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Abstract. In a series of works one of the authors has developed with J.-M.
Hwang a geometric theory of uniruled projective manifolds, especially those
of Picard number 1, basing on the study of varieties of minimal rational
tangents. A fundamental result in this theory is a principle of analytic con-
tinuation under very mild assumptions, called Cartan-Fubini extension, of
biholomorphisms between connected open subsets of two Fano manifolds of
Picard number 1 which preserve varieties of minimal rational tangents. In
this article we develop a generalization of Cartan-Fubini extension for non-
equidimensional holomorphic immersions from a connected open subset of a
Fano manifold of Picard number 1 into a uniruled projective manifold, under
the assumptions that the map sends varieties of minimal rational tangents
onto linear sections of varieties of minimal rational tangents and that it sat-
isfies a mild geometric condition formulated in terms of second fundamental
forms on varieties of minimal rational tangents. Formerly such a result was
known only in the very special case of irreducible Hermitian symmetric mani-
folds S of rank at least two, and the proof relied on the existence of flattening
coordinates, viz., Harish-Chandra coordinates, with respect to which the va-
rieties of minimal rational tangents form a constant family. The proof of
the main result, which is based on the deformation theory of rational curves,
is differential-geometric in nature and is applicable to the general situation
of uniruled projective manifolds without any assumption on the existence of
special coordinate systems. As an application we give a characterization of
standard embeddings for certain pairs of rational homogeneous manifolds in
terms of embeddings of varieties of minimal rational tangents.
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1 Introduction

For a polarized uniruled projective manifold X by a minimal rational curve
we mean a free rational curve of minimal degree among such curves. A
connected component K of the space of (unparametrized) minimal rational
curves, which carries a natural topology, will be called a minimal rational
component. K carries naturally the structure of a quasi-projective manifold.
At a general point x ∈ X we have correspondingly a moduli space Kx of
minimal rational curves marked at x, and Kx is a projective manifold by
minimality. By associating a minimal rational curve immersed at the marking
at x to the tangent line of the curve at the marking, we obtain a rational
map Φx : Kx → PTx(X) called the tangent map, and its strict transform
Cx ⊂ PTx(X) is called the variety of minimal rational tangents at x. The
union of Cx(X) over general points x ∈ X gives the fibered space π : C → X
of varieties of minimal rational tangents associated to K.

In a series of works of one of the authors with J.-M. Hwang it was re-
vealed that there is a rich geometry on uniruled projective manifolds, espe-
cially those of Picard number 1, embodied in the fibered spaces of varieties
of minimal rational tangents. A prototypical example is given by the hy-
perquadric Qn of dimension n ≥ 3, which is equipped with a complex con-
formal structure, and for which the variety of minimal rational tangents at
any point is given by the projectivization of the cone of null vectors. The
complex conformal structure is an example of S-structures modeled after
an irreducible Hermitian symmetric manifold S of rank ≥ 2. For the the-
ory of S-structures there is the result of Ochiai [Oc70] according to which
any biholomorphism between two nonempty connected open subsets of S
preserving the S-structure can be analytically continued to a biholomorphic
automorphism of S. Ochiai’s result was proved using cohomological meth-
ods on Lie algebras, but it can be interpreted as a statement about analytic
continuation of germs of holomorphic maps which preserve varieties of mini-
mal rational tangents. With this interpretation Hwang-Mok gave in [HM01]
and [HM04] a far-reaching generalization of Ochiai’s Theorem to a result of
analytic continuation on Fano manifolds of Picard number 1, called Cartan-
Fubini extension (which is related to the works of Fubini and of Cartan on
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second fundamental forms of smooth hypersurfaces in the projective space),
as follows.

Theorem (Equidimensional Cartan-Fubini extension, [HM01] and [HM04])
Let Z and X be two Fano manifolds of Picard number 1 with minimal rational
components. Assume that Cz(Z) is positive-dimensional and is not linear
at a general point z ∈ Z. Let f : U → V be a biholomorphic map from
a connected open subset U ⊂ Z to V ⊂ X. If the differential df sends
each irreducible component of C(Z)|U to an irreducible component of C(X)|V
biholomorphically, then f extends to a biholomorphic map F : Z → X.

Cartan-Fubini extension lies at the heart of the theory of geometric struc-
tures modeled on varieties of minimal rational tangents. It was used in
Hwang-Mok [HM99a], [HM04] to give solutions of Lazarsfeld’s Problem on
finite holomorphic maps f : G/P → X from a rational homogeneous mani-
fold of Picard number 1 onto a Fano manifold X. Cartan-Fubini extension
on irreducible Hermitian symmetric manifolds S of Picard number 1, in the
form of Ochiai’s Theorem, was used in [HM98] as a first step towards proving
rigidity under Kähler deformation of rational homogeneous manifolds G/P
of Picard number 1 (cf. [HM04] and the references there). In this paper we
generalize Cartan-Fubini extension to the non-equidimensional situation for
a holomorphic immersion from a connected open subset U ⊂ Z of a Fano
manifold Z of Picard number 1 into a uniruled projective manifold X which
respects varieties of minimal rational tangents in the sense that it sends vari-
eties of minimal rational tangents onto linear sections of varieties of minimal
rational tangents, i.e.,

dfx(Cz(Z)) = dfz(P(TzZ)) ∩ Cf(z)(X)

for every z ∈ U . Our main result is

Theorem 1.1. Let (Z,H) and (X,K) be two uniruled projective manifolds
with minimal rational components. Assume that Z is of Picard number 1 and
that Cz(Z) is positive-dimensional at a general point z ∈ Z. Let f : U → X
be a holomorphic immersion defined on a connected open subset U ⊂ Z. If
f respects varieties of minimal rational tangents and is non-degenerate with
respect to (K,H), then f extends to a rational map F : Z → X.

We say that f : U → X is non-degenerate with respect to (K,H) if the
image f(U) is not contained in the bad locus of K and, at a general point
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z ∈ U and a general smooth point α ∈ C̃z(Z), df(α) is a smooth point of

C̃f(z)(X) such that the second fundamental form σ of C̃f(z)(X) ⊂ Tf(z)(X)

at df(α), restricted to the subspace Tdf(α)(df(C̃z(Z))) of Tdf(α)(C̃f(z)(X)), has
trivial kernel, that is,{

ζ ∈ Tdf(α)(C̃f(z)(X)) : σ(ζ, ξ) = 0 for any ξ ∈ Tdf(α)(df(C̃z(Z)))
}

= Cdf(α).

In the equidimensional case, the non-degenerate condition corresponds to
the generical finiteness of the Gauss map of Cz(Z) for a general point z ∈ U ,
which was assumed in [HM01].

A first instance of non-equidimensional Cartan-Fubini extension was im-
plicitly established in the special case of holomorphic immersions between
connected open subsets of irreducible Hermitian symmetric manifolds S of
rank ≥ 2, by a combination of the differential-geometric proof of Ochiai’s
Theorem of Mok [Mk99] and the proof of the equidimensional Cartan-Fubini
extension result of Hwang-Mok [HM01] under a non-degeneracy assumption
on the Gauss map. The starting point of the proof of Theorem 1.1 relies
on a comparison of the tautological foliation F on the fibered space C(X) of
varieties of minimal rational tangents on the ambient manifold X and the
image of the tautological foliation E on the fibered space C(Z) under a holo-
morphic embedding f : U → X, U ⊂ Z, which respects varieties of minimal
rational tangents. More precisely, we compare over the image of f(U) the
1-dimensional distribution F|f(U) with the foliation f∗E . The method of Mok
[Mk99] in the Hermitian symmetric case relies on the existence of flattening
coordinates for S-structures, viz., Harish-Chandra coordinates, with respect
to which the varieties of minimal rational tangents form a constant family.
We establish first of all the special case of Theorem 1.1 where the Fano mani-
folds Z and X of Picard number 1 are equipped with privileged E-linearizing
resp. F -linearizing coordinate systems in the sense that the minimal ratio-
nal curves are lines with respect to these coordinate systems. In terms of
privileged coordinate systems the differential-geometric arguments using Eu-
clidean geometry and second fundamental forms work out in analogy to the
Hermitian symmetric case, and the basis for such a generalization is the fact
that the positive part of the Grothendieck decomposition of the holomor-
phic tangent bundle constitutes a constant family along a minimal rational
curve (which is a line with respect to a privileged coordinate system), a
crucial fact which results from the deformation theory of (minimal) ratio-
nal curves. While such coordinate systems exist for rational homogeneous
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manifolds of Picard number 1 through the use of minimal canonical embed-
dings into projective spaces, where minimal rational curves are mapped onto
projective lines, and through the use of linear projections, both for the sake
of completeness and for anticipated applications to non-homogeneous unir-
uled projective manifolds we establish Theorem 1.1 in full generality through
the use of coordinate systems which are in some sense approximations of
privileged coordinate systems along a given minimal rational curve.

