$$
W_{C}=\left\{w \in S_{n+1}: w^{2}=1, \quad l_{2}(w) \leq r(C)\right\}
$$

As another consequence of Theorem 4.2, we show in Corollary 4.4 that for any conjugacy class C in $S L(n+1, \mathbb{C})$, if W_{C} contains an involution $w \in S_{n+1}$, then W_{C} contains the whole conjugacy class of w in S_{n+1}.

Finally, let $m_{0}=1$, and for an integer $1 \leq l \leq\left[\frac{n+1}{2}\right]$, let $m_{l} \in S_{n+1}$ be the involution with the cycle decomposition

$$
m_{l}=(1, n+1)(2, n) \cdots(l, n+2-l)
$$

Corollary 4.8 says that for any conjugacy class C in $S L(n+1, \mathbb{C})$,

$$
m_{C}= \begin{cases}w_{0} & \text { if } r(C) \geq\left[\frac{n+1}{2}\right] \\ m_{r(C)} & \text { if } r(C)<\left[\frac{n+1}{2}\right]\end{cases}
$$

The explicit description of m_{C} for an arbitrary conjugacy class in other classical groups will be given in [6].

In the study of the symplectic leaves of certain Poisson structures on G as well as on the de Concini-Procesi compactification of G when G is of adjoint type, one needs to consider intersections $C_{\delta} \cap\left(B w B^{-}\right)$, where δ is an automorphism of G preserving both H and B and C_{δ} is a δ-twisted conjugacy class in G. See [14]. For such a conjugacy class C_{δ} in G, we have the element $m_{C_{\delta}} \in W$ which is the unique maximal length element in its δ-twisted conjugacy class in W. See $\S 2.3$.
1.2. Notation. Let Δ be the set of all roots of G with respect to H, let $\Delta^{+} \subset \Delta$ be the set of positive roots determined by B, and let Γ be the set of simple roots in Δ^{+}. We also write $\alpha>0$ (resp. $\alpha<0$) if $\alpha \in \Delta^{+}$(resp. $\alpha \in-\Delta^{+}$). Define

$$
\delta_{0}: \quad \Delta \longrightarrow \Delta: \quad \delta_{0}(\alpha)=-w_{0}(\alpha), \quad \alpha \in \Delta
$$

Then δ_{0} permutes Δ^{+}and Γ, and it induces an automorphism, still denoted by δ_{0}, on W :

$$
\delta_{0}: \quad W \longrightarrow W: \quad \delta_{0}(w)=w_{0} w w_{0}, \quad w \in W
$$

For $\alpha \in \Gamma$, let $s_{\alpha} \in W$ be the reflection determined by α. For a subset J of Γ, let W_{J} be the subgroup of W generated by $\left\{s_{\alpha}: \alpha \in J\right\}$, and let $w_{0, J}$ be the maximal length element in W_{J}. Let $W^{J} \subset W$ be the set of minimal length representatives of W / W_{J}. Set $w_{0}=W_{0, \Gamma}$, so w_{0} is the maximal length element in W. The length function on W is denoted by l.
1.3. Acknowledgments. We would like to thank Xuhua He for very helpful discussions. Our research was partially supported by HKRGC grants 703405 and 703407.
2. The sets W_{C} and W_{C}^{-}and the elements m_{C}
2.1. W_{C}^{-}in terms of m_{C}. We keep the notation as in $\S 1.1$. In particular, for each conjugacy class C in G, we have the subsets W_{C} and W_{C}^{-}of W as in (1.1) and (1.2).

Lemma 2.1. One has $W_{C} \subset W_{C}^{-}$for every conjugacy class C in G.
Proof. Let $w \in W$. If $C \cap(B w B) \neq \emptyset$, then $C \cap(B w) \neq \emptyset$, so $C \cap\left(B w B^{-}\right) \neq \emptyset$.
Q.E.D.

Lemma 2.2. For any $w \in W$,

$$
B w B^{-} B=\bigsqcup_{w^{\prime} \in W, w \leq w^{\prime}} B w^{\prime} B
$$

Proof. Clearly $B w B^{-} B$ is the union of some (B, B)-double cosets. Let $w^{\prime} \in W$. Then
$B w^{\prime} B \subset B w B^{-} B \Longleftrightarrow\left(B w^{\prime} B\right) \cap\left(B w B^{-} B\right) \neq \emptyset \quad \Longleftrightarrow\left(B w^{\prime} B\right) \cap\left(B w B^{-}\right) \neq \emptyset$, which, by [7], is equivalent to $w \leq w^{\prime}$.

Q.E.D.

Lemma 2.3. Let C be a conjugacy class in G and let $w \in W$. Then $w \in W_{C}^{-}$if and only if $w \leq w^{\prime}$ for some $w^{\prime} \in W_{C}$.

Proof. Since C is conjugation invariant,

$$
C \cap\left(B w B^{-}\right) \neq \emptyset \Longleftrightarrow C \cap\left(B w B^{-} B\right) \neq \emptyset
$$

which, by Lemma 2.2, is equivalent to $w \leq w^{\prime}$ for some $w^{\prime} \in W_{C}$.
Q.E.D.

For a subset X of G, let \bar{X} be the Zariski closure of X in G. The following Lemma 2.4 can also be found in $[2, \S 1]$.

Lemma 2.4. Let C be a conjugacy class in G. Then

1) there is a unique $m_{C} \in W$ such that $C \cap\left(B m_{C} B\right)$ is dense in C;
2) $w \leq m_{C}$ for every $w \in W_{C}$.

Proof. The decomposition $C=\bigsqcup_{w \in W_{C}} C \cap(B w B)$ gives

$$
\bar{C}=\bigsqcup_{w \in W_{C}} \overline{C \cap(B w B)}
$$

As C is irreducible, there exists a unique $m_{C} \in W_{C}$ such that $\bar{C}=\overline{C \cap\left(B m_{C} B\right)}$. If $w \in W_{C}$, then

$$
\emptyset \neq C \cap(B w B) \subset \bar{C}=\overline{C \cap\left(B m_{C} B\right)} \subset \overline{B m_{C} B}
$$

so $w \leq m_{C}$.

Q.E.D.

Theorem 2.5. For every conjugacy class C in $G, W_{C}^{-}=\left\{w \in W: w \leq m_{C}\right\}$.
Proof. Let $w \in W$. If $w \leq m_{C}$, then $w \in W_{C}^{-}$by Lemma 2.3. Conversely, if $w \in W_{C}^{-}$, then again by Lemma 2.3, $w \leq w^{\prime}$ for some $w^{\prime} \in W_{C}$. Since $w^{\prime} \leq m_{C}$ by Lemma 2.4, one has $w \leq m_{C}$.

Q.E.D.

Lemma 2.6. If C and C^{\prime} are two conjugacy classes in G such that $C^{\prime} \subset \bar{C}$, then $m_{C^{\prime}} \leq m_{C}$.

Proof. By definition,

$$
\emptyset \neq C^{\prime} \cap\left(B m_{C^{\prime}} B\right) \subset \bar{C}=\overline{C \cap\left(B m_{C} B\right)} \subset \overline{B m_{C} B}
$$

Thus $m_{C^{\prime}} \leq m_{C}$.
Q.E.D.
2.2. Some properties of W_{C} and m_{C}. We recall some definitions and results from $[8,11,12]$.

Definition 2.7. 1) [8, Definition 3.1] Let $w, w^{\prime} \in W$. An ascent from w to w^{\prime} is a sequence $\left\{\alpha_{j}\right\}_{1 \leq j \leq k}$ in Γ such that

$$
w^{\prime}=s_{\alpha_{k}} \cdots s_{\alpha_{2}} s_{\alpha_{1}} w s_{\alpha_{1}} s_{\alpha_{2}} \cdots s_{\alpha_{k}}
$$

and $l\left(s_{\alpha_{j}} \cdots s_{\alpha_{2}} s_{\alpha_{1}} w s_{\alpha_{1}} s_{\alpha_{2}} \cdots s_{\alpha_{j}}\right) \geq l\left(s_{\alpha_{j-1}} \cdots s_{\alpha_{2}} s_{\alpha_{1}} w s_{\alpha_{1}} s_{\alpha_{2}} \cdots s_{\alpha_{j-1}}\right)$ for every $1 \leq j \leq k$. Write $w^{\prime} \longleftarrow w$ if there is an ascent from w to w^{\prime} or if $w^{\prime}=w$.
2) $[12, \S 2.9]$ For $w, w^{\prime}, x \in W$, write $w \stackrel{x}{\sim} w^{\prime}$ if $l(w)=l\left(w^{\prime}\right), w^{\prime}=x w x^{-1}$, and either $l\left(w^{\prime}\right)=l(x w)+l(x)$ or $l\left(w^{\prime}\right)=l(x)+l\left(w x^{-1}\right)$. Write $w \sim w^{\prime}$ if there exist sequences of $\left\{x_{j}\right\}_{1 \leq j \leq k}$ and $\left\{w_{j}\right\}_{1 \leq j \leq k}$ in W such that

$$
w \stackrel{x_{1}}{\sim} w_{1} \stackrel{x_{2}}{\sim} \ldots \stackrel{x_{k}}{\sim} w_{k}=w^{\prime} .
$$

3) Let \mathcal{O} be a conjugacy class in W. An element $w \in \mathcal{O}$ is called a maximal length element in \mathcal{O} if $l\left(w_{1}\right) \leq l(w)$ for all $w_{1} \in \mathcal{O}$.

