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Abstract

In 1965, Feder proved using a cohomological identity that any holomorphic immersion τ :Pn →Pm

between complex projective spaces is necessarily a linear embedding whenever m < 2n. In 1991,
Cao-Mok adapted Feder’s identity to study the dual situation of holomorphic immersions between
compact complex hyperbolic space forms, proving that any holomorphic immersion f : X → Y
from an n-dimensional compact complex hyperbolic space form X into any m-dimensional com-
plex hyperbolic space form Y must necessarily be totally geodesic provided that m < 2n. We study
in this article singularity loci of generically injective holomorphic immersions between complex
hyperbolic space forms. Under dimension restrictions, we show that the open subset U over which
the map is a holomorphic immersion cannot possibly contain compact complex-analytic subva-
rieties of large dimensions which are in some sense sufficiently deformable. While in the finite-
volume case it is enough to apply the arguments of Cao-Mok, the main input of the current article is
to introduce a geometric argument that is completely local. Such a method applies to f : X → Y in
which the complex hyperbolic space form X is possibly of infinite volume. To start with we make
use of the Ahlfors-Schwarz Lemma, as motivated by recent work of Koziarz-Mok, and reduce
the problem to the local study of contracting leafwise holomorphic maps between open subsets of
complex unit balls. Rigidity results are then derived from a commutation formula on the complex
Hessian of the holomorphic map.
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In 1965, Feder [Fe65] proved that any holomorphic immersion τ : Pn → Pm

between complex projective spaces is necessarily a linear embedding whenever
m < 2n. He did this by using Whitney’s formula on Chern classes associated to
the tangent sequence of the holomorphic map, thereby proving that the degree
of τ∗ : H2(Pn,Z) → H2(Pm,Z) must be 1 under the dimension restriction, not-
ing that the restriction m < 2n forces the vanishing of the n-th Chern class of
the normal bundle of the holomorphic immersion. An adaptation of Feder’s iden-
tity was used by Cao-Mok [CM91] to study the Immersion Problem for the dual
situation of holomorphic immersions between compact complex hyperbolic space
forms. By an n-dimensional complex hyperbolic space form we mean the quotient
of the n-dimensional complex unit ball Bn by a torsion-free discrete group of au-
tomorphisms equipped with the complete Kähler metric induced by the canonical
complete Kähler-Einstein metric on Bn. By [CM91] any holomorphic immersion
f : X → Y from an n-dimensional compact complex hyperbolic space form X into
any m-dimensional complex hyperbolic space form Y must necessarily be totally
geodesic provided that m < 2n. A generalization of the latter result to the case of
complex hyperbolic space forms of finite volume was obtained by To [To93].

By the duality between the complex unit ball (Bn,ds2
Bn) equipped with the unique

complete Kähler-Einstein metric of constant holomorphic sectional curvature −K,
K > 0, and the projective space (Pn,ds2

FS) equipped with the Fubini-Study met-
ric of constant holomorphic sectional curvature equal to K, the total Chern class
of a complex hyperbolic space form is determined by its first Chern class. Given a
holomorphic immersion between complex hyperbolic space forms, the first Chern
class can be represented by the first Chern form induced on the domain manifold
from the canonical Kähler-Einstein metric of the target manifold via the immer-
sion. The main entity in the first Chern form is a nonnegative closed (1,1)-form
ρ which is derived from the second fundamental form σ on (1,0)-vectors of the
holomorphic immersion and which enjoys the property that the vanishing of ρ
means equivalently the vanishing of σ , i.e., the total geodesy of the immersion. The
adaptation by Cao-Mok [CM91] of Feder’s identity to the holomorphic immersion
f : X →Y between complex hyperbolic space forms, applied to the tangent sequence
0 → TX → f ∗TY → N → 0, where N stands for the normal bundle of the holomor-
phic immersion f , gives the vanishing ρn ≡ 0 when X is compact, n := dim(X) and
dim(Y ) := m < 2n, and the same holds true when X is noncompact and of finite vol-
ume by To [To93]. At a general point x of X the kernels of ρ were shown to define
a holomorphic foliation E on a neighborhood U of x the leaves of which are totally
geodesic complex submanifolds. This was shown to lead to a contradiction to the
fact that X is of finite volume unless the holomorphic foliation E is trivial.
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Recently, Feder’s identity has been applied by Koziarz-Mok [KM10] to the
Submersion Problem concerning holomorphic submersions between compact com-
plex hyperbolic space forms and more generally between complex hyperbolic space
forms of finite-volume. There, given a holomorphic submersion π : X →Y between
complex hyperbolic space forms, applying Feder’s identity instead to the cotangent
sequence 0 → π∗T ∗

Y → T ∗
X → T ∗

π → 0, where Tπ = Ker(dπ) stands for the relative
tangent bundle π : X →Y , yields the vanishing µn−m+1 ≡ 0 for the closed nonnega-
tive (1,1)-form µ := ωX −π∗ωY , where ωX resp. ωY stands for the Kähler form on
X resp. on Y of the canonical Kähler-Einstein metric of constant holomorphic sec-
tional curvature −K, and the nonnegativity of µ follows from the Ahlfors-Schwarz
Lemma. Using the identity µn−m+1 ≡ 0 it was proven in [KM10] that there does
not exist any holomorphic submersion between compact complex hyperbolic space
forms, and the same was proven in the noncompact finite-volume case provided that
the base manifold is of complex dimension ≥ 2.

Motivated by the use of the Ahlfors-Schwarz Lemma in [KM10], in the current
article we re-visit the topic of holomorphic immersions f : X →Y between complex
hyperbolic space forms. In [CM91] the closed nonnegative (1,1)-form ρ represents
up to a positive constant the cohomology class −c1(X)

n+1 + f ∗c1(Y )
m+1 . The possibility of

representing the latter class by ρ ≥ 0 results from the constancy of holomorphic sec-
tional curvatures and from the monotonicity of holomorphic bisectional curvatures.
The holomorphicity of the foliation defined by Ker(ρ) then follows from the holo-
morphicity of the second fundamental form σ on (1,0)-vectors. On the other hand,
the cohomology class −c1(X)

n+1 + f ∗c1(Y )
m+1 is up to a positive constant represented by

µ := ωX − f ∗ωY ≥ 0. We will make use simultaneously of the closed nonnegative
(1,1)-forms ρ and µ . Motivated by results of [KM10] in the case of compact com-
plex hyperbolic space forms concerning critical values of surjective holomorphic
maps, we will study in this article singularity loci of generically injective holomor-
phic immersions between complex hyperbolic space forms. One of the main results
is applicable also to complex hyperbolic space forms of infinite volume. Under di-
mension restrictions, we will show that the open subset U over which the map is a
holomorphic immersion cannot possibly contain compact complex-analytic subva-
rieties of large dimensions which are in some sense sufficiently deformable.

For results in the finite-volume case it is enough to apply the arguments of Cao-
Mok [CM91]. First of all, when X is compact, we observe that the arguments of
Cao-Mok [CM91] already imply the estimate that dim(Sing( f )) ≥ 2n−m−1 unless
f is totally geodesic. For the proof it suffices to restrict the tangent sequence to
linear sections of X (with respect to a projective embedding) which avoid Sing( f )
to deduce total geodesy of f whenever dim(Sing( f )) < 2n−m−1. In the case of a
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noncompact complex hyperbolic space form of finite volume the abundant supply of
linear sections avoiding Sing( f ) is guaranteed in the arithmetic case by the existence
of Satake-Borel-Baily compactifications [Sa60] and [BB66] obtained by adding a
finite number of normal isolated singularities, and in the non-arithmetic case by the
projective-algebraicity proven in [Mk10] of the complex-analytic compactification
obtained in Siu-Yau [SY82] by adding a finite number of points corresponding to
the finite number of ends.