While equidimensional Cartan-Fubini extension provides a fundamental
result for the study of germs of open holomorphic immersions between unir-
uled projective manifolds of Picard number 1, we expect non-equidimensional
Cartan-Fubini extension to provide a basic tool for the study of germs of
non-equidimensional holomorphic immersions between such manifolds. Fur-
thermore, we expect that Theorem 1.1 can be used as a basic tool to study
complex-analytic subvarieties of Fano manifolds of Picard number 1 which
are distinguished from the perspective of the theory of geometric structures
modeled on varieties of minimal rational tangents. From this perspective,
taking minimal rational curves to play heuristically the role of geodesics in
Riemannian geometry, the class of complex subvarieties which are saturated
(cf. Mok [Mk07]) with respect to the adjunction of minimal rational tangents
can be taken as the analogue of totally geodesic submanifolds in Riemannian
geometry. In this vein Mok [Mk07] provides a first example of such character-
ization theorems where non-equidimensional Cartan-Fubini extension in the
Hermitian symmetric case was applied to give a characterization of standard
embeddings between complex Grassmannians of rank ≥ 2. In this article,
by means of Theorem 1.1 we give a vast generalization of the latter charac-
terization theorem covering a great variety of pairs of rational homogeneous
manifolds of Picard number 1. Specifically, we consider rational homoge-
neous manifolds X = G/P of Picard number 1 associated to long simple
roots of simple Lie groups G and characterize the standard embedding of
certain rational homogeneous submanifolds Z ↪→ X of Picard number 1 in
terms of embeddings of varieties of minimal rational tangents, as follows.

Theorem 1.2. Let X = G/P be a rational homogeneous manifold associated
to a long simple root and let Z = G0/P0 be a rational homogeneous manifold
associated to a subdiagram of the marked Dynkin diagram of G/P . Assume
that Z is not linear. If f : U → X is a holomorphic embedding from a
connected open subset U of Z into X which respects varieties of minimal
rational tangents for a general point z ∈ U , then f is the restriction of a
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standard embedding of Z into X.

Here, the choice of a subdiagram induces naturally an embedding ϕ :
G0/P0 → G/P . By a standard embedding of G0/P0 into G/P we will mean
the composite g ◦ ϕ for any g ∈ G.

2 Preservation of tautological foliations and

analytic continuations

2.1 Definitions and statements

Let X be a polarized uniruled projective manifold, H be a connected com-
ponent of parametrized free rational curves h : P1 → X of minimal degree
among such curves, and K := H/Aut(P1) be the associated quotient space
of (unparametrized) free rational curves, which inherits the structure of a
quasi-projective manifold. We call K a minimal rational component. At a
general point x ∈ X we have correspondingly a moduli space Kx of minimal
rational curves marked at x, and Kx is a projective manifold by minimal-
ity. For a member u of Kx, represented by f : P1 → X, f(0) = x, which is
an immersion at the marking at x, the tangent map Φ associates u to the
tangent line [Φ(u)] ∈ PTx(X) at the marking, i.e., Φ(u) = [df(T0(P1))]. By
Kebekus [Ke02] any minimal rational curve passing through a general point
is immersed, so that the tangent map Φ : Kx → PTx(X) is holomorphic. Its
image Cx := Φ(Kx) is called the variety of minimal rational tangents at x,
and by Hwang-Mok [HM01], [HM04] the map Φ : Kx → Cx is a normaliza-
tion. (Originally the variety of minimal rational tangents Cx ⊂ PTx(X) was
defined in Hwang-Mok [HM99a] as the strict transform of the tangent map
which was only known to be a rational map.) The union of Cx(X) over gen-
eral points x ∈ X gives the fibered space π : C → X of varieties of minimal
rational tangents associated to K.

Let ρ : U → K and µ : U → X denote the universal family morphisms.
The fibers of ρ : U → K induce a foliation F on C, called the tautological
foliation on C associated to K. We assume that Cx is irreducible, of positive
dimension and non-linear for a generic point x ∈ X. Here Cx is said to
be linear whenever it is a finite union of linear subspaces, and non-linear
otherwise. Then, the tautological foliation F is univalent at a generic point
of C([HM04]).
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For a general reference on the deformation theory of rational curves from
an algebro-geometric perspective the reader is referred to Kollár [Ko96]. For
surveys on the theory of geometric structures modeled on varieties of min-
imal rational tangents at various stages of its development the reader may
consult Hwang-Mok [HM99b], Hwang [Hw01] and Mok [Mk08]. The article
Hwang [Hw07] contains discussions on rational homogeneous manifolds in
the frame-work of a theory of geometric structures modeled on varieties of
minimal rational tangents.

Now we consider two uniruled projective manifolds (Z,H), (X,K) each
equipped with a minimal rational component. Denote by C(Z), C(X) the
associated fibered spaces of varieties of minimal rational tangents and by
F(Z), F(X) the associated tautological foliations. A main ingredient in the
proof of Theorem 1.1 is to prove that f sends minimal rational curves passing
through U to minimal rational curves in X whenever f : U → X respects
varieties of minimal rational tangents (Proposition 2.1).

For a finite-dimensional vector space V and a complex-analytic subvariety
E ⊂ P(V ) we denote by Ẽ ⊂ V −{0} the pre-image π−1(E) of the canonical
projection π : V − {0} → P(V ). We recall the definition of the second

fundamental form on C̃x(X) ⊂ TxX for x ∈ X. For η ∈ C̃x(X) the second
fundamental form

ση : Tη(C̃x(X))× Tη(C̃x(X)) → TxX/Tη(C̃x(X))

on C̃x(X) ⊂ TxX at η ∈ C̃x(X) is defined by

ση(ξ, ζ) = ∇ξ ζ̂ mod Tη(C̃x(X))

for any ξ, ζ ∈ Tη(C̃x(X)), where ζ̂ is a local vector field with ζ̂(η) = ζ, and ∇
is the Euclidean flat connection on the Euclidean space TxX. For a subspace
W of Tη(C̃x(X)) define Ker ση(W, · ) by

Ker ση(W, · ) := {ζ ∈ Tη(C̃x(X)) : ση(ζ, ξ) = 0 for any ξ ∈ W}.
Since C̃x(X) is a cone, Cη is contained in Ker ση(W, · ) for any subspace W

of Tη(C̃x(X)).

Definition. Let (X,K) and (Z,H) be two polarized uniruled projective man-
ifolds each equipped with a minimal rational component. Let f : U → X be
a holomorphic immersion defined on a connected open subset U ⊂ Z. We
say that
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1. f respects varieties of minimal rational tangents if

df(C(Z)|U) = df(P(TZ|U)) ∩ C(X)|f(U)

and

2. f is non-degenerate with respect to (K,H) if

(a) f(U) is not contained in the bad locus of K
(b) for a general point z ∈ U and a general smooth point α ∈ C̃z(Z),

df(α) is a smooth point of C̃f(z)(X) such that

Ker σdf(α)(Tdf(α)(df(C̃z(Z))), · ) = Cdf(α).

Here, the bad locus of K is the smallest subvariety E of X such that for any
x ∈ X\E, any minimal rational curve passing through x is free and a general
minimal rational curve passing through x is standard.

Proposition 2.1. Let (X,K) and (Z,H) be two polarized uniruled projective
manifolds each equipped with a minimal rational component. Assume that
Cz(Z) is irreducible and is positive-dimensional for a general point z ∈ Z.
Let f : U → X be a holomorphic immersion defined on a connected open
subset U ⊂ Z. If f respects varieties of minimal rational tangents and is non-
degenerate with respect to (K,H), then f preserves the tautological foliations.

We remark that when Cf(z)(X) = dfz(Cz(Z)), the non-degenerate condi-
tion is equivalent to the generic finiteness of the Gauss maps of Cf(z)(X) =
dfz(Cz(Z)). Under this assumption Proposition 2.1 was proved in Section 3.1
of [HM99b] and, together with analytic continuation, it implies the equidi-
mensional Cartan-Fubini type extension theorem: if dim Z = dim X and if
f : U → X preserves varieties of minimal rational tangents, then f extends
to a biholomorphism F : Z → X([HM01]).

In our non-equidimensional case, once we have a holomorphic immersion
f : U → X preserving the tautological foliations, the arguments using the
method of parametrized analytic continuation in Section 2 – Section 4 of
[HM01] work word by word, except that in our case, the extension F is just
a rational map.

Proposition 2.2. Let X and Z be two polarized uniruled projective manifolds
each equipped with a minimal rational component. Assume that Z is of Picard
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number 1. Let f : U → X be a holomorphic immersion defined on a connected
open subset U ⊂ Z which preserves the tautological foliations. Then f extends
to a rational map F → X.

Together with Proposition 2.1, this completes the proof of Theorem 1.1.
It remains to prove Proposition 2.1, whose proof relies on Proposition 2.4 in
Section 2.2.

2.2 The difference of two tautological foliations

In this section we investigate the conditions which ensure the preservation of
the tautological foliations for a holomorphic immersion f : U → X defined
on a connected open subset U ⊂ Z respecting varieties of minimal rational
tangents. In what follows for notational simplicity we assume that f is
injective.

Consider two rank-1 subbundles E and F of the tangent bundle TC(X)|f(U)

restricted on R := df(C(Z)|U) ⊂ C(X)|f(U). The first one E is defined by
vectors tangent to liftings of the image f(C) of germs of minimal rational
curves C passing through U and the second one F = F(X) is defined by
vectors tangent to liftings of germs of minimal rational curves in X.

The subbundles E and F are tautological in the sense that for η ∈ Rf(z),
dπη(Eη) = dπη(Fη) = Cη, where π : C(X) → X is the projection map.
Furthermore, E and F are equal if and only if f maps germs of minimal
rational curves in H passing through U to germs of minimal rational curves
in K. We are going to express the difference of E and F at η as the Hessian
of f with respect to some coordinate systems.