Proposition 2.8. [12, §2.9] Let \mathcal{O} be any conjugacy class in W.

1) For any $w \in \mathcal{O}$, there exists a maximal length element $w^{\prime} \in \mathcal{O}$ such that $w^{\prime} \longleftarrow w ;$
2) If w^{\prime} and $w^{\prime \prime}$ are two maximal length elements in \mathcal{O}, then $w^{\prime} \sim w^{\prime \prime}$.

Proposition 2.9. Let C be a conjugacy class in G, and let $w, w^{\prime} \in W$.

1) If $w^{\prime} \longleftarrow w$ and $w \in W_{C}$, then $w^{\prime} \in W_{C}$.
2) If $w \sim w^{\prime}$ and $w \in W_{C}$, then $w^{\prime} \in W_{C}$.

Proof. 1) is just [8, Proposition 3.4]. To see 2), assume that $w \stackrel{x}{\sim} w^{\prime}$ for some $x \in W$, so $w^{\prime}=x w x^{-1}$, and either $l\left(w^{\prime}\right)=l(x w)+l(x)$ or $l\left(w^{\prime}\right)=l(x)+l\left(w x^{-1}\right)$. Assume first that $l\left(w^{\prime}\right)=l(x w)+l(x)$. Then

$$
C \cap\left(B w^{\prime} B\right)=C \cap\left(B x w B x^{-1} B\right) \supset C \cap\left(x w B x^{-1}\right) \neq \emptyset .
$$

Thus $C \cap\left(B w^{\prime} B\right) \neq \emptyset$ and $w^{\prime} \in W_{C}$. The case of $l\left(w^{\prime}\right)=l(x)+l\left(w x^{-1}\right)$ is proved similarly.
Q.E.D.

Remark 2.10. We refer to [8, 9] for a more detailed study of the set W_{C} and in particular for the case of $G=S L(n, \mathbb{C})$. On the other hand, it is proved in [4] by G. Carnovale that a conjugacy class C in G is spherical if and only if W_{C} consists only of involutions. See also Corollary 4.6 in $\S 4.2$.

For $w \in W$, let \mathcal{O}_{w} be the conjugacy class of w in W.
Corollary 2.11. For any conjugacy class C in G, m_{C} is the unique maximal length element in $\mathcal{O}_{m_{C}}$.

Proof. By Proposition 2.8, there exists a maximal length element $w^{\prime} \in \mathcal{O}_{m_{C}}$ such that $w^{\prime} \longleftarrow m_{C}$. By Proposition 2.9, $w^{\prime} \in W_{C}$, so $w^{\prime} \leq m_{C}$ by Lemma 2.4. Since $l\left(w^{\prime}\right) \geq l\left(m_{C}\right)$, one has $w^{\prime}=m_{C}$. Thus m_{C} is a maximal length element in $\mathcal{O}_{m_{C}}$. If w_{1} is any maximal length element in $\mathcal{O}_{m_{C}}$, then $w_{1} \sim m_{C}$ by Proposition 2.8, so $w_{1} \in W_{C}$ by Proposition 2.9, and thus $w_{1} \leq m_{C}$ by Lemma 2.4. Since $l\left(w_{1}\right)=l\left(m_{C}\right)$, one has $w_{1}=m_{C}$. Thus m_{C} is the only maximal length element in $\mathcal{O}_{m_{C}}$.

Q.E.D.

Consider now the bijection

$$
\begin{equation*}
\phi: W \longrightarrow W: w \longmapsto w_{0} w, \quad w \in W . \tag{2.1}
\end{equation*}
$$

Then under ϕ, the conjugation action of W on itself becomes the following δ_{0}-twisted conjugation action of W on itself:

$$
u \cdot w=\delta_{0}(u) w u^{-1}, \quad u, w \in W .
$$

For $w \in W$, let $\mathcal{O}_{w}^{\delta_{0}}$ be the δ_{0}-twisted conjugacy class of w, and say an element $w^{\prime} \in \mathcal{O}_{w}^{\delta_{0}}$ has minimal length if $l\left(w^{\prime}\right) \leq l\left(w_{1}\right)$ for all $w_{1} \in \mathcal{O}_{w}^{\delta_{0}}$. Using the fact that $l\left(w_{0} u\right)=l\left(w_{0}\right)-l(u)$ for any $u \in W$, it is easy to see that for any $w \in W, \phi$ maps maximal length elements in \mathcal{O}_{w} to minimal length elements in $\mathcal{O}_{w_{0} w}^{\delta_{0}}$.

Corollary 2.12. For any conjugacy class C in $G, w_{0} m_{C}$ is the unique minimal length element in $\mathcal{O}_{w_{0} m_{C}}^{\delta_{0}}$.

Remark 2.13. Let \tilde{G} be the connected and simply connected cover of G, let $\pi: \tilde{G} \rightarrow G$ be the covering map, and let $Z=\pi^{-1}(e)$, where e is the identity element of G. Let $\tilde{A}=\pi^{-1}(A)$, where $A \in\left\{H, B, B^{-}\right\}$. Identify the Weyl group for \tilde{G} with W. For any conjugacy class C in $G, \pi^{-1}(C)$ is a union of conjugacy classes in \tilde{G}. Since $Z \subset \tilde{H}=\tilde{B} \cap \tilde{B}^{-}$, it is easy to see that for any conjugacy classes \tilde{C} in $\pi^{-1}(C), W_{\tilde{C}}=W_{C}$ and $W_{\tilde{C}}^{-}=W_{C}^{-}$, and in particular, $m_{C}=m_{\tilde{C}}$. Thus the subset $\left\{m_{C}: C\right.$ a conjugacy class in $\left.G\right\}$ of W depends only on the isogeneous class of G.
2.3. δ-twisted conjugacy classes. Let δ be any automorphism of G such that $\delta(B)=B$ and $\delta(H)=H$. Then G acts on itself by δ-twisted conjugation given by

$$
g \cdot \delta h=\delta(g) h g^{-1}, \quad g, h \in G
$$

A δ-twisted conjugacy class in G is defined to be a G-orbit of the δ-twisted conjugation. Given a δ-twisted conjugacy class C_{δ} of G, let

$$
\begin{align*}
& W_{C_{\delta}}=\left\{w \in W: C_{\delta} \cap(B w B) \neq \emptyset\right\} \tag{2.2}\\
& W_{C_{\delta}}^{-}=\left\{w \in W: C_{\delta} \cap\left(B w B^{-}\right) \neq \emptyset\right\} \tag{2.3}
\end{align*}
$$

Then all the arguments in $\S 2.1$ carry through when C is replaced by C_{δ}. In particular, let $m_{C_{\delta}}$ be the unique element in W such that $C_{\delta} \cap\left(B m_{C_{\delta}} B\right)$ is dense in C_{δ}. Then $m_{C_{\delta}} \in W_{C_{\delta}}$ and

$$
W_{C_{\delta}}^{-}=\left\{w \in W: w \leq m_{C_{\delta}}\right\}
$$

Recall that Γ is the set of simple roots determined by (B, H). Since $\delta(H)=H$ and $\delta(B)=B, \delta$ acts on Γ and thus also on W. For any automorphism σ of Γ, define the σ-twisted conjugation of W on itself by

$$
u \cdot \sigma v=\sigma(u) v u^{-1}, \quad u, v \in W
$$

and for $w \in W$, denote by \mathcal{O}_{w}^{σ} the σ-twisted conjugacy class of w in W. Minimal length elements in σ-twisted conjugacy classes in W have been studied by X. He in [13]. The map ϕ in (2.1) induces a bijection between δ-twisted conjugacy classes and $\delta_{0} \delta$-twisted conjugacy in W. In particular, for any $w \in W, \phi$ maps maximal length elements in \mathcal{O}_{w}^{δ} to minimal length elements in $\mathcal{O}_{w_{0} w}^{\delta_{0} \delta}$. Using the map ϕ, one can translate the notions in [13, Section 3] and [13, Theorem 3.2] on minimal length elements in $\delta_{0} \delta$-twisted conjugacy classes to the analog of Proposition 2.8 on maximal length elements in δ-twisted conjugacy classes. It is also straightforward to generalize Proposition 2.9 to the case of δ-twisted conjugacy classes in G. We thus have the following conclusion.

Proposition 2.14. For any δ-twisted conjugacy class C_{δ} in $G, m_{C_{\delta}}$ is the unique maximal length element in its δ-twisted conjugacy class in W.