As indicated in the above the dimension estimate on Sing( f ) breaks up into two
parts. The first half is cohomological. In more precise terms, assuming dim(Sing( f ))
< 2n − m − 1 there exists a q-dimensional compact complex submanifold S of
X ′ := X − Sing( f ) with q = n − (2n − m − 1) = m − n + 1 so that, denoting by
N the normal bundle of the holomorphic immersion f |X ′ : X ′ → Y we must have
cm−n+1(N)|S = 0 since rank(N) = m− n. Feder’s identity and the compactness of
S then forces the nonnegative (1,1)-form ρ|S to have a zero eigenvalue everywhere.
By varying S obtained from taking linear sections with respect to a projective em-
bedding one concludes that the closed nonnegative (1,1)-form ρ is degenerate ev-
erywhere on X . The second half of the argument is the same as in Cao-Mok [CM91]
and [To93] where one derives from the degeneracy of X a holomorphic foliation
on some nonempty connected open set by totally geodesic complex submanifolds
consisting of maximal integral submanifolds of Re(Ker(ρ)), and where in the proof
of the identical vanishing of ρ one requires the fact that the fundamental group of
X is a lattice in Aut(Bn). For the sake of brevity we will call the second half the
geometric argument.

The main input of the current article is to introduce a geometric argument that is
completely local. Such a method applies to f : X →Y where the complex hyperbolic
space form X is possibly of infinite volume, with a conclusion that X ′ cannot contain
a sufficiently deformable (m− n+ 1)-dimensional compact complex-analytic sub-
variety, where by saying that a q-dimensional compact complex-analytic subvariety
S ⊂ X − Sing( f ) is sufficiently deformable we mean that points corresponding to
tangent q-planes of deformations of S fill up a nonempty open subset of the Grass-
mann bundle of q-planes on X .

Making use of the fact that
−c1(X)

∣∣
X ′

n+1 +
f ∗c1(Y )

∣∣
X ′

m+1 can be represented by a closed
nonnegative (1,1)-form ρ arising from the second fundamental form and another
closed nonnegative (1,1)-form µ encoding the failure of f to be an isometry, rein-
forcing the cohomological argument we obtain a holomorphic foliation on a non-
empty open subset U by totally geodesic submanifolds where f restricts to a totally
geodesic isometric embedding on each of the totally geodesic leaves. Unless ρ ≡ 0
or equivalently µ ≡ 0 we have obtained a nonempty open subset U of Bn, a holomor-
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phic foliation E on U by totally geodesic complex submanifolds and a holomorphic
embedding f of U into some Bm such that f is contracting (distance-decreasing)
and it is a totally geodesic isometric embedding when restricted to any leaf of E ,
and such that Ex = Re (Ker(ρ(x))) for any x ∈U . We call such a map f : U → Bm a
contracting leafwise totally geodesic holomorphic isometric embedding, where im-
plicitly the leaves are assumed to be defined by Re(Ker(ρ)). Under the dimension
restriction m ≤ 2n−4 we prove that no contracting leafwise totally geodesic holo-
morphic isometric embedding exists unless m = n, in which case f is nothing other
than a totally geodesic embedding. This is slightly short of giving a completely local
proof for the geometric argument in the dimension estimate for Sing( f ) even in the
case where X is compact, where we need the local argument of m ≤ 2n−1.

Crucial to our geometric argument is a commutation formula concerning the
Hessian of the holomorphic map f , more precisely concerning ∇∂ f , the vanish-
ing of which is equivalent to the total geodesy of the map f . The commutation
formula applies to any contracting leafwise totally geodesic holomorphic isometric
embedding f : U → Bm. However, in the application of the commutation formula,
dimension counts are involved, which is the reason why the dimension restriction
m≤ 2n−4 is imposed. We expect that there is no nontrivial holomorphic embedding
f : U → Bm which is a contracting leafwise totally geodesic isometric embedding,
but the latter remains unproved for m ≥ 2n−3.

Acknowledgement The author would like to thank the organizers of the Interna-
tional Conference on Complex and Differential Geometry held in September 2009
at the University of Hannover for their invitation to give a lecture at the Conference
and to contribute an article to the Proceedings of the meeting. He also wishes to
thank the referee for very helpful comments on the first version of the article.

1 Background

By a complex hyperbolic space form we mean the quotient of the n-dimensional
complex unit ball Bn for some positive integer n by a torsion-free discrete group of
automorphisms equipped with the complete Kähler metric induced by the canonical
complete Kähler-Einstein metric on Bn. The total geodesy of holomorphic immer-
sions between complex hyperbolic space forms under dimension restrictions was
established in Cao-Mok [CM91] in the compact case and in [To93] in the noncom-
pact finite-volume case. Here the requirement of compactness or of the finiteness of
the volume is imposed only on the domain manifold.
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Theorem (Cao-Mok [CM91], To [To93]). Let n,m be positive integers such that
n ≥ 2 and m < 2n. Let Γ ⊂ Aut(Bn) be a torsion-free lattice of biholomorphic
automorphisms, X := Bn/Γ . Let Y be an n-dimensional complex hyperbolic space
form. Let f : X → Y be a holomorphic immersion. Then, f is totally geodesic.

The proofs of Cao-Mok [CM91] and To [To93] rely on a cohomological argu-
ment and a geometric argument. The starting point of the cohomological argument
is the vanishing of the n-th Chern class of the normal bundle of the holomorphic im-
mersion f : X → Y , given that the normal bundle is of rank m−n < n. The crux of
the cohomological argument is the following algebraic identity adapted from Feder
[Fe65], in which it was proven that any holomorphic immersion f : Pn → Pm is
linear whenever m < 2n.

Lemma 1.1. For the compact complex hyperbolic space form X = Bn/Γ let
α,β ∈ H2(X ,R). Suppose for 1 ≤ k ≤ n−m there exists γk ∈ H2k(X ,R) such that
(1+α)n+1 = (1+ γ1 + · · ·γn−m)(1+β )m+1. Then, (α −β )n−m+1 = 0.

In the cohomological argument, the main entity is a closed nonnegative (1,1)-
form ρ obtained from the second fundamental form of the holomorphic immersion
and enjoying the property that the second fundamental form vanishes identically if
and only if ρ ≡ 0. By the cohomological argument basing on Lemma 1 one con-
cludes that ρn ≡ 0 on X . We lift ρ to ρ̃ defined on some connected open subset
U ⊂ Bn holomorphically foliated by d-dimensional totally geodesic complex sub-
manifolds for some d, 1 ≤ d ≤ n. Completing these leaves to totally geodesic com-
plex submanifolds (which are d-dimensional affine-linear sections of Bn ⊂ Cn) we
obtain a subset S ⊂ Bn swept out by such submanifolds, where S contains W ∩Bn for
some neighborhood W of a boundary point b ∈ ∂Bn. The closed nonnegative (1,1)-
form ρ̃ can be extended to W ∩Bn. The proofs of the results of Cao-Mok [CM91]
and To [To93] are completed by an argument by contradiction. This involves a geo-
metric argument concerning the boundary behavior of ρ̃ on W ∩Bn, where, assum-
ing that d < n, ρ̃ ≥ 0 is degenerate but not identically 0. From asymptotic properties
of the canonical Kähler-Einstein metric on complex unit balls the latter is shown to
be asymptotically of zero length as one approaches W ∩∂Bn. Given that π1(X) = Γ
is a lattice, the asymptotic vanishing of ρ̃ implies ρ ≡ 0, yielding a proof of the
theorem by contradiction.