Fix α ∈ Cz(Z) and let C be the minimal rational curve tangent to α
at z. We say that a coordinate system (z1, · · · , zm) around z is adapted
to α if there is a parametrization (z1(s), · · · , zm(s)) of C with linear co-
ordinates zi(s). Let (u1, · · · , um) be the fiber coordinate system on TZ

induced by (z1, · · · , zm). Then the lifting Ĉ of C to P(TZ) has constant

coordinates in (u1, · · · , um) and thus the tangent vector to Ĉ at α has zero

coefficients in
{

∂
∂u1

, · · · , ∂
∂um

}
when expressed in terms of the standard ba-

sis
{

∂
∂z1

, · · · , ∂
∂zm

, ∂
∂u1

, · · · , ∂
∂um

}
. For η = df(α) take a coordinate system

(x1, · · · , xn) around x = f(z) adapted to η, too.
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Define the Hessian d2f : TzZ × TzZ → Tf(z)X of f by

d2f(α, β) =
∑

i,j,k

αiβj ∂2fk

∂zi∂zj

∂

∂xk

|f(z) ∈ Tf(z)X,

for α =
∑

αi ∂
∂zi

and β =
∑

βi ∂
∂zi

. We remark that the definition of the

Hessian d2f of f depends on the choice of the coordinate systems (z1, · · · , zm)
and (x1, · · · , xn) around z and f(z).

Lemma 2.3. Let z ∈ Z and α ∈ Cz(Z). Let (z1, · · · , zm) be a coordi-
nate system on U adapted to α and let (x1, · · · , xn) be a coordinate sys-
tem on V adapted to η = df(α). Then, the Hessian d2f(α, α) is contained
in Tdf(α)(Cf(z)(X)), and the Hessian d2f(α, α) ≡ 0 mod η if and only if
E[η] = F[η].

Proof. Let η] ∈ E[η] and η[ ∈ F[η] be such that dπ(η]) = dπ(η[) = η for the
projection π : C(X) → X. Then η] − η[ ∈ T[η](Cf(z)(X)) ⊂ Tf(x)X/Cη.

The coordinate systems (z1, · · · , zm) and (x1, · · · , xn) induce the fiber
coordinate systems (u1, · · · , um) and (v1, · · · , vn) on TZ|U and TX|V . With
respect to the coordinate systems (z1, · · · , zm) and (x1, · · · , xn), the map f
is given by

(f 1(z1, · · · , zm), · · · , fn(z1, · · · , zm)).

Let (z1(s), · · · , zm(s)) be a parametrization of C with
(

dz1

ds
, · · · , dzm

ds

) |s=0 =
(α1, · · · , αm) such that zi(s) are linear for all i = 1, · · · ,m. Then the image
f(C) is parametrized by

(f 1(z1(s), · · · , zm(s)), · · · , fn(z1(s), · · · , zm(s)))

and the lifting of f(C) is parametrized by
(

f 1(z1(s), · · · , zm(s)), · · · , fn(z1(s), · · · , zm(s)),
∑

j

df 1

dzj

dzj

ds
, · · · ,

∑
j

dfn

dzj

dzj

ds

)
.

Thus the vector η] tangent to the lifting of f(C) at η = df(α) is given by∑
j,k αj

dfk

dzj

∂
∂xk
|η +

∑
i,j,k αiαj ∂2fk

∂zi∂zj

∂
∂vk
|η because the zi(s) are linear functions.

But η[ is
∑

j,k αj
dfk

dzj

∂
∂xk
|η because (x1, · · · , xn) is adapted to η. Thus η]− η[,

after being canonically identified as a tangent vector in Tf(x)X, is equal to the
Hessian d2f(α, α) of f with respect to the coordinate systems (z1, · · · , zm)
and (x1, · · · , xn).

10



Proposition 2.4. Let (X,K) and (Z,H) be two uniruled projective manifolds
each equipped with a minimal rational component. Assume that Cz(Z) is
irreducible and is of positive dimension for a general point z ∈ Z. Let f :
U → X be a holomorphic immersion defined on a connected open subset
U ⊂ Z respecting varieties of minimal rational tangents. Then, there exist a
coordinate system around z adapted to α and a coordinate system around x =
f(z) adapted to df(α) with respect to which the Hessian d2f(α, α) satisfies

σdf(α)

(
d2f(α, α), ξ

)
= 0

for any α ∈ C̃x(X) and for any ξ ∈ Tdf(α)(df(C̃z(Z)).

For the moment we assume the validity of Proposition 2.4 and proceed
to complete the proof of Proposition 2.1.

Proof of Proposition 2.1. By Lemma 2.3 the Hessian d2f(α, α) is a tangent

vector in Tdf(α)(C̃x(X)) and by Proposition 2.4, there is a coordinate system
around z adapted to α and a coordinate system around x = f(z) adapted to

df(α) such that d2f(α, α) is contained in Ker σdf(α)(Tdf(α)(df(C̃z(Z))), · ). By

the assumption that f is non-degenerate, Ker σdf(α)(Tdf(α)(df(C̃z(Z))), · ) =
Cdf(α) and thus d2f(α, α) ≡ 0 mod df(α). By Lemma 2.3, the two sub-
bundles E and F are equal, i.e., f preserves the tautological foliations.

In the remaining sections we will prove Proposition 2.4 by constructing
special coordinate systems adapted to the tautological foliations, which will
be given in Section 2.3 for the special case where X and Z are uniruled by
projective lines, and in Section 2.4 for the general case.

2.3 Privileged system of F-linearizing coordinates

Let X be a uniruled projective manifold and let K be a minimal rational
component. Denote by C the fibered space of varieties of minimal rational
tangents associated to K and by F the tautological foliation on C associated
to K. Let E be the bad locus of K and let W = X\E.

Definition. Let U ⊂ W be a chart with a coordinate system (z1, ..., zn). We
say that (z1, ..., zn) is F -linearizing if C ∩ U is an open subset of an affine
line with respect to (z1, ..., zn) for any minimal rational curve C such that
C ∩ U 6= ∅.
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Let C be a minimal rational curve passing through U ⊂ W and denote by
α(x) a non-zero element of Tx(C). We have T[α(x)](Cx) = Pα(x)/Cα(x), where
Pα(x) ⊂ Tx(X) is the fiber (O(2)⊕ [O(1)]p)x with respect to a Grothendieck
decomposition T |C ∼= O(2)⊕ [O(1)]p⊕Oq over C. The positive part Pα(x) is
independent of the choice of Grothendieck decomposition of T |C .

Definition. Let (z1, ..., zn) be an F -linearizing system of coordinates. We
say that π : C|U → U is tangentially constant along F with respect to
(z1, ..., zn) if along each minimal rational curve C, T[α(x)](Cx) = Pα(x)/Cα(x)
with Pα(x) = PC ⊂ Cn for some complex vector subspace PC of Cn depending
only on C, when one identifies T (U) with Cn × U by the standard trivial-
ization with respect to (z1, ..., zn). We will say for short that (z1, ..., zn) is a
privileged system of F-linearizing coordinates on U to mean that (z1, ..., zn) is
F -linearizing and π : C|U → U is tangentially constant along F with respect
to (z1, ..., zn).

There are many examples of uniruled manifolds having privileged system
of F -linearizing coordinates. An irreducible Hermitian symmetric space of
compact type equipped with Harish-Chandra coordinates gives such an ex-
ample. As we will see in the proof of Proposition 2.4, a privileged system of
F -linearizing coordinates will play a similar role as Harish-Chandra coordi-
nates when we deal with a family of minimal rational curves, with an error
term which we will prove to be irrelevant.

Proposition 2.5. Let X ⊂ PN be a projective submanifold of PN uniruled
by projective lines. Let K be a minimal rational component consisting of
projective lines on X. Assume that for a generic point x of X, the subvariety
Kx of K consisting of projective lines passing through x is irreducible. Then,
at any generic point x ∈ X, there exists an open neighborhood U of x and a
privileged system of F-linearizing coordinates (z1, ..., zn) on U .

Proof. Let E be the bad locus of K and let W = X\E. Let x ∈ W and C
be a projective line on X passing through x, and write Tx(C) = Cα. The
minimal rational curve C is standard, i.e., TX |C ∼= O(2)⊕ [O(1)]p ⊕Oq.

Let P ⊂ TX |C be the subbundle O(2) ⊕ [O(1)]p, which is well-defined
independent of the choice of Grothendieck decomposition. We have also
TPN |C ∼= O(2)⊕ [O(1)]N−1. Consider now P as a subbundle of TPN |C . Write
PN = P(CN+1). The projective line C is the projectivization P(Eo) for some
2-dimensional complex vector subspace Eo ⊂ CN+1. We assert that there
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exists a (p + 2)−dimensional complex vector subspace E ⊂ CN+1 such that
E ⊃ Eo and such that TP(E)|C agrees with P on C. Geometrically our
assertion means that there exists a (p + 1)−dimensional projective subspace
of PN tangent to X along the projective line C.

To prove our assertion pick any point x ∈ C, x = [Cη], and let E ⊂ CN

be the (p + 2)−dimensional vector subspace such that E/Cη = Px. We are
going to show that our assertion is valid with this choice of E. For a complex
submanifold A of a complex manifold B we denote by NA|B the holomor-
phic normal bundle of A in B. Both P/TC and TP(E)|C/TC = NC|P(E) are
holomorphic subbundles of TPN |C/TC = NC|PN . We have thus two injective
holomorphic bundle homomorphisms µ, ν: [O(1)]p → [O(1)]N−1 over C with
identical images at the point x ∈ C. Obviously, µ and ν can be normalized to
agree at the point x. Since Hom([O(1)]p, [O(1)]N−1) ∼= Op(N−1), any global
holomorphic section of the former is determined by its value at one point,
implying that P = TP(E)

∣∣
C
, as asserted.