3. Conjugacy classes of W with unique maximal Length elements

3.1. The set \mathcal{M}. Introduce

$$
\begin{equation*}
\mathcal{M}=\left\{m \in W: m \text { is the unique maximal length element in } \mathcal{O}_{m}\right\} \tag{3.1}
\end{equation*}
$$

By Corollary 2.11, $m_{C} \in \mathcal{M}$ for every conjugacy class C in G. It is thus desirable to have a precise description of elements in \mathcal{M}. Clearly \mathcal{M} is in one-to-one correspondence with conjugacy classes in W that have unique maximal length elements.

It is easy to see that if $G=G_{1} \times G_{2} \times \cdots \times G_{k}$ is semi-simple with simple factors G_{j} and Weyl groups W_{j} for $1 \leq j \leq k$, then

$$
\mathcal{M}=\mathcal{M}_{1} \times \mathcal{M}_{2} \times \cdots \times \mathcal{M}_{k}
$$

where for $1 \leq j \leq k, \mathcal{M}_{j} \subset W_{j}$ is defined as in (3.1). Therefore we only need to determine \mathcal{M} for G simple. This will be done in $\S 3.3$.

Remark 3.1. By [13, Corollary 4.5], in any δ_{0}-twisted conjugacy class in W, a minimal element in the Bruhat order is also a minimal length element. Thus, for $m \in W, m \in \mathcal{M}$ if and only if m is the unique maximal element in \mathcal{O}_{m}.

Lemma 3.2. If $m \in \mathcal{M}$, then $m^{2}=1$.
Proof. By [11, Corollary 3.2.14], $m^{-1} \in \mathcal{O}_{m}$. Since $l(m)=l\left(m^{-1}\right)$, one has $m=$ m^{-1}.
Q.E.D.

3.2. The correspondence between \mathcal{M}^{\prime} and \mathcal{J}^{\prime}. Introduce

$$
\mathcal{M}^{\prime}=\left\{m \in W: m^{2}=1 \text { and } m \text { is a maximal length element in } \mathcal{O}_{m}\right\}
$$

By Lemma 3.2, $\mathcal{M} \subset \mathcal{M}^{\prime}$. We first determine \mathcal{M}^{\prime}.
It is well-known that elements in \mathcal{M}^{\prime} correspond to special subsets of the set Γ of simple roots. Indeed, minimal or maximal length elements in conjugacy classes of involutions in W have been studied (see, for example, $[11,13,16,17]$ and especially [11, Remark 3.2.13] for minimal length elements, [16, Theorem 1.1] for maximal length elements, and [13, Lemma 3.6] for minimal length elements in twisted conjugacy classes). We summarize the results on \mathcal{M}^{\prime} in the following Proposition 3.6, and we give a proof of Proposition 3.6 for completeness.

Lemma 3.3. Let $m \in W$ be an involution. If $\alpha \in \Gamma$ is such that $l\left(s_{\alpha} m s_{\alpha}\right)=l(m)$, then $s_{\alpha} m s_{\alpha}=m$.

Proof. This is [11, Exercise 3.18]. If $m(\alpha)>0$, then $m s_{\alpha}>m$, and $l\left(s_{\alpha} m s_{\alpha}\right)=$ $l(m)$ implies that $s_{\alpha} m s_{\alpha}<m s_{\alpha}$. Thus $s_{\alpha} m(\alpha)<0$, so $m(\alpha)=\alpha$. Similarly, if $m(\alpha)<0$, then $m(\alpha)=-\alpha$. In either case, $s_{\alpha} m s_{\alpha}=m$.

Q.E.D.

Lemma 3.4. If $m \in \mathcal{M}^{\prime}$, then $m=w_{0} w_{0, J}$, where $J=\{\alpha \in \Gamma: m(\alpha)=\alpha\}$, and J is δ_{0}-invariant.

Proof. Let $m \in \mathcal{M}^{\prime}$, and let $x=w_{0} m$. Then x is a unique minimal length element in its δ_{0}-twisted conjugacy class $\mathcal{O}_{x}^{\delta_{0}}$ in W. Let $x=s_{\alpha_{1}} s_{\alpha_{2}} \cdots s_{\alpha_{k}}$ be a reduced
word for x, where $\alpha_{j} \in \Gamma$ for each $1 \leq j \leq k$. Let $J^{\prime}=\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right\}$. Then $x \in W_{J^{\prime}}$. We first show that $x=w_{0, J^{\prime}}$. To this end, it is enough to show that $x\left(\alpha_{j}\right)<0$ for every $1 \leq j \leq k$. Since $x s_{\alpha_{k}}<x$, we already know that $x\left(\alpha_{k}\right)<0$. If $k=1$, we are done. Suppose that $k \geq 2$ and let

$$
\begin{equation*}
x_{1}=\delta_{0}\left(s_{\alpha_{k}}\right) x s_{\alpha_{k}}=s_{\delta_{0}\left(\alpha_{k}\right)} s_{\alpha_{1}} \cdots s_{\alpha_{k-1}} \in \mathcal{O}_{x}^{\delta_{0}} . \tag{3.2}
\end{equation*}
$$

Since x is a minimal length element in $\mathcal{O}_{x}^{\delta_{0}}$ and $l(x)=k$, we have $l\left(x_{1}\right) \geq k$. It follows from (3.2) that $l\left(x_{1}\right) \leq k$, so $l\left(x_{1}\right)=k$. Let $m_{1}=w_{0} x_{1}=s_{\alpha_{k}} m s_{\alpha_{k}}$. Then $l\left(m_{1}\right)=l(m)$. By Lemma 3.3, $m_{1}=m$, so $x=x_{1}$. In particular, $x=$ $s_{\delta_{0}\left(\alpha_{k}\right)} s_{\alpha_{1}} \cdots s_{\alpha_{k-1}}$ is a reduced word for x, so $x\left(\alpha_{k-1}\right)<0$. Similar arguments show that $x\left(\alpha_{j}\right)<0$ for every $1 \leq j \leq k$. Thus $x=w_{0, J^{\prime}}$, and $m=w_{0} w_{0, J^{\prime}}$. It follows from $m^{2}=1$ that J^{\prime} is δ_{0}-invariant.

It remains to show that $J^{\prime}=J$. For any $\alpha \in J^{\prime}$, since $m(\alpha)>0, l\left(s_{\alpha} m s_{\alpha}\right) \geq$ $l(m)$. Since $m \in \mathcal{M}^{\prime}$, one has $l\left(s_{\alpha} m s_{\alpha}\right)=l(m)$, so by Lemma 3.3, $s_{\alpha} m s_{\alpha}=m$ and thus $m(\alpha)=\alpha$. This shows that $J^{\prime} \subset J$. Since $m(\beta)<0$ for every $\beta \in \Gamma \backslash J^{\prime}$, one has $J \subset J^{\prime}$. Thus $J=J^{\prime}$.

Q.E.D.

Definition 3.5. A subset J of Γ is said to have Property (1) if J is δ_{0}-invariant and $-w_{0}(\alpha)=-w_{0, J}(\alpha)$ for all $\alpha \in J$.

Let \mathcal{J}^{\prime} be the collection of all subsets J of Γ that have Property (1). For $J \in \mathcal{J}^{\prime}$, let $m_{J}=w_{0} w_{0, J}$. For $m \in \mathcal{M}^{\prime}$, let

$$
J_{m}=\{\alpha \in \Gamma: m(\alpha)=\alpha\} \subset \Gamma .
$$

It follows from Lemma 3.4 that $J_{m} \in \mathcal{J}^{\prime}$ for every $m \in \mathcal{M}^{\prime}$.
Proposition 3.6. 1) The map $\psi: \mathcal{M}^{\prime} \rightarrow \mathcal{J}^{\prime}: m \mapsto J_{m}$ is bijective with inverse given by $J \mapsto m_{J}$ for $J \in \mathcal{J}^{\prime}$.
2) For $J, K \in \mathcal{J}^{\prime}, m_{J}$ and m_{K} are in the same conjugacy class in W if and only if there exists $w \in W$ with $\delta_{0}(w)=w$ such that $w(J)=K$.