In addition to holomorphic immersions there is naturally the problem of studying
holomorphic submersions between complex hyperbolic space forms. In this regard
Koziarz-Mok [KM10] has obtained recently the following result.
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Theorem (part of Koziarz-Mok [KM10, Theorem 2]). Let n > m ≥ 1. Let Z be an
m-dimensional compact complex hyperbolic space form. Let f : X → Z be a surjec-
tive holomorphic map and denote by E ⊂ Z the smallest subvariety such that f is a
regular holomorphic fibration over Z −E. Then, E ⊂ Z is of complex codimension
1.

Normalizing the canonical Kähler-Einstein metrics on X resp. Z with Kähler
forms ωX resp. ωZ to be of constant holomorphic sectional curvature −K for
the same constant K > 0, the method of Koziarz-Mok [KM10] relies on Feder’s
identity as given in Lemma 1 and the use of a closed nonnegative (1,1)-form
µ := ωX − f ∗ωZ , where the nonnegativity of µ follows from the Ahlfors-Schwarz
Lemma.

Motivated by the above result of Koziarz-Mok [KM10] and the use of a different
type of closed nonnegative (1,1)-form µ basing on the Ahlfors-Schwaz Lemma, we
re-visit the study of holomorphic immersions between complex hyperbolic space
forms, generalizing the context to the study of generically immersive holomorphic
maps f : X → Y between complex hyperbolic space forms where neither X nor
Y is required to be of finite volume with respect to the canonical Kähler-Einstein
metric. Denoting by Sing( f ) the singular locus of such a map, we are led to con-
sider holomorphic immersions from X −Sing( f ) into Y . In this article we present
two main results. The first concerns a lower bound for the complex dimension of
Sing( f ) in the case where X is compact or noncompact but of finite volume. We
will obtain such a result using essentially the arguments of Cao-Mok [CM91] and
of To [To93] by considering furthermore the restriction of the tangent sequence to
compact complex-analytic subvarieties of X − Sing( f ). For the noncompact case
of finite-volume, to obtain compact complex-analytic subvarieties of X − Sing( f )
we make use of the following result on compactifying not necessarily arithmetic
noncompact complex hyperbolic space forms of finite volume.

Theorem (Siu-Yau [SY82], Mok [Mk10]). Let n be a positive integer, and let Γ ⊂
Aut(Bn) be a non-uniform torsion-free lattice; X := Bn/Γ . Then, X can be compact-
ified to a normal projective-algebraic variety Xmin by adjoining a finite number of
isolated normal singularities.

Thus, in the case of a complex hyperbolic space form X := Bn/Γ , where Γ is
a lattice, for our lower estimate on dim(Sing( f )) to be given in [§2, Theorem 1]
we still rely on the use of the closed (1,1)-form ρ ≥ 0 arising from the second fun-
damental form of the immersion on X − Sing( f ). The second main result, to be
given in [§5, Theorem 2] concerns the more general case where X may be of infi-
nite volume, and we prove, under certain dimension restrictions, that the open set
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X − Sing( f ) does not contain any irreducible compact complex-analytic subvari-
ety of dimension m− n+ 1 which is in some sense sufficiently deformable. In this
result we make use of both the closed (1,1)-forms ρ ≥ 0, which arises from the
second fundamental form, and µ ≥ 0, where nonnegativity results from the Ahlfors-
Schwarz Lemma, yielding on some holomorphically foliated connected open subset
a contracting leafwise totally geodesic holomorphic isometric embedding. On the
methodological plane we introduce a method which in principle replaces the geo-
metric argument in Cao-Mok [Ca91] and To [To93] concerning ρ ≥ 0, which relies
on the fact that π1(X) is a lattice, by a local argument resulting from a commutation
formula concerning the complex Hessian ∇∂ f . For technical reasons we impose the
slightly stronger dimension restriction m ≤ 2n−4 for the local argument.

In the formulation of the second main result on complex hyperbolic space forms
not necessarily of finite volume, we define the notion of sufficiently deformable
compact complex-analytic subvarieties, as follows.

Definition 1 (sufficiently deformable subvariety). Let N be a complex man-
ifold of dimension n, 0 < q < n. Let S ⊂ N be a pure q-dimensional com-
pact complex-analytic subvariety. We say that S ⊂ N is sufficiently deformable if
there exists an irreducible complex space B, 0 ∈ B, a complex-analytic subvariety
S ⊂ N ×B for which the canonical projection π : S → B is proper with fibers be-
ing pure q-dimensional compact complex-analytic subvarieties St := π−1(t)⊂N for
t ∈ B, S0 = S, such that the following holds true. Denoting by τ : S → Gr(q,T (N))

the canonical meromorphic map into the Grassmann bundle of q-dimensional vector
subspaces of tangent spaces of N, where τ(x) = [Tx(Sπ(x))] ∈ Gr(q,Tx(N)) when-
ever x is a smooth point of Sπ(x), there is a point y ∈ S such that y is a smooth
point of S , π(y) is a smooth point of B, π is a holomorphic submersion at y, and
τ
∣∣
Uy

: Uy → Gr(q,Tx(N)) is a holomorphic submersion on some open neighborhood
Uy of y in S .

For an n-dimensional projective submanifold N by it is clear that whenever
0 < q < n, any q-dimensional linear section cut out by n− q hyperplanes is suf-
ficiently deformable in N. The same is true for N being an n-dimensional quasi-
projective manifold N ⊂ Pa, and for any q-dimensional linear section S ⊂ N cut out
by n− q hyperplanes such that S ⊂ N, where N ⊂ Pa denotes the topological clo-
sure of N in Pa, N ⊂ Pa being a projective-algebraic subvariety. Such q-dimensional
linear sections S always exist whenever q < n−d, where d = dim(N −N).

The first main result concerning singularities of generically immersive maps in
the finite-volume case will be explained in §2. In §3-§5 we consider the more general
situation in which the domain manifold X := Bn/Γ may be of infinite volume. In §3,
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assuming the existence of a sufficiently deformable compact complex-analytic sub-
variety of X −Sing( f ) of a certain dimension, we derive the existence of a contract-
ing leafwise totally geodesic holomorphic isometric embedding from some open
subset U ⊂ Bn into Bm. In §4 we establish a commutation formula for the study of
the complex Hessian ∇∂ f adapted to such maps, and in §5 we deduce consequences
of the commutation formula, especially proving the second main result concerning
compact complex-analytic subvarieties of X −Sing( f ).

2 Singular loci in the finite-volume case

The first main result of the current article is given by the following theorem on the
singular loci of generically immersive holomorphic maps between complex hyper-
bolic space forms in the case where the domain manifold is of finite volume.

Theorem 1. Let n,m be positive integers such that n ≥ 2 and m < 2n. Let Γ ⊂
Aut(Bn) be a torsion-free lattice of automorphisms; X := Bn/Γ ; and let Y be any
m-dimensional complex hyperbolic space form. Suppose f : X →Y is a holomorphic
map such that d f is of rank n at a general point. Assume that the singular locus
Sing( f ) of f is of dimension strictly less than 2n−m−1, then in fact Sing( f ) = /0
and f is a totally geodesic map.

As will be clear from the proof of Theorem 1, there is an obvious analogue
of Theorem 1 for the dual case of nonconstant holomorphic maps f : Pn → Pm.
Such a holomorphic map is automatically an immersion at a general point since no
algebraic curve on Pn can be collapsed to a point, Pn being of Picard number 1. The
dual analogue of Theorem 1 says

Theorem 1’. Let n,m be positive integers such that n ≥ 2 and m < 2n. Let
f : Pn → Pm be a nonconstant holomorphic map. Then, rank(d f (x)) is equal to
n at a general point x ∈ Pn, and the singular locus Sing( f ) must be of complex
dimension ≥ 2n−m−1 unless f : Pn → Pm is a projective-linear embedding.