Let now (z1, ..., zN) be a system of inhomogeneous coordinates for PN at
the point x ∈ W , chosen so that (z1, ..., zn) serves as a system of holomorphic
coordinates for X on some connected open neighborhood U of x in W . Any
minimal rational curve C belonging to W and passing through U lies on
an affine line with respect to the inhomogeneous coordinates (z1, ..., zN) on
an affine part of PN , and hence with respect to the coordinates (z1, ..., zn)
on U ⊂ W ⊂ X. It follows that (z1, ..., zn) is F -linearizing. Given any
projective line C on X passing through U , P ∼= TP(E)

∣∣
C

implies that there
exists a (p + 1)−dimensional complex vector subspace A of Cn such that
A is parallel to Pα ⊂ Tx(X) with respect to the F -linearizing coordinates
(z1, ..., zn), for any x ∈ C ∩ U and for any non-zero vector α tangent to C
at x. In other words, π : C|U → U is tangentially constant along F , and
(z1, ..., zn) serves as a privileged system of holomorphic coordinates on U
with respect to F . The proof of Proposition 2.5 is complete.

Example. The followings are examples of projective submanifolds of PN

uniruled by projective lines. By Proposition 2.5, they have privileged system
of F -linearizing coordinates where F is associated to the family of projective
lines on them.

(1) rational homogeneous manifolds G/P of Picard number one in the first
canonical embedding,

(2) smooth hypersurfaces of PN of degree 1 < d ≤ N − 1,

13



(3) more generally, smooth complete intersections of dimension ≥ 2 and of
degree (d1, · · · , d`) with 1 < d1 + · · ·+ d` ≤ N − 1

Before considering general privileged systems of F -linearizing coordinates
we give a proof of Proposition 2.4 in the case when X = Z is a Hermitian
symmetric space so that it has Harish-Chandra coordinates, the simplest
privileged system of F -linearizing coordinates. For the sake of completeness
we recall the proof of Proposition 2.2.1 of [Mk99] after simplifying it, in order
to explain what we need to modify in the general case.

Proof of Proposition 2.4 in the case where X = Z is a Hermitian symmetric
space. Choose Harish-Chandra coordinates, which flatten the fibered spaces
C̃(Z) over U and C̃(X) over V = f(U). Denote by ∇ the Euclidean con-
nection on U defined by Harish-Chandra coordinates. We may assume that
f(z) = z and dfz : TxZ → Tf(z)X is the identity map.

For any α, β ∈ C̃z(Z), consider a minimal rational curve C through z and

tangent to α and consider the constant section β̃ of C̃(Z)|C with β̃(z) = β.
Since β̃ is parallel, d2f(α, β) = ∇df(α)df(β̃) and thus d2f(α, β) ∈ Pβ =

Tβ(C̃z(Z)). Similarly, considering the constant section α̃ of C̃(Z)|C′ along a
minimal rational curve C ′ tangent to β, we have d2f(β, α) = ∇df(β)df(α̃) ∈
Pα = Tα(C̃z(Z)). By the symmetry of the Hessian,

d2f(α, β) ∈ Pα ∩ Pβ.

Now for ξ ∈ Tα(C̃z(Z)), put β = α(t) = α + tξ + t2ζt, |t| < ε. Then

d2f(α, α(t)) ∈ Pα ∩ Pα(t) (∗)

and thus we get d2f(α, ξ) ∈ Pα. Since α(t) is a curve in C̃z(Z) through α

tangent to ξ and d2f(α(t), α(t)) ∈ Pα(t) = Tα(t)(C̃z(Z)),

σα(d2f(α, α), ξ) =
d

dt
|t=0d

2f(α(t), α(t)) mod Pα.

But d
dt
|t=0d

2f(α(t), α(t)) = 2d2f(α, ξ) ∈ Pα and thus σα(d2f(α, α), ξ) =
0.

We proceed now to give a proof of Proposition 2.4 in the case of projec-
tive manifolds Z, X having privileged systems of F -linearizing coordinates.
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From the argument above, it is clear that the conclusion σ(d2f(α, α), ξ) = 0
remains true if in place of (∗) we have the weaker statement





pr
(
d2f

(
α, α(t)

)
, P⊥

α

)
= O(t2);

pr
(
d2f

(
α, α(t)

)
, P⊥

α(t)

)
= O(t2).

(∗∗)

In fact, according to the proof in the case of Hermitian symmetric spaces,
we need only the first half of (∗∗) and the second half of (∗∗) is redundant.
The proofs for the two statements are the same in the case we consider in
this section because in a privileged system of F -linearizing coordinates, α is
indistinguishable from α(t) and the arguments are symmetric in α and α(t).
But it will be different in a more general case which will be dealt with next
section.

In the proof of (∗) we make use of constant sections of C|U resp. C|V
over U resp. V with respect to Harish-Chandra coordinates. In the case
where there is a privileged system of F -linearizing coordinates we have the
following replacement for constant sections. Given a minimal rational curve
C, x ∈ C with Tx(C) = Cα, we can find a section of C̃ extending β ∈ C̃x

along C whose deviation from being a constant section at x is a function
vanishing to the order ≥ 2 at β = α. More precisely, we have

Lemma 2.6. Let (z1, · · · , zn) be a privileged system of F-linearizing coordi-
nates on U . Let x ∈ U and Dx be a non-empty relatively compact open subset
of C̃x − {0}. Then there exists a constant K for which the following holds:
Let α, β ∈ Dx and C be a minimal rational curve passing through x with
Tx(C) = Cα. Then there is a holomorphic section β̃ of C̃ over L := C ∩ U
such that β̃(x) = β and such that

|∇αβ̃(x)| ≤ K|α− β|2,

where ∇ stands for the Euclidean flat connection with respect to (z1, · · · , zn),
and norms are measured with respect to the standard Euclidean metric.

Proof. For any point y ∈ U , Ty(U) will sometimes be identified with Tx(U)
by the standard trivialization TU

∼= U × Cn with respect to (z1, · · · , zn).
Parametrize C by a complex linear map γ such that γ(0) = x and such that
γ′(s) = α for the complex parameter s. When it is necessary to identify the
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base point γ(s) over which the tangent vector α lies, we will write α(γ(s)).
By the definition of privileged systems of F -linearizing coordinates Pα(γ(s))
are independent of s. We may assume that α corresponds to ∂

∂z1
, and that

Pα is the linear span of ∂
∂zj

, 1 ≤ j ≤ p + 1.

We denote by Bk a Euclidean ball of Ck. For the proof of Lemma 2.6
without loss of generality we may take Dx to be the intersection of C̃x − {0}
with the Cartesian product of two Euclidean balls Bp+1 × Bq of sufficiently
small radii, so that the restriction of the projection maps ρx : D′

x → Cp+1

into the first p + 1 factors is an open immersion on some open subset D′
x of

C̃x−{0} which contains the closure Dx. The same is valid when x is replaced
by γ(s) for s sufficiently small, say |s| < ε. Define now ϕs : Dx → Dγ(s) by
ϕs(β) := ρ−1

γ(s)(ρx(β)).

Define ϕ : 4(ε)×Dx → C̃|γ(4(ε)) by ϕ(s, β) = (γ(s), ϕs(β)). The tangent
vector α corresponds to (1, 0, ..., 0) in the coordinates (z1, · · · , zn). Write
e = ρx(α) = (1, 0, · · · , 0) ∈ Cp+1. Write β − α = (ξ, ζ), where ξ := (β1 −
1, β2, ..., βp+1) = ρx(β − α) ∈ Cp+1 and ζ := (βp+2, ..., βn). Then,

ϕs(β) = ρ−1
γ(s)(e + ξ) ∈ Dγ(s).

Since ∂
∂xj

, 1 ≤ j ≤ p + 1 spans Pα(γ(s)) for every s, we conclude that

|ρ−1
γ(s)(e + ξ)| ≤ C|ξ|2

for some constant C. As ϕ′s(β) = ∂
∂s

(ρ−1
γ(s)(e + ξ)), from Cauchy estimates we

conclude that
|∇αβ̃(x)| =

∣∣∣ϕ′s(β)|s=0

∣∣∣ ≤ K|ξ|2

for some constant K. Now write β̃(γ(s)) for ϕ(s, β) to finish the proof,
observing that K can be chosen to be independent of α as α runs over a
small open set.

Proof of Proposition 2.4 in the case where X resp. Z has privileged systems
of F-linearizing resp. H-linearizing coordinates. Let (z1, · · · , zm) be a privi-
leged system of F -linearizing coordinates on U ⊂ Z and let (x1, · · · , xn) be
a privileged system of H-linearizing coordinates on V ⊂ X. It now remains
to establish the estimate (∗∗).

For a tangent vector µ of type (1,0) at z ∈ U we identify Tµ(TU) with
Tz(U) ⊕ Tz(U) using the privileged F -linearizing coordinates (z1, · · · , zm).
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Similarly for x = f(z) and a tangent vector µ′ of type (1,0) at x we have
Tµ′(TV ) ∼= Tx(V )⊕Tx(V ). We maintain furthermore the normalization dfz =

id|TzZ with respect to the basis
{

∂
∂z1
|z, · · · , ∂

∂zm
|z

}
and

{
∂

∂x1
|x, · · · , ∂

∂xn
|x

}

and identify Tz(U) with a subspace of Tx(V ).
Let C be a minimal rational curve in Z tangent to α at z and let C ′

be the minimal rational curve in X tangent to α = df(α) at x = f(z).
Apply Lemma 2.6 simultaneously to U at z and V at x. Then, there exists
a constant K, and tangent vectors η ∈ Tz(U), η′ ∈ Tx(V ) such that

(α, η) ∈ Tβ(C̃(Z)|U), (α, η′) ∈ Tβ(C̃(X)|V ) ; |η|, |η′| ≤ K|α− β|2.
More precisely, writing ∇ for the Euclidean flat connection on U with respect
to (z1, · · · , zm) and writing ∇′ for the Euclidean flat connection on V with

respect to (x1, · · · , xn), for the section β̃ of C̃(Z) over C ∩ U and for the

section β̃′ of C̃(X) over C ′ ∩ U , given in Lemma 2.6, we have

∇αβ̃ = η and ∇′
αβ̃′ = η′.