Proof. 1) Since $m=w_{0} w_{0, J_{m}}$ for every $m \in \mathcal{M}^{\prime}, \psi$ is injective. To show that ψ is surjective, let $J \in \mathcal{J}^{\prime}$ and we will prove that $m_{J} \in \mathcal{M}^{\prime}$. Since J is δ_{0}-invariant, m_{J} is an involution. Property (1) implies that $s_{\alpha} m_{J} s_{\alpha}=m_{J}$ for every $\alpha \in J$, so $w m_{J} w^{-1}=m_{J}$ for every $w \in W_{J}$. Thus, if $u=w m_{J} w^{-1}$ is an element in $\mathcal{O}_{m_{J}}$, we can assume that $w \in W^{J}$ (see notation in §1.2). Then

$$
\begin{aligned}
l(u) & \leq l(w)+l\left(m_{J} w^{-1}\right)=l(w)+l\left(w_{0}\right)-l\left(w_{0, J} w^{-1}\right) \\
& =l(w)+l\left(w_{0}\right)-l\left(w_{0, J}\right)-l\left(w^{-1}\right) \\
& =l\left(m_{J}\right) .
\end{aligned}
$$

This shows that m_{J} is of maximal length in $\mathcal{O}_{m_{J}}$, so $m_{J} \in \mathcal{M}^{\prime}$. To show that $\psi\left(m_{J}\right)=J$, note that $J \subset J_{m_{J}}=\left\{\alpha \in \Gamma: m_{J}(\alpha)=\alpha\right\}$. Since $m_{J}(\alpha)<0$ for every $\alpha \in \Gamma \backslash J, J_{m_{J}} \subset J$. Thus $J_{m_{J}}=J$, and $\psi\left(m_{J}\right)=J$. This shows that ψ is surjective and that its inverse is given by $\psi^{-1}(J)=m_{J}$.
2) Assume that $J, K \in \mathcal{J}^{\prime}$ are such that m_{J} and m_{K} are conjugate in W. Since $w m_{J} w^{-1}=m_{J}$ for any $w \in W_{J}$, we may assume that $m_{K}=w m_{J} w^{-1}$ for some $w \in W^{J}$. Then it follows from $m_{K} w=w m_{J}$ that for every $\alpha \in J$,

$$
m_{K} w(\alpha)=w m_{J}(\alpha)=w(\alpha)>0
$$

Thus $w(\alpha) \in[K]^{+}$, where $[K]^{+}$denotes the set positive roots that are in the linear span of K. Denote similarly by $[J]^{+}$the set of positive roots in the linear span of J. Then $w\left([J]^{+}\right) \subset[K]^{+}$. Since both m_{J} and m_{K} are maximal length elements in the same conjugacy class in $W, l\left(m_{J}\right)=l\left(m_{K}\right)$. Since

$$
l\left(m_{J}\right)=l\left(w_{0}\right)-\left|[J]^{+}\right| \quad \text { and } \quad l\left(m_{K}\right)=l\left(w_{0}\right)-\left|[K]^{+}\right|
$$

one has $\left|[J]^{+}\right|=\left|[K]^{+}\right|$. Here for a set $A,|A|$ denotes the cardinality of A. Thus $w\left([J]^{+}\right)=[K]^{+}$. It follows that $w(J)=K$. Now $m_{K}=w m_{J} w^{-1}$ implies that $w_{0, K}=\delta_{0}(w) w_{0, J} w^{-1}$, so $\delta_{0}(w)=w_{0, K} w w_{0, J}=w$.

Conversely, if $J, K \in \mathcal{J}^{\prime}$ are such that $w(J)=K$ for some $w \in W$ with $\delta_{0}(w)=w$, then $w_{0, K}=w w_{0, J} w^{-1}=\delta_{0}(w) w_{0, J} w^{-1}$, so $m_{K}=w m_{J} w^{-1}$.

Q.E.D.

3.3. The correspondence between \mathcal{M} and \mathcal{J}. We now turn to the set \mathcal{M}. Let \langle,$\rangle be the bilinear form on \Gamma$ induced from the Killing form of the Lie algebra of G. For a subset J of Γ, an $\alpha \in J$ is said to be isolated if $\left\langle\alpha, \alpha^{\prime}\right\rangle=0$ for every $\alpha^{\prime} \in J \backslash\{\alpha\}$. The following Definition 3.7 is inspired by [3, Lemma 4.1].

Definition 3.7. A subset J of Γ is said to have Property (2) if for every isolated $\alpha \in J$, there is no $\beta \in \Gamma \backslash\{\alpha\}$ with the following properties:
a) $\langle\alpha, \alpha\rangle=\langle\beta, \beta\rangle$ and $\langle\beta, \alpha\rangle \neq 0$;
b) $\left\langle\beta, \alpha^{\prime}\right\rangle=0$ for all $\alpha^{\prime} \in J \backslash\{\alpha\}$;
c) $-w_{0}(\beta)=\beta$.

Lemma 3.8. If $m \in \mathcal{M}$, then J_{m} has Properties (1) and (2).
Proof. Let $m \in \mathcal{M}$. By Lemma 3.4, J_{m} has Property (1). Suppose that $\alpha \in J_{m}$ is an isolated point and that there exists $\beta \in \Gamma \backslash\{\alpha\}$ with properties a), b) and c) in Definition 3.7. Let $J_{m}^{\prime}=J_{m} \backslash\{\alpha\}$. Since $\alpha \in J_{m}$ is isolated, on has $w_{0}(\alpha)=-\alpha$, so,

$$
m=w_{0} s_{\alpha} w_{0, J_{m}^{\prime}}=s_{\alpha} w_{0} w_{0, J_{m}^{\prime}},
$$

and by b) and c), $m(\beta)=s_{\alpha} w_{0} w_{0, J_{m}^{\prime}}(\beta)=s_{\alpha} w_{0}(\beta)=-s_{\alpha}(\beta)<0$, and thus

$$
s_{\beta} m s_{\beta}=m s_{m(\beta)} s_{\beta}=m s_{\alpha} s_{\beta} s_{\alpha} s_{\beta}
$$

By a), $s_{\alpha} s_{\beta} s_{\alpha} s_{\beta}=s_{\beta} s_{\alpha}$, so $s_{\beta} m s_{\beta}=m s_{\beta} s_{\alpha}$, and thus

$$
s_{\alpha} s_{\beta} m s_{\beta} s_{\alpha}=s_{\alpha} m s_{\beta}
$$

Since $l\left(s_{\alpha} m s_{\beta}\right) \geq l\left(s_{\alpha} m\right)-1=l(m)$, and since m is the unique maximal length element in $\mathcal{O}_{m}, s_{\alpha} m s_{\beta}=m$. It follows from $m s_{\alpha} m=s_{\alpha}$ that $s_{\alpha} s_{\beta}=1$ which is a contradiction.

Q.E.D.

Let \mathcal{J} be the collection of all subsets J of Γ with Properties (1) and (2). A $J \in \mathcal{J}$ is said to be non-trivial if Γ is neither empty nor the whole of Γ.

Identify Γ with the Dynkin diagram of G and a subset J of Γ as a sub-diagram of the Dynkin diagram. The following description of \mathcal{J} for G simple is obtained in [3, Corollary 4.2]. We include the list here for the convenience of the reader and for completeness.

Lemma 3.9. Assume that G is simple and that the rank n of G is at least 2 . The following is a complete list of non-trivial $J \in \mathcal{J}$ with points in J painted black:
(1) $A_{n}: J_{l}=\left\{\alpha_{i}: l+1 \leq i \leq n-l\right\}$ for $1 \leq l \leq\left[\frac{n+1}{2}\right]-1$:

(2) $B_{n}: J_{1, l}=\left\{\alpha_{i}: l \leq i \leq n\right\}$ for $2 \leq l \leq n$:

(3) $C_{n}: J_{1, l}=\left\{\alpha_{i}: l \leq i \leq n\right\}$ for $2 \leq l \leq n$:

$J_{2, l}=\left\{\alpha_{1}, \alpha_{3}, \ldots, \alpha_{2 l-1}\right\} \cup\left\{\alpha_{i}: 2 l+1 \leq i \leq n\right\}$ for $1 \leq l \leq \frac{n}{2}-1$:

If $n=2 m, J_{3}=\left\{\alpha_{1}, \alpha_{3}, \ldots, \alpha_{2 m-3}, \alpha_{2 m-1}\right\}$:

If $n=2 m+1, J_{4}=\left\{\alpha_{1}, \alpha_{3}, \ldots, \alpha_{2 m-1}, \alpha_{2 m+1}\right\}$:

(4) $D_{2 m}: J_{1, l}=\left\{\alpha_{i}: 2 l-1 \leq i \leq 2 m\right\}$ for $2 \leq l \leq m$:

$J_{2, l}=\left\{\alpha_{1}, \alpha_{3}, \ldots, \alpha_{2 l-1}\right\} \cup\left\{\alpha_{i}: 2 l+1 \leq i \leq 2 m\right\}$ for $1 \leq l \leq m-1$:

$J_{3}=\left\{\alpha_{1}, \alpha_{3}, \ldots, \alpha_{2 m-3}, \alpha_{2 m-1}\right\}:$

$J_{4}=\left\{\alpha_{1}, \alpha_{3}, \ldots, \alpha_{2 m-3}, \alpha_{2 m}\right\}:$

(5) $D_{2 m+1}: J_{1, l}=\left\{\alpha_{i}: 2 l-1 \leq i \leq 2 m+1\right\}$ for $2 \leq l \leq m$:

$$
J_{2, l}=\left\{\alpha_{1}, \alpha_{3}, \ldots, \alpha_{2 l-1}\right\} \cup\left\{\alpha_{i}: 2 l+1 \leq l \leq 2 m+1\right\} \text { for } 1 \leq l \leq m-1 \text { : }
$$

$$
J_{3}=\left\{\alpha_{1}, \alpha_{3}, \ldots, \alpha_{2 m-1}\right\}
$$

(6) E_{6} :

(7) E_{7} :

(8) E_{8} :

(9) F_{4} :

(10) G_{2} :

Theorem 3.10. When G is simple, the map $\psi: \mathcal{M} \rightarrow \mathcal{J}: m \mapsto J_{m}$ is a bijection.
Proof. It is clear that ψ is injective. To show that ψ is surjective, let $J \in \mathcal{J}$. We need to show that $m_{J} \in \mathcal{M}$, i.e., m_{J} is the unique maximal length element in its conjugacy class in $\mathcal{O}_{m_{J}}$. Let m be any maximal length element in $\mathcal{O}_{m_{J}}$. By Proposition 3.6, $m=m_{K}$, where $K \in \mathcal{J}^{\prime}$ and there exists $w \in W^{J}$ such that $w(J)=K$ and $\delta_{0}(w)=w$.