The inequality dim(Sing( f )) ≥ 2n − m − 1 is equivalent to the inequality
codim(Sing( f ))≤ n− (2n−m−1) = m−n+1. For Theorem 1’ it says in particu-
lar that a nonconstant holomorphic map f : Pn → Pn+1 is either a projective-linear
embedding, or its singular locus is of codimension at most equal to 2. We have the
following example which shows in this case that the codimension may be exactly
equal to 2.
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EXAMPLE Let f : P2 → P3 be defined by f ([z0,z1,z2]) = [z3
0,z

3
1,z

3
2,z0z1z2]

in terms of homogeneous coordinates. Then, f is holomorphic. By a straight-
forward computation, f is a holomorphic immersion excepting at the three
points [1,0,0], [0,1,0] and [0,0,1]. For any integer n ≥ 2 the holomorphic map
f :Pn →Pn+1 defined by f ([z0,z1, · · · ,zn]) = [zn+1

0 ,zn+1
1 , · · ·zn+1

n ,z0z1 · · ·zn] gives an
example where Sing( f ) is of codimension 2. In the latter case, Sing( f ) is the union
of the n(n+1)

2 projective-linear subspaces defined by zp = zq = 0, 0 ≤ p < q ≤ n.

Proof of Theorem 1. Recall that n and m are positive integers, n < m < 2n,
Γ ⊂ Aut(Bn) a torsion-free discrete group of automorphisms, X = Bn/Γ , and
f : X → Y is a generically immersive holomorphic map. Write X ′ := X −Sing( f ).
Consider the tangent sequence 0 → TX ′ → f ∗TY → N → 0 of X ′, where
N = f ∗TY/TX ′ denotes the normal bundle for the holomorphic immersion
f |X ′ : X ′ → Y . Suppose S ⊂ X ′ is an (m − n + 1)-dimensional compact complex
submanifold. Then N|S is a holomorphic vector bundle of rank m− n and we have
cm−n+1(N)|S = cm−n+1(N|S)= 0. By Feder’s identity as given in Lemma 1 it follows
that [νm] = 0, where [· · · ] denotes the de Rham cohomology class, for any closed
smooth (1,1)-form ν representing the cohomology class −c1(X)

n+1 + f ∗c1(Y )
m+1 . Since we

have normalized the choice of the canonical Kähler-Einstein metric to be of constant
holomorphic sectional curvature −4π , from Cao-Mok [CM91] we can take ν to be
ρ , where, denoting by g =

(
gαβ

)
resp. h =

(
hi j

)
the canonical Kähler-Einstein

metric on Bn resp. Bm of constant holomorphic sectional curvature −4π , we have

ραβ = ∑
α,β ,γ,δ ,k,`

gαγ gβδ ĥk`σ
k
αβ σ `

γδ , (1)

where
(

gαβ
)

denotes the conjugate inverse of
(

gαβ

)
,
(

ĥk`

)
denotes the Hermitian

metric on N induced from h, σ k
αβ denotes the (holomorphic) second fundamental

form on (1,0)-vectors for the holomorphic immersion f |X ′ , and the summation is
performed over the ranges 1 ≤ α,β ,γ,δ ≤ n and 1 ≤ k, ` ≤ n−m. ¿From the cur-
vature formula for Kähler submanifolds given by the Gauss equation we have in
fact

ρ =
−c1(X , f ∗h)

n+1
+

f ∗c1(Y,h)
m+1

. (2)

For the proof of Theorem 1 consider first of all the case where X is compact. Sup-
pose the generically immersive holomorphic map f : X → Y is not totally geodesic
and dim(Sing( f ))< 2n−m−1, i.e., codim(Sing( f ))> n−(2n−m−1)=m−n+1.
Embedding X as a projective manifold and taking intersections of hyperplane sec-
tions for each x∈X ′ there exists a smooth linear section S⊂X passing through x and
of dimension m−n+1 such that S∩Sing( f ) = /0. Then, by Feder’s identity (Lemma
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1) we have [(ρ|S)m−n+1] = 0. From ρ ≥ 0 it follows that ρm−n+1|S = 0, so that the
smooth (1,1)-form ρ|S must have a positive-dimensional kernel at each point s ∈ S.
Since x∈X ′ is arbitrary, it follows that ρ(x) must have a positive-dimensional kernel
at each x ∈ X ′. There is a real-analytic subvariety of V ( X ′ such that dim(Ker(ρ(x))
is the same integer d, 1 ≤ d < n. In particular there exists a non-empty connected
open subset U ⊂ X ′ such dim(Ker(ρ(x)) = d. Since Re(Ker(ρ)) agrees with the
kernel of the second fundamental form σ , the assignment of Re(Ker(ρx)) to x ∈ X
defines a holomorphic foliation Ex on U with d-dimensional leaves consisting of
totally geodesic locally closed complex submanifolds. Taking U to be simply con-
nected we can lift U in a univalent way to a connected open subset Ũ ⊂ Bn, ρ to
a closed nonnegative (1,1)-form ρ̃ on Ũ , and E to a holomorphic foliation Ẽ on Ũ
consisting of totally geodesic complex submanifolds. By extending each leaf of Ẽ

to a complete totally geodesic complex submanifold of Bn, we sweep out W ∩Bn for
some neighborhood W of some boundary point b ∈ ∂Bn. We derive a contradiction
exactly as in the argument of Cao-Mok [CM91] from the asymptotic behavior of an
extension of ρ̃ to W ∩Bn, which is based on the estimate that the extended closed
(1,1)-form ρ̃ is asymptotically of zero length as one approaches W ∩∂Bn and hence
of zero length everywhere by the compactness of the fundamental domain of Bn

modulo the action of Γ .

In the case where X = Bn/Γ is noncompact and of finite volume, we adopt the
arguments of To [To93], and the only thing that remains to be verified is that, under
the assumption that dim(Sing( f ))< 2n−m−1 there still exists a compact complex
submanifold S ⊂ X − Sing( f ) of complex dimension exactly equal to m − n + 1
obtained by taking the intersection of 2n−m− 1 hyperplane sections with respect
to some projective embedding of X . That this is so follows readily from the existence
of a projective-algebraic compactification X obtained by adding a finite number of
normal isolated singularities, as follows from Siu-Yau [SY82] and Mok [Mk10] and
stated in §1.

§3. Contracting leafwise totally geodesic isometric embeddings

Motivated by the use of the Ahlfors-Schwarz Lemma in conjunction with Feder’s
identity (Lemma 1) in Koziarz-Mok [KM10], we examine further consequences
that can be drawn from cohomological arguments by making use of both the Gauss
equation (via the second fundamental form σ and hence ρ) and of the Ahlfors-
Schwarz Lemma. Thus, in the notation of the proof of Theorem 1, the closed (1,1)-
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form ν can be taken to be µ = ωX − f ∗ωY , where ωX denotes the Kähler form of g
on X , and ωY that of h on Y , so that µ = −c1(X ,g)

n+1 + f ∗c1(Y,h)
m+1 . We have ρ ≥ 0 from

the definition of ρ in terms of σ , and µ ≥ 0 by the Ahlfors-Schwarz Lemma. When
S ⊂ X −Sing( f ) is smooth we have by Lemma 1

ρm−n+1 = µm−n+1 = (ρ +µ)m−n+1 = 0

identically on S, noting that Lemma 1 can be applied also to ν = ρ+µ
2 ≥ 0. When

S is singular we can consider a desingularization ζ : S̃ → S and the smooth closed
(1,1)-form ζ ∗ρ on S̃, etc. in place of considering the restriction of ρ to the singular
variety S. For the sake of brevity in place of specifying a desingularization we will
speak of the restriction of ρ , etc., to the smooth part Reg(S) of S, written ρ |Reg(S).