From
∇′

df(α)
(df(β̃)) = d2f(α, β) + η

it follows that (
α, d2f(α, β) + η

) ∈ Tβ(C̃(X)|V ).

Comparing with (α, η′) ∈ Tβ(C̃(X)|V ) we conclude that the difference projects

to zero on U and hence gives a vertical vector tangent to C̃x(X) at β. Hence,

d2f(α, β) + (η − η′) ∈ Tβ(C̃x(X)).

In other words,

pr
(
d2f

(
α, β

)
, P⊥

β

)
= O(|α− β|2).

By the same arguments we can take a section α̃ of C̃ along the minimal
rational curve tangent to β. Thus the same remains true if P⊥

β is replaced by

P⊥
α . Fixing α and letting β = α(t) vary over a smooth local curve on C̃z(Z)

(equivalently C̃x(X)) we conclude that




pr
(
d2f

(
α, α(t)

)
, P⊥

α

)
= O(t2);

pr
(
d2f

(
α, α(t)

)
, P⊥

α(t)

)
= O(t2).

(∗∗)
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As we explained before the statement of Lemma 2.6, this completes the proof
of Proposition 2.4 in the case where X resp. Z has privileged systems of F -
linearizing resp. H-linearizing coordinates.

2.4 The general case

In general we do not know whether a privileged system of F -linearizing co-
ordinates exists. In the previous section we give a proof of Proposition 2.4
in the case where X resp. Z has privileged systems of F -linearizing resp. H-
linearizing coordinates. As its proof shows, it suffices to show the following
Lemma, which is a generalization of Lemma 2.6.

Lemma 2.7. Let X be a uniruled projective manifold with a minimal rational
component K. Let E be the bad locus of K. For a point x ∈ X\E and for

a standard minimal rational curve C with α ∈ Tx(C) a smooth point of C̃x,
there is a coordinate system (z1, · · · , zn) on U ⊂ X\E adapted to α satisfying
the following properties: For a relatively compact neighborhood Dx of α in
C̃x\{0} there is a constant K such that for each β ∈ Dx,

(1) there is a holomorphic section β̃ of C̃ over C ∩ U such that β̃(x) = β
and |∇αβ̃(x)| ≤ K|α− β|2, and

(2) there is a holomorphic section α̃ of C̃ over Cβ ∩ U , where Cβ is the
minimal rational curve tangent to β at x, such that α̃(x) = α and
|∇βα̃(x)| ≤ K|α− β|2

where ∇ stands for the Euclidean flat connection with respect to (z1, · · · , zn),
and norms are measured with respect to the standard Euclidean metric.

The section β̃ in (1) can be used to show that the second half of the
estimate (∗∗) is valid and the section α̃ in (2) can be used to show that the

first half of the estimate (∗∗) is valid: just take a local curve α(t) in C̃x with
α(0) = α and apply Lemma 2.7 to β = α(t) and to df(β) = df(α(t)) as in the
proof of Proposition 2.4 in the case where X resp. Z has privileged systems
of F -linearizing resp. H-linearizing coordinates. The same arguments work
verbatim in the general case once we have proved Lemma 2.7.
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To construct a coordinate system (z1, · · · , zn) around x having the prop-
erties as in Lemma 2.7 we will first choose a coordinate system on a neigh-
borhood of x in the locus of the family Ky for y ∈ C\{x}, which is analo-
gous to polar coordinates on the Euclidean plane. More precisely, denote by
ρ : U → K, µ : U → X the universal family associated to K. For a subset D
of K, the image µ(ρ−1(D)) is the subset of X wiped out by minimal rational
curves belonging to D.

Lemma 2.8. Let x ∈ X be a general point and assume that the variety
Cx of minimal rational tangents at x is of dimension p ≥ 1. Let C be a
standard minimal rational curve passing through x and let y ∈ C be a smooth
point different from x. Denote by κ ∈ Ky the element corresponding to the
minimal rational curve C with a marking at y. Let D ⊂ Ky be a sufficiently
small neighborhood of κ so that the tangent map Φ|D : D → PTy(X) is
an embedding. Denote by w ∈ ρ−1(κ) the point corresponding to x. Let
W ⊂ ρ−1(D) be a sufficiently small open neighborhood of w in ρ−1(D) and
define Σ := µ(W) (which is a set containing x wiped out by open subsets of
minimal rational curves belonging to D). Then,

(1) Σ is a locally closed complex submanifold of dimension p + 1;
(2) the tangent space TxΣ of Σ at x can be identified with the tangent

space of C̃x at α ∈ Tx(C).

Proof. (1) By construction Σ := µ(W) is a locally closed complex submani-
fold of dimension p + 1.

(2) Choosing a smaller neighborhood Dy of κ if necessary, we may as-
sume that the universal P1-bundle ρ−1(Dy) over Dy is holomorphically trivial.
Without loss of generality suppose x ∈ C corresponds to 0 ∈ P1, and y ∈ C
corresponds to ∞. Let z1 be the standard coordinate on P1 = C∪ {∞}, and
(z2, · · · , zp+1) be a holomorphic coordinate system on Dy at κ. (This system
is analogous to polar coordinates (r, θ) on the Euclidean plane, where z1 plays
the role of r, and (z2, · · · , zp+1) plays the role of θ.) We are going to make
use of (z1, · · · , zp+1) as a holomorphic coordinate system of the germ of Σ at
x by regarding the evaluation map µ : ρ−1(Dy) ' Dy × P1 → X as a chart.

Then the tangent space TxΣ of Σ at x is generated by
{

∂
∂z1
|x, · · · , ∂

∂zp+1
|x

}
.

On the other hand, the tangent space to Kx at the point in Kx corre-
sponding to the minimal rational curve C marked at x is H0(C,NC|X ⊗mx),
where NC|X is the normal bundle of C in X and mx is the maximal ideal sheaf
of x on C. Any section σ ∈ H0(C, NC|X ⊗mx) can be lifted to a section σ̃ of
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TX|C vanishing to the order 1 at x. Write σ̃(z1) = z1σ̃1(z1). Then the differ-
ential dΦ of the tangent map Φ : Kx → P(TxX) sends σ to σ̃1(x) mod Tx(C),
where we identify Tα(TxX) with TxX in a canonical way for any nonzero
α ∈ Tx(C). Now Cx is the image of the tangent map Φ : Kx → P(TxX),
these vectors σ̃1(x) ∈ Tx(X)/Tx(C) constitute the tangent space T[α](Cx) at
[α] = [Tx(C)].

Assume that the choice of coordinates (z1, · · · , zp+1) is such that ∂
∂z1

extends to a holomorphic vector field on C vanishing to the order 2 at y, and
∂

∂z2
, · · · , ∂

∂zp+1
, each extends to a holomorphic section of TX over C vanishing

to the order 1 at y. Then z1
∂

∂z2
, · · · , z1

∂
∂zp+1

extend to holomorphic sections

of TX over C, which span H0(C, NC|X ⊗ mx). Thus Tα(C̃x) agrees with the

vector space spanned by
{

∂
∂z1
|x, · · · ∂

∂zp+1
|x

}
after we identify Tα(TxX) with

TxX in a canonical way. Therefore, TxΣ is can be identified with Tα(C̃x).

Proof of Lemma 2.7 Let (z1, · · · , zp+1) be the coordinate system of Σ around
x given in the proof of Lemma 2.8. We complete now (z1, · · · , zp+1) in an
arbitrary way to a holomorphic coordinate system (z1, · · · , zn) for X at the
point x. In terms of the ‘polar coordinates’ (z1, · · · , zp+1) the positive part of
the Grothendieck decomposition of TX over C agrees with the vector space
spanned by

{
∂

∂z1
, · · · ∂

∂zp+1

}
around x. This is precisely what was needed to

prove Lemma 2.6 which is the same statement as (1).
We note that at this point unlike the case where there exists a privileged

system of F -linearizing coordinates there is no symmetry between α and β =
α(t) in the argument here. We were verifying some estimates on d2f(α, β)
with respect to a coordinate system chosen to be adapted to a general point
x on a fixed minimal rational curve C. Thus, along C the vector β = α(t)

can be translated within C̃|C so that the holomorphic section β̃ defined on a
fixed neighborhood U of x in C is almost constant, with an error of the order
O(|t|2) which is uniform on U . To get the statement (2) we have to invert
the roles of α and β = α(t).