By examining the list of all J 's in \mathcal{J} in Lemma 3.9, every $J \in \mathcal{J}$, when regarded as a Dynkin diagram, uniquely embeds in Γ with Property (1) except in the cases of $J_{1, m}, J_{3}, J_{4}$ for $D_{2 m}$ and J_{4} for E_{7}. In these cases, one can use results in [16] to check directly that $m_{J} \in \mathcal{M}$.
Q.E.D.

Remark 3.11. By [3, Remark 4.3], for every J in the list in Lemma 3.9, $m_{J}=m_{C}$ for some spherical conjugacy class in G, so in particular, $m_{J} \in \mathcal{M}$. This gives another (indirect) proof of the surjectivity of the map ψ in Theorem 3.10.

4. The case of $G=S L(n+1, \mathbb{C})$

In this section, for an arbitrary conjugacy class C in $S L(n+1, \mathbb{C})$, we give an explicit condition for $C \cap(B w B) \neq \emptyset$ when $w \in W \cong S_{n+1}$ is an involution. In particular, we describe $m_{C} \in S_{n+1}$ explicitly for every C.
4.1. Notation. As is standard, take the Borel subgroup B (resp. B^{-}) to consist of all upper-triangular (resp. lower triangular) matrices in $S L(n+1, \mathbb{C}$), so that $H=B \cap B^{-}$consists of all diagonal matrices in $S L(n+1, \mathbb{C})$. For an integer $p \geq 0$, denote by I_{p} the identity matrix of size p and by $[p / 2]$ the largest integet that is less than or equal to $p / 2$.

Identify the Weyl group W of $S L(n+1, \mathbb{C})$ with the group S_{n+1} of permutations on the set of integers between 1 and $n+1$. For $1 \leq i<j \leq n+1$, let (i, j) be the 2 -cycle in S_{n+1} exchanging i and j and leaving every other $k \in[1, n+1]$ fixed. If $w \in S_{n+1}$ is an involution, denote by $l_{2}(w)$ the number of 2 -cycles in the cycle decomposition of w.

Every conjugacy class C in $S L(n+1, \mathbb{C})$ contains some g of (upper-triangular) Jordan form. We define the eigenvalues for C to be the eigenvalues of such a $g \in C$ and similarly define the number and sizes of the Jordan blocks of C corresponding to an eigenvalue. For $g \in G L(n+1, \mathbb{C})$, define

$$
\begin{aligned}
& d(g)=\max \left\{\operatorname{dim} \operatorname{ker}\left(g-c I_{n+1}\right): c \in \mathbb{C}\right\} \\
& r(g)=n+1-d(g)=\min \left\{\operatorname{rank}\left(g-c I_{n+1}\right): c \in \mathbb{C}\right\} \\
& l(g)=\min \left\{r(g),\left[\frac{n+1}{2}\right]\right\} .
\end{aligned}
$$

For a conjugacy class C in $S L(n+1, \mathbb{C})$, define

$$
d(C)=d(g), \quad r(C)=r(g) \quad \text { and } \quad l(C)=l(g), \quad \text { for any } g \in C .
$$

Two elements in $S L(n+1, \mathbb{C})$ are in the same conjugacy class in $S L(n+1, \mathbb{C})$ if and only if they are in the same conjugacy class in $G L(n+1, \mathbb{C})$. This fact will be used throughout the rest of this section.

4.2. The main theorem and its consequences.

Lemma 4.1. Let C be a conjugacy class in $S L(n+1, \mathbb{C})$ and let $w \in S_{n+1}$ be an involution. If $C \cap(B w B) \neq \emptyset$, then $l_{2}(w) \leq l(C)$.

Proof. Assume that $C \cap(B w B) \neq \emptyset$. Let $g \in C \cap(B w B)$, and write $g=b_{1} \dot{w} b_{2}$, where $b_{1}, b_{2} \in B$ and \dot{w} is any representative of w in the normalizer of H in G. Then for any non-zero $c \in \mathbb{C}$,

$$
\operatorname{rank}\left(g-c I_{n+1}\right)=\operatorname{rank}\left(b_{1} \dot{w} b_{2}-c I_{n+1}\right)=\operatorname{rank}\left(\dot{w}-c b_{1}^{-1} b_{2}^{-1}\right) .
$$

Let $w=\left(i_{1}, j_{1}\right) \cdots\left(i_{l_{2}(w)}, j_{l_{2}(w)}\right)$ be the decomposition of w into distinct 2 -cycles, where $i_{1}<\cdots<i_{l_{2}(w)}$ and $i_{k}<j_{k}$ for every $1 \leq k \leq l_{2}(w)$. It is easy to see that for any $b \in B$, the columns of the matrix $\dot{w}-b$ corresponding to $i_{1}, \ldots, i_{l_{2}(w)}$ are linearly independent, so $\operatorname{rank}(\dot{w}-b) \geq l_{2}(w)$. Thus $\operatorname{rank}\left(g-c I_{n+1}\right) \geq l_{2}(w)$ for every non-zero $c \in \mathbb{C}$. Hence $r(C)=r(g) \geq l_{2}(w)$. Since $l_{2}(w) \leq\left[\frac{n+1}{2}\right]$, one has $l_{2}(w) \leq l(C)$.

Q.E.D.

Theorem 4.2. Let C be a conjugacy class in $S L(n+1, \mathbb{C})$ and let $w \in S_{n+1}$ be an involution. Then $C \cap(B w B) \neq \emptyset$ if and only if $l_{2}(w) \leq l(C)$.

A proof of Theorem 4.2 using a result of Ellers-Gordeev [9] is given in $\S 4.3$, and a direct proof of Theorem 4.2 is given in $\S 4.4$. We now give some corollaries of Theorem 4.2.

Corollary 4.3. Let C and C^{\prime} be two conjugacy classes in $S L(n+1, \mathbb{C})$ such that C^{\prime} is contained in the closure of C. Let $w \in S_{n+1}$ be an involution. If $w \in W_{C^{\prime}}$, then $w \in W_{C}$.

Proof. It follows from the definition that $r\left(C^{\prime}\right) \leq r(C)$, so $l\left(C^{\prime}\right) \leq l(C)$. Corollary 4.3 now follows directly from Theorem 4.2.
Q.E.D.

Recall that for $w \in S_{n+1}, \mathcal{O}_{w}$ denotes the conjugacy class of w in S_{n+1}.
Corollary 4.4. Let $w \in S_{n+1}$ be an involution and let C be a conjugacy class in $S L(n+1, \mathbb{C})$. If $w \in W_{C}$, then $\mathcal{O}_{w} \subset W_{C}$.

Proof. Since $l_{2}\left(w^{\prime}\right)=l_{2}(w)$ for every $w^{\prime} \in \mathcal{O}_{w}$, Corollary 4.4 follows directly from Theorem 4.2.
Q.E.D.

We now consider spherical conjugacy classes in $S L(n+1, \mathbb{C})$.
Lemma 4.5. [1, 2] A spherical conjugacy class in $S L(n+1, \mathbb{C})$ is either unipotent or semi-simple.

1) A unipotent conjugacy class in $S L(n+1, \mathbb{C})$ is spherical if and only if all of its Jordan blocks are of size at most 2.
2) A semi-simple conjugacy class C in $S L(n+1, \mathbb{C})$ is spherical if and only if it has exactly two distinct eigenvalues.

Note that for a unipotent spherical conjugacy class C in $S L(n+1, \mathbb{C}), r(C)$ is precisely the number of size 2 blocks in the Jordan form of C, and for a semisimple spherical conjugacy class, $r(C)$ is equal to the smaller multiplicity of the two eigenvalues. In particular, $l(C)=r(C)$ for every spherical conjugacy class in $S L(n+1, \mathbb{C})$.

Corollary 4.6. For a spherical conjugacy class C in $S L(n+1, \mathbb{C})$,

$$
W_{C}=\left\{w \in S_{n+1}: w^{2}=1 \text { and } l_{2}(w) \leq r(C)\right\} .
$$

Proof. Let C be a spherical conjugacy class in $S L(n+1, \mathbb{C})$. By [3, Theorem 2.7], if $w \in W_{C}$, then w is an involution, and by Theorem 4.2, $l_{2}(w) \leq r(C)$. Conversely, if $w \in S_{n+1}$ is an involution with $l_{2}(w) \leq r(C)$, then $w \in W_{C}$ by Theorem 4.2.

Q.E.D.