There is a smallest integer r ≥ 1 such that [νr] = 0 for [ν ] = −c1(X)
n+1 + f ∗c1(Y )

m+1 ≥ 0.
The positive integer r is determined by the fact that the real-analytic semipositive
closed (1,1)−form ρ|Reg(S) has exactly r−1 non-zero eigenvalues on a dense open
subset of S. Since ρ , µ and ρ+µ

2 are cohomologous when pulled back to a desingu-
larized model S̃ we have

ρr = µr = (ρ +µ)r = 0

on S. Thus, on a dense subset W of S, both ρ and µ have exactly r − 1 non-zero
eigenvalues over W , and they must have the same kernel over W . Note here that for
y ∈W , the vector subspaces Ker(ρ(y)) and Ker(µ(y)) of Ty(S) must agree with each
other. Otherwise, dim(Ker(ρ(y))∩Ker(µ(y)))< n− r+1 and (ρ(y)+µ(y))r 6= 0,
while ρr ≡ 0 over Reg(S), violating the fact that ρ+µ

2 and ρ are cohomologous to
each other when pulled back to a desingularized model S̃ of S.

Suppose there exists a sufficiently deformable irreducible compact complex-
analytic (m − n + 1)-dimensional subvariety S ⊂ X . In the notations of the defi-
nition of such subvarieties as given in §1, Definition 1, without loss of generality
we may assume that there exists a holomorphic family π : S → B of irreducible
compact complex-analytic subvarieties St ⊂ X = π−1(t), t ∈ B, parametrized by the
complex unit ball B of a complex Eulcidean space, such that S0 = S and such that
there exists a point x ∈ W ⊂ S so that the holomorphic tangent spaces Tx(S′) of
those S′ = St , t ∈ B, passing through x wipes out an open neighborhood of [Tx(S0)]

on Gr(p,Tx(S)). Thus Ker(ρ(x)|Tx(S′)) and Ker((ρ(x) + µ(x))|Tx(S′)) are of codi-
mension r−1 in Tx(S′). We conclude from the cohomological argument of the last
paragraph that Ker(ρ(x)|Tx(S′)) = Ker(µ(x)|Tx(S′)). For any q-plane E ⊂ Tx(X) suf-
ficiently close to Tx(S) by assumption there exists some t ∈ B such that E = Tx(S′)
for S′ = St . It follows that Ker(ρ(x)) = Ker(µ(x))⊂ Tx(X) is of codimension r−1,
i.e., of dimension n−r+1. For a sufficiently small open neighborhood U of x in the
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ambient manifold X , the preceding discussion applies with x replaced by y ∈U and
S replaced by some irreducible compact complex-analytic (m−n+1) dimensional
subvariety belonging to (St)t∈B and passing through y. Write d = n− r+1. Noting
that r ≤ m−n+1, we have d ≥ 2n−m. Then, U is foliated by a holomorphic fam-
ily of totally geodesic complex-analytic submanifolds Λ such that Λ ⊂ X is totally
geodesic, and such that f |Λ is a totally geodesic holomorphic isometric embedding.
Lifting U to Bn and lifting Y locally to Bm, we have a holomorphic map f : U → Bm

which is a leafwise totally geodesic holomorphic isometric embedding. It remains
now to investigate whether such holomorphic maps can exist at all. In the next sec-
tions we will show that such maps do not exist under certain dimension restrictions,
viz., we will show that leafwise totally geodesic holomorphic isometric embeddings
are already totally geodesic. In other words, we will derive a contradiction unless
d = n.

For the sake of convenience we introduce the notion of a contracting leafwise
totally geodesic isometric embeddings, as follows.

Definition 2 (Contracting leafwise totally geodesic isometric embedding). Let
n,m be positive integers, n<m, U ⊂Bn be a connected open subset, and f : U →Bm

be a holomorphic map. We say that f is contracting if and only if it is distance-
decreasing when Bn resp. Bm are equipped with the canonical Kähler-Einstein met-
ric ds2

Bn resp. ds2
Bm of constant holomorphic sectional curvature −K for the same

constant K > 0. Suppose f is an immersion and, denoting by σ the (holomorphic)
second fundamental form on (1,0)-vectors for the immersion f : U → Bm with re-
spect to ds2

Bm , Ker(σ(x)) = Ker(ρ(x))) is of the same rank d at every point x ∈ U.
Denoting by E = Re(Ker(ρ)) the associated integrable holomorphic foliation, as-
sume that for each leaf Λ of E , the restriction f |Λ : Λ → Bm is a totally geodesic
isometric embedding. Then, we say that f : U → Bm is a contracting leafwise totally
geodesic isometric embedding (of leaf dimension d).

REMARKS

1. (a) In place of the complex unit ball Bn resp. Bm we can consider the quotient
manifold X := Bn/Γ resp. Y = Bm/Ψ with respect to a torsion-free discrete
group of automorphisms Γ resp. Ψ , a connected open subset U ⊂ X , and a
holomorphic immersion f : U → Y . In this general situation we have analo-
gously the notion of a contracting leafwise totally geodesic immersion, where
the restriction of f to each totally geodesic leaf Λ of the analogously defined
holomorphic foliation E is only assumed to be an isometric immersion.
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2. (b) By Umehara [Um87] any isometric holomorphic immersion of an open sub-
set of a complex hyperbolic space form into Bm is necessarily totally geodesic.
In the terminology of a ‘contracting leafwise totally geodesic isometric embed-
ding (immersion)’, it is implicit that the mapping is totally geodesic.

Summarizing in terms of the newly introduced terminology we have proven in
this section

Proposition 1. Let n,m be positive integers, n < m, Γ ⊂ Aut(Bn) be a torsion-free
discrete group of automorphisms, X := Bn/Γ , and Ψ ⊂ Aut(Bm) be a torsion-free
discrete group of automorphisms, Y := Bn/Ψ . Let f : X → Y be a generically im-
mersive holomorphic map. Suppose there exists on X − Sing( f ) a sufficiently de-
formable compact complex-analytic subvariety S of dimension m−n+1. Then, for
a general point x ∈ X −Sing( f ), there exists a connected open neighborhood W of
x on X −Sing( f ) and a positive integer d, 2n−m ≤ d ≤ n, such that f |W : W → Y
is a contracting leafwise totally geodesic isometric immersion of leaf dimension d.

§4. A commutation formula

In this section we will derive a commutation formula for the Hessian of a contract-
ing leafwise totally geodesic holomorphic isometric embedding f : U → Bm defined
on a connected open subset U ⊂ Bm, where the underlying holomorphic foliation
E is defined by Re(Ker(ρ)) = Re(Ker(σ)). We write E ⊂ TU for the holomor-
phic vector subbundle given by Ex = Ker(ρ(x)). Following the conventions in the
proof of [§2, Theorem 1] we will normalize holomorphic sectional curvatures to
be −4π . Denote by g resp. h the canonical Kähler-Einstein metric on Bn resp. Bm

of constant holomorphic sectional curvature −4π . We will be performing covariant
differentiation on tensors fields on U . By ∇ we will denote covariant differentia-
tion with respect to the canonical connections associated to g and h. Thus, ∂ f is a
holomorphic section of ΩU ⊗ f ∗TBm over U , where ΩU stands for the holomorphic
cotangent bundle T ∗

U , and ∇∂ f is a smooth section of ΩU ⊗ΩU ⊗ f ∗TBm defined in
terms of the affine connection on T ∗

U ⊗ f ∗TBm induced by the Riemannian connec-
tion of (Bn,g) and the pull-back of the Riemannian connection on (Bm,h). From
the torsion-freeness of Riemannian connections it follows that the tensor field ∇∂ f
takes values in S2ΩU ⊗ f ∗TBm , i.e., ∇α ∂β f is symmetric in α and β . We have the
following commutation formula on ∇∂ f .
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Proposition 2. Let x∈U, ξ ∈Ex and ν ∈ Tx(U). Denote by ξ̃ an extension of ξ ∈Ex

to a smooth E-valued vector field on some neighborhood of x on U. Then,

1
2π

‖∇ξ ∂ν f‖2 = ‖ξ‖(‖ν‖2 −‖∂ f (ν)‖2)−
(
‖∇ν ξ̃‖2 −‖∂ f (∇ν ξ̃ )‖2

)
.