Let ξ ∈ Tα(C̃x). Consider ξ as a vector
∑

i ξi
∂

∂zi
|x in TxX. Let f0 : P1 →

X be the parametrization of C given by f0(z1) = (z1, 0, · · · , 0) for z1 ∈ C.
After considering ∂

∂z1
, · · · , ∂

∂zp+1
as sections of f ∗0 TX, we will use the same

symbol ξ to denote the section of f ∗0 TX with constant coefficients ξi with
respect to ∂

∂z1
, · · · , ∂

∂zp+1
. Then ξ̂(z1) = z1ξ(z1) for z1 ∈ C extends to a
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section ξ̂ ∈ H0(P1, f
∗
0 TX ⊗ m0). Since H0(P1, f ∗0 TX ⊗ m0) is the tangent

space to the space Hol((P1, 0), (X, x)) of holomorphic maps P1 → X sending
0 to x and H1(P1, f ∗0 TX ⊗ m0) is zero, f0 : P1 → X can be extended to
a 1-parameter family of curves ft : P1 → X, t ∈ ∆(ε) with ft(0) = x and
d
dt
|t=0ft = ξ̂.

Write f : ∆(ε) × P1 → X for the map defined by f(t, s) = ft(s). Then
for s ∈ C,

∂

∂t
f(t, s)

∣∣∣∣
t=0

= sξ.

Write
∂

∂t
f(t, s) =: sξ(t, s);

∂

∂s
f(t, s) =: α(t, s).

Here ξ(0, s) = ξ and α(0, s) = α. We may take α(t) = α(t, 0).
Now for any t ∈ ∆(ε), ξ(t, s) is tangent to the germ of complex subman-

ifold Σ′ wiped out by the family {ft} at f(t, s). By Lemma 2.8, we have an
identification

Tf(t,s)Σ
′ ' Tα(t,s)C̃f(t,s),

so that we may regard ξ(t, s) as a vector tangent to C̃f(t,s). Thus the tangent

vector α at x = f(t, 0) can be translated within C̃|Ct to give ϕ(t, s) ∈ C̃f(t,s)

such that

ϕ(t, s) = α(t, s)− tξ(t, s) + O
(|t|2).

From the commutativity of second derivatives, it follows that

∂

∂t
α(t, s) =

∂

∂t

∂

∂s
f(t, s)

=
∂

∂s

∂

∂t
f(t, s)

=
∂

∂s
(sξ(t, s))

= ξ(t, s) + s
∂

∂s
ξ(t, s).

Since ξ(0, s) = ξ for all s, we have α(t, s) = α + tξ + O
(|t|2) and thus

ϕ(t, s) = (α + tξ)− tξ(t, s) + O
(|t|2)

= α + t(ξ − ξ(t, s)) + O
(|t|2)

= α + O
(|t|2).
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By the Cauchy estimates we have

∣∣∣∣
∂

∂s
ϕ(t, s)

∣∣∣∣ = O
(|t|2),

from which the statement (2) follows.

3 Characterization of the standard embed-

ding between homogeneous manifolds

3.1 Homogeneous manifold associated to a subdiagram
of the marked Dynkin diagram

Let G be a complex simple Lie group. Let Φ be the set of all roots of G with
respect to a Cartan subalgebra h and let ∆ be a simple root system of G. To
a subset Γ of ∆ we associate a parabolic subgroup P of G whose Lie algebra
is

h +
∑

α∈Z(∆\Γ)

gα +
∑

α∈Z−Γ

gα.

In particular, the whole set ∆ corresponds to a Borel subgroup B of G.
The Dynkin diagram D(G) of G is the graph consisting of nodes and

edges such that each node corresponds to a simple root in ∆ and two nodes
are connected by an edge if and only if the corresponding simple roots are
not orthogonal. We will identify nodes with the corresponding simple roots.
We call (D(G), Γ) the marked Dynkin diagram of the rational homogeneous
manifold G/P .

A subdiagram D0 of D(G) is the Dynkin diagram D(G0) of a semisimple
Lie subgroup G0 of G. When D(G0) contains Γ, the homogeneous space X0

of G0 by the parabolic subgroup P0 associated to Γ is called the homogeneous
manifold associated to the subdiagram (D(G0), Γ) of (D(G), Γ).

Assume that Γ consists of one simple root γ. Consider the first canonical
embedding of X = G/P into PN . Then we have a canonical choice of a
minimal rational component K(X), i.e., the irreducible family of lines in PN

which are contained in X. Similarly we have a canonical choice of a minimal
rational component K(Z) of Z = G0/P0. Since the ample generater of the
Picard group of Z is the restriction of the ample generator of the Picard
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group of X, lines in K(Z) are lines in K(X) which are contained in Z. With
this canonical choice of a minimal rational component, the variety of minimal
rational tangents is given as follows.

Proposition 3.1 ([HM02]). Let X = G/P be a rational homogeneous man-
ifold associated to a long simple root γ and let Z = G0/P0 be a homogenous
manifold associated to a subdiagram of the marked Dynkin diagram of G/P .
Let L be the semisimple part of P and Υ be the set of simple roots which are
adjacent to γ in the Dynkin diagram of G. Then

(1) the variety A of minimal rational tangents of X at the base point is the
homogeneous manifold L/R of L by the parabolic subgroup R associated
to Υ and

(2) the variety B of minimal rational tangents of Z at the same base point
is the homogeneous manifold associated to the subdiagram (D(G0) ∩
D(L), Υ) of the marked Dynkin diagram (D(L), Υ) of A.

More concretely, the variety A = Cx(X) of minimal rational tangents
of X at x ∈ X associated to K(X) is one of the following form (p. 176 of
[HM02]):

I. A ⊂ P(V ), an irreducible Hermitian symmetric space of compact type
in the first canonical embedding,

II. P(E1) × P(E2) ⊂ P(E1 ⊗ E2), the Segre embedding of the product of
two projective spaces P(E1) and P(E2),

III. P(E) ⊂ P(S2E), the Veronese embedding of a projective space P(E),

IV. P(E1) × A2 ⊂ P(E1 ⊗ E2), the Segre embedding of the product of a
projective space P(E1) and an irreducible Hermitian symmetric space
of compact type, A2 ⊂ P(E2), in the first canonical embedding,

V. Pa × Pb × Pc, P1 × ν(P2).

The variety B = Cz(Z) of minimal rational tangents of Z at z ∈ Z
associated to K(Z) is one of the following form:

I. B ⊂ P(W ), an irreducible Hermitian symmetric space of compact type
in the first canonical embedding, where P(W ) ⊂ P(V ) is a subspace
and B = A ∩ P(W ),
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II. P(F1)× P(F2) ⊂ P(F1 ⊗ F2), the Segre embedding the product of two
projective spaces P(F1) and P(F2), where Fi is a subspace of Ei for
i = 1, 2,

III. P(F ) ⊂ P(S2F ), the Veronese embedding of a projective space P(F ),
where F is a subspace of E,

IV. P(F1) × B2 ⊂ P(F1 ⊗ F2), the Segre embedding of the product of a
projective space P(F1) and an irreducible Hermitian symmetric space
of compact type, B2 ⊂ P(F2), in the first canonical embedding, where
Fi is a subspace of Ei for i = 1, 2 and B2 = A2 ∩ P(F2),

V. Pa′ × Pb′ × Pc′ , P1 × ν(P1), pt× ν(P2).

3.2 Transport of varieties of minimal rational tangents

Theorem 1.2 in the case where X is a Grassmannian of rank ≥ 2 is proved
in Section 3 of [Mk07], applying a simple version of Theorem 1.1 ([Mk99]).
A main idea in the proof is parallel transport of varieties of minimal rational
tangents along minimal rational curves, based on the deformation theory
minimal rational curves (Lemma 2.8).

Let X be a uniruled manifold with a minimal rational component. A
subvariety Z of X is said to be rationally saturated if

(1) P(TzZ) ∩ Cz(X) 6= ∅ for a smooth point z ∈ Z and
(2) for every smooth point z ∈ Z and for every minimal rational curve C

on X passing through z, C must lie on Z whenever C is tangent to Z at z.
Then the family of minimal rational curves contained in Z can be considered
as a minimal rational component of Z, with respect to which the variety
Cz(Z) of minimal rational tangents of Z at z ∈ Z is equal to P(TzZ)∩Cz(X).

Let Z1, Z2 be rationally saturated subvarieties of X. If Cz(Z1) = Cz(Z2)
at an intersection point z ∈ Z1∩Z2, then by Lemma 2.8, varieties of minimal
rational tangents of Z1 and Z2 are tangent along a minimal rational curve,
i.e., for any minimal rational curve C passing through z and for a generic
point y ∈ C, Cy(Z1) is tangent to Cy(Z2) at [TyC].

In certain circumstances, such as the cases which we will consider in the
proof of Theorem 1.2, this tangency implies the equality of Cy(Z1) and Cy(Z2),
eventually leading to an identification of Z1 and Z2. This can be considered as
an analog of the parallel transport along a geodesic in Riemannian geometry.
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Proof of Theorem 1.2. Let X = G/P be a rational homogeneous manifold
associated to a long simple root and let Z = G0/P0 be a rational homogenous
manifold associated to a subdiagram of the marked Dynkin diagram of G/P .
Let f : U → X be a holomorphic embedding from a connected open subset
U of Z into X, which respects varieties of minimal rational tangents, i.e., for
which df(C(Z)|U) = df(TZ|U) ∩ C(X)|f(U) holds true.

Proposition 3.2. Let X = G/P and Z = G0/P0 and f : U → X be as in
Theorem 1.2. Assume that Z is not linear. Then f is non-degenerate.

By Proposition 3.2, we can apply Theorem 1.1 to get a rational extension
F : Z → X of f . In the middle of the proof of Theorem 1.1 we also proved
that F sends minimal rational curves to minimal rational curves (Proposition
2.1). In our case, F sends lines in Z to lines in X. So F (Z) is rationally
saturated.