Remark 4.7. Fix $\xi \in \mathbb{C}$ such that $\xi^{n+1}=-1$. For an integer $0 \leq r \leq\left[\frac{n+1}{2}\right]$, let

$$
h_{r}= \begin{cases}\operatorname{diag}\left(I_{n+1-r},-I_{r}\right) & \text { if } r \text { is even } \\ \operatorname{diag}\left(\xi I_{n+1-r},-\xi I_{r}\right) & \text { if } r \text { is odd }\end{cases}
$$

and let $C_{h_{r}}$ be the conjugacy class of h_{r} in $S L(n+1, \mathbb{C})$. Every semi-simple spherical conjugacy class in $S L(n+1, \mathbb{C})$ is $S L(n+1, \mathbb{C})$-equivariantly isomorphic to $C_{h_{r}}$ for some $0 \leq r \leq\left[\frac{n+1}{2}\right]$, which is also $S L(n+1, \mathbb{C})$-equivariantly isomorphic to the symmetric space

$$
X=S L(n+1, \mathbb{C}) / S(G L(n+1-r, \mathbb{C}) \times G L(r, \mathbb{C}))
$$

Let V be the set of B-orbits on X and let $\phi: V \rightarrow \mathcal{I}$ be the map defined in [19, Section 1.6] by Richardson and Springer, where \mathcal{I} is the set of all involutions in S_{n+1}. It is easy to see from the definitions that W_{C} for $C=C_{h_{r}}$ is the same as $\operatorname{Im}(\phi)$, the image of ϕ. The fact that $\operatorname{Im}(\phi)$ consists of all $w \in \mathcal{I}$ with $l_{2}(w) \leq r$ is well-known (see, for example, [20]).

We now determine the element m_{C} for every conjugacy class C in $S L(n+1, \mathbb{C})$. List the simple roots as $\Gamma=\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right\}$ in the standard way. Recall that w_{0} is the longest element in S_{n+1} and that for a subset J of $\Gamma, w_{0, J}$ is the longest element in the subgroup of S_{n+1} generated by simple roots in J. For an integer $0 \leq l \leq\left[\frac{n+1}{2}\right]$, let

$$
J_{l}= \begin{cases}\left\{\alpha_{l+1}, \ldots, \alpha_{n-l}\right\}, & \text { if } 0 \leq l \leq\left[\frac{n+1}{2}\right]-1 \\ \emptyset, & \text { if } l=\left[\frac{n+1}{2}\right]\end{cases}
$$

and let $m_{l}=w_{0} w_{0, J_{l}}$. Thus, $m_{0}=1$, and

$$
m_{l}=(1, n+1)(2, n) \cdots(l, n+2-l), \quad \text { if } 1 \leq l \leq\left[\frac{n+1}{2}\right]
$$

In particular, $m_{l}=w_{0}$ for $l=\left[\frac{n+1}{2}\right]$. Note that for $0 \leq l_{1}, l_{2} \leq\left[\frac{n+1}{2}\right]$,

$$
m_{l_{1}} \leq m_{l_{2}} \quad \text { iff } \quad l_{1} \leq l_{2}
$$

Corollary 4.8. For any conjugacy class C in $S L(n+1, \mathbb{C}), m_{C}=m_{l(C)}$, i.e.,

$$
m_{C}=\left\{\begin{array}{ll}
w_{0} & \text { if } r(C) \geq\left[\frac{n+1}{2}\right], . \\
m_{r(C)} & \text { if } r(C)<\left[\frac{n+1}{2}\right]
\end{array} .\right.
$$

Proof. Let C be any conjugacy class in $S L(n+1, \mathbb{C})$. By Corollary 2.11, Lemma 3.8 and Lemma 3.9, $m_{C}=m_{l}$ for some $0 \leq l \leq\left[\frac{n+1}{2}\right]$. Since $C \cap\left(B m_{l} B\right) \neq \emptyset$, $l \leq l(C)$ by Theorem 4.2. Since $C \cap\left(B m_{l(C)} B\right) \neq \emptyset$ by Theorem 4.2, one also has $l(C) \leq l$. Thus $l=l(C)$.

Q.E.D.

4.3. A proof of Theorem 4.2 using the Ellers-Gordeev criterion.

Notation 4.9. First recall (see for example [9, Page 705]) that for an integer $p>0$, a partition of p is a non-increasing sequence $\lambda=\left(\lambda_{1}, \ldots, \lambda_{s}\right)$ of positive integers such that $\lambda_{1}+\cdots+\lambda_{s}=p$, and s is called the length of λ. The shape of a partition $\lambda=\left(\lambda_{1}, \ldots, \lambda_{s}\right)$ of p consists of s rows of empty boxes left-aligned with λ_{j} boxes on the j-th row for each $1 \leq j \leq s$. The partition λ^{*} of p whose shape is obtained from switching the rows and columns of the shape of λ is called the dual of λ. Let $\lambda=\left(\lambda_{1}, \ldots, \lambda_{s}\right)$ and $\mu=\left(\mu_{1}, \ldots, \mu_{t}\right)$ be two partitions of p. Define $\lambda \leq \mu$ if $\sum_{j=1}^{k} \lambda_{j} \leq \sum_{j=1}^{k} \mu_{j}$ for every $1 \leq k \leq t$. One has (see [15, Section I.1.11]) $\lambda \leq \mu$ if and only if $\mu^{*} \leq \lambda^{*}$, where μ^{*} and λ^{*} are the partitions of p that are dual to μ and λ respectively.

For integers $p>0$ and $0 \leq l \leq[p / 2]$, let $\lambda(l, p)=(2, \ldots, 2,1, \ldots, 1)$ be the partition of p with 2 appearing exactly l times.

Lemma 4.10. Let $p>0$ be an integer and let $0 \leq l \leq[p / 2]$. Then for any partition $\mu=\left(\mu_{1}, \ldots, \mu_{s}\right)$ of $p, \lambda(l, p) \leq \mu$ if and only if $p-l \geq s$.

Proof. Let $\lambda(l, p)^{*}$ and μ^{*} be the partitions of p that are dual to $\lambda(l, p)$ and μ respectively. Then $\lambda(l, p) \leq \mu$ if and only if $\lambda(l, p)^{*} \geq \mu^{*}$, and the latter is equivalent to $p-l \geq s$.

Q.E.D.

We now use [9, Theorem 3.20] to prove Theorem 4.2.
Let C be a conjugacy class in $S L(n+1, \mathbb{C})$ and assume that $w \in S_{n+1}$ is an involution with $l_{2}(w) \leq l(C)$, or, equivalently, $l_{2}(w) \leq r(C)$. We need to show that $C \cap(B w B) \neq \emptyset$. By [11, Theorem 3.2.9(a)], there exist w^{\prime} which is a minimal length element in the conjugacy class of w in W and an ascent from w^{\prime} to w. Thus,
in the notation of [9], there is a tree $\Gamma(w)$ with $w^{\prime} \in T(\Gamma(w))$. By [9, Theorem 3.20], it is enough to show that $\lambda\left(w^{\prime}\right) \leq \tilde{\nu}^{*}$, where $\lambda\left(w^{\prime}\right)=\lambda\left(l_{2}(w), n+1\right)$ is the partition $(2, \ldots, 2,1, \ldots, 1)$ of $n+1$ with 2 appearing $l_{2}\left(w^{\prime}\right)=l_{2}(w)$ times, and $\tilde{\nu}^{*}$ is the partition of $n+1$ associated to C as described at the beginning of [9, Section 3.4]. One checks from the definitions that the partition $\tilde{\nu}^{*}$ has length $d(C)$. By Lemma 4.10, $\lambda\left(w^{\prime}\right) \leq \tilde{\nu}^{*}$ if and only if $n+1-l_{2}(w) \geq d(C)$ which is equivalent to $l_{2}(w) \leq r(C)$. This proves Theorem 4.2.
4.4. A direct proof of Theorem 4.2. The proof of Theorem 4.2 in $\S 4.3$ uses only a special case of of the Ellers-Gordeev criterion in [9, Theorem 3.20], and the proof of [9, Theorem 3.20] for the general case involves rather complicated combinatorics. We thus think that it is worthwhile to give a direct proof Theorem 4.2. Our direct proof also has the merit that it shows how to explicitly find an element in $C \cap B w B$ when $l_{2}(w) \leq l(C)$. We will use two lemmas from [9], namely [9, Lemma 3.3] and [9, Lemma 3.24] whose proofs as given in [9] are elementary.

For $g=\left(g_{i, j}\right) \in S L(n+1, \mathbb{C})$ and $1 \leq i \leq\left[\frac{n+1}{2}\right]$, let $g^{(i)}$ be the 2×2 matrix

$$
g^{(i)}=\left(\begin{array}{cc}
g_{2 i-1,2 i-1} & g_{2 i-1,2 i} \\
g_{2 i, 2 i-1} & g_{2 i, 2 i}
\end{array}\right)
$$

Recall that a square matrix is said to be regular if its characteristic polynomial is the same as its minimal polynomial. An upper-triangular matrix $A=\left(\begin{array}{cc}x & y \\ 0 & z\end{array}\right) \in$ $G L(2, \mathbb{C})$ is regular if and only if either $x \neq z$, or $x=z$ and $y \neq 0$, and in this case A is conjugate to some $A_{1}=\left(\begin{array}{cc}x_{1} & y_{1} \\ u & z_{1}\end{array}\right)$ with $u \neq 0$.