To simplify notations in what follows we will often write ξ for ξ̃ , etc. whenever
there is no risk of confusion. Thus ξ will denote both a vector in Ex and a germ of
smooth E-valued vector field at x extending that vector. Additional conditions may
be imposed on the choice of smooth extensions for the computations. For the proof
of Proposition 2 we start with a lemma regarding values of ∇∂ f , as follows.

Lemma 2.2. Let x ∈U and denote by σ , τ arbitrary smooth (1,0)-vector fields on
a neighborhood of x, and ξ any smooth E-valued vector field on a neighborhood of
x. Then, h

(
∇σ ∂τ f (x),∂ξ f

)
= 0.

Proof. For the proof of Lemma 2 without loss of generality we may assume that ξ̃
is a holomorphic E-valued holomorphic vector field on a neighborhood of s in U .
Since f is isometric on each leaf Λ of E , E ⊂Ker(µ) for µ :=ωg− f ∗ωh ≥ 0, where
ωg is the Kähler form (Bn,g) and ωh is the Kähler form of (Bm,h). In particular, we
have

h(∂τ f ,∂ξ f ) = g
(

τ,ξ
)
. (1)

Differentiating against the vector field σ we have

h
(

∇σ ∂τ f ,∂ξ f
)
+h

(
∂∇σ τ f ,∂ξ f

)
+h

(
∂τ f ,∇σ ∂ξ f

)
+h

(
∂τ f ,∂∇σ ξ f

)

= g
(

∇σ τ,ξ
)
+g

(
τ,∇σ ξ

)
. (2)

For the last term on the left-hand side of (2), by assumption ξ is a holomorphic
vector field, hence ∇σ ξ = 0 and we have

h
(

∂τ f ,∂∇σ ξ f
)
= g

(
τ,∇σ ξ

)
= 0 . (3)

For the third term we have by symmetry

∇σ ∂ξ f = ∇ξ ∂σ f = 0 (4)

since f is holomorphic. For the second term, since ξ (y)∈Ker(µ(y)) where defined,
we have

h
(

∂∇σ τ f ,∂ξ f
)
= g

(
∇σ τ,ξ

)
. (5)

We conclude therefore from (2) that
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h
(

∇σ ∂τ f ,∂ξ f
)
= 0 . (6)

as desired.

Next, from standard commutation formulas for covariant differentiation on Her-
mitian holomorphic vector bundles on Kähler manifolds we have

Lemma 2.3. Denote by R the curvature tensor on (U,g) and by S the curvature
tensor of ( f ∗TBm , f ∗h) on U. Let σ ,τ,ζ be smooth vector fields on U. Then, we
have

∇ζ ∇σ ∂τ f k = ∑
µ

Rσζτ
µ ∂µ f k −∑̀Sσζ `

k ∂τ f ` ,

where at x ∈U, the symbol {µ} runs over the set of indexes of a basis {eµ} of TU,x,
and the symbol ` runs over the set of indexes of a basis {ε`} of f ∗(TBm, f (x)).

Proof. Since f is holomorphic we have ∇ζ ∂τ f = ∇τ ∂ζ f = 0. Lemma then follows
from standard commutation formulas for Hermitian holomorphic vector bundles for
the computation of ∇σ ∇ζ ∂τ f k −∇ζ ∇σ ∂τ f k =−∇ζ ∇σ ∂τ f k.

We are now ready to derive Proposition 2.

Proof of Proposition 2. Let x ∈U . We apply Lemma 2 to a special choice of vectors
σ ,τ,ζ at x, extended to smooth vector fields on U . Let ζ and σ be the same E-
valued holomorphic vector field ξ on U such that ξ (x) is of unit length, shrinking
the neighborhood U of x if necessary. Let τ be an E⊥-valued smooth vector field
ν such that ν(x) is of unit length. Again shrinking U if necessary let {eµ} be a
smooth basis of TU which is orthonormal at the point x and which includes at x the
orthogonal unit vectors ξ (x) and ν(x). Then, we have

Rσζ τ
µ(x) = Rσζτµ(x) = Rξ ξ νµ(x)

=

{
−2π if eµ(x) = ν(x)

0 otherwise
.

(1)

Denote by R′ the curvature tensor of (Bm,h). For (1,0)-vectors α,β ,γ at x ∈ U we
have

Sαβγ = f ∗R′
(

∂ f (α),∂ f (β );∂ f (γ)
)
∈ f ∗TBm, f (x) . (2)

At the point x ∈ U , for the subset {eλ (x)} of unit vectors in {eµ(x)} belonging to
Ex, define ελ (x) := ∂ f (eλ (x)). Since ∂ f (x) : Tx(U) → Tf (x)(Bm) restricts to a lin-
ear isometry on Ex ⊂ Tx(U), the set {ελ (x)} constitutes an orthonormal basis of
∂ f (Ex) ⊂ TBm, f (x). In the sequel for simplicity we will sometimes identify TBm, f (x)
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with f ∗TBm, f (x) tautologically in the notation. Complete now {ελ} to a smooth basis
{ε`} of f ∗TBm on a neighborhood of x in such a way that {ε`(x)} is an orthonormal
basis of f ∗TBm, f (x) with a further specification, as follows. For ζ ∈ TU,x we will also
write ζ ′ for ∂ f (ζ ). Since Ex ⊂ TU,x lies on Ker(µ), ν ′(x) = ∂ f (ν(x)) is orthogonal
to ∂ f (ξ ) for any ξ ∈ Ex. Thus, the orthonormal basis {ελ (x)} of ∂ f (Ex) can be
completed to an orthonormal basis {ε`(x)} such that one of the basis vectors is the
unit vector ν ′′ := ν ′(x)

‖ν ′(x)‖ , which is proportional to ν ′(x). We will choose a smooth
basis {ε`} of f ∗TBm on some neighborhood of x such that {ε`(x)} is an orthonor-
mal basis of f ∗TBm, f (x) with the latter property. Furthermore such a basis will be
chosen such that {ε`} corresponds on a neighborhood of x ∈ U to f ∗ ∂

∂w`
for some

holomorphic coordinates (w1, · · · ,wm) on a neighborhood of f (x) in Cm. We have

Sσζ ` = Sνξ `

= R′
ν ′ξ ′`(x) =

{
−2π‖ν ′(x)‖ν ′′ if ε`(x) = ν ′′

0 otherwise
.

(3)

Let now ξ be an E-valued holomorphic vector field on U . By Lemma 2 we have

h
(

∇ξ ∂ν f (x),∂ξ f
)
= 0 . (4)

Differentiating with respect to ν we have

h
(

∇ν ∇ξ ∂ν f ,∂ξ f
)
+h

(
∇∂ν ξ ∂ν f ,∂ξ f

)
+h

(
∇ξ ∂∇ν ν f ,∂ξ f

)

+h
(

∇ξ ∂ν f ,∇ν ∂ξ f
)
+h

(
∇ξ ∂ν f ,∂∇ν ξ f

)
= 0 .