Furthermore, since Z is of Picard number one and is uniruled, there
is a sequence of irreducible varieties U0 = {z0} ⊂ U1 ⊂ · · · ⊂ Uk with
dimUk = dim Z that a general point in U i+1 can be connected to a point
in U i by a line in Z (Section 4.3 of [HM98], Section 3 of [Mk07]). By the
fact that F sends lines to lines, a general point in V i+1 := F (U i+1) can be
connected to a point in V i := F (U i) by a line in X.

We may assume that z0 ∈ U and f(z0) = z0 up to the action of G. We
may assume further that df(Cz0(Z)) = Cz0(Z) up to the action of G by (1)
of the following Proposition.

Proposition 3.3. Let X = G/P be a rational homogeneous manifold asso-
ciated to a long simple root and let Z = G0/P0 be a rational homogenous
manifold associated to a subdiagram of the marked Dynkin diagram of G/P .
Assume that Z is not linear. Let f : U → X be a holomorphic embedding
from an open subset U of Z into X respecting varieties of minimal rational
tangents. Then

(1) for any z ∈ U , there is g = g(z) ∈ G such that f(z) ∈ gZ and
dfz(Cz(Z)) = Cf(z)(gZ),

(2) if there is g1 ∈ G such that f(z) ∈ g1Z and dfz(Cz(Z)) is tangent to
Cf(z)(g1Z) at an intersection point, then we have dfz(Cz(Z)) = Cf(z)(g1Z).

We continue the proof of Theorem 1.2. From the fact dF (Cz0(Z)) =
Cz0(Z), it follows that F (Σ) = Σ, where Σ is the locus of the family of lines
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in Z passing through z0. The locus Σ is equal to U1 and thus F (U1) is
contained in Z. We will use Lemma 2.8 and induction to prove that F (Uk) is
contained in Z. Then F (Z) = Z and F is the identity map up to the action
of G.

Let C be a line in Z passing through z0 and let y 6= x ∈ C. Then by
Lemma 2.8, Cy(F (Z)) is tangent to Cy(Z) at [TyC] ∈ Cy(F (Z))∩ Cy(Z). But
by Proposition 3.3 (2) we have Cy(F (Z)) = Cy(Z). Thus F (Z) and Z share
the locus of the family of lines in Z passing through y, too. Hence F (U2) is
contained in Z. By induction, we have the desired result.

It remains to prove Proposition 3.2 and Proposition 3.3, which will be
given in Section 3.3.

3.3 Projective geometry of varieties of minimal ratio-
nal tangents of G/P and of G0/P0

In this section we will prove Proposition 3.2 and Proposition 3.3, which can
be rephrased as statements about varieties of minimal rational tangents of
X and Z as follows.

Proposition 3.4. Let X = G/P be a rational homogeneous manifold asso-
ciated to a long simple root and let Z = G0/P0 be a rational homogenous
manifold associated to a subdiagram of the marked Dynkin diagram of G/P .
Let A := Cx(X) ⊂ P(V ) and B := Cx(Z) ⊂ P(W ) be the varieties of minimal
rational tangents at a common base point x of X and Z, where V := TxX
and W := TxZ.

(1) The pair (A,B) is non-degenerate in the sense that

Ker σβ(TβB̃, · ) = Cβ

for any β ∈ B̃, where σβ : TβÃ × TβÃ → V/Tβ(Ã) is the second

fundamental form of the affine cone Ã in V at β.

(2) If h ∈ Aut0(A) is such that hB and B are tangent at a point of inter-
section, then hB is equal to B.

(3) If B′ = C ∩ P(W ′) is another linear section such that (B ⊂ P(W )) is
projectively equivalent to (B′ ⊂ P(W ′)), then there is h ∈ Aut(A) such
that B′ = hB.
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Proof of Proposition 3.2. Proposition 3.4 (3) and (1).

Proof of Proposition 3.3. (1) Proposition 3.4 (2).
(2) Proposition 3.4 (3) and (2).

One can check the properties (1) – (3) in Proposition 3.4 one by one for
the varieties in the list of the varieties of minimal rational tangents in Section
3.1. But, when X is associated to a long root, the varieties of minimal ra-
tional tangents are homogeneous manifolds and we can use Lie group theory
and representation theory to prove (1) – (2) uniformly. Then (3) follows by
inductive arguments.

Let X = G/P be a rational homogeneous manifold associated to a long
simple root γ and let Z = G0/P0 be a rational homogenous manifold associ-
ated to a subdiagram of the marked Dynkin diagram of G/P . Let L be the
semisimple part of P and Υ be the set of simple roots which are adjacent
to γ in the Dynkin diagram of G, i.e., the set of simple roots which are not
orthogonal to γ with respect to the Killing form.

By Proposition 3.1, the variety A of minimal rational tangents of X
at the base point is the homogeneous manifold L/R of L by the parabolic
subgroup R associated to Υ and the variety B of minimal rational tangents
of Z at the same base point is the homogeneous manifold associated to the
subdiagram (D(G0) ∩ D(L), Υ) of the marked Dynkin diagram (D(L), Υ) of
A.

Denote by
σα : TαÃ × TαÃ → V/TαÃ

the second fundamental form of the affine cone Ã at α ∈ Ã. We say that the
pair (A,B) is non-degenerate if the kernel of the second fundamental form

σβ(TβB̃, · ) restricted to TβB̃ is trivial at each point β ∈ B̃.

Lemma 3.5. Let X = G/P be a rational homogeneous manifold associated
to a long simple root γ. Let x ∈ X be an arbitrary point and denote by
A ⊂ P(TxX) the variety of minimal rational tangents of X at the base point
x. Let σ : TαA × TαA → TxX/TαA be the second fundamental form of
A ⊂ P(TxX) at α = [Eγ] ∈ A. Then, for Eν , Eη ∈ TαA, we have

σ(Eν , Eη) =

{
Eν+η−γ if ν + η − γ is a root,
0 otherwise .
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Here, Eν denotes a root vector of root ν for a root ν.

Proof. This follows from the description of A as the closure of a vector valued
cubic polynomial in Section (4.2) of [HM99b].

Proof of Proposition 3.4 (1) By Lemma 3.5 it suffices to show that for any
Eν ∈ TαA, there is Eη ∈ TαB such that ν + η − γ is a root.

The tangent space TxX is linearly spanned by Eν where ν is a root with
positive coefficient in γ. Let L be the semisimple part of P and let L1, L2, · · ·
be its simple components. L has at most three simple components. Then
A = L.Eγ and the tangent space TαA at α = [Eγ] is linearly spanned by root
vectors Eν of roots ν = γ + θ for some roots θ of Li for some i. The root
vectors in TxZ and in TαB can be expressed in the same way. But in this
case, we consider only the roots in the subgroup G0, that is, the roots whose
coefficients with respect to simple roots outside the subdiagram D(G0) are
zero.

Suppose that γ is not an end of the Dynkin diagram of G0. Then γ
is not an end of the Dynkin diagram of G. So the semisimple part L0 of
P0 (and thus the semisimple part L of P ) is the product of two or three
simple Lie groups. Assume that L is the product of two simple Lie groups
L1, L2. The proof for the case where it is the product of three simple Lie
groups will be the same. Then B and A are Segre embeddings of two rational
homogeneous spaces. Let Eν ∈ TαA. Then ν = γ + θ for some root θ of,
say, L1. Let θ′ be the simple root of L2 adjacent to γ in the Dynkin diagram
of G. Then γ + θ′ is a root and Eγ+θ′ is contained in TαB. Furthermore,
ν +(γ +θ′)−γ = ν +θ′ = γ +θ+θ′ is a root because 〈γ +θ, θ′〉 = 〈γ, θ′〉 < 0,
where 〈 , 〉 is the Killing form of g. Hence, σ(Eν , Eγ+θ′) 6= 0 by Lemma 3.5.

Suppose that γ is an end of the Dynkin diagram of G0. By the same
argument as above, it suffices to consider the case where γ is also an end of
the Dynkin diagram of G. Then the classification in Section 3.1 shows that
A is either a Hermitian symmetric space in the first canonical embedding or
a projective space Pa in the Veronese embedding. Therefore the semisimple
part L of P acts on TαA irreducibly.

The space of root vectors Eν ∈ TαA of roots ν = ν1 + κ1 where ν1 is a
root with Eν1 ∈ TαB and κ1 is either zero or a root, is a subspace of TαA
which is invariant under the action of L. By the irreducibility of TαA, any
root ν with Eν ∈ TαA is either in TαB or the sum ν1 + κ1 of two roots ν1
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and κ1 with Eν1 ∈ TαB. By the same reason, any root η with Eη ∈ TαB is of
the form η = γ + σ for some root σ.

If Eν ∈ TαB, then since B is non-linear and smooth, there is Eη ∈ TαB
with σ(Eν , Eη) 6= 0. Assume that ν = ν1 + κ1 with Eν1 ∈ TαB. Then κ1

has a positive coefficient in some simple root outside the Dynkin diagram of
B and thus ν1 − κ1 is not a root. Since B is a non-linear smooth subvariety
of TxZ, the kernel of the Gauss map of B ⊂ TxZ is zero. Hence, there is
Eη ∈ TαB such that σ(Eν1 , Eη) 6= 0, i.e., ν1 + η− γ =: σ is a root. Note that
η − γ is a root. We will show that σ1 := ν1 + κ1 + η − γ is a root.