Proposition 4.11. Let C be any conjugacy class C in $S L(n+1, \mathbb{C})$ with $l(C)>0$. Then there exists $g \in C \cap B$ such that $g^{(i)}$ is regular for every $1 \leq i \leq l(C)$.

Assuming Proposition 4.11, we now prove Theorem 4.2. Let C be a conjugacy class in $S L(n+1, \mathbb{C})$ and $w \in S_{n+1}$ an involution such that $l_{2}(w) \leq l(C)$. We will show that $C \cap(w B) \neq \emptyset$.

If $l(C)=0$, then C consists of only one central element in $S L(n+1, \mathbb{C})$, and C only intersects with B and Theorem 4.2 holds in this case. Thus we will assume that $l(C)>0$. Since $C \cap B \neq \emptyset$, we will also assume that $l_{2}(w)>0$.

Let $g \in C \cap B$ be as in Proposition 4.11 and let $1 \leq i \leq l_{2}(w)$. Since $g^{(i)} \in$ $G L(2, \mathbb{C})$ is regular, there exists $A_{i} \in G L(2, \mathbb{C})$ such that $A_{i} g^{(i)} A_{i}^{-1}=\left(\begin{array}{ll}x_{i} & y_{i} \\ u_{i} & z_{i}\end{array}\right)$ with $u_{i} \neq 0$. Let $A=\operatorname{diag}\left(A_{1}, \cdots, A_{l_{2}(w)}, I_{n+1-2 l_{2}(w)}\right)$ be the block diagonal matrix in $G L(n+1, \mathbb{C})$. Then $A g A^{-1} \in C \cap B u B$, where

$$
u=(1,2)(3,4) \cdots\left(2 l_{2}(w)-1,2 l_{2}(w)\right)
$$

Since there is an ascent from some minimal length element in \mathcal{O}_{w} to w, we can assume that w has minimal length in \mathcal{O}_{w}, so w is the following product of disjoint 2-cycles:

$$
w=\left(i_{1}, i_{1}+1\right) \cdots\left(i_{l_{2}(w)}, i_{l_{2}(w)}+1\right)
$$

where $1 \leq i_{1}<\cdots<i_{l_{2}(w)} \leq n$. We will now use [9, Lemma 3.3]. Let

$$
X=\left\{\alpha_{1}, \alpha_{3}, \ldots, \alpha_{2 l_{2}(w)-1}\right\}, \quad Y=\left\{\alpha_{i_{1}}, \cdots \alpha_{i_{l_{2}(w)}}\right\}
$$

and let ω be any element in S_{n+1} such that $\omega(2 s-1)=i_{s}$ and $\omega(2 s)=i_{s}+1$ for $1 \leq s \leq l_{2}(w)$. Then $\omega^{-1} w \omega=u$, and $Y=\omega(X)$. Applying [9, Lemma 3.3] to the above X, Y, ω and $g_{x}=A g A^{-1}$, one sees, in the notation of [9, Lemma 3.3], that there exists $g_{y} \in C \cap B w B$. Thus $C \cap B w B \neq \emptyset$, and Theorem 4.2 is proved.

It remains to prove Proposition 4.11.
Proof of Proposition 4.11 when C has only one eigenvalue. We will use induction on n. It is easy to see that Proposition 4.11 holds for $n=1$ or $n=2$. Assume now that $n \geq 3$ and that Proposition 4.11 holds for conjugacy classes C in $S L(p, \mathbb{C})$ for any $p<n+1$ and any C with only one eigenvalue. Assume that C is a conjugacy class in $S L(n+1, \mathbb{C})$ with one eigenvalue c. Since we are assuming that $l(C)>0$, there exists a Jordan block of C of size at least 2. Since Proposition 4.11 clearly holds when C is regular, we also assume that C has more than one Jordan block.

Case 1. There is a Jordan block of C of size 1. In this case, choose $g \in C$ of the form $g=\left(\begin{array}{ll}g^{\prime} & 0 \\ 0 & c\end{array}\right)$, where $g^{\prime} \in G L(n, \mathbb{C})$ is of Jordan form with c as the only eigenvalue. Then $d\left(g^{\prime}\right)=d(g)-1$ and $r\left(g^{\prime}\right)=n-d\left(g^{\prime}\right)=r(g)$. Suppose that $r(g) \leq\left[\frac{n+1}{2}\right]-1$. Since $\left[\frac{n+1}{2}\right]-1=\left[\frac{n-1}{2}\right] \leq\left[\frac{n}{2}\right]$, one has $l(g)=l\left(g^{\prime}\right)$, so by induction, Proposition 4.11 holds for C. Suppose that $r(g) \geq\left[\frac{n+1}{2}\right]$. Then $l(g)=\left[\frac{n+1}{2}\right]$ and $l\left(g^{\prime}\right)=\left[\frac{n}{2}\right]$. If $n+1$ is odd, then $\left[\frac{n+1}{2}\right]=\left[\frac{n}{2}\right]$, so $l(g)=l\left(g^{\prime}\right)$ and by induction, Proposition 4.11 holds for C. If $n+1$ is even, then $l\left(g^{\prime}\right)=l(g)-1$ and one could not use induction. However, since we are assuming that C has a Jordan block of size at least 2 , there is an element in C of the form

$$
\left(\begin{array}{cccc}
J_{1} & \cdots & 0 & 0 \tag{4.1}\\
\vdots & \ddots & \vdots & \vdots \\
0 & \cdots & J_{k} & 0 \\
0 & \cdots & 0 & c
\end{array}\right)
$$

where J_{1}, \cdots, J_{k} are of Jordan form and J_{k} has size at least 2. By [9, Lemma 3.24], the matrix in (4.1) is conjugate to

$$
g_{1}=\left(\begin{array}{ccc}
g_{1}^{\prime} & 0 & v \\
0 & c & 1 \\
0 & 0 & c
\end{array}\right)
$$

where $g_{1}^{\prime} \in G L(n-1, \mathbb{C})$ is of Jordan form, and v is the column vector in \mathbb{C}^{n-1} that has 1 for the last coordinate and 0 for all the other coordinates. Now $d\left(g_{1}^{\prime}\right)=$ $d(g)-1$, so $r\left(g_{1}^{\prime}\right)=n-1-d\left(g_{1}^{\prime}\right)=r(g)-1$. Recall that we are assuming that $n+1$ is even and $r(g) \geq\left[\frac{n+1}{2}\right]$. Let $n+1=2 m$. Since $r\left(g_{1}^{\prime}\right)=r(g)-1 \geq m-1=\left[\frac{n-1}{2}\right]$, $l\left(g_{1}^{\prime}\right)=m-1=l(g)-1$. Applying induction to g_{1}^{\prime}, one sees that Proposition 4.11 holds for C.

Case 2. All the Jordan blocks of C have sizes at least 2 and at least one of them has size 2 . In this case, choose $g \in C$ of the form

$$
g=\left(\begin{array}{ccc}
c & 1 & 0 \\
0 & c & 0 \\
0 & 0 & g^{\prime}
\end{array}\right)
$$

where $g^{\prime} \in G L(n-1, \mathbb{C})$ is of Jordan form. Then $d\left(g^{\prime}\right)=d(g)-1$, so $r\left(g^{\prime}\right)=$ $n-1-d\left(g^{\prime}\right)=r(g)-1$. Since all the Jordan blocks have sizes at least 2, one has $2 d(g) \leq n+1$, so $r(g) \geq\left[\frac{n+1}{2}\right]$, and $r\left(g^{\prime}\right) \geq\left[\frac{n+1}{2}\right]-1=\left[\frac{n-1}{2}\right]$. Thus $l\left(g^{\prime}\right)=\left[\frac{n-1}{2}\right]=l(g)-1$. Applying the induction assumption to g^{\prime}, one sees that Proposition 4.11 holds for C.

Case 3. All the Jordan blocks of C have sizes at least 3 . Then we can find $g \in C$ of the form

$$
g=\left(\begin{array}{ccc}
c & 1 & 0 \\
0 & c & v \\
0 & 0 & g^{\prime}
\end{array}\right)
$$

where v is the row vector in \mathbb{C}^{n-1} which has 1 for the first coordinate and 0 for all the other coordinates, and $g^{\prime} \in G L(n-1, \mathbb{C})$ is of Jordan form with $d\left(g^{\prime}\right)=d(g)$, and thus $r\left(g^{\prime}\right)=r(g)-2$. By assumption $n+1 \geq 3 d(g) \geq 6$, so $r(g) \geq \frac{2(n+1)}{3}$ and $r\left(g^{\prime}\right)=r(g)-2 \geq\left[\frac{n-1}{2}\right]$. Thus $l(g)=\left[\frac{n+1}{2}\right]$ and $l\left(g^{\prime}\right)=\left[\frac{n-1}{2}\right]=\left[\frac{n+1}{2}\right]-1$. Applying the induction assumption to g^{\prime}, one sees that Proposition 4.11 holds for C.