(5)

By Lemma the second and the third terms on the left-hand side of (5) vanish. By the
symmetry of the Hessian we have ∇ν ∂ξ f = ∇ξ ∂ν f and hence

h
(

∇ν ∇ξ ∂ν f ,∂ξ f
)
+‖∇ξ ∂ν f‖2 +h

(
∇ξ ∂ν f ,∂∇ν ξ f

)
= 0 . (6)

We proceed to compute the first and the third terms of the left-hand side of (6). For
the first term by Lemma 3 and by the symmetry of the Hessian we have

∇ν ∇ξ ∂ν f k(x) = ∇ν ∇ν ∂ξ f k(x) = ∑
µ

Rννξ
µ ∂µ f k(x)−∑̀Sνν`

k ∂ξ f `(x)

= ∑
µ

Rννξ
µ ∂µ f k(x)−∑̀R′

ν ′ν ′`
k ∂ξ f `(x) . (7)

For the proof of Proposition 2 without loss of generality we may assume that
ξ (x) and ν(x) are (orthogonal) unit vectors. On a neighborhood of x, we use
the same choice of a smooth basis {eµ} and a smooth basis {ε`} of f ∗TBm
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as in the above, so that in particular {eµ(x)} is an orthonormal basis of TU,x

at x and {ε`(x)} is an orthonormal basis of f ∗TBm, f (x) at x. Write ξ (x) = ea,
ν(x) = eb. Recall the notation ζ ′ := ∂ f (ζ ) for (1,0)-vectors ζ on U . We write
also ξ ′(x) = εa. Recall also ν ′′ := ν ′(x)

‖ν ′(x)‖ = εb. For the first summation on
the last line of (7) the only possibly non-zero summand arises when µ = a,
giving Rννξ ξ ∂ξ f k(x) = −2π∂ξ f a when k = a and 0 otherwise. For the sec-
ond summation the only possibly non-zero summand arises when ` = a, giving
R′

ν ′ν ′`
k ∂ξ f `(x) = ‖ν ′‖2R′

ν ′′ν ′′ξ ′ξ ′∂ξ f a(x) = −2π∂ξ f a(x) when k = a and 0 oth-
erwise. It follows from (7) that

∇ν ∇ν ∂ξ f (x) = ∑
k

(
∑
µ

Rννξ
µ ∂µ f k(x)−∑̀R′

ν ′ν ′`
k ∂ξ f `(x)

)
⊗ εk(x)

=−2π
(
∂ξ f (x)−‖∂ν f‖2∂ξ f (x)

)
. (8)

Plugging into (5) and without assuming that ξ (x) and ν(x) are of unit length the
first term there on the left-hand side is given by

h
(

∇ν ∇ξ ∂ν f ,∂ξ f
)
=−2π‖ξ‖2 (‖ν‖2 −‖∂ f (ν)‖2 ) . (9)

For the proof of Proposition 2 it remains to deal with the last term h
(

∇ξ ∂ν f ,∂∇ν ξ f
)

on the left-hand side of (5). Recall that

h
(

∂ξ f ,∂∇ν ξ f
)
= g

(
ξ ,∇ν ξ

)
. (10)

Differentiating against ν we have

h
(

∇ν ∂ξ f ,∂ξ f
)
+h

(
∂∇ν ξ f ,∂∇ν ξ f

)
+h

(
∂ξ f ,∇ν ∂∇ν ξ f

)
+h

(
∂ξ f ,∂∇ν (∇ν ξ ) f

)

= g
(

∇ν ξ ,∇ν ξ
)
+g

(
ξ ,∇ν(∇ν ξ )

)
. (11)

By the symmetry of the Hessian, the pluriharmonicity of f , i.e., ∇∂ f = 0, and the
identity h

(
∂ξ f ,∂τ f

)
= g(ξ ,τ) for any tangent vector field τ , the equation (11)

gives
h
(

∇ξ ∂ν f ,∂ξ f
)
+h

(
∂∇ν ξ f ,∂∇ν ξ f

)
= g

(
∇ν ξ ,∇ν ξ

)
. (12)

In other words, we have

h
(

∇ξ ∂ν f ,∂ξ f
)
= g

(
∇ν ξ ,∇ν ξ

)
−h

(
∂∇ν ξ f ,∂∇ν ξ f

)

= ‖∇ν ξ‖2 −‖∂ f (∇ν ξ )‖2 .
(13)

Substituting (9) and (13) into (6) we deduce
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1
2π

‖∇ξ ∂ν f‖2 = ‖ξ‖(‖ν‖2 −‖∂ f (ν)‖2)− (‖∇ν ξ‖2 −‖∂ f (∇ν ξ )‖2) , (14)

proving Proposition 2, as desired.

REMARKS In the proof of Proposition 2, the expression ∇ν ξ (x) =∇ν ξ̃ (x) depends
on the choice of extension of the vector ξ ∈ Ex to a germ of E-valued holomorphic
section ξ̃ at x, although the notation ξ̃ is suppressed in the formulas. In the final out-
come as given in the identity (14) there, if ξ̃ is replaced by another smooth extension
ξ ], then

∇ν ξ ](x)−∇ν ξ̃ (x) := η(x) ∈ Ex ; and ∇ν ξ ](x) = ∇ν ξ̃ (x)+η(x)

is an orthogonal decomposition such that ∂ f
(
∇ν ξ ](x)

)
= ∂ f

(
∇ν ξ̃ (x)

)
+∂ f

(
η(x)

)

is again an orthogonal decomposition, while ‖η(x)‖= ‖∂ f (η(x))‖ since η(x) ∈ Ex

and Ex ⊂ Ker(µ(x)).

§5. Consequences of the commutation formula

We start with the following general result on contracting leafwise totally geodesic
holomorphic isometric embeddings from connected open subsets of the complex
unit ball into complex unit balls.

Theorem 2. Let n,m,d be positive integers, m ≤ 2n− 4, 3 ≤ d ≤ n. Let U ⊂ Bn

be a nonempty connected open subset, and E be a holomorphic foliation on
U by d-dimensional holomorphic totally geodesic complex submanifolds Λ . Let
f : U → Bm be a contracting (distance-decreasing) holomorphic mapping such
that f |Λ is a totally geodesic isometric embedding for each leaf Λ . Assume
that the foliation E is defined by Re(Ker(ρ)) for the closed (1,1)-form given
by ρ = −c1(X , f ∗h)

n+1 + f ∗c1(Y,h)
m+1 ≥ 0, where g (resp. h) stands for the canonical

Kähler-Einstein metric on Bn (resp. Bm) of constant holomorphic sectional cur-
vature −K for any fixed K > 0. Assume furthermore that Ker(ρ) = Ker(µ) for
µ = −c1(X ,g)

n+1 + f ∗c1(Y,h)
m+1 ≥ 0. Then, ρ ≡ 0, µ ≡ 0, E is trivial, and f : U → Bm

is a totally geodesic isometric embedding.

Proof. For the formulation and proof of Theorem 2 the choice of the constant K > 0
is unimportant. For the sake of uniformity we will choose K to be 4π as in the state-
ment of [§4, Proposition 2]. In this case µ agrees with the formula µ = ωg − f ∗ωh

given in the proof of [§4, Lemma 2]. Recall that the holomorphic foliation E on
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U corresponds to a d-dimensional holomorphic distribution which we denote by
E ⊂ TU . Let now x ∈U , ξ ∈ Ex and ν ∈ TU,x. By Proposition 2, we have

1
2π

‖∇ξ ∂ν f‖2 = ‖ξ‖(‖ν‖2 −‖∂ f (ν)‖2)− (‖∇ν ξ‖2 −‖∂ f (∇ν ξ )‖2) . (1)

Recall from the Remarks after the proof of [§4,Proposition 2] that in the commu-
tation formula (1) it is understood that ξ is extended to a smooth vector field ξ̃
on a neighborhood of x in U . The expression ∇ν ξ̃ (x) is then uniquely defined
only modulo Ex, but the expression

(
‖∇ν ξ̃‖2 −‖∂ f (∇ν ξ̃ )‖2

)
(x) is independent

of the extension ξ̃ since ∂ f (x) is an isometry on Ex, and since ∂ f (Ex) is or-
thogonal to ∂ f (E⊥

x ). Define now T : E⊥⊗E → E⊥ by T (ν ⊗ ξ ) = prE⊥(∇ν(ξ̃ ))
for ν ∈ E⊥

x , ξ ∈ Ex, where prE⊥ : T → E⊥ denotes the orthogonal projection.