By the Jacobi identity,

[[Eν1 , Eκ], [Eσ, Eκ1 ]] = [Eσ, [[Eν1 , Eκ1 ], Eκ1 ]]− [Eκ1 , [[Eν1 , Eκ1 ], Eσ]].

By the construction −η+γ +κ1 has negative coefficients in some roots of the
subdiagram and positive coefficients in some roots outside of the subdiagram.
Thus ν1 + κ1 − σ = −η + γ + κ1 is not a root. Hence, [Eκ1 , [[Eν1 , Eκ1 ], Eσ]]
is zero.

Since ν1−κ1 is not a root and η−γ = σ−ν1 is a root, [Eσ, [[Eν1 , Eκ1 ], Eκ1 ]] =
[Eσ, [Eν1 , [Eκ1 , Eκ1 ]] = c[Eσ, Eν1 ] 6= 0 for some constant c 6= 0. Therefore
[[Eν1 , Eκ1 ], [Eσ, Eκ1 ]] is not equal to zero. Thus σ1 = σ + κ1 is a root. This
implies that σ(Eν , Eη) 6= 0 by Lemma 3.5.

Proposition 3.4 (2) is a special case of the following general result about
the action of L on the family of homogeneous submanifolds of L/R.

Proposition 3.6. Let A = L/R be a homogeneous manifold associated to Υ
and let B = L0/R0 be a homogenous manifold associated to a subdiagram of
the marked Dynkin diagram of L/R. If gB and B are tangent to each other
at an intersection point for some g ∈ L, then gB = B.

Proof. Let Λ be the set of simple roots in D(L)\D(L0) which are adjacent to
D(L0). Then, the parabolic subgroup Q of L associated to Λ is the isotropy
group of the L-action on the Chow variety of L/R at [B], B being considered
as a point in the Chow variety of L/R. Hence, the L-orbit L[B] is isomorphic
to L/Q ([Tits]).

Let x ∈ A be the point at which the isotropy group of L is R. Suppose
that gB intersects B at x for some g ∈ L. Then there is h in the reductive
part Rss of R such that gB = hB and thus {gB : g ∈ L, x ∈ gB} is the
homogeneous space of Rss by the parabolic subgroups of Rss associated to
Λ.
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For a subset ∆′ of ∆ define n∆′ : Φ → Z from the root system Φ of L to
Z by

n∆′(α) =
∑

αj∈∆′
nj

where α =
∑

j njαj. Then the tangent space TxA of A at x is
∑

nΥ(α)>0 gα

and the tangent space TxB of B at x is
∑

nΥ(α)>0, nΛ(α)=0 gα and the Lie

algebra of Rss is given by h +
∑

nΥ(α)=0 gα. Thus, the isotropy of the action
of Rss at the subspace TxB of TxA is the parabolic group of Rss associated
to Λ. In other words, the subvariety Rss[TxB] of the Grassmannian variety
Gr(k, TxA) of k-dimensional subspaces of TxA is the homogenous variety
of Rss by the parabolic subgroup associated to Λ, which is isomorphic to
{gB : g ∈ L, x ∈ gB}.

Proof of Proposition 3.4 (3) We will divide the cases according to the types
I – V of the varieties of minimal rational tangents A,B in Section 3.1 and
we will use induction.

Case 1. If X is a Grassmannian, then the variety of minimal rational tan-
gents is of type II and Proposition 3.4 (3) follows from Lemma 2 of [Mk07].

Case 2. If X is a Lagrangian Grassmannian, then the variety of minimal
rational tangents is of type III. Let A = ν(P(E)) ⊂ P(S2E) and let B =
ν(P(F )) ⊂ P(S2F ) for some subspace F of E, where ν : P(E) → P(S2(E))
is the Veronese embedding. Assume that B′ = A ∩ P(W ′) is a linear section
of A by a subspace P(W ′) of P(S2E) such that (B ⊂ P(W )) is projectively
equivalent to (B′ ⊂ P(W ′)) via λ : S2F → S2E. Then, λ : S2F → S2E is an

injective complex linear map which sends the set B̃ = {α ◦ α : α ∈ F} into

the set Ã = {α ◦ α : α ∈ E}.
Let n be the dimension of E and let m be the dimension of F . Take

a basis {e1, · · · , en} of E such that {e1, · · · , em} is a basis of F . For each
1 ≤ i ≤ m, let ηi ∈ E be such that λ(ei ◦ ei) = ηi ◦ ηi. Then λ(S2F ) is a
subspace of S2E, which is generated by λ(ei ◦ ej), where 1 ≤ i, j ≤ m. We
will show that λ(S2F ) is generated by ηi ◦ ηj, where 1 ≤ i, j ≤ m.

Fix 1 ≤ i, j ≤ m. Let F0 be the subspace of E generated by ei and ej

and let E0 be the subspace of E generated by ηi and ηj. Then λ(ν(P(F0)))
and ν(P(E0)) are conics in ν(P(E)) intersecting at two points. Thus they
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are equal, which implies that λ(S2(F0)) = S2E0. Thus ηi ◦ ηj, 1 ≤ i, j ≤ m
is contained in λ(S2F ). Since ηi ◦ ηj, 1 ≤ i, j ≤ m are linearly independent,
they form a basis of λ(S2F ). Take a linear map η : E → E which sends
F to the subspace of E generated by {η1, · · · , ηm}. Then λ is equal to
S2η : S2F → S2E.

Case 3. If X is neither a Grassmannian nor a Lagrangian Grassmannian,
the variety of minimal rational tangents is of type I, IV, or V. In this case,
we remark that the variety of minimal rational tangents can be a Grassman-
nian or a Lagrangian Grassmannian (See p. 176 of [HM02]). Note that the
proof of Proposition 3.4 (3) in the case where X is either a Grassmannian
or a Lagrangian Grassmannian (Case 1 and Case 2) completes the proof of
Theorem 1.2 in these cases.

We start with the proof of Proposition 3.4 (3) in the case where the
variety of minimal rational tangents is of type I.

Proposition 3.7. Let X ⊂ P(V ) be an irreducible Hermitian symmetric
space G/P of compact type in the first canonical embedding and let Z ⊂
P(W ) be an irreducible Hermitian symmetric space G0/P0 of compact type in
the first canonical embedding, corresponding to a subdiagram of the marked
Dynkin diagram of G/P . If Z ′ = P(W ′) ∩X is another linear section of X
such that (Z ′ ⊂ P(W ′)) is projectively equivalent to (Z ⊂ P(W )), then there
is g ∈ G such that Z ′ = gZ.

Proof. When X is either a Grassmannian or a Lagrangian Grassmannian,
we proved in the above (Case 1 and Case 2) that the varieties Cx(X) and
Cx(Z) of minimal rational tangents of X and Z have the property that,
for any linear section C ′ = Pm ∩ Cx(X) of Cx(X) such that (C ′ ⊂ Pm) is
projectively equivalent to Cx(Z) ⊂ P(TxZ), there is h ∈ Aut(Cx(X)) such
that C ′ = hCx(Z).

Let Z ′ = P(W ′) ∩X be a linear section of X such that (Z ′ ⊂ P(W ′)) is
projectively equivalent to (Z ⊂ P(W ′)). Then the variety Cx(Z

′) ⊂ P(TxZ
′)

of minimal rational tangents is projectively equivalent to the variety Cx(Z) ⊂
P(TxZ) of minimal rational tangents. Thus, by Theorem 1.2 in the case where
X is either a Grassmannian or a Lagrangian Grassmannian, we get that Z ′ is
the standard embedding of Z in X up to the action of G, i.e., there is g ∈ G
such that Z ′ = gZ.

Assume that X is neither a Grassmannian nor a Lagrangian Grassman-
nian. Then the variety Cx(X) ⊂ P(TxX) of minimal rational tangents of X
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is again a Hermitian symmetric space L/R in the first canonical embedding
and the variety Cx(Z) ⊂ P(TxZ) of minimal rational tangents of Z at x is
induced by a subdiagram of L0/R0. Thus, by the inductive assumption on
the dimension of X, which is applied to the varieties Cx(Z) and Cx(X) of
minimal rational tangents of Z and X, and by Theorem 1.2, we get that for
any linear section Z ′ = P(W ′) ∩ X of X such that (Z ′ ⊂ P(W ′)) is projec-
tively equivalent to (Z ⊂ P(W )), Z ′ is the standard embedding of Z in X
up to the action of G, i.e., there is g ∈ G such that Z ′ = gZ.

Proof of Proposition 3.4 (3) (continued) It remains to prove Proposition 3.4
(3) in the case where the variety of minimal rational tangents of X is of type
IV or of type V. We will give a proof in the case where it is of type IV. The
proof in the case where it is of type V will be similar.

Let λ : P(F1 ⊗ F2) → P(E1 ⊗ E2) be an injective linear map such that
λ(B1 ×B2) ⊂ A1 ×A2. The proof of the case II (Lemma 2 of [Mk07]) works
in this case, too, after replacing P(Fi) by its non-degenerate subvariety Bi for
i = 1, 2 and noting that Ai intersects any line P1 in P(Fi) at least two points
for i = 1, 2. The latter follows from the fact that Ai is non-degenerate in
P(Fi) and that Ai is either the whole space P(Fi) or a non-linear subvariety.
Thus, λ = η1 ⊗ η2 for some linear maps ηi : Fi → Ei, satisfying ηi(Ai) ⊂ Bi

for i = 1, 2. Applying Proposition 3.7 to each ηi, we get λ = g1⊗ g2 for some
gi ∈ Aut(Ai).
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Astérisque, 322, pp.151–205, Volume in honor of Jean Pierre Bour-
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