This finishes the proof of Proposition 4.11 in the case when C has only one eigenvalue.

Proof of Proposition 4.11 when C has more that one eigenvalue. We again use induction on n. Proposition 4.11 clearly holds for $n=0$ or $n=1$. Assume that Proposition 4.11 holds for $G L(p, \mathbb{C})$ for any $p<n+1$ and any conjugacy class in $G L(p, \mathbb{C})$ with more than one eigenvalue. Let C be a conjugacy class in $S L(n+1, \mathbb{C})$ with distinct eigenvalues $c_{1}, c_{2}, \cdots, c_{k}$, where $k \geq 2$, and for $1 \leq j \leq k$, let d_{j} be the number of Jordan blocks of C with eigenvalue c_{j}. We will assume that $d_{1} \geq \cdots \geq d_{k}$. Then $r(C)=n+1-d_{1}$.

Case 1. $r(C)>\left[\frac{n+1}{2}\right]$. Let $g \in C$ be of the form

$$
g=\left(\begin{array}{ccc}
c_{1} & 0 & v_{1} \\
0 & c_{2} & v_{2} \\
0 & 0 & g^{\prime}
\end{array}\right)
$$

where v_{1} and v_{2} are row vectors of size $n-1$ and $g^{\prime} \in G L(n-1, \mathbb{C})$. Then

$$
\operatorname{rank}\left(g^{\prime}-c_{j} I_{n-1}\right) \geq \operatorname{rank}\left(g-c_{j} I_{n+1}\right)-2, \quad 1 \leq j \leq k
$$

Thus $r\left(g^{\prime}\right) \geq r(g)-2 \geq\left[\frac{n-1}{2}\right]$ and $l\left(g^{\prime}\right)=l(g)-1$. If g^{\prime} has only one eigenvalue, we have proved that Proposition 4.11 holds for the conjugacy class of g^{\prime} and thus also holds for C. If g^{\prime} has more than one eigenvalue, one applies the induction assumption to g^{\prime} to see that Proposition 4.11 holds for C.

Case 2. $r(C) \leq\left[\frac{n+1}{2}\right]$. Then $d_{1} \geq \frac{n+1}{2}$. If all the Jordan blocks of C with eigenvalue c_{1} have sizes at least 2 , then $n+1 \geq 2 d_{1}+1$, and $d_{1} \leq \frac{n}{2}$, which is a contradiction. Thus C has at least one Jordan block of size 1. Pick $g \in C$ of the form

$$
g=\left(\begin{array}{ccc}
c_{1} & 0 & 0 \tag{4.2}\\
0 & c_{2} & v \\
0 & 0 & g^{\prime}
\end{array}\right)
$$

where v is a row vector of size $n-1$ and $g^{\prime} \in G L(n-1, \mathbb{C})$. Then

$$
\begin{aligned}
& \operatorname{rank}\left(g^{\prime}-c_{1} I_{n-1}\right)=\operatorname{rank}\left(g-c_{1} I_{n+1}\right)-1=n-d_{1} \\
& \operatorname{rank}\left(g^{\prime}-c_{2} I_{n-1}\right)=\operatorname{rank}\left(g-c_{2} I_{n+1}\right)-1=n-d_{2} \geq n-d_{1}, \quad \text { or } \\
& \operatorname{rank}\left(g^{\prime}-c_{2} I_{n-1}\right)=\operatorname{rank}\left(g-c_{2} I_{n+1}\right)-2=n-d_{2}-1
\end{aligned}
$$

Moreover, if $k \geq 3$, then for every $3 \leq j \leq k$,

$$
\operatorname{rank}\left(g^{\prime}-c_{j} I_{n-1}\right)=\operatorname{rank}\left(g-c_{j} I_{n+1}\right)-2=n-d_{j}-1
$$

If $k \geq 3$, then $n-d_{j}-1 \geq n-d_{1}$ for every $3 \leq j \leq k$. Indeed, if $n-d_{j}-1<n-d_{1}$ for some $j \geq 3$, then $n-d_{2}-1 \leq n-d_{j}-1<n-d_{1}$, so $d_{1}=d_{2}$. Since $d_{1} \geq \frac{n+1}{2}$ and $d_{1}+d_{2}+d_{j} \leq n+1$, one has a contradiction. Thus

$$
r\left(g^{\prime}\right)=\min \left\{\operatorname{rank}\left(g^{\prime}-c_{1} I_{n-1}\right), \operatorname{rank}\left(g^{\prime}-c_{2} I_{n-1}\right)\right\}
$$

Consequently, $r\left(g^{\prime}\right)=n-d_{1}=r(g)-1$ unless $\operatorname{rank}\left(g^{\prime}-c_{2} I_{n-1}\right)=n-d_{2}-1$ and $n-d_{2}-1<n-d_{1}$. But in the latter case, $d_{1}=d_{2}=\frac{n+1}{2}$ so $n+1$ must be even and g is semi-simple. In particular, $\operatorname{rank}\left(g^{\prime}-c_{2} I_{n-1}\right)=n-d_{2}$ which is a contradiction. Thus one always has $r\left(g^{\prime}\right)=r(g)-1$ and $l\left(g^{\prime}\right)=l(g)-1$. Induction on g^{\prime} again yields Proposition 4.11.

This finishes the proof of Proposition 4.11.

References

[1] N. Cantarini, Spherical orbits and quantized enveloping algebras, Comm. Algebra 2797) (1999), 3439-3458.
[2] N. Cantarini, G. Carnovale, and M. Costantini, Spherical orbits and representations of $\mathcal{U}_{\epsilon}(\mathfrak{g})$, Trans. Groups 10 (1) (2005), 29-62.
[3] G. Carnovale, Spherical conjugacy classes and involutions in the Weyl group, Math. Z. 260 (1) (2008), 1-23.
[4] G. Carnovale, Spherical conjugacy classes and Bruhat decomposition, to appear in Ann. Inst. Fourier (Grenoble) 59 (2009).
[5] M. Costantini, On the coordinate ring of spherical conjugacy classes, preprint, 2008, arXiv:0805.0649[Math.RT].
[6] K. Y. Chan, MPhil thesis in Mathematics, The University of Hong Kong, 2010.
[7] V. Deodhar, On some geometric aspects of Bruhat orderings, I. A finer decomposition of Bruhat cells, Invent. Math. 79 (1985), 499-511.
[8] E. Ellers and N. Gordeev, Intersections of conjugacy classes with Bruhat cells in Chevalley groups, Pac. J. Math. 214 (2) (2004), 245-261.
[9] E. Ellers and N. Gordeev, Intersections of conjugacy classes with Bruhat cells in Chevalley groups: the cases of $S L_{n}(K), G L_{n}(K)$, J. Pure and App. Math. 209 (2007), 703-723.
[10] S. Evens and J.-H. Lu, Poisson geometry of the Grothendieck resolution of a complex semisimple group, Moscow Mathematical Journal 7 (4) (special volume in honor of V. Ginzburg's 50'th birthday) (2007), 613-642.
[11] M. Geck and G. Pfeiffer, Characters of finite Coxeter groups and Iwahori-Hecke algebras, London Mathematical Society Monographs, New Series, 21, The Clarendon Press, Oxford University Press, New York, 2000.
[12] M. Geck, S. Km, and G. Pfeiffer, Minimal length elements in twisted conjugacy classes of finite Coxeter groups, J. Algebra 229(2) (2000), 570-600.
[13] X.-H. He, Minimal length elements in some double cosets of Coxeter groups, Adv. Math. 215 (2007), 469-503.
[14] J.-H. Lu and M. Yakimov, Group orbits and regular partitions of Poisson manifolds, Comm. Math. Phys., 283(3), 729-748 (2008).
[15] I. G. Macdonald, Symmetric functions and Hall polynomials, second edition, Oxford University Press, 1995.
[16] S. Perkins and P. Rowley, Lengths of involutions in Coxeter groups, J. Lie Theo. 14 (2004), 69-71.
[17] R. W. Richardson, Conjugacy classes of involutions in Coxeter groups, Bull. Aust. Math. Soc. 26 (1982), 1-15.
[18] R. W. Richardson, Intersections of double cosets in algebraic groups, Indagationes Mathematicae, Volume 3, Issue 1, (1992), 69-77.
[19] R. W. Richardson and T. A. Springer, The Bruhat order on symmetric spaces, Geom. Dedic. 35 (1990), 389-436.
[20] A. Yamamoto, Orbits in the flag variety and images of the moment map for classical groups I, Representation Theory 1 (1997), 329-404.

Department of Mathematics, Hong Kong University, Pokfulam Rd., Hong Kong
E-mail address: keiyuen@graduate.hku.hk
Department of Mathematics, Hong Kong University, Pokfulam Rd., Hong Kong E-mail address: jhlu@maths.hku.hk

Department of Mathematics, Hong Kong University, Pokfulam Rd., Hong Kong E-mail address: h0389481@graduate.hku.hk