Then,
(
‖∇ν ξ̃‖2 −‖∂ f (∇ν ξ̃ )‖2

)
(x) = ‖T (ν ,ξ )(x)‖2. Here we write T (ν ,ξ ) for

T (ν ⊗ ξ ) and the same notational convention will be adopted for linear maps on
tensor products will be adopted elsewhere.

Consider now the linear map Q : E ⊗ E⊥ → f ∗TBm given at x ∈ U by
Q(ξ ⊗ ν) = Q(ξ ,ν) = ∇ξ ∂ν f for ξ ∈ Ex, ν ∈ E⊥

x . The identity (1) translates into
an identity of the form

1
2π

‖Q(ξ ⊗ν)‖2 = P(ξ ⊗ν ,ξ ⊗ν)−‖T (ξ ⊗ν)‖2, (2)

where P(·, ·) is the unique Hermitian bilinear form on E ⊗ E⊥ which satisfies
P
(

ξ ⊗ν ,ξ ⊗ν
)
= ‖ξ‖2

(‖ν‖2 −‖∂ f (ν)‖2
)
. Denote by π(·, ·) the Hermitian bilin-

ear form on E given by π(ν ,µ) = g(ν ,µ)−h
(
∂ f (ν),∂ f (µ)

)
for ν ,µ ∈ Ex,x ∈U .

Then π(ν ,ν) > 0 whenever ν ∈ E⊥ is non-zero since ∂ f is strictly distance-
decreasing on E⊥. For x ∈U . Let now {ξ1, · · ·ξd} be an orthonormal basis of Ex and
{ν1, · · ·νn−d} be an orthonormal basis of E⊥

x consisting of eigenvectors of the Her-
mitian form πx. Thus, π(ν j,ν`)= 0 for j 6= `, 1≤ j, `≤ n−d and π(ν j,ν j)= λ j > 0.
Then, for

τ =
d

∑
i=1

n−d

∑
j=1

ai jξi ⊗ν j. (3)

we have

P(τ,τ) =
d

∑
i=1

n−d

∑
j=1

λ 2
j |ai j|2. (4)

In particular P(·, ·) is positive definite. From (2), for τ ∈ E ⊗E⊥ we have

1
2π

‖Q(τ)‖2 = P(τ,τ)−‖T (τ)‖2, (5)
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We examine further the identity (5). Now rank(E⊥ ⊗ E) = (n − d)d
and rank(E⊥) = n − d. By assumption d ≥ 3 so that
dim(Ker(Tx)) ≥ (n − d)(d − 1) ≥ 2(n − d) > 0 whenever 3 ≤ d < n. (The
case d = n means precisely that f is totally geodesic.) By Lemma 2.2 we
have h

(
∇ξ ∂ν f ,∂η f

)
= 0 whenever η ∈ Ex, so that Im(Qx) lies in the or-

thogonal complement Hx of ∂ f (Ex) in TBm, f (x), where dim(Hx) = m − d.
By the preceding paragraph dim(Ker(Tx)) = (n − d)(d − 1), hence
dim(Ker(Tx)∩Ker(Qx))≥ (n−d)(d−1)−(m−d)≥ (n−d+1)(d−1)−(2n−5).
Suppose (3≤)d 6= n. Then, (n−d+1)(d−1)≥ 2(n−2), where equality is attained
precisely when d = 3 and d = n−1, and we have dim(Ker(Tx)∩Ker(Qx))≥ 1. Let
τ ∈ Ker(Tx)∩Ker(Qx) be a non-zero element. Then from the identity (5) we have

P(τ,τ) =
1

2π
‖Q(τ)‖2 +‖T (τ)‖2 = 0 , (6)

violating the positivity of P. Thus, a contradiction arises if 3 ≤ d < n. Since by
assumption d ≥ 3 it follows that the only possibility is that d = n. In other words,
f : U → Bm is a totally geodesic embedding, as desired.

Dimension restrictions have been placed on n,m and the leaf dimension d of the
holomorphic foliation ξ . It is tempting to believe that such dimension restrictions
are unnecessary. In the notations used in Theorem 2 we formulate a conjecture as
follows.

Conjecture 1. Let n,m be positive integers. Let U ⊂ Bn be a nonempty con-
nected open subset, f : U → Bm be a holomorphic immersion. Suppose there ex-
ists a nonzero integrable holomorphic distribution E ⊂ TU of rank d > 0 such
that f is a contracting leafwise totally geodesic isometric embedding with re-
spect to the holomorphic foliation E defined by Re(E). Assume furthermore that
E = Ker(ρ) = Ker(µ) on U. Then, E = TU and f is totally geodesic.

As a consequence of Theorem 2 we have the following general result about
holomorphic mappings between complex unit balls equivariant with respect to a
torsion-free discrete subgroup which is not necessarily a lattice. In particular, they
are valid on domain complex hyperbolic space forms X of possibly infinite volume
with respect to the canonical Kähler-Einstein metric.

Theorem 3. Let n,m be positive integers, Γ ⊂ Aut(Bn) be a torsion-free discrete
group of biholomorphic automorphisms, X := Bn/Γ . Let Φ : Γ → Aut(Bm) be a
group homomorphism, and f : Bn → Bm be a holomorphic mapping which is equiv-
ariant with respect to Φ , i.e., f (γx) = Φ(γ)( f (x)) for any x ∈ Bn and any γ ∈ Γ .
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Suppose m ≤ 2n− 4, f is an immersion at a general point x ∈ Bn, and f is not
totally geodesic. Then, writing Sing( f ) for the singular locus of f (which is nec-
essarily invariant under the action of Γ ), E for the subvariety Sing( f )/Γ ⊂ X,
and Z := X −E, there does not exist any sufficiently deformable compact complex-
analytic subvariety S ⊂ Z of complex dimension m−n+1.

Proof. Suppose there exists a sufficiently deformable compact complex-analytic
subvariety S ⊂ X . By Proposition 1 there exists a non-empty connected open subset
U ⊂Bn such that the restriction f |U :U →Bm is a leafwise totally geodesic isometric
embedding. Here the leaves of the underlying holomorphic foliation E by totally
geodesic complex submanifolds are of complex dimension d, where d is the rank of
Ker(ρ) and of Ker(µ) at each point of U , and d ≥ 1+(n−(m−n+1))= 2n−m≥ 4.
In particular Theorem 2 applies and f is totally geodesic.

Because of the dimension restriction m ≤ 2n−4, Theorem 3 does not cover [§2,
Theorem 2] for the cases where X is compact or noncompact and of finite volume.
An affirmative solution of Conjecture 1 in the above would yield a geometric argu-
ment (after the global cohomological argument) for the proof of Theorem 2 which is
completely local. For the latter purpose it would also suffice to establish a strength-
ened version of Theorem 2 in which the dimension restrictions in the hypothesis are
relaxed to the conditions m ≤ 2n−1 and 1 ≤ d ≤ n.
